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Abstract

We present a complete classification of the geometry of the mutually complementary
sets of entangled and separable states in three-dimensional Hilbert subspaces of bipar-
tite and multipartite quantum systems. Our analysis begins by finding the geometric
structure of the pure product states in a given three-dimensional Hilbert subspace,
which determines all the possible separable and entangled mixed states over the same
subspace. In bipartite systems, we characterise the 14 possible qualitatively differ-
ent geometric shapes for the set of separable states in any three-dimensional Hilbert
subspace (5 classes which also appear in two-dimensional subspaces and were found
and analysed by Boyer et al. (Phys Rev A 95:032308, 2017. https://doi.org/10.1103/
PhysRevA.95.032308), and 9 novel classes which appear only in three-dimensional
subspaces), describe their geometries, and provide figures illustrating them. We also
generalise these results to characterise the sets of fully separable states (and hence the
complementary sets of somewhat entangled states) in three-dimensional subspaces of
multipartite systems. Our results show which geometrical forms quantum entangle-
ment can and cannot take in low-dimensional subspaces.
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Mathematics Subject Classification 81P16 - 81P40 - 52A15 - 52A20

1 Introduction

In the 89 years since the discovery of quantum entanglement [ 1] and the realisation that
it marks the main departure of quantum physics from any form of classical explanation
[2—4], this quantum effect has been promoted from a counter-intuitive foundational
phenomenon [5, 6] to the fuel of emerging quantum technologies [7-10]. Indeed,
quantum entanglement remains to this day the most studied and most crucial feature
separating non-classical information processing from its classical counterpart [11].
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When classifying quantum entanglement, a major problem is deciding whether a
specific quantum state presents quantum entanglement (is “entangled”) or does not
present quantum entanglement (is “separable” or “non-entangled”). It is well known
that this general problem is computationally hard (NP-hard) [12-14]: its hardness
results from the fact that quantum separability is a bilinear condition which, if it were
easy to solve, would allow the encoding of quadratic constraints into otherwise convex
(semidefinite) problems, which is known to give rise to computationally hard problems
[15, 16]. However, the known hardness results only apply to the most general quantum
states, and in fact, it requires the consideration of highly mixed quantum states whose
density matrices have maximal ranks. For example, any pure state (i.e., a rank-one
quantum state) is known to be entangled if and only if its partial trace (reduced state)
is not pure, a condition easy to check. Formally, a pure state P8 = |y )y |AB is
separable if and only if its partial trace p® = Trg pB is pure, which happens if and
only if Tr(,oA)2 =Tr pA =1.

For quantum states whose rank is higher but still relatively small (compared to
the dimension of the full Hilbert space Ha ® Hp), analysing the reduced state is
not enough, but separability can still be efficiently detected in some cases. First of
all, if rank p*B < max {rank p*, rank p®} then the state p”B is necessarily entan-
gled and in fact has distillable entanglement [17]. If equality holds (rank pAB =
max {rank o™, rank ,oB}), or alternatively if (rank p*)(rank pB) < 6, then the state

p™B is separable if and only if it has a “positive partial transpose” (PPT), namely, if

applying the partial transpose operator (~)TB to the density matrix p”B results in a
positive semidefinite matrix [ 18—20]. These results cover all bipartite density matrices
of rank up to three. If rank pAB = 4, the result of Chen and Djokovi¢ [21] shows that
0B is separable if and only if it is PPT and its support includes a non-zero product
state. Furthermore, for all ranks bounded away from the maximum (concretely, for all
ranks r < (dim Ha — 1)(dim Hp — 1)), the separable density matrices of rank » form
a set of measure zero within the set of all density matrices of rank r [22].

However, while deciding whether a specific low-rank quantum state is entangled
or separable is an easy task, characterising the set of all separable states within a
specific Hilbert subspace can be much harder. (This is equivalent to analysing the
set of separable states inside the support of a specific mixed state p*B—namely,
inside the Hilbert subspace spanned by the eigenstates of pB corresponding to non-
zero eigenvalues.) To achieve this goal, the first step requires classifying the different
Hilbert subspaces (and the corresponding mixed states supported on them) according to
the geometric picture generated by the set of all separable states inside each subspace.

The analysis for two-dimensional Hilbert subspaces (Hilbert subspaces S € Ha ®
‘Hp such that dim S = 2), and equivalently for rank-2 mixed states, was completed by
Boyer and two of the present authors [23]: they found five (one plus one plus three)
classes of two-dimensional subspaces corresponding to five qualitatively different
geometries of their sets of separable states. Generally speaking, S may include no
product states at all; may include exactly one product state; or may include two linearly
independent product states in one of three qualitatively different ways yielding three
geometrically different sets of separable states, detailed in Theorem 1 of this paper.
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In the present paper we push this line of investigation further by considering the
case of three-dimensional Hilbert subspaces (Hilbert subspaces S € Ha ® Hp such
that dim S = 3), and equivalently of rank-3 mixed states. We stress that in the present
work, similarly to the previous work [23], only the dimension of the subspace S is
fixed (to 3), while the local Hilbert spaces Ha and Hp can have any dimension. We
prove that there are 14 geometrically distinct classes of such subspaces, which are the
previous 5 classes of Theorem 1 (corresponding to [23]) in case S includes at most
two linearly independent product states, and 9 new classes (in case S includes three
linearly independent product states) with different associated geometries of the sets of
separable states. These classes are most naturally described using the dimensions of
the projections (partial traces) of the separable states onto H 4 and Hp, whose supports
we will denote by Agep and Bgep, respectively.

The rest of this paper is organised as follows: in Sect. 2 we define the mathematical
setting. In Sect. 3 we review the previous results of [23] on two-dimensional subspaces,
and in Sect.4 we state and prove our main result as Theorem 2, where the proof is
divided according to the dimensions of the local projections. Section5 is dedicated to
geometric descriptions of the sets of separable states described in Theorem 2, including
visualisations of the possible classes. In Sect.6 we extend the results to multipartite
systems. Finally, in Sect.7 we conclude and discuss the obtained results.

2 Setting

We begin the analysis given a rank-3 quantum mixed state pB on a bipartite sys-
tem Ha ® Hp. The support of pAP is the three-dimensional Hilbert subspace
S = supp p”B which is spanned by the eigenstates of pAB; that is, if we write
PP = pily) WP + palva)dval®® + palva)yslAB, then S = supp p® =
span {[¥1)2B, [42)AB, [yr3)AB}. We point out that, in general, supp p = (ker p)* and
rank p = dim(supp p) (which in our case equals 3); moreover, S = supp p includes
all pure states appearing in any of the possible decompositions of the mixed state p
(see details and proof in Lemma 3 of [23]), so the definition of S is independent of the
specific decomposition chosen for p.

Formally, given a bipartite Hilbert space Ha ® Hp and given any Hilbert subspace
S € Ha ® Hp, we denote by Sgep the subspace spanned by all product states in S:

Ssep £ span {W)AB es: |1ﬂ)AB is a product state}

=span {[¥)*P € 5 : Aga)* € Ha, 168)% € M [¥)"P=1pa) Ign)®] .
ey
In our paper, we characterise the set of all separable states (both pure and mixed) over S,
a set we denote by Dgep. This set includes exactly all mixtures (convex combinations)
of product states in S. Formally, we define:

D, £ {p € D(S) : pis separable}, 2)
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where D(S) is the set of all positive semidefinite operators that have trace 1 on the
Hilbert space S.

Because dim § = 3, the dimension of its subspace Sgep can be 0, 1, 2, or 3.1 The
analysis of the first three cases (dim Ssep € {0, 1, 2}) was carried out in [23].2 We
therefore focus here on the last case dim Sgep = 3, in which S, = S is spanned by
three linearly independent product states:

§ = span { I 1B1)®, 102} 1B2)®, laa) N 183)" | @)

Now, the classification will depend on the dimensionality of the two local subspaces

Asep 2 span flan)®, Jea)™, )t}

)
Buep = span {181)%, 182)%. 183)° |

each of which can be 1-, 2-, or 3-dimensional. Writing all possible combinations of
their dimensions (dim Agep, dim Byep), we obtain the following possible combinations:
(1,3) and (3, 1), (3,3), (2,3) and (3, 2), and finally (2,2). The resulting classes
corresponding to each combination are presented in Theorem 2.

3 Previous work of [23]

We begin by presenting the result of [23] on a two-dimensional Hilbert subspace S,
which geometrically corresponds to a Bloch sphere. This result is mainly based on
distinguishing the three simple cases (1,2), (2,1), and (2,2).

Theorem 1 (Boyer/Liss/Mor [23]) Given a bipartite Hilbert space Ha ® Hp and
any two-dimensional subspace S € Ha ® Hp, one of the 3 following cases holds:
(note that each case corresponds to a possible dimension of the Hilbert subspace Sgep
spanned by all product states in S)

(i) S includes no product states (dim Ssp = 0), in which case all pure and mixed
states over S are entangled; or
(ii) S includes exactly one (pure) product state (dim Sgp = 1), in which case all the
other pure and mixed states over S are entangled; or
(iii) S is spanned by two (pure) product states (dim Sy, = 2), so: § = span
{le)21B1)B, 1o2)2182)B .

! Note that if Ssep is 0-, 1-, or 2-dimensional, it follows that pAB is necessarily entangled: if pAB is
separable, it must be a mixture of at least three linearly independent product states from Ssep (because
rank pAB = 3), 50 dim Sgep = 3.

2 All three cases dim Ssep € {0, 1, 2} exist, because any given space Ssep (spanned by product states) can
be extended by a suitable set of entangled states that are linearly independent of Sgep and of each other, in
order to reach the dimension dim § = 3.
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In the third case, let

Agep £ Span {|051>A» |012>A} )

A B B %)

Buep 2 span {181)%. 182)° |,
whose dimensions can be (dim A, dim Byp) € {(1,2), (2, 1), (2,2)}. Then, the
separability of the pure and mixed states over S is as follows, depending on the
dimensions (dim Ag,p, dim Byep):

(1,2): S = {|a1)A} ® Byep is simply a local qubit in subsystem Hg, and all pure and
mixed states over S are separable. (In fact, all of them are product states of a
fixed |oy )A and a qubit state over Biep.)

(2,1): S = Asep ® {|/31 )B} is simply a local qubit in subsystem Ha, and all pure and
mixed states over S are separable. (In fact, all of them are product states of a
qubit state over Agep and a fixed | By )B)

(2,2): The separable pure and mixed states over S are exactly all mixtures (convex
combinations) of a1 Yo |2 @ |81 )18 and o Yoz |* @ | B2 ) B2|B; all the other
pure and mixed states over S are entangled.

Proof Proved in [23] as its Theorem 9, which was phrased in different terms: our
case (i) corresponds to Class 5 of [23], our case (ii) corresponds to Class 4 of [23], and
in our case (iii), options (1,2) and (2,1) correspond to Class 1 of [23], and option (2,2)
corresponds to Class 2+3 of [23]. O

Remark We point out that [23] combined both options (dim Agep, dim Bsep) €
{(1,2), (2, 1)} into one class (Class 1), because they give the same final result (all pure
and mixed over S being product states) and are related to one another by the exchange
symmetry between Ha and Hp. Here we distinguish between these two options, so
that classification becomes easier in the more involved case of a three-dimensional
Hilbert subspace (Theorem 2).

On the other hand, [23] split option (dim Agep, dim Bgep) = (2, 2) into two classes:
Class 2 where the two states are orthogonal (|« DAIBE L |2)?|82)B) and Class 3
where they are non-orthogonal. Here we drop this distinction because it disappears
under the symmetry of local invertible operations. As we explain below in Sect. 4, for
invertible X and Y acting on M and g, respectively, p*B is separable if and only
if(X® Y),oAB X® Y)T is separable. We can thus use X (or Y) to map any linearly
independent set of states in Ha (or Hp, respectively) to any other linearly independent
set of states, including in particular an orthonormal basis. Classes 2 and 3 of [23] are
thus the same under this symmetry, so we cannot distinguish between them here.

4 Main result

We can now state our main result, modeled after Theorem 1. The theorem uses the
notations defined in Sect. 2.
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We note that n vectors in a vector space of dimension d are said to be “in general
position” if any subset of size d of them is linearly independent. In addition, D(S)
is the set of all density matrices over the Hilbert space S, and conv(A) is the set of
all convex combinations (mixtures) of the states in the set A. Moreover, in the proof,
quantum states are said to be “equal” even if they differ by a physically-irrelevant
global phase ¢#, and they are always assumed to be normalised.

In the proof we also use the important observation that separability of a state is
invariant under local invertible operations. In other words, for any two invertible
matrices X € GL(Ha) and ¥ € GL(Hp), the state ,oAB is separable if and only
if the state (X ® Y)p"B(X ® Y)T is separable. Under this symmetry, the support is
mapped accordingly: if § = supp p”B, then supp[(X @ Y)p*B(X@Y)] = (X®@Y)S.
We will thus study the different shapes the set of separable states DSSep can take, where
any two subspaces related by a local invertible map X ® ¥ can be treated as equivalent.

Theorem 2 Given a bipartite Hilbert space Ha @ Hp and any three-dimensional
subspace S € Ha ® Hp, let Syp be the subspace spanned by all product states in

S (that is, Ssep 2 span{|y)2B € S : |Y)AB is a product state}). We would like to
characterise the set of all separable states (both pure and mixed) over S, a set we
denote by Dfep and formally define as follows:

DSSep £ (p e D(S) : p is separable). (6)

If dim Sy, < 2, then Dssep belongs to one of the 5 classes described in Theorem 1.
If dim Sspp = 3 (50 Sgep = S), then using the notations of Egs. (3)—(4):

§ = span {la)*1B1)®. la2)*182)®, ) *12) P}
Asep 2 span {lan)*, o2, )] )

Buep 2 span {1B1)". 182)". 183)® |

one of the 9 following cases occurs, depending on the dimensions (dim Ag,p, dim Byep):

(1,3): All pure and mixed states over S are separable, because S = {loq )A} ® Byep-

(In fact, all states over S are product states of a fixed state o)™ and a qutrit
state over Byep.) Formally, DSSEP = D(S). This case is illustrated in Fig. 1.

(3,1): This case is symmetric to (1,3): all pure and mixed states over S are separable,
because S = Agep @ {|,31 )B}. (In fact, all states over S are product states of
a qutrit state over Agep and a fixed state | By VB.) Formally, D‘fe[, = D(S). This
case is illustrated in Fig. 1.

(3,3): The separable pure and mixed states over S are exactly all mixtures (convex
combinations) of oy Y1 |12 ® |B1B1 P, le2)a| A ® |B2)(B2|P, and |as)es|* ©
|B3)(B3|B; all the other pure and mixed states over S are entangled. Formally:
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D3, = conv {laren |* @ 1BINBIIP, )l @ B2)(Ba P,

el @ 1B)BE) . ®)

This case is illustrated in Fig. 2.

(2,3): We distinguish two subcases:
(i) If the three states |a YA o), |as)® are linearly dependent but in general

(it)

position (i.e., any two of them are linearly independent), then the separable
pure and mixed states over S are exactly all mixtures (convex combinations)

of loer Xer |2 @ |BIXBIIB, loa X2 ® |B2)B2IB, and [Nz ® |B3)BslB,
identically to case (3,3). Formally:

D3, = conv {larken |* @ 1BINBIIP, )l @ B2)(Ba P,

ke @ 1B3)Bs ) ©)

This case is illustrated in Fig. 2.

Otherwise, without loss of generality we can assume |a2)® = |a3)®, and
the separable pure and mixed states over S are exactly all mixtures (convex
combinations) of o1 o1 |* @ | B1)(B1|B with any pure or mixed state over the
space {|a2)A} ® span {|,32)B, |,33)B}. Formally, in case |a2)® = |a3)?:

D5, = conv [{len)en @ 1816117}

D ({le) f @ span {18202 182)7}) ] (10)

and symmetric results are obtained in case | YA = |o)® or |ap)A YA,

This case is illustrated in Fig. 3.

= a3

(3,2): This case is symmetric to (2,3): we distinguish two subcases:

(i)

(ii)

If the three states |B1)B, |2)B, |83)® are linearly dependent but in general
position (i.e., any two of them are linearly independent), then the separable
pure and mixed states over S are exactly all mixtures (convex combinations)

of ler X1 |* ® |B1)BIIB, laa)oz A @ [B2)B2IB, and |as)as| @ |B3)B3B,
identically to case (3,3). Formally:

D3, = conv [laren |* @ BB 1P, )l @ 1B2)(Ba P,

ke ® BB} (D)

This case is illustrated in Fig. 2.
Otherwise, without loss of generality we can assume |B2)® = |B3)B, and

the separable pure and mixed states over S are exactly all mixtures (convex
combinations) of |1 X1 |* ® | B1)(B1|B with any pure or mixed state over the
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space span {|a2)A, |a3)A} ® {|,32)B}. Formally, in case |$2)B = |B3)B:

DS, = conv [{lenien* @ 181)p1 17

uD (span {le)*, len)*} @ [182%})]. (12

and symmetric results are obtained in case |1)® = |B2)® or |81)B = |53)B.
This case is illustrated in Fig. 3.

(2,2): We distinguish two subcases:

(i) Ifthe three states |a)™, |an)™, |a3)™ are not in general position, or symmet-
rically if the three states |$1)B, |82)B, | B3)B are not in general position, then
without loss of generality we can assume lon)A = |ot3)A and |,31)B #* |,82)B,
and then the separable pure and mixed states over S are exactly all mixtures
(convex combinations) of any pure or mixed state over the subspace S; =
{|a2)A} ® span {|ﬁ1)B, |/32)B} with any pure or mixed state over the sub-
space Sy £ span {|(x1)A, |012>A} ® {|ﬂ1)B } Formally, in case |an)® = |a3)?

(and |B1)® # |B2)"):

D3, = conv [D(S1) UD(S)]

= conv[D ({1020} @ span [181)%. 182)°))
uD (span {I“l)A, |(¥2>A} ® {'ﬂl)B})]
= conv [D ([lOlz)A] ® BS@P) ubD (Asep ® [l’Bl)BD] - 43

and symmetric results are obtained in case |a1)® = o), |a)® = |az)?,
182)B = 183)B, 1B1)B = |B2)B, or |B1)B = |B3)B. This case is illustrated in
Fig. 4.

(ii) Ifﬁze three states |a1)™, [a2)?, |a3)® and the three states |B1)®, | B2)B, |83)B
are both linearly dependent but in general position (i.e., any two states
of la)A, Jo2) ™, laz)A are linearly independent, and similarly, any two
states of |,31)B, |,32)B, |ﬂg)B are linearly independent), then there exists
an invertible linear map L : Agp +> Byep satisfying |,8,-)B x L|oc,-)A
for all values i = 1,2,3, such that the product states in S are exactly
{|1[/)A (L|1ﬁ))B : |¢)A € Axg,,} (up to a normalisation factor), and the sep-
arable pure and mixed states over S are all mixtures of these product states
in S. Formally:

sep

DS = conv [|\y)(\y|AB CWAB =y A (LY )B,

)A€ Ay v €€, 1928 =1} (14)
This case is illustrated in Fig. 5.
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Proof If dim S, < 2, then applying Theorem 1 to a two-dimensional subspace of

S which includes Sgep proves that the set D;géf,p of pure and mixed separable states
over Sgep belongs to one of the five classes described in Theorem 1. All the other pure

and mixed states over S (that are not states over Sgep) must be entangled. Therefore,

Dssep = Df;f,p indeed belongs to one of the five classes described in Theorem 1.
If dim Sgep = 3, then Sgp = S, in which case we divide our proof into cases

according to the dimensions (dim Agep, dim Bgep):

4.1 (1,3)and (3,1)

The case (1,3) means that dim Agep = 1, s0 loe)A = |a2)® = |a3)™. Therefore,

§ = span {lo)*1B1)®, 102} 1B2)®, ) 183)F |

= {le)*} @ span {181)%, 1820, 185)%} = {Ie)* | @ By, "

which means that all pure and mixed states over S are product states: Dgep = D(S),
as needed.

The proof for the case (3,1) is symmetric, s0 S = Agep ® {|,81)B} and Dfep =D(S),
as needed.

4.2 (3,3)

In this case, all three states |ap)?, |a)?, |a3)® are linearly independent, and so
are |B1)B, 182)B, 183)B. Let {|1)2, [2)A, [3)A} and {|1)B, 2)B, |3)B} be orthonormal
bases of Agep and Byep, respectively. We can thus apply a local invertible map X ® Y,
where X is an invertible matrix over Agp mapping |a)A > [1)A, o)A > [2)4,
and |a3)® — |3)2, while Y is an invertible matrix over Bgep mapping |81 VB |1)B,
182)B — [2)B, and |B3)B > |3)B (both maps exist, because there always exists an
invertible matrix mapping a given set of linearly independent states into another given
set of linearly independent states).

Since S = span {|a1)*[81)B, [@2)*182)B, |3)*|83)B}, all elements of S are super-
positions u|or1)2[81)B + v]a2)?|B2)B 4+ w|az)?|B3)B. Under the above map, they are
mapped to the respective superpositions u| DAIDE + v]2)212)B 4 w|3)A|3)B.

Since any local invertible map preserves separability, we notice that each state in
S is a product state if and only if the state to which it is mapped is a product state.
However, since u|1)*|1)B + v|2)A|2)B 4+ w|3)4|3)B is in its Schmidt form and has a
Schmidt number of 3 or less, it is a product state if and only if two of its coefficients
are zero (otherwise, it is entangled). Therefore, the only product states in S are the
spanning states |or1)™(81)B, [a2)*[B2)B, [3)2]B3)B.

This finding implies that the set of separable pure and mixed states over S includes
exactly all mixtures of these three product states, so:
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D;gep = conv {|a1 X1 [* @ [B1)B1[5, |22 ® |B2)Ba2IB,
las)es|® ® |B3)B31B} . (16)

as needed.

4.3 (2,3)and (3,2)

In the case (2,3) we can assume, without loss of generality, that loeg Y2 * loa ),
so a3)® = ala)® + blan)®. On the other hand, |81)B, |8)B, |83)B are linearly
independent. Using again local invertible linear maps, we can map o) — [1)2
o)™ > 22, [81)B — [1)B, [B2)® > |2)B, and |B3)® > |3)B, which also maps
la3)® = a|1)A + b|2)A. A general state in S is then a superposition of the following
form:

ula) 1815 + vlea)182)B + wlas)*[B3)B
— u| DA 1)B + v]2)2412)B + wa|1)23)B + wb(2)A13)B

— A <u|1)B + wa|3)B) T 2)A (v|2)B + wb|3>B) . (17)

This is a product state if and only if u|1)® + wa|3)®B and v|2)B + wb|3)B are linearly
dependent (including the possibility that one of them is 0). There are thus two subcases:

(i) If the three states |a1)?, |a2)?, |a3)® are in general position (that is, any two of
them are linearly independent), then in particular a, b # 0. This means that for
ul1)B + wa|3)® and v|2)B + wb|3)B to be linearly dependent, there are only
three possibilities: u = v =0, u = w = 0, and v = w = 0. Therefore, the only
product states in S are the spanning states |a1)*|81)B, [a2)*[82)B, |a3)™|B3)B.
This implies, identically to case (3,3), that the only separable states over S are
the mixtures of these three product states, so:

D, = conv {laren |* @ 1BINBIIP, )l @ B2)(Ba P,

el @ BB} (18)

as needed.

(ii) Otherwise, without loss of generality we can assume |a2)” = |a3)?, soa = 0,
b = 1. In this case, the resulting states u|1)® and v|2)B + w|3)B are linearly
dependent if and only if # = 0 or v = w = 0. Therefore, the product states in S
are either of the form |on)A (v|ﬂ2)B + w| ,33)3) (corresponding to case u = 0)
which are exactly all states in the Hilbert subspace { o)A } ®span { | ﬂ2>B, |83 \B }
or the single state |« DA1B1)E (corresponding to case v = w = 0). This implies
that the separable pure and mixed states over S are all mixtures of |or1)*|B1)B
with any pure or mixed state from {|a)*} ® span {|82)B, |83)B}, so:

>A
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D, = conv | [lanken * @ 181461 1P

oD ({lea)} @span {18207, 1807])]. (19)

as needed.

The proof for the case (3,2) is symmetric.

4.4 (2,2)

We can assume, without loss of generality, that |a1)? # |a2)™ and |81)B # |82)B,
50 |a3)® = alay)® + blaz)® and |B3)B = ¢|B1)B + d|B2)B. As before, using local
invertible linear maps, we can map la)® = DA, o) = (2)2, 1B1)B — [1)B,
and |£2)B — [2)B, which also maps |a3)* — a|1)A 4 b[2)A and |B3)B — ¢|1)B +
d|2)B. We can thus write a general state in S as a superposition:

ule )8R + vlaa)182)® + wles)™|B3)®
> ul AP +v]2)42)P
+ wac| DA DB + wbd|2)212)B + wad|1)212)B 4+ wbc|2)A1)B (20)
= (u + wac)|[HA1DB + (v + wbd)[2)A2)B
+ wad|1)212)B + whc|2)A1)B.

This is a product state if and only if the determinant of the coefficients is 0, i.e.
(u + wac)(v + whd) = wabcd. 1)

There are thus two subcases:

(i) Ifeither the three states o), |a2)?, |or3) or the three states | 81)B, |82)B, |83)B
are not in general position (that is, if not every two of these states are linearly
independent), then one of a, b, ¢, or d is 0. Without loss of generality, assume
a = 0,50 |az)® = |az)™. This means in particular that the following three states
are in S: |a1)2(B1)B, |a2)®(62)B, and |3)2(83)B = |a2)™ (c|B1)B + d|B2)B),
so by linearity we deduce that la2)2|B1)B is also in S (note that ¢ # 0, because
otherwise the equality la2)2B2)B = |3)?|B3)B would hold, which would con-
tradict the fact dim S = 3). Thus:

§ = span {len)* 1), 102} 1B1)®, a2} 182" | 22)

S is thus the span of a union of the two local qubit spaces S| £ {la2)*} ®
span {|ﬂ1)B, |,32)B} and S, £ span {|oe1)A, |a2)A} ® {|ﬂ1)B}, which intersect
in |a2)?|B1)B. Thus, the separable pure and mixed states over S are exactly all
mixtures (convex combinations) of any pure or mixed state over the space S
with any pure or mixed state over the space S,. Formally:
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DS = conv[D(S]) UD(S»)]

N = conv[ D ({le) }®Span{|ﬂ1 182%))
oo (a0 o 7]
= conv [ D ({jox) ]®Bsep)uD(Asep®{|/31 )] )

(ii) Otherwise (if both o), |2)®, |3)® and |B1)B, |B2)B, |83)B are in general
position), this means that a, b, c,d # 0. We can thus choose new variables
x 2 u+wac, y £ v 4+ whd, and 7 £ whc, so that Eq. (21) becomes

ad
xy = w?abed = 22— (24)
bc’

which means that all product states in S are of the form:

ula)11)® + vlo2)1B2)® + wlez) | B3)®

x| DADE 4 y12)212)8 +29411)412) + 212)41)P

o DANP +x9(2)212)® + 22924 11)A12)® + x2]2)4(1)" (25)
=2 DAMDP +224212)212)8 + x294 1) 2) + xz[2)41)°

- (x|1)A +202) ) <x|1)B + 294128 )
We can thus see that S includes an inﬁmte number of product states, all of
the form y (x]ap)™ + zlon)?) (x|81)B —i—zbC |B2)B) for some x,z € C and a
normalisation factor y. Accordingly, we can define an invertible linear map

L : Agep > Bgep mapping:

Lie)™ = |81)B, (26)
d

Lia) = 2= 182", 27)
C

and we conclude that the set of separable states in S is exactly:
{198 2y [)A @)+ 19)* € Ay v e, 1928 =1). 28)

Thus, the separable pure and mixed states over S are exactly all mixtures (convex
combinations) of the states in Eq. (28). Formally:

DS, = conv [[WKWINE : [W)AR =y y)A (Liy)P

) € Awp, v €€, |l028] =1}, 29)
as needed. O

@ Springer



Geometry of entanglement and separability... Page 130f31 86

Fig. 1 The qutrit Hilbert space and cases (1,3) and (3,1): D(S) = D(C3) is an 8-dimensional convex set
whose extreme points form a 4-dimensional smooth manifold, and whose other faces all have dimension
3. It is a highly symmetric body with an SU(3) symmetry group that acts transitively on the extreme
points and also on the 3-dimensional faces. It is also its own polar. There is no three-dimensional convex
body presenting all these features, but other researchers have tried to construct visualisations [26-31] that
preserve some of the features, typically suggesting projections into three dimensions. Among these, the
so-called sphericyl (left) and elliptic sphericyl (right) were previously considered in [27] as decent intuitive
illustrations: they are convex hulls of smooth curves that are each a union of four tangent circular arcs on a
sphere. These pictures are courtesy of Tadeusz Dorozinski [24]

5 Geometric descriptions and figures

In Theorem 2 we gave an algebraic description of the possible sets Dfep of separable
pure and mixed states over S. Now we can also give a geometric description of the sets
DSSCP as closed convex subsets of the qutrit space D(S) which is shown schematically in

Fig. 1. The possible sets Dfep are denoted according to the relevant case in Theorem 2—
that is, Doy, DI, DIGV 7 ete.

In this section we develop three-dimensional stereographic illustrations of the pos-
sible classes from Theorem 2; because the sets Dfep typically have dimension higher
than 3, we use lower-dimensional sections and projections to present these schematic
illustrations. Figure 1 is courtesy of Tadeusz Dorozinski [24], and the remaining figures
(Figs. 2, 3, 4, 5) were produced using CalcPlot3D [25].

Recall that D(S) is the set of all density matrices acting on the Hilbert space S,
and conv(A) is the convex hull of A—that is, the set of all convex combinations
(probabilistic mixtures) of the states in the set A € D(S).

We now present all possible classes from Theorem 2 and their geometric descrip-
tions:

(1,3)/(3,1): The set of separable states DSSC%‘” = Dféf;l) = D(S) is the entire set
of pure and mixed states over the qutrit Hilbert space S = C>. Unlike a qubit Hilbert
space (whose corresponding Bloch sphere, which represents all pure and mixed states
over the qubit, is three-dimensional and can thus be visualised), the set of all pure and
mixed states over a qutrit space is 8-dimensional and cannot be easily represented in
three dimensions. Formally:

N S
D =D& =D(S$) = DT, (30)
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S i N i
Fig.2 Cases(3,3)and (2,3)/(3,2)-i: The set of separable states Dgf 3 = Se%’3) = Dség’z) "isatriangle

whose vertices correspond to the pure product states |oq o \A ® |B1)XB1 \B, Iaz)(azlA ® | 52)(,32|B, and
lo3)es | @ B3)B3 1P

. . .. . N . S,
the dimension of the set of separable states is indeed dim Dse(ll,"” = dim Dse(f,’l) =

8, and the set § is the product of a fixed state with a local qutrit space: in
case (1,3), S = {la1)*} ® span{|B1)B,|B2)B, 183)B}. and in case (3.,1), S =
span {|a1)®, |a2)?, |@3)} ® {181)B}, which are all product states.

A decent schematic illustration of the qutrit space can be obtained as the convex
hull of the seam on a tennis ball. For concreteness, we choose the sphericyl and elliptic
sphericyl as described in Fig. 1. Note that these are only intuitive “cartoons”: they only
aim to demonstrate some of the qualitative features of D(S) in three dimensions. In the
subsequent cases we follow a more precise approach, constructing three-dimensional
sections/projections of the resulting subsets Dsep

(3,3) and (2,3)/(3,2)-i: The set of separable states Diiy” = Diz"~ = DI
simply consists of all mixtures of the three product states |o1) A 1B1)B, |2)2182)B, a3)A
|83)B. Formally:

s S2.3)-i S@3.2)-i
Dse%3) = Dse(ff3) = Dsegl)
= conv { o[ @ 1B1)AIE, laalieal® @ IB2) B, (31)
|3 )3 | ® | B3}l ]
and the dimension is dim Dsse(%” = dim Dfe% D= dj mD;gég 27" = 2. Geometrically,

this set simply forms a triangle with these three product states as corners (which is
exactly a classical two-dimensional probability simplex of ternary probability distri-
butions), as shown in Fig. 2.

(2,3)/(3,2)-ii: In case (2,3)-ii, the set of separable states Dféff)’” consists of all
mixtures of the state |y Xer1|* ® |81)(B1|B with any pure or mixed state over the local
qubit space {|a2)*} ® span {|82)B, |83)B}: and similarly, in case (3,2)-ii, the set of
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Fig.3 Case (2,3)/(3,2)-ii: The sets of separable states DSC(IZ,’S) " and sep are 4-dimensional spherical
cones. Here we present one of their three-dimensional sections, which is a convex hull of the qubit states

along the equator of the Bloch sphere in addition to a single point representing |oq g A ® 1B1XB1 B

N —ii . .
separable states Dséf,’z) consists of all mixtures of the state oy Xer1|* @ |B1)B1[B

with any pure or mixed state over the local qubit space span {]a2)2, |3)*} ® {182)B}.
Formally:

D" = conv [{lan)eu|* @ 1BuB1IP | U D ({lea)* | @ span {18202, 183)°) ) |

(32)

S3.2)-ii
D™ = conv [ {lan)er* @ BB} UD (span [l le)* |} @ {18207 )].
(33)
and the dimension is dim Dgéfﬁ =i — dim Dfe(gl)’i " = 4. Thus, in both cases, the set

of separable states forms a spherical cone connecting a single point (representing the
state |or1 Xorp |2 ® | B1)(B1|B) with a Bloch sphere (representing the local qubit space) in
an overall four-dimensional space. The extreme points of this set form two connected
components: the single point and the two-dimensional surface of the Bloch sphere.
This body has a two-dimensional family of faces of dimension 1 and a single face of
dimension three. To illustrate this in a three-dimensional figure, we present the convex
hull (that is, the set of all convex combinations) of the equatorial qubits of the Bloch
sphere (a full disc) with the single point, and we get a three-dimensional cone over a
circular disc, shown in Fig. 3.

. S2,2)—i . .
(2,2)-i: The set of separable states Dse(]z),z) consists of all mixtures of any pure or

mixed state over the local qubit space S| £ {]o2)*} ® span {|B:)®, |82)B} with any
pure or mixed state over the local qubit space S> £ span {|a)?, [a2)*} ® {181)2};
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S2.2-i . . .
Fig. 4 Case (2,2)-i: The set of separable states Dse(f,’z) ' is the 6-dimensional convex hull of two Bloch

spheres intersecting at one point. Here we present one of its four-dimensional sections, which is a convex
hull of two Bloch sphere equators intersecting at one point, projected into three dimensions.

note that the intersection of the two spaces is S1 N S = {|012)A ® | ,BI)B}. Formally:

D™ = conv [D(S)) UD(Sy)]
= conv [ D ({le)* | @ span {11)". 162)" })

A A B (34)
uD (span flan), 1)} @ {1117}
= conv [D <{|a2)A} ® Bsep) uUD (Asep ® {|/31>B])] ,
and the dimension is dim D;gélz,’z)’i = 6. Thus, the set of separable states is the convex

hull (that is, the set of all convex combinations) of two Bloch spheres intersecting at a
single point, where the single point represents |a2) ® |81)B. The two Bloch spheres
are transversal to each other: they are two three-dimensional spaces intersecting at a
single point. We can thus repeat the same idea as in case (2,3)/(3,2)-ii and take the
equatorial qubits of both Bloch spheres, which are two full discs transversal to each
other; however, the convex hull of the two discs is still 4-dimensional. We thus project
this figure into three dimensions, obtaining the convex hull of two circles intersecting
at one point, where their respective two-dimensional planes intersect at right angles,
as illustrated in Fig. 4.

(2,2)-ii: The set of separable states Dsse(f,’z)_” consists of all mixtures of states of the
form |y)A (LIy)B, up to normalisation, for a specific (known) invertible linear map
L. Formally:

DS, = conv [ W)WM [W)AR =y ) (Liw)®,
)t € span{len®, et} v e lepA®) =1},
(35
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S o
Fig.5 Case (2,2)-ii: This three-dimensional section of the full eight-dimensional set Dse%z) ! is the convex

hull of (x = cosg, y =sing, z = cos? @ — sin? @) for 0 < ¢ < 2m, which is the intersection of two
isomorphic degenerate paraboloids and represents a projection of the possible product states [ )2 yr)B
(up to local invertible maps), showing only those of the pure states |/) which are on the Bloch sphere’s
equator. Except for its one-dimensional manifold of extreme points, its only other faces are two disjoint
one-dimensional families of lines

where, given that |a3)® = ala)® + blan)® and |83)B = c|B1)B + d|B2)B for
a, b, c,d € C\{0} that were defined in the proof of Theorem 2 (case (2,2)) in Sect. 4.4,
the map L is defined as:

Lia)® = |B1)®, (36)
ad
Lloo)* = —~152)", 37)
C
ad a
Lios)® = alp)® + —182)" = —153)", (38)
and the dimension is dim Dsse(lzo'z)fii = 8. Thus, the set of separable states is an 8-

dimensional convex subset of the full qutrit space D(S) = D(C3), and its extreme
points form the two-dimensional smooth manifolds of pure product states | ) A ®
(L|1p)(¢ |LT)B. We notice that this is the only case (except the trivial case (1,3)/(3,1))
where the set of separable states has the same dimension as the full space D(S); in all
other cases the set of separable states has a lower dimension and is thus of measure
zero.

An interesting special case is ad = bc, because it satisfies (L|1/f))B = |1//)A if
we apply the local invertible operations mapping o)A > DA, o) > [2)4,
1B1)B — |1)B, and |8)B — |2)B and take the equivalences InA = |1)B
and |2)» = |2)B. In this case, the set of product states in S is equivalent to
the set of all states of form [)*|y)B, which is the set of all product states
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in the symmetric subspace (also known as the “triplet subspace”) of the two-
qubit Hilbert space Hy x Ho (that is, the three-dimensional subspace spanned by

A7\B A1\B
IHAIB, 12)412)B, |wH)AB & w}) Moreover, we can see that given

this special case, the general case (2,2)-ii can simply be obtained by applying a local
invertible operation X ® Y (not affecting entanglement) to the special case.

To obtain the figure, we look at the special case ad = bc; we apply the local
invertible operations mapping |a1)® — [1)A, |a)® — [2)2, |81)B — |1)B,
and |B2)B +— |2)B, so that the product states are equivalent to |)™|y)B where
[¥)A € span {ll)A, |2)A}; and we limit our view to the section of equatorial qubit
states—that is, qubits of the form:

A DA+ e92)A

V) 7 (39)
for 0 < ¢ < 2m. All product states are thus of the form:
A = DAt NP+ o)
V2 V2
_ |])A|])B +ei¢7|1)A|2>B +ei<p|2)A|1)B +62itp|2>A|2>B 40)
2
_ |11)AB n ei(P|\Ij+)AB e2i(p|22)AB
=— i > ’
(where we denote | +)AB £ W), and the resulting density matrices are:
LIXITAB wypFAB - 22)22|AB
i @ e = LI IOV | 12202
+eupl‘lﬂr)(lllAB +e_i<,,|11>(‘lf+|AB +e_,~w|\lf+)(22|AB
24/2 242 232
Lo PR i PR 12N
2V2 4 4
(4D

Thus, the resulting density matrices are of the following form:
WX ® W)Y [P =Cte'? Ate™ Y AT+ B + eV BT
. . T . . il
= C+e¥A+ (e"/)A) + B + (ez”/’B) )

where A, AT, B, BT, C are linearly independent matrices. The resulting set of sepa-
rable states is the convex hull of an infinite number of extreme points (representing
these product states) forming a smooth curve; these extreme points are affine-linearly
parametrised by the pair of complex numbers (e'?, ¢*¥) for 0 < ¢ < 2. Since the
resulting body is still four-dimensional, we project it into three dimensions by retain-
ing only the real part of the second complex number ¢, getting the parametrisation
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(¢, cos(2g) = cos? ¢ — sin® @), or equivalently (cos¢, sing, cos® ¢ —sin’ ).
Using real number parameters x, y, z € R, the obtained convex body is

conv[(x,y,z) : x2+y2= 1, szz_yz}

=[(x,y,z):x2+y2§1, 2x2—1§z§1—2y2}, (43)

which is shown in Fig. 5.

6 Generalisation to multipartite systems

We can now generalise our result regarding bipartite systems (Theorem 2) to all mul-
tipartite systems. In [23], the generalised classification of fully separable states in
two-dimensional subspaces of multipartite systems (Theorem 11 in [23]) turned out
to be completely identical to the classification of separable states in two-dimensional
subspaces of bipartite systems (Theorem 9 in [23], stated in our paper as Theorem 1).
However, in our paper, we will be able to find several differences between the bipar-
tite case and the multipartite case: most notably, some bipartite classes disappear for
multipartite systems.

Similarly to Sect.2, we begin our analysis with a rank-3 quantum mixed state
p = pArAk on a k-partite system Ha, ®Ha, @+ - @Ha, (Where k > 3). As before,
the support of p is the three-dimensional subspace S = supp p which is spanned by
the eigenstates of p, and we define:

Ssep £ span{|yy) € S : |) is a product state}
=span {|y) € 5 360) € Ha, ..o 160) € Ha, (44)
) = 19D @@ ls®)].
Since the cases dim Sgep € {0, 1, 2} were analysed in [23], we focus again on the case

dim Ssep = 3, where Ssep = S and it is spanned by three linearly independent product
states:

1 k 1 k 1 k
s=span [l @ @ o), 10t") & - @ 1), ) @ @ o))
(45)
We can now define the set of fully separable states we are going to analyse:

Dssep £ (p e D(S) : pis fully separable}, (46)

where D(S) is (as before) the set of all density matrices over the Hilbert space S, and
a state p is said to be “fully separable” if it is a mixture of product states [¢)) @ - - ®

16®).
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Similarly to Theorem 2, our analysis will depend on the dimensions of the k local
subspaces Agé})) (for 1 < j < k), which are defined as follows:

AD 2 span {|a§”>, o), |a§”>} , 47
and each of them can be 1-, 2-, or 3-dimensional. _

We would now like to point out that whenever the dimension of Agél), is 1, it does not
contribute any genuine entanglement and can be removed from our analysis. Indeed,
if dim Aééf), = 1, then necessarily |a{])) = |a§])) = |a§])), in which case all states in
S are actually tensor products of a (k — 1)-partite state with a constant state |a§J )).
This state can be trivially absorbed into another system without affecting the analysis
of entanglement and separability. Thus, the state is genuinely only (k — 1)-partite,
not k-partite. (A similar observation regarding the bipartite case of Theorem 2 is
that systems corresponding to its cases (1,3) and (3,1) are actually not bipartite at
all, but “monopartite”.) We can therefore assume, without loss of generality, that
dim Agég, € {2,3} forall 1 < j <k, thus focusing on genuinely multipartite systems
with k > 3 subsystems.

For the analysis, we shall also use the following Lemma, which (informally) says
that three quantum states that are either linearly independent or linearly dependent but
in general position become linearly independent when we take their tensor product
with another (non-trivial) Hilbert space:

Lemma 3 In a bipartite Hilbert space Ha Q@ Hp, if three quantum states |o] )A, |a2)A,
la3)® € Ha are either linearly independent or linearly dependent but in general
position (that is, any two of them are linearly independent), then for any three quantum
states |B1)B, 12)B, 183)B € Hg that are not all identical (up to normalisation and
global phase), the three states |o1)|B1)B, |2)?1B2)B, |3)*1B3)B € Ha ® Hp are
linearly independent.

Proof Assume by contradiction that the three states |a1)*[81)B, |aa)?182)B, |a3)?
|B3)B are linearly dependent. They must be in general position, because any two of them
cannot be equal (otherwise, two of o), |@2)?, |@3)* would be equal). Therefore,
without loss of generality, |3)*|83)B € span {|a1 YA1B1)B, |a2>A|,32)B}, so there are
a, b € C\{0} such that:

j3)183)% = alan)?181)® + blaa)*182)". (48)
This equation means, in particular, that |oz1)A, Iozz)A, |c>53)A € Ha cannot be lin-
early independent, so they must be linearly dependent and, by assumption, in general
position; this observation implies that |a3)* € span {|a1)A, |a2)A}, so there are
x, y € C\{0} such that:

loz)™ = xlan)® + ylao)?, (49)

and substituting this in Eq. (48), we find:
(sl + yle) ) 182)® = aloa) B1)® + blaa) 82", (50)
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or equivalently,
o™ (x183)" — alB)®) = la) (b182)® = ¥182)®). (51

Because we know that |ory)? =~ loa)®, this necessarily implies x|ﬂ3)B —alp B =
and b|B>)B — y|B3)B = 0. Because we know that a, b, x, y # 0, it holds that:

b
Z181)B = 183)® = 2 182)B, (52)
X Yy

which contradicts the assumption that the three quantum states | VB 1B2)B, | B3)B

‘Hp are not all identical (up to normalisation and global phase). Thus, the three bipar-
tite states mentioned above, |or1)*(81)B, |a2)2(B2)B, |a3)?|B3)B, must be linearly
independent, as we wanted. O

For the full analysis, we use the following notations: the set of integer numbers from

1 to k is denoted by [k] (formally, [k] £ {1,2,...,k)}); and for any subset L C [k]

and 1 < i < 3, the product of all states |a(j ))

L
oMy 2

forall j € L is denoted |o¢l-(L)) (formally,

2 ®] L |a(/ ))). Similarly, for all L C [k] we define the generalised local set

Agep as the span of all states |a(L) ):

AL £ span {|a(l‘) oDy, |a(L))} : (53)

We can now present the Theorem which classifies all three-dimensional subspaces
of genuinely multipartite systems (k-partite systems with k& > 3, where none of the
local subsystems is one-dimensional) into two general cases, corresponding to Figs. 2
(a triangle) and 3 (a spherical cone):

Theorem 4 Given a multipartite Hilbert space Ha, @ Ha, ® - - - @ Ha, and any three-
dimensional subspace S € HA, @ HA, ® - - - @ Ha,., let Sqep be the subspace spanned
by all product states in S (that is, Ssep £ span{|y) € S : |Y) is a product state}). We
would like to characterise the set of all fully separable states (both pure and mixed)
over S, a set we denote by Dsep and formally define as follows:

Dfep L (p e D(S) : pisfully separable). 54)
Ifdim Sy, < 2, then D , belongs to one of the five classes described in Theorem 11
of [23] (or, equivalently, to one of the five multipartite generalisations of the classes

described in Theorem 1).
If dim Sgp = 3 (50 Ssep = S), then using the notations of Eqs. (45) and (47):

szspan{|a(1) ®|a(k)> |a(1>>® ®|a(k)> |a(1)> ®|a(k))},

) () ()
A, 2 span {la”), 10647, 1064},

(55)
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and assuming, without loss of generality (as explained above), that dim Ag;, € {2,3}

forall 1 < j <k, one of the two following cases occurs:

(i) Triangle: The fully separable pure and mixed states over S are exactly all mixtures
L 1 1 k k 1 1
(convex combinations) of |a§ ))(ag )| ®--® |Ol§ ))(oeg )|, |a§ ))(aé )| ®---®
|ot§k))(a§k)|, and |a§l))(a§1)| R - ® |a§k))(a§k)|; all the other pure and mixed
states over S are entangled. Formally:

sep

1 1 k k 1 1 k k
D3, = conv {la{" eI @+ ® la{ Nl faf "NVl @+ @ faf e

el @@ ey}
(56)

This case is a generalisation of the bipartite cases (3,3), (2,3)-i, and (3,2)-i in
Theorem 2, and it is illustrated in Fig. 2.

(ii) Spherical cone: There exists a subsystem Ha, (namely, there exists an index 1 <

(lkl\{i})> |a§lkl\{i})> |a§[kl\{€})>

£ < k) suchthat out of the three states |a, , two states

are equal (without loss of generality, we can assume |a§[k]\{e})) = |a§[k]\{e}) )), and
the fully separable pure and mixed states over S are exactly all mixtures (convex
combinations) 0f|a§l))(a§1)| R--® |a§k))(aik)| with any pure or mixed state over
the space span { |Ol§l) ) |a§£)) } ® { |a§[k]\{£})) }; all the other pure and mixed states

over S are entangled. Formally, in case |a§[k]\{€})) = |a§[k]\{£}))

D3, =conv [{lef"el" 1 - ® la{ o]
U D (span {103, 1ei) ] @ [l ])],

and symmetric results are obtained in case |a§[k]\{g}>) = |a§[k]\{e}))

|ot§[k]\{l})). This case is a generalisation of the bipartite case (3,2)-ii (and its
symmetric case (2,3)-ii) in Theorem 2, and it is illustrated in Fig. 3.

(57

orja Ty —

Remark We point out that there is no generalisation of neither bipartite cases (2,2)-i
and (2,2)-ii of Theorem 2. Thus, both cases (2,2)-i and (2,2)-ii (illustrated in Figs. 4
and 5, respectively) exist in bipartite systems but do not exist in (genuinely) multipartite
systems.

Proof If dim Se, < 2, then applying Theorem 11 of [23] to a two-dimensional sub-

L N .
space of § which includes Sgep proves that the set DSCSEP of pure and mixed separable
states over Ssep belongs to one of the five classes described in [23] for multipartite
systems. All the other pure and mixed states over S (that are not states over Ssep) must

be entangled (that is, they cannot be fully separable). Therefore, Dssep = DSS;;" indeed
belongs to one of the five classes described in [23] for two-dimensional subspaces of
multipartite systems, which are direct generalisations of the classes described in [23]

(or in our Theorem 1) for two-dimensional subspaces of bipartite systems.
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If dim Sgep = 3, then Sgep = S, in which case the proof typically applies Theorem 2
to S under specific bipartite partitions (or cuts) and analyses entanglement and separa-
bility with respect to these partitions. For our k-partite system Ha, @ Ha, ® - - - @ Ha,
and the set of indexes [k] £ {1,2,..., k}, a bipartite partition is a pair (X, Y) of
two disjoint sets of indexes X,Y C [k] suchthat XUY = [k]and X NY = @.
A state is said to be entangled (or separable) with respect to the partition (X,Y)
if merging most subsystems and leaving only the two large quantum subsystems
Hxy @ Hy = (®jeX HAj> ® (®j€y HAj> (reordering the quantum subsystems)
results in an entangled (or separable) bipartite state. In particular, if a state is fully
separable, it is separable with respect to all possible bipartite partitions; therefore, to
prove that a multipartite state is entangled (i.e., not fully separable), it is sufficient to
find a bipartite partition such that the state is entangled with respect to it.

We can now analyse the entanglement class of S in three different situations, given

the dimensions of the k local subspaces Aéi@,, Aééﬁ,, .. Agep (all dimensions are in
{2, 3}) defined in Eq. (47):

Situation 1: There are at least two local subspaces of dimension 3: Formally, in
this case, there exist £, m € [k] (£ # m) such that dim ASep = dim Agg"p) = 3.
We can therefore analyse the entanglement with respect to the bipartite partition
({€}, [k]\{£}): the dimensions of the relevant local subspaces are dim Agﬁz, =3

and dim Aégg\{u) > dim AéZ}? = 3 (according to Lemma 3), so the relevant case
is (3,3).

Therefore, applying Theorem 2 (case (3,3)) to S under this partition implies that
we are in case (i) (a triangle): the fully separable pure and mixed states over S
are exactly all mixtures (convex combinations) of |a(1))( 1)| R ® |a(k))( k)|
o3 Nes” | ® - @ lay )], and | Nal | @ - ® |a§k)>< o], and all the
other pure and mixed states over S are entangled.

Situation 2: There is only one local subspace of dimension 3: Formally, in this

case, there exists £ € [k] such that dim ASQ, = 3, and for any other m € [k]\{£} it

holds that dim Agg;) = 2. We divide into two cases:

(i) Thereisasubsystemm € [k]\{£} suchthatthe three states |} ), |a, ), |3
are linearly dependent but in general position. In this case, if we apply Lemma 3

we get that the three states |al[k]\{g})), |a§[k]\{g})), |a§[k]\{£}))
\{K}) -3

are linearly inde-

pendent, so dim A
We can therefore analyse the entanglement with respect to the bipartite partition

({€}, [k]\{€}): the dimensions of the relevant local subspaces are dim Aéﬁ; =

dim AEB{}W = 3, so the relevant case is (3,3). Therefore, applying Theorem 2

(case (3,3)) to S under this partition implies that we are in case (i) (a triangle),
identically to Situation 1 above.

(i1) For all subsystems m € [k]\{{}, two of the three states |o |
are equal to one another. Formally, for each m € [k]\{£} there exists a two-
element subset £y £ {ip, jm} C {1, 2,3} such that o) = |o{"). We divide
into two subcases:

(m)> (m)> |Ol§m))
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(a) If there exist two subsets [, and I, which are different from one
another (formally, if there exist m,n € [k]\{€¢} such that [, ##
1), then the three states |o\™)|a\"), |&S™)[as"), |ai™)lay”) must
be hnearly 1ndependent Therefore according to Lemma 3, the three
states |a| ([E1\{ 5})> e ([& {E})> o ([k {E})>
dim Aggg\{@}) _3

We can therefore analyse the entanglement with respect to the bipartite
partition ({€}, [k]\{£€}): the dimensions of the relevant local subspaces are
dim ASep = dim Agg;,]\{[}) = 3, so the relevant case is (3,3). Therefore,
applying Theorem 2 (case (3,3)) to S under this partition implies that we
are in case (i) (a triangle), identically to the two cases above.

(b) If all subsets I, are identical to each other for all n € [k]\{¢}, then we can

assume, without loss of generality, I, = {2, 3}. Then, for all n € [k]\{¢}
([k1\{eh
)y =

are, too, linearly independent, so

it holds that |tx(”)) = |oc§")) which in particular implies |o,
|a§[k]\ Z})). Therefore, dim Aie’;]\{“) =2.

We can therefore analyse the entanglement with respect to the bipartite
partition ({£}, [k]\{€}): the dimensions of the relevant local subspaces are
dim Agep = 3 and dim A§£’;]\{’”) 2 (where [a, (kN Z})) = |a§[k]\{£})) are
not in general position), so the relevant case is (3,2)-ii.

Therefore, applying Theorem 2 (case (3,2)-ii) to S under this partition
implies that we are in case (ii) (a spherical cone): the fully separable pure
and mixed states over S are exactly all mixtures (convex combinations) of
|a(l))( l)| R ® |a(k) Yo ik)l with any pure or mixed state over the space

span {|a(e)) |a(£))} {|a§[k]\{e}))}, and all the other pure and mixed
states over S are entangled.

Situation 3: All local subspac_es are of dimension 2: Formally, in this case, for
all j € [k] it holds that dim A/} = 2. We divide into three cases:

(4)> |a(f))

(m))

(i) There are two subsystems ¢, m € [k] such that the three states |(x ) |o¢

are linearly dependent but in general position and the three states |a ) lo

El

|a§m)) are linearly dependent but in general position. In this case, if we apply

\{ﬁ})>, |a§[k]\{€})>7 |a§[k]\{ﬁ})>

Lemma 3 we get that the three states |or; (@] are lin-

early independent, so dim A sep MMED _ 3,
We can therefore analyse the entanglement with respect to the bipartite partition

({€}, [k]\{€}): the dimensions of the relevant local subspaces are dim Agﬁf, =2

(where the spanning states are in general position) and dim ASep KINED 3, 50
the relevant case is (2,3)-i. Therefore, applying Theorem 2 (case (2,3)-i) to S
under this partition implies that we are in case (i) (a triangle), identically to
three of the cases above.

(i1) There is exactly one subsystem £ € [k] such that the three states |a(z))

4
las?),

|oz3 ) are linearly dependent but in general position. Thus, for all subsystems
m e [k]\{€}, two of the three states |a§m)), |oz§m)), Iagm)) are equal to one
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another' formally, for each m € [k]\{¢} there exists a two-element subset

In 2 {im. jm} C {1.2,3} such that |ei") = |o{"’). We divide into two

subcases:

(a) If there exist two subsets [, and I, which are different from one
another (formally, if there exist m,n € [k]\{¢} such that [, =
1), then the three states [a\™)|a\"), Jai™)las"), |ai™)lai”) must
be linearly independent Therefore, according to Lemma 3, the three
states |ot ([k1\{¢ )> | (k]\{l)> | (k]\{£}>

dim Aggg\m) 3.

We can therefore analyse the entanglement with respect to the bipartite
partition ({£}, [k]\{£}): the dimensions of the relevant local subspaces

are dim AEQ, = 2 (where the spanning states are in general position) and

dim A§£’,‘}\{”) = 3, so the relevant case is (2,3)-i. Therefore, applying

Theorem 2 (case (2,3)-1) to S under this partition implies that we are in
case (i) (a triangle), identically to four of the cases above.
(b) If all subsets I, are identical to each other for all n € [k]\{¢}, then we can
assume, without loss of generality, I, = {2, 3}. Let us choose an arbitrary
m € [kI\{€} (so [ad™) = &™), then, because '), [a), |ai?) are in
Nlaf™), 1as) ™), las?)es™)

are, too, linearly independent, so

general position, the three states |o; )|
are linearly independent according to Lemma 3. This implies that

dim AL™ = 3. On the other hand, for all n € [k]\{€, m} it holds that
@) o), NIy _ g N EmDy

| = |ay which in particular implies |a,
Therefore, dim Age’;]\ {emp _ o

We can therefore analyse the entanglement with respect to the bipartite par-
tition ({¢, m}, [k]\{¢, m}): the dimensions of the relevant local subspaces
are dim ALS™Y = 3 and dim AGMO™ = 2 (where [Ny =

|a§[k]\w’m})) are not in general position), so the relevant case is (3,2)-ii.

Therefore, applying Theorem 2 (case (3,2)-ii) to S under this partition
implies that we are in case (ii) (a spherical cone): the fully separable pure
and mixed states over S are exactly all mixtures (convex combinations) of
|Ol(1)>< (l)l R Q® |a(k) Yo ik)l with any pure or mixed state over the space

s (1), 10801 (1)) s {10, 105))

|a§[k]\{£}))} (this equality holds because |a§m)) |a(m)) and it proves

that all those states are indeed fully separable), and all the other pure and

mixed states over S are entangled.
(iii) There are no subsystems £ € [k] such that the three states |oz(g)) |a(£)) |a([))
are in general position. Thus, for all subsystems £ € [k], two of the three states

©) ), () ), © )

le;), ey 7)), |y ) are equal to one another; formally, for each £ € [k] there

exists a two-element subset I, = {iy, jo} C {1, 2, 3} such that |oe(f)) |(x§£))
The sets I, cannot be all identical to one another (for all £ € [k]), because then

we would get dim Sge, = 2. Therefore, there must exist £, m € [k] such that
Iy # I,. This means that the three states |a )|a(m)) |a(e))|a(m)) |a(e))|a(m))
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({€,m})

are linearly independent, which means that dim Asep,” = 3. We now divide
into two subcases:

(a)

(b)

@ Springer

If there exist two subsystems n, 0 € [k]\{{, m} such that I, # I,, then
the three states |a")|!”), |a§”>>|a§">> la{)|a\”) are linearly inde-
pendent, which means that dim A§£’§,]\“ m) 3.

We can therefore analyse the entanglement with respect to the bipartite
partition ({€, m}, [k]\{€, m}): the dimensions of the relevant local sub-
spaces are dim Agé%m}) = dim Aég’;]\“”"” = 3, so the relevant case is
(3,3). Therefore, applying Theorem 2 (case (3,3)) to S under this partition
implies that we are in case (i) (a triangle), identically to five of the cases
above.

If all subsets I, are identical to each other for all n € [k]\{{, m}, then
we can assume, without loss of generality, I, = {2, 3}. Then, for all
n € [k]\{¢, m} it holds that |a(")) |oz(")) which in particular implies
ot é[k]\ Emy — | é[k]\ t&my Therefore, dim AECP Mem) _ 5
We can therefore analyse the entanglement with respect to the bipartite par-
tition ({£, m}, [k]\{€, m}): the dimensions of the relevant local subspaces
are dim Agiﬁ,’m}) = 3 and dim Aﬁg’;]\{“’m” 2 (where |a([k]\{£ M})) =
|a§[k]\{z’m})) are not in general position), so the relevant case is (3,2)-ii.
Therefore, applying Theorem 2 (case (3,2)-ii) to S under this partition,
we find that the separable pure and mixed states over S with respect to
the bipartite partition ({£, m}, [k]\{£, m}) (notice that these states are
not necessarily fully separable') are exactly all mixtures (convex com-
binations) of |oz(1))( 1)| ® & |a(k))
| a({ﬂ m}))

(oc(k)| with any pure or mixed

(¢, m})>} ® {|a§[k]\{f,m}))}

state over the space span[ lots

span {|oz(l)) |a(m)> |a(€))| ém))} ® [ Iaé[k \Memb)y ], and all the other pure

and mixed states over § are entangled with respect to this partition (and,

thus, certainly not fully separable).

Now we divide into two subsubcases:

i. If I, is equal to either I, or I, (for all n € [k]\{¢, m}), then without

loss of generality, we can assume I, = I,,. Therefore, I,, = I, =
{2, 3}, which means that |a§m)) = Iagm)).
The partition-specific result we reached above thus means that we
are in case (ii) (a spherical cone): the fully separable pure and
mixed states over S are exactly all mixtures (convex combina-
tions) of Ja{")a"| @ -+ @ [« ) a®| with any pure or mixed

({€,m}) ), la (e, M}))} [ kI\{€, m})>]

state over the space span { loty |oe

span{|a(6) (Z))} ® {Iozé \{e})>] (this equality holds because

|a(m)) |a(m)) and it proves that all those states are indeed fully
separable), and all the other pure and mixed states over S are entan-
gled.
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ii. 1, # I, # I, (for all n € [k]\{¢, m}), then in particular
Iy # {2,3) and I,, # {2,3}, which means that both i), |a”)

and |a§m)), |a§m)) are linearly independent.

Therefore, we can reconsider the meaning of the partition-specific

result we reached above, which says that the only states over S

that may be fully separable are the mixtures of |a§1))(a§1)| R

|a§k))(a§k)| with any pure or mixed state over the local qubit space

span {|a§‘”> ™), 1arl?) ™) } ® { o KINEmD } and all the other
pure and mixed states over S are entangled. The only states in that

local qubit space that could be entangled (that is, not fully separable)

are the non-trivial superpositions (alay))laém)) + blay)ﬂagm))) ®

|a§[k]\{z’m}) ) witha, b # 0; and we can indeed see that these states are

entangled, since both |a§€) ), |oz§e>) and |a§m) ), Iozgm)) are linearly inde-
pendent, so alocal invertible map (which does not affect entanglement

and separability) can easily map them to orthonormal states: |a§&> —

1Oy, 108y > 20y, 1) > 1), and |a§™) > [2¢). The
resulting state is thus (a[1©)[107) 4+ p20)20m)) & |aFNME"D),
which is separable if and only if @ = 0 or b = 0. Hence, the non-
trivial superpositions in the local qubit space are indeed entangled.
The remaining states are only the three states |a}l)) R ® |a§k)>,
|a§1)) - ® Ioték)), and Iagl)) Q- ® Iagk)), which are trivially
product states.

Thus, our analysis implies that we are in case (i) (a triangle): the fully
separable pure and mixed states over S are exactly all mixtures (convex
combinations) of |a§1))(afl)| Q- ® Iaik))(ozik)l, Iaél)xaél)l ®
Y@, and [a{P) el @ - - @ )], and all the other pure
and mixed states over S are entangled. O

7 Discussion

We have presented a full classification of entanglement and separability in three-
dimensional Hilbert subspaces of bipartite systems, as well as a generalisation to
multipartite systems. This is a general classification that is independent of entangle-
ment measures and applies to all three-dimensional subspaces of any possible Hilbert
space. While our results are not aimed at deciding whether a single state is entangled
or separable (because that problem is easily solvable for rank-3 states using the par-
tial transpose criterion (PPT) [20], and in some cases also using alternative criteria
[32]), they are aimed at understanding the possible structures of entanglement and
separability in Hilbert spaces and their internal relations.

Our results generalise the findings of Boyer and two of the present authors in [23],
which applied to two-dimensional subspaces. In addition to the expected classes in
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three dimensions (mostly generalisations or combinations of the classes from [23]), we
suggested an easy classification for each class using the dimensions of local subspaces
(along with information on whether the spanning states of the subspaces are in general
position, if applicable), and we also found a few interesting classes that do not exist
in two dimensions.

Our most interesting novel class, which is not similar to anything found in two
dimensions [23], is named (2,2)-ii in Theorem 2 and is described in Fig. 5: it does not
simply consist of a finite number of product states or a complete Bloch sphere created
by degeneration of local eigenstates, like other classes, but it includes all states of the
form |¢)A|¢)B (up to local invertible operations)—that is, all product states in the
symmetric subspace (the triplet subspace), as described in Sect. 5. The relation between
the foundational phenomenon of the symmetric subspace, appearing naturally here,
and the possible classes of entanglement in three dimensions and higher dimensions,
is an intriguing topic for future research.

Other possible directions for future research include extending our results to four-
dimensional subspaces and higher-dimensional subspaces (where we may encounter
more physical phenomena not appearing here, including bound entanglement) and
finding more ways to utilise the geometric figures we suggested in Sect. 5 for represent-
ing the sets of separable states and their geometric features. It would also be interesting
to know how the number of possible classes of entanglement and separability (5 classes
for two-dimensional subspaces in [23] and 14 classes for three-dimensional subspaces
here) increases with the dimension of the subspace, and in particular, whether the num-
ber of classes is always finite.

One observation we can make based on Theorems | and 2 is that for 2- and
3-dimensional subspaces, the number of (pure) product states is either at most the
dimension of the subspace (2 or 3, respectively) or infinite (cardinality of the contin-
uum). It would be particularly interesting to investigate the maximum finite number
of pure product states in general subspaces of arbitrary given dimension.

We have also generalised the results to multipartite systems. We point out that,
unlike the two-dimensional subspaces discussed in [23] where the bipartite and mul-
tipartite cases are essentially equivalent, in three-dimensional subspaces we found
substantive differences between bipartite and multipartite systems: most importantly,
some of the classes for set of separable states existing in bipartite systems completely
disappear for (genuinely) multipartite systems—including the interesting symmetric
class (2,2)-ii mentioned above. It could be interesting to find out why these classes
disappear in the multipartite case, whether their disappearance hints at a foundational
phenomenon of quantum entanglement, and whether similar differences between
bipartite and multipartite appear in higher dimensions, too.
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