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Abstract

Objective

This study aims to comprehend the impact of handball practice on sub-elite athletes by

investigating transcriptomic changes that occur during a match. The primary focus encom-

passes a dual objective: firstly, to identify and characterize these transcriptomic alterations,

and secondly, to establish correlations between internal factors (gene expression), and

external loads measured through Electronic Performance and Tracking Systems (EPTS

variables). Ultimately, this comprehensive analysis seeks to evaluate both acute and

chronic responses to exercise within the context of handball training.

Methods

The study included sixteen elite male athletes from the FC Barcelona handball second

team. Blood samples were extracted at three different time points: before the match at base-

line levels (T1), immediately upon completion (T2), and 24 hours after completion (T3). Dif-

ferential gene expression, Gene Ontology Term and Kyoto Encyclopedia of Genes and

Genomes pathway enrichment analyses were conducted in two comparisons: Comparison

1 (T1 vs T2) and Comparison 2 (T1 vs T3). Further, the correlation between gene expres-

sion levels and training variables (external load) was conducted.

Results

In T1 vs T2, 3717 of the 14632 genes detected were differentially expressed (adjusted p-

value < 0.05), and enrichment of terms related to the immune system, mitochondria, and

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0299556 March 11, 2024 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ezquerra Condeminas P, Mallol M, Font

R, Tremps V, Gutiérrez JA, Rodas G, et al. (2024)

Unraveling athletic performance: Transcriptomics

and external load monitoring in handball

competition. PLoS ONE 19(3): e0299556. https://

doi.org/10.1371/journal.pone.0299556

Editor: Filipe Manuel Clemente, Instituto

Politecnico de Viana do Castelo, PORTUGAL

Received: October 27, 2023

Accepted: February 12, 2024

Published: March 11, 2024

Copyright: © 2024 Ezquerra Condeminas et al. This

is an open access article distributed under the

terms of the Creative Commons Attribution

License, which permits unrestricted use,

distribution, and reproduction in any medium,

provided the original author and source are

credited.

Data Availability Statement: In adherence to strict

confidentiality measures, access to the data utilized

in this study will be made available upon formal

request to authorized investigators. We recognize

the importance of maintaining the privacy and

security of sensitive information contained within

the dataset. Therefore, to ensure the confidentiality

and protection of individual and sensitive data, we

have established a controlled access process. This

process allows authorized investigators to request

access to the data, subject to compliance with

https://orcid.org/0000-0002-5534-5124
https://doi.org/10.1371/journal.pone.0299556
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299556&domain=pdf&date_stamp=2024-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299556&domain=pdf&date_stamp=2024-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299556&domain=pdf&date_stamp=2024-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299556&domain=pdf&date_stamp=2024-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299556&domain=pdf&date_stamp=2024-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299556&domain=pdf&date_stamp=2024-03-11
https://doi.org/10.1371/journal.pone.0299556
https://doi.org/10.1371/journal.pone.0299556
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


metabolic processes was found. Further, significant linear correlations were obtained

between High-Speed running (HSR) and high-intensity variables such as acceleration ACC

and deceleration DEC values with amino acids, and inflammatory and oxidative environ-

ment-related pathways, both in chronic and acute response.

Conclusions

This research highlights the effects of external workload on elite athletes during a handball

match and throughout the season. The study identifies deregulation in the immune system,

mitochondrial functions, and various metabolic pathways during the match. Additionally, it

establishes correlations between the external load and pathways associated with amino

acids, inflammation, oxidative environment, and regulation. These findings offer insights

into the immediate and chronic responses of athletes to physical effort.

Introduction

Athletes undergo rigorous and repetitive training regimens aimed at enhancing their physical

capacities, including muscular power, endurance, and speed, while also striving to shorten

recovery periods. Controlling both training and competition loads is crucial for athletes to per-

form at their peak while minimizing the risk of injury [1–5]. However, the design of training

programs to optimize individual performance is not always easy and even more so in a sports

team because of the existing intra- and inter-variability between athletes in their levels of adap-

tation to training loads [6].

Training load can be described as internal or external. External loads are objective measures

of the work done by athletes, such as a sprint, running distance covered in a match, or the

number of accelerations and decelerations that can be measured using electronic performance

tracking systems (EPTS) [1,2,3,7]. The needs of handball players in official competitions have

been examined concerning their specific external load requirements and according to their

playing position [7–9]. Pivots are those players that cover the least distance (3149 ± 639 m),

and wingers are those players that accumulate the most distance traveled at high intensity

(1229 ± 129.4 m) and sprint [7,10].

On the other hand, internal load is defined as the athlete’s physiological responses to the

imposed external load during training or competition [11]. Measuring internal load is more

challenging because it involves the evaluation of both psychological (e.g., rating of perceived

exertion [RPE]) and physiological aspects (e.g., heart rate [HR], lactate concentration in blood

or oxygen consumption) [12].

Different investigations have focused on observing the effects of internal loads during hand-

ball competition [13–15]. Significant differences have been found depending on the playing

position at the HR level [13,14]. For example, a previous study showed that back players and

pivots had the highest mean HR values and total playing time at intensities of>80% HRmax

[15]. These differences at the external load level add further disparity in the response to train-

ing, which indicates that individualization of work is necessary [16,17].

External and internal loads are complementary, as they represent distinct aspects of adapta-

tion; conjoint analysis can offer information on process adaptation that cannot be achieved

from a separate analysis of each type of load [18]. However, the association between external

and internal loads is not straightforward because physiologically, the response to exercise

depends on several factors, such as genetics, previous training loads, and level of physical
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condition [19]. In this sense, previous studies have focused on genomics [20,21] and metabolo-

mics [22]. However, while specific gene expression responses have been previously studied in

endurance exercise, the whole genomic transcriptomic analysis (expression of the entire

genome) has not been fully characterized. [23].

The impact of external and internal loads can be measured in terms of their acute and

chronic effects on the body. Chronic adaptations refer to changes that occur after 6–12 weeks

of consistent exercise, while acute responses refer to the immediate or short-term changes in

response to exercise that the body makes to meet the additional energy demands when transi-

tioning from rest to exercise. It is important to note that acute and chronic exercise effects can-

not be considered in isolation [24].

Therefore, the main goals of this study were to recognize transcriptomic changes occurring

throughout a handball match in elite athletes and to determine the correlation between inter-

nal (gene expression) and external (variables) loads to measure acute and chronic responses to

exercise.

Methods and materials

Participants

The total number of study participants was sixteen, but this varied depending on the specific

analysis. Specifically, for the Differential Expression analysis, sixteen male handball players

from FC Barcelona were involved. However, only eleven players were considered for the corre-

lation analysis between external and internal load due to the availability of external load rec-

ords. Among these participants, five lacked external load data, which included two

goalkeepers, while the remaining players had incomplete external load variable records.

All of these athletes shared the commonality of belonging to the same team, where both

their playing and training conditions were meticulously controlled, because they had the same

personal trainer and nutritionist team. Additionally, each player adhered to an identical nutri-

tional plan, recovery strategy, and physical preparation regimen, creating a controlled environ-

ment essential for the forthcoming rigorous analysis.

The weight and height averaged 82±7.79 kg and 188±11.2 cm, respectively. In contrast, the

average age was 20.31±2.60 years.

The final variable that distinguished each player was their respective playing position dur-

ing the match. It is, however, crucial to maintain control over these positions, as they can

directly influence the external load recorded by their devices. This aspect is particularly advan-

tageous for our study, as it introduces variability in the external load experienced by each

player, enabling us to explore the differences in internal load resulting from variations in exter-

nal load (Table 1).

Study design

This was a prospective observational study. Transcriptomic information was obtained from

whole blood samples at three different time points following a single handball match: T1, T2,

and T3. T1 samples were extracted at the baseline level (just before starting it), T2 samples

were extracted immediately after finishing the match, and T3 samples were collected 24 h after

finishing it. On the other hand, the external load was inferred using the following variables: the

relative and absolute high-speed running (HSR), the acceleration, the deceleration, the min-

utes, and the total distance covered during a whole season and the average RPE, which mea-

sures the intensity of the exercise.

To assess the internal load, whole blood samples were utilized, which were subjected to a

series of processes, including RNA extraction, sequencing, and quantification. This
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comprehensive approach allowed us to accurately determine the gene expression levels for

each identified gene, providing valuable insights into the physiological responses of the ath-

letes. On the other hand, the evaluation of the external load was conducted using Electronic

Performance and Tracking Systems (EPTS). Furthermore, both acute and chronic values were

considered.

The experimental design was built under a paired design analysis due to the nature of the

obtained samples, which comprised paired data. Each observation in one condition had a cor-

responding match in the other condition. As all individuals contributed samples across all con-

ditions, this design was employed to control variability between individuals (Fig 1).

Thus, the baseline level samples at T1 were compared against the gene expression values

extracted from the samples obtained after the match at T2 to determine which genes were the

most differentially expressed between the two conditions (T2 –T1). The baseline levels were

then compared with samples obtained 24 h after finishing the match at T3, inferring the genes

with different expression values and tracking the recovery levels of the athletes. (T3 –T1).

Table 1. Fundamental metadata information about the players involved in this analysis.

HEIGHT (CM) WEIGHT (KG) PLAYER POSITION AGE

188 80 Center Back / Back 18

181 72.1 Goalkeeper 18

175 72.2 Center Back 18

194 85 Winger 18

184 80 Center Back 20

175 79 Back 19

190.5 88 Pivot 19

188 82 Right Wing 22

195 101 Left Wing 21

197 95.6 Defensive Specialist 31

194 79 Back 20

193 86 Left Wing 20

175 75 Right Wing 19

197 102 Pivot 20

186 98 Goalkeeper 19

193 105 Right Wing / Center Back 29

https://doi.org/10.1371/journal.pone.0299556.t001

Fig 1. Flowchart of the experimental design followed in this study.

https://doi.org/10.1371/journal.pone.0299556.g001
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Subsequently, a KEGG pathway score was computed using the gene values from each meta-

bolic pathway in all individuals for each condition. The scores of different KEGG pathways

were correlated with variables calculating the external load, encompassing both acute and

chronic response variables.

Session monitoring

This study was conducted using the WIMU PRO™ system (RealTrack Systems SL, Almerı́a,

Spain). Each device, whose dimensions were 81x45x16 mm (height/width/depth) and weighed

70 g, was fitted to the back of each player with an adjustable vest (Rasán1, Valencia, Spain).

The match consisted of two 30-minute periods with a10-minutes rest. In contrast to other

sports, one of the characteristics of handball is that players can be substituted interchangeably

without stopping all players from playing the same number of minutes. The offensive and

defensive systems of play vary. Still, the team played the match with a 60 defense (six players

close to the defensive area) and offensively with a 33 system (two rows of three players).

The positioning data record was monitored in real-time and subsequently analyzed using

SPROTM software version 946–949 (SPRO™, RealTrack Systems, 2018). The system operates

using triangulations between four antennas with patented ultra-wideband technology (18 Hz

sampling frequency) placed 5 m away from each corner of the court and at a height of 6 m.

These units included several sensors recorded at different sampling frequencies. The sampling

frequencies used for the 3-axis accelerometer, gyroscope, and magnetometer were 100 Hz and

120 kPa for the barometer [25].

High-speed running (HSR, distance covered in meters above 18.1 kph) and the total number

of high-intensity accelerations (HIA) (acc +2), high-intensity deceleration (HID) (dec +2) (in

m�s-2), high-intensity acceleration per min (acc +2/min), and high-intensity deceleration per min

(dec +2/min) (m�s-2�min-1) were recorded [26]. HIA and HID were defined as events above 2 g

and were extracted from the root data reported by the system using the SPROTM software [27].

RNA collection and sequencing

2.5 ml of blood was drawn from each athlete, collected in a PAXgene Blood RNA tube (QIA-

GEN GmbH, Germany), and stored at -80˚C until RNA extraction was performed according

to the manufacturer’s instructions. All blood samples were collected at FC Barcelona facilities.

Subsequently, RNA was sequenced using Illumina technology with the Illumina TruSeq Sam-

ple Prep Kit and sequenced on a NovaSeq 6000 Sequencing System (Illumina).

The sequenced 75-base pair-long paired-end reads were mapped to the GRCh38 reference

genome. Once these reads were mapped, the genes defined in ENSEMBL annotation were used.

Thus, 14,235 genes were available for further analysis. A standard quality control measure was

applied to the RNA, verifying both RNA integrity and the quality of the library kit preparation.

Normalization and filtering of poorly expressed genes

Normalization was conducted for all samples using scaling factors to convert the raw library

sizes to effective library sizes. Each sample was corrected using this normalization factor and

the results were included in the analysis (Fig 2). In addition, poorly expressed genes were fil-

tered to retain only those genes that had a good minimum number of reads.

Ethical considerations

The study was carried out by Beyond You, Institut de Recerca de l’Hospital Sant Pau and Fut-

bol Club Barcelona (FCB, Barcelona, Spain) following relevant guidelines and regulations.
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Institutional board approval for the study was obtained from the Ethics Commission of the

Consell Català de l’Esport (Code 012/CEICEGC/2021, Generalitat de Catalunya, Barcelona,

Spain). Written informed consent was collected and all data were anonymized to ensure confi-

dentiality. All procedures involving human participants followed the ethical standards of the

institutional and/or national research committee and with the 1964 Helsinki Declaration and

its later amendments or comparable ethical standards. This study involved the collection of

daily EPTS data and blood samples at three-time points from professional handball players of

a male team (see Fig 1). The samples were obtained across two consecutive days, capturing

data at three distinct time points. Specifically, on the first day (1st of June, 2021), samples were

collected at 13:30 (T1) before the match, followed by an additional collection at 17:30 (T2)

after the match. The process continued on the subsequent day (2nd of June, 2021) with a single

sample collection at 13:30 (T3), 24 hours after the match.

Statistical analysis

Differential expression analysis, GO, and KEGG pathway enrichment, as well as linear correla-

tions between gene expression levels and external load values, were conducted. To mitigate

false positives and address multiple comparison effects for all analyses, we employed the False

Discovery Rate (FDR) technique [28]. All p-values have also been adjusted using the False Dis-

covery Rate (FDR) method. The pipelines for these analyses were developed using the R pro-

gramming language.

Differential expression analysis

Gene expression has been quantified using salmon [29]. Salmon uses algorithms to provide

accurate RNA expression estimates values and performs its inference using an expressive

model of RNA-seq data that takes into account experimental attributes and biases commonly

observed in real RNA-seq data. Then, a differential expression analysis was performed between

conditions, and a linear regression model was built using limma package [30]. Limma is a soft-

ware package designed for gene expression data analysis from microarray or RNA-seq technol-

ogies that employs linear models for evaluating differential expression in complex

experimental setups with multiple factors. The model utilized for analysis is defined as follows:

Model = 0 + Time + Ind

Fig 2. Normalization Comparison—On the left, unnormalized counts; on the right, counts normalized by library

size.

https://doi.org/10.1371/journal.pone.0299556.g002
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Here, ’0’ signifies the absence of an intercept, ’Time’ denotes the sample condition (base-

line, immediately post-race, or 24 hours after), while ’Ind’ accounts for inter-individual vari-

ability encompassing variables such as height, weight, age, and athlete position.

Subsequent to obtaining the list of Differentially Expressed Genes (DEGs) from the afore-

mentioned model, enrichment analyses encompassing Gene Ontology (GO) and Kyoto Ency-

clopedia of Genes and Genomes (KEGG) were conducted. To perform these analyses, the

GOstats package was employed [31]. This facilitated the identification of body systems

enriched in the two comparisons, assessing both over- and under-representation of respective

GO terms. Additionally, a conditional hypergeometric test was utilized to unveil relationships

among the GO terms.

Moreover, GO terms based on gene size and enrichment by DE genes were filtered to prior-

itize more reliable and interesting terms. Terms involving few genes may be less reliable, while

large terms could offer limited insights. A minimum value on the Count and Size columns and

a maximum count value was used for this filtering process. The GOplot package was used to

visualize the results [32].

Finally, the DEG list was used to identify the enriched KEGG pathways. In this case, the

hypergeometric test was conducted using the signatureSearch package [33].

Correlation between the internal and external loads

The complete gene set extracted from whole blood samples in each condition was used to com-

pute an abnormality score for the 323 pathways stored in the KEGG pathway database using

the CPM values obtained from the salmon pipeline.

The external and internal loads were correlated using the ggstatsplot package [34]. These

correlations were executed using Pearson correlation analysis. Pearson’s correlation test

explores relationships between two continuous variables. This method is frequently utilized

for numerical variables and assigns a value ranging between −1 and 1. In this scale, 0 indicates

no correlation, 1 represents a complete positive correlation, and −1 indicates a total negative

correlation. The p-value was adjusted for multiple comparisons using the FDR algorithm.

Therefore, in this case, the scores of the 323 pathways were correlated with the variables repre-

senting external load obtained using EPTS, as described in the Materials and Methods section.

Results

Differential expression analysis

A total of 3,717 of the 14,632 total genes detected were found to be differentially expressed

compared to baseline levels just after finishing the match (Comparison 1) (Fig 3). Of these

genes, 3,234 were downregulated after playing the match and 483 were upregulated. However,

not significant differences in gene expression were found between baseline levels (T1) and lev-

els 24 h after the exercise (T2).

Those 3,717 DEGs obtained in comparison 1 were used as inputs for GO term and KEGG

pathway enrichment analysis. As a result, 233 GO terms were significantly enriched with a p-

value adjusted to< 0.05 after performing a conditional analysis, filtered by size and weight.

These GO terms can be grouped into three main systems: mitochondrial system, metabolic

processes, and immune system. As shown in Figs 4–6, many of the genes were downregulated

after exercise, and therefore, most of the GO terms had a decreasing global Z-score. Only some

mitochondrial GO terms and metabolic processes had an increasing Z-score.

The same enrichment procedure was performed for KEGG pathways using the DEG list

obtained from Comparison 1. This analysis revealed 18 KEGG pathways that were associated

with various biological processes. Among these pathways were folate metabolism, biosynthesis
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Fig 3. Volcano plot showing the differential expressed genes in Comparison 1. The top 20 genes (higher adjusted p.

value) are the ones labeled. Log fold change LogFC is represented on X axis and–log10 adj.p.value on the Y axis. A log

(FC) of 1 means twice as expressed.

https://doi.org/10.1371/journal.pone.0299556.g003

Fig 4. Enriched GO terms related to metabolic processes in comparison 1.

https://doi.org/10.1371/journal.pone.0299556.g004
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Fig 6. Enriched GO terms related to mitochondrial processes in comparison 1.

https://doi.org/10.1371/journal.pone.0299556.g006

Fig 5. Enriched GO terms related to immune processes in comparison 1.

https://doi.org/10.1371/journal.pone.0299556.g005
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of cofactors, glycosaminoglycan metabolism, and the metabolism of branched-chain amino

acids (valine, leucine, and isoleucine).

Furthermore, pathways linked to cell regulation (mismatch repair, nucleotide excision

repair, DNA replication, and apoptosis) were identified (Table 2). Another interesting cluster

of pathways included the citrate cycle (TCA) and 2-Oxocarboxylic acid metabolism pathways,

which are responsible for energy generation.

Correlation between the internal and external loads

After compiling all data from the external load, it was organized into two distinct tables, as

shown in S1 and S2 Tables. The first table comprises the average values of the external load

variables throughout the season, indicating the chronic response, whereas the second table dis-

plays the results of the variables obtained during matches, representing the acute response.

Then, gene expression values will be correlated with the external load data (S1 and S2 Tables)

in the downstream analyses.

Acute response correlation. First, we aimed to elucidate the acute physiological response

of the body by correlating the metabolic pathway scores immediately and 24 h after the conclu-

sion of the match with the corresponding external load imposed on each player.

Before the match at baseline levels (T1), correlations were observed between fatty acid bio-

synthesis, amino sugar and nucleotide sugar metabolism, and the TFN signaling pathway with

both acceleration (ACC +2) and deceleration (DEC +2) values. (Fig 7, S3 Table)

At T2, just after the match, (Fig 8, S4 Table) external load showed significant correlations

with several metabolic pathways, including proteasome pathway levels, valine, leucine, and iso-

leucine biosynthesis, tyrosine metabolism, cysteine and methionine metabolism, and histidine

metabolism. Correlations were also observed with pathways related to the oxidative environ-

ment, such as ascorbate and aldarate metabolism, oxidative phosphorylation, and energy-

Table 2. List of the KEGG pathways enriched in comparison 1.

KEGG ID Description p-value p-value adjusted

hsa04141 Protein processing in endoplasmic reticulum 0.000000289

0.000000403

0.00006513

hsa01240 Biosynthesis of cofactors 4.03e-07 0.00006513

hsa03030 DNA replication 0.00000611 0.00006579

hsa03013 Nucleocytoplasmic transport 0.00000117 0.00009457

hsa00020 Citrate cycle (TCA cycle) 0.0000167 0.00108

hsa03430 Mismatch repair 0.00025 0.01383

hsa00280 Valine, leucine and isoleucine degradation 0.00046 0.02166

hsa04210 Apoptosis 0.00053 0.02166

hsa04931 Insulin resistance 0.00066 0.02384

hsa01210 2-Oxocarboxylic acid metabolism 0.00077 0.02518

hsa03420 Nucleotide excision repair 0.00104 0.02808

hsa04146 Peroxisome 0.00108 0.02808

hsa03060 Protein export 0.00119 0.02808

hsa00532 Glycosaminoglycan biosynthesis–chondroitin

sulfate / dermatan sulfate

0.0013 0.02808

hsa00670 One carbon pool by folate 0.0013 0.02808

hsa04142 Lysosome 0.00215 0.04027

hsa04140 Autophagy—animal 0.00224 0.04027

hsa03018 RNA degradation 0.003 0.04881

https://doi.org/10.1371/journal.pone.0299556.t002
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related pathways, like the citrate cycle. Moreover, cellular processes’ regulation, such as basal

transcription factors, phagosomes, ECM-receptor interactions, and gap junctions, correlated

with ACC and DEC values.

At T3, glycine, serine, and threonine metabolism correlated with PL and PL/min values,

while other amino acids such as valine, leucine, isoleucine, arginine, and proline metabolism

pathways were linked with ACC and DEC values (Fig 9, S5 Table). Additionally, correlations

were observed with pathways related to repair mechanisms, inflammation (TFG-beta signaling

pathway), regulation (AMPK signaling pathway and p53 signaling pathway) and GNRH secre-

tion, all of which correlated with ACC and DEC values.

Chronic response correlation. Next, we aimed to describe the body’s chronic response by

correlating metabolic pathway scores immediately and 24 hours after the match conclusion

with the corresponding season average external load for each player.

At T1, there were no correlations between seasonal average external load variables and

baseline pathway levels. At T2, HSR absolute season average values were correlated with path-

ways related to amino acid metabolism, such as histidine metabolism (Fig 10, S6 Table). Other

significant correlations were found with pathways like ascorbate and aldarate metabolism,

Fig 7. Correlation values between internal and external load match variables at baseline levels (Time 1). All correlation values shown are statistically

significant, with an adjusted p-value< 0.05.

https://doi.org/10.1371/journal.pone.0299556.g007
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cardiac muscle contraction, and proteasomes and phagosomes. Moreover, ACC and DEC vari-

ables were significantly correlated with phosphonate and phosphine metabolism, as well as the

biosynthesis of unsaturated fatty acids, among others.

Finally, at T3, the absolute HSR value was significantly correlated with glycine, serine, and

threonine metabolism (Fig 11, S7 Table). The ACC and DEC values were correlated with insu-

lin secretion, and the maximum PL of the season was correlated with the adipocytokine signal-

ing pathway and arachidonic acid metabolism.

Discussion

This study aims to comprehend the impact of handball practice on sub-elite athletes by investi-

gating transcriptomic changes occurring during a match. It involves identifying and character-

izing these transcriptomic changes and establishing correlations between gene expression and

external load measured through Electronic Performance and Tracking Systems (EPTS vari-

ables). Ultimately, this comprehensive analysis seeks to evaluate both acute and chronic

responses to exercise within the context of a handball match.

Fig 8. Correlation values between internal and external load variables after match (Time 2). All correlation values shown are statistically significant, with an

adjusted p-value< 0.05.

https://doi.org/10.1371/journal.pone.0299556.g008
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The findings provide compelling evidence that 25% of the total analyzed genes exhibited

significant differences in expression in Comparison 1. The majority of genes were downregu-

lated, suggesting that their levels were significantly lower after the match compared to the

baseline condition. Furthermore, there was an enrichment observed in Gene Ontology (GO)

terms and KEGG pathways related to mitochondrial, immune, and metabolic systems during

the exercise performed by elite athletes. Additionally, significant correlations have been

observed between gene expression levels (internal load) and external load variables assessing

both acute and chronic responses during a handball match.

Conjoint analysis of internal and external loads

Acute response. At T2, numerous pathways linked to metabolism and biosynthesis of

amino acids, specifically to branched-chain amino acids, tyrosine, histidine, cysteine, and

methionine exhibited a significant correlation with ACC and DEC variables. These amino

acids are commonly utilized as primary supplements for athletes, emphasizing the significance

of these findings.

Fig 9. Correlation values between internal and external load match variables 24 hours after finishing the match (Time 3). All correlation values shown are

statistically significant, with an adjusted p-value< 0.05.

https://doi.org/10.1371/journal.pone.0299556.g009
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Previous studies have demonstrated that oral tyrosine supplementation enhances exercise

capacity in hot environments [35]. Additionally, supplementation with branched-chain amino

acids (BCAAs) has shown to protect against muscle damage by lowering creatine kinase activ-

ity and potentially mitigating muscle damage within the initial 24 hours post-exercise [36].

This supports the notion that consistent daily doses of BCAAs are more beneficial for athlete

recovery compared to intermittent doses [37]. Lastly, cysteine supplementation has exhibited

positive effects in reducing exercise-induced fatigue, possibly attributed to increased fatty acid

utilization [38].

The relationship between these different amino acids importance in exercise supplementa-

tion with variables measuring intensity of the athletes during matches provides valuable infor-

mation about athletes’ performance during exercise enhancing future performance through

supplementation.

At T3, several pathways related to oxidative stress (TFG-beta signaling pathway, AMPK sig-

naling pathway and one-carbon pool by folate pathway) correlated with variables linked to

high-intensity actions: ACC and DEC.

Fig 10. Correlation values between internal and external load season average variables just after finishing the match (Time 2). All correlation values

shown are statistically significant, with an adjusted p-value< 0.05.

https://doi.org/10.1371/journal.pone.0299556.g010
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These two pathways have previously been associated with physical activity. The TFG-beta

signaling pathway, previously known for elevating TGF-β activity in skeletal muscle, inhibits

the enhancement of mitochondrial fuel oxidation after training and restrains the increase in

insulin sensitivity [39]. This relationship is connected to the AMPK signaling pathway, respon-

sible for regulating metabolism and preserving mitochondrial homeostasis [40]. In addition,

the one-carbon pool by folate pathway is important for mitigating oxidative stress and amino

acid homeostasis, specifically the metabolism of glycine, serine, and methionine [41].

Finally, glycine, serine, and threonine metabolism pathways levels correlated with player’s

external load (PL) and PL/min from the match, supporting the idea that these amino acids

could directly impact on the recovery of athletes after aerobic exercise.

2) Chronic response

The average season values of HSR were found to correlate with several pathways including

Histidine metabolism, ascorbate and aldarate metabolism (vitamin C), cardiac muscle contrac-

tion, proteasome and phagosome, ubiquinone, and oxidative phosphorylation pathways at T2.

This is particularly relevant since previous studies have linked HSR to the risk of injury [42].

Fig 11. Correlation values between internal and external load season average variables 24 hours after finishing the match (Time 3). All correlation values

shown are statistically significant, with an adjusted p-value< 0.05.

https://doi.org/10.1371/journal.pone.0299556.g011
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Therefore, the various pathways correlated with HSR values are associated with exercise

performance.

Histidine and histidine-related compounds (HRCs) have been indicated to enhance anaero-

bic exercise performance by stabilizing pH and inhibiting glycolysis [43]. Additionally, vitamin

C metabolism plays a role in maintaining bone, muscle, and tendon integrity, reducing oxida-

tive stress (crucial post-exercise), and is connected to collagen, a primary component of ten-

dons [44]. So, further studies of these variables could provide important information

regarding injury risk.

Finally, at T3, ACC and DEC showed significant correlation with insulin secretion mean-

while the maximum PL of the season correlated significantly with the adipocytokine signaling

pathway. The well-known relationship between insulin and exercise is understood, as insulin’s

fuel storage effects must be suppressed during physical activity [45,46]. Moreover, adipocyto-

kines play a central role in regulating insulin resistance, inflammation, and immunity [47]

leading to the conclusion that insulin secretion is associated with external load at a chronic

response level.

Practical application. From a practical applications point of view, these correlations can

provide insights for future personalized treatments and individual recommendations for ath-

letes’ preparation, training, and recovery. Utilizing transcriptomic information enables the

evaluation of oxidative stress, inflammatory responses, and mitochondrial pathways for each

athlete.

For instance, the significant discovery linking branched-chain amino acids with variables

measuring external load like ACC, DEC, and HSR can tailor the intake of supplementation for

athletes. Another crucial practical application involves the correlation between several meta-

bolic pathways and external load variables, aiding sports nutritionists in developing personal-

ized nutrition plans for each athlete. Additionally, the information acquired from measuring

oxidative environment pathways and the subsequent ability to correlate it with external load

variables can assist in detecting the oxidative levels of each athlete and being a critical informa-

tion for the utilization of antioxidant compounds through supplementation during the recov-

ery phase to protect the body from oxidative stress. Therefore, these findings enable the

customization of an athlete’s recovery phase after exercise and can assist the team’s physical

trainers and medical staff in making decisions concerning the athlete.

These discoveries pave the way for a comprehensive personalized monitoring of athletes

before, during, and after a match, considering both external and internal factors along with

their correlations.

Conclusions

This investigation marks a significant breakthrough in sports science by unraveling the intri-

cate relationship between external load and transcriptomic internal load in professional hand-

ball players, and the identification of transcriptomic alterations during handball competition.

The study linked pathways related to amino acids, inflammation, oxidative stress, and regula-

tion with external load variables like HSR, ACC and DEC during a handball match and its sub-

sequent recovery. Notably, the pathways related to the biosynthesis of branched-chain amino

acid pathways, including valine, leucine, and isoleucine as well as histidine metabolism, dem-

onstrate particular significance. Moreover, the research reveals dysregulation in the immune

system, mitochondrial functions, and various metabolic pathways during the match.

This information will serve to establish criteria for improving and generate personalized

nutritional and training guidelines for elite athletes based on transcriptomic data, thereby

enhancing their performance and facilitating optimal recovery.
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Soria.

Methodology: Roger Font, Victor Tremps, Jose Antonio Gutiérrez, Alexandre Perera Lluna.

Project administration: José Manuel Soria.
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