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Abstract: In-line digital holography is a powerful tool widely used for microscopic object imaging.
Usually, in-line and out-line configurations are used to implement holographic systems, but in-line-
based set-ups are preferable as they are less sensitive to mechanical vibrations and refraction index
variations. However, non-desired blurred conjugate images are superposed to the reconstructed
object image by using in-line systems. One strategy to remove the conjugate image contribution is
to include a double-sideband filter at the Fourier plane of the system. After using the filter, data
obtained at the CCD are processed to retrieve the magnitude and phase (hologram) of the diffracted
wavefront while removing the conjugated image. Afterwards, a diffraction integral equation is used
to digitally propagate the hologram. Despite the above-mentioned factors, there is not a thorough
analysis in the literature of magnification parameters associated with the final reconstructed image,
this aspect being crucial for the experimental application of the above-stated approach. Under this
scenario, a theoretical analysis of the longitudinal and transverse magnifications of the reconstructed
images is provided in this work. The method is validated through the simulation and experimental
results of different microscopic objects: glass microspheres, a micrometric reticle, and a resolution
test chart USAF 1951. The obtained results provide that the combination of magnification relations
with methods for hologram propagation and optimal focused image identification is effective for
object position determination. This approach could be useful for 3D microparticle localization and
monitoring with optimized magnification within real-time applications.

Keywords: digital holography; in-line interferometer; double-sideband filter; image reconstruction;
transverse magnification; longitudinal magnification

1. Introduction

Holography is an optical tool widely used for imaging microscopic objects in a wide
range of applications and research disciplines [1–7]. In 1948, Dennis Gabor introduced
a novel microscope that utilized the interference between the diffracted wavefront from
microscopic objects and the illumination wavefront [8]. This configuration is known as
an in-line or common-path interferometer because both the wavefront under test and
the reference wavefront are propagated along the same path to the recording medium
(hologram). This interferometer is less sensible to air flows and vibrations when compared
with other optical configurations. Nevertheless, both the reconstructed image of the object
and the conjugated defocused image appear superimposed, which notably degrades the
final observation of the object. An option to eliminate the conjugated image influence is the
off-axis interferometry technique, in which the object wavefront and the reference wavefront
impinge on the recording medium from different angles [9,10]. The conjugated images
exhibit lateral shifts and do not superimpose. In an off-axis interferometer, the wavefronts
are propagated along separate paths, necessitating the use of additional optical components.
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However, these interferometers are more sensible to changes in the refractive index of the
medium and to component vibrations. The off-axis interferometers commonly used in
digital holography are the Mach–Zehnder [11,12], and Twyman–Green [13] configurations.

In in-line interferometry, digital image processing methods are employed to minimize
the influence of the superimposed conjugated image [14–17]. Other techniques involve
blocking specific parts of the spatial frequency spectrum of the superposition of the object
and reference wavefronts to eliminate one of the conjugated images [18,19]. A more recent
approach presents an in-line interferometer that removes the degrading effect of conjugated
images by implementing a polarization-based double-sideband filter (DSB) at the Fourier
domain [20–22], arising as a useful tool for in-line holography. However, there is no
analysis in the literature of the consequent magnification of the resulting images, and this
information is crucial to provide the method with the necessary potential to be used in real
applications for metrology or the characterization of microparticles. In this framework,
the current work aims to address this lack of information and complete previous studies
by presenting a thorough analysis of the image magnification associated with the in-line
interferometer presented in [20–22].

The outline of this manuscript is as follows: in Section 2, we reveal the mathematical
formulation related to the transverse and longitudinal magnification of the reconstructed
images obtained using an in-line interferometer with the DSB filter and a convergent lens.
Next, in Section 3, we numerically simulate the imaging of microscopic objects with the
in-line interferometer and the DSB filter. Furthermore, we introduce the evaluation criteria
employed to achieve the best-focused reconstructed image. Afterwards, we present the
numerical results of the transverse and longitudinal magnifications. Subsequently, in
Section 4, we describe the experimental setup implemented in the laboratory to validate
the theoretical analysis of the transverse and longitudinal magnification of the in-line
interferometer with the DSB filter. We analyze the experimental results of the longitudinal
and transverse magnifications of the reconstructed images of three microscopic objects: a
resolution test USAF 1951, glass microparticles, and a micrometric reticle (this latter object
is provided in the Supplementary Materials). Finally, we present the main conclusions of
the work in Section 5.

2. Theory

The in-line interferometer (IL) studied in this work uses a convergent lens to create
the magnified image of the superimposed wavefronts on the recording medium. First,
the transverse MT and longitudinal ML magnifications are calculated in terms of the focal
length of the convergent lens, f, and the image distance, si. Afterwards, the magnifications
MT and ML of the digitally reconstructed images obtained with the in-line interferometer
are examined. In the following, we summarize the derivation of the main equations
required in the presented method, but a complete derivation of such relations is presented
in the Supplementary Materials.

2.1. The Magnifications ML and MT of the Images in the In-Line Interferometer

In an in-line interferometer, a microscopic object is illuminated with a collimated
wavefront. Both the wavefront diffracted by the object and the wavefront collimated follow
the same paths and overlap with each other. In accordance with Figure 1a, the microscopic
object is located at the plane (x0, y0), and the superposition between the diffracted and
collimated wavefronts take place at a distance ∆zo in the plane (x1, y1). The lens L forms
the magnified image of the wavefront superposition at the plane (x2, y2), where a recording
medium, from now on a CCD camera, is positioned.
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Figure 1. (a) Scheme of the in-line interferometer and (b) sketch of the double-sideband filter (DSB).

The transverse magnification, MT, and the longitudinal magnification, ML, associated
with the planes (x1, y1) and (x2, y2), respectively, are calculated as:

MT =
y2

y1
=

x2

x1
= − si − f

f
, (1)

ML =
dzi
dzo

= − (si − f )2

f 2 = −(MT)
2. (2)

The Equations (1) and (2) express the transverse and longitudinal magnifications
of the images, respectively, as a function of the focal length f and the distance si and
establish a relation between MT and ML. Note that if the distance between the lens L
and the CCD camera placed at the plane (x2, y2) remains unaltered, both magnifications
remain unchanged.

The spatial–frequency spectrum of the superimposed wavefronts is observable at the
focal length of the lens in the Fourier plane (η, ξ). Thus, the double-sideband filter (DSB)
is positioned in such a Fourier plane. The DSB filter first blocks one half of the frequency
spectrum and, subsequently, the other half. Consequently, each of the two images formed
by the lens in the plane (x2, y2) possesses half of the frequency spectrum. The experimental
scheme used to implement the DSB is shown in Figure 1b. The collimated wavefront is
linearly polarized at 45◦ by using the linear polarizer LP1. In front of the CCD, another
linear polarizer LP2 is positioned, aligning its transmission axis at the same angle. The
spatial light modulator SLM-LC is situated in the focal plane of the lens L to block the half
of the frequency spectrum in the following manner: a binary distribution of grey-level
values is addressed to the SLM-LC in such form that half of the SLM-LC screen induces a
phase retardance of δ1 = 0◦, while the other half induces a phase retardance of δ2 = 180◦,
as shown in the part (I) of Figure 1b. In this way, the polarization state of the linearly
polarized beam at 45◦ remains unchanged when passing through the half of the SLM-LC
with zero retardance. Consequently, the beam is transmitted without any issues by linear
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polarizer LP2. However, the beam that passes through the half of the SLM-LC screen
with a retardance of 180◦ undergoes a rotation of 90◦ in its polarization state, resulting
in linear polarization at 135◦. As a result, this beam is blocked by the polarizer LP2.
The frequency spectrum is centered at the boundary between the phase retardances δ1
and δ2 on the SLM-LC, which creates a knife-edge effect, blocking half of the frequency
spectrum. Subsequently, a similar procedure is followed, where the phase retardances are
interchanged to δ1 = 180◦ and δ2 = 0◦ and addressed to the SLM-LC, as shown in part
(II) of Figure 1b, to block the other half of the frequency spectrum. More details about the
DSB polarization-based filter implementation can be consulted in Refs. [20,21]. The DSB
filter does not impact either the transverse magnification or the longitudinal magnification
as it is solely influenced by the focal length of the lens and the position of the CCD camera
with respect to this lens. Finally, the CCD records the corresponding intensity images
that are later digitally processed on the computer to retrieve the magnitude and phase
information (hologram) of the magnified wavefront in the plane (x2, y2).

In the computer, the digital hologram is numerically propagated by a distance ∆zr
until the arbitrary plane (xr, yr), where the magnified and focused image is reconstructed.
The longitudinal magnification ML,0−r is determined by the relationship between the
propagation distance of the diffracted object, ∆zo, and the reconstruction distance of the
digital focused image, ∆zr, as follows:

ML = ML,0−r, (3)

dzi
dzo

=
∆zi
∆zr

. (4)

Considering that the longitudinal magnification remains constant between object
and image regions, and in accordance with Equation (2), the transverse magnification
associated with the reconstructed image and the shifted object corresponds to the transverse
magnification between the planes (x2, y2) and (x1, y1):

MT = MT,0−r, (5)

xr

x0
=

x2

x1
,

yr

y0
=

y2

y1
. (6)

Equations (1)–(3) and (5) indicate that the transverse and longitudinal magnifications
remain unchanged by the displacement ∆zo of the object as long as the object is illuminated
with a collimated beam and the distance si between the lens and the CCD camera remains
constant. The distance at which the digitally reconstructed focused image is located is:

∆zr = ∆zoML. (7)

The transverse coordinates of the digitally reconstructed image concerning the ob-
ject are:

xr = x0MT, (8)

yr = y0MT. (9)

2.1.1. Registration of the Superimposed Wavefronts

The process of recovering the focused image, which is conducted in two stages, is
described as follows. The first stage is the filtering of the spatial–frequency spectrum with
the DSB filter, the magnification of the filtered image, and the intensity registration. The
second stage involves digital processing of the intensities to retrieve the complex amplitude
of the diffracted image and numerically propagating it to the reconstruction plane to obtain
the magnified focused image.
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The diffracted wavefront propagates from the plane (x0, y0) to the plane (x1, y1), at
a distance d = ∆zo. This propagation can be described by using the Fresnel diffraction
equation [23–25]:

uo(x1, y1) =
exp(ik∆zo)

iλ∆zo

∞x

−∞

u(x0, y0)exp
{

i
k

2∆zo

[
(x0 − x1)

2 + (y0 − y1)
2
]}

dx0dy0. (10)

where k = 2π/λ is the wave number. The superposition between the diffracted and
collimated wavefronts in the plane (x1, y1), as is shown in Figure 2, can be written as:

u′o(x1, y1) = 1 + uo(x1, y1). (11)
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Figure 2. Scheme of the recording stage of the overlap between the diffracted and illumination
wavefronts.

Note that the assumption given in Equation (11) is a good approach when the analyzed
objects are small in comparison with the size of the illuminating beam, as is the case of
experiments provided in further sections, but will not be a suitable approach in other
scenarios, as for instance, for quantitative phase imaging.

The frequency spectrum of the superposition of wavefronts is observable in the focal
plane of the lens (η, ξ) and can be mathematically represented as the Fourier transform of
Equation (11):

U′o(η, ξ) = δ(η, ξ) + Uo(η, ξ). (12)

At the focal length of the lens, the double-sideband filter blocks the first half of the
frequency spectrum corresponding to η > 0. The superposition of the wavefronts, with
half of the frequency spectrum blocked, can be computed as the inverse Fourier transform
of Equation (12) with the integration boundaries in the η direction ranging from −∞ to 0.
The resulting image ui(x2, y2) is a scaled and inverted version of u′o(x1, y1):

ui(x2, y2)η>0 = exp[ik(so + si)]
1

MT
u′o
(

x2

MT
,

y2

MT

)
η>0

. (13)

Here, u′o(x2/MT, y2/MT) is the amplified and inverted ideal image of the diffracted
wavefront u′o(x1, y1) under the assumption that lens aberrations are neglected and the
diameter of the lens pupil is larger than the transverse section of the wavefront.

The recorded intensity in the plane (x2, y2) corresponds to the squared modulus of
ui(x2, y2):

|ui(x2, y2)|2η>0 =
1

M2
T

∣∣∣∣∣u′o
(

x2

MT
,

y2

MT

)
η>0

∣∣∣∣∣
2

. (14)
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Analogously, the other half of the frequency spectrum, corresponding to η < 0, is
blocked at the Fourier plane to obtain the subsequent intensity:

|ui(x2, y2)|2η<0 =
1

M2
T

∣∣∣∣∣u′o
(

x2

MT
,

y2

MT

)
η<0

∣∣∣∣∣
2

. (15)

Finally, both intensities given by Equations (14) and (15) are combined to obtain the
intensity corresponding to the object’s full spectrum. In this form, the magnitude and phase
information (digital hologram) of the diffracted wavefront is retrieved by:

ui(x2, y2) ≈
1

2M2
T

uo

(
x2

MT
,

y2

MT

)
. (16)

Importantly, note how the DSB filter does not alter either the transverse or longitudinal
magnifications of the diffracted wavefront.

2.1.2. Image Reconstruction

The hologram ui(x2, y2) is propagated a distance ∆zr to reconstruct the focused image
ur(xr, yr), as is shown in Figure 3. The Fresnel diffraction integral is used to depict the
propagation of ui(x2, y2) as follows:

ur(xr, yr) =
exp(ik∆zr)

iλ∆zr

∞x

−∞

ui(x2, y2)exp
{

i
k

2∆zr

[
(x2 − xr)

2 + (y2 − yr)
2
]}

dx2dy2. (17)
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Afterwards, the magnified diffracted image given by Equation (16) is substituted into
Equation (17), leading to the wavefront of the reconstructed image as follows:

ur(xr, yr) = exp[ik(∆zo + ∆zr)]
1
2

uo

(
xr

MT
,

yr

MT

)
. (18)

The complete derivation of the wave front propagation from the object plane to the
focused image plane is shown in the Supplementary Materials.

The numerically reconstructed focused image is a version of the object, scaled and
inverted. The coordinates of the object and image are given by Equations (7)–(9).

Based on the above obtained relations, the following main conclusions can be stated:

(1) Both transverse magnification and longitudinal magnification can be determined from
the focal length f of the lens and the distance si between the lens and the CCD camera.

(2) The reconstruction distance ∆zr depends on the longitudinal magnification ML and
the object displacement ∆zo. Meanwhile, the transverse magnification MT of the
reconstructed image remains unchanged with the axial displacement of the object.
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2.2. Wavefront Propagation

To simulate the propagation of the diffracted wavefront from the displaced object
plane (x0, y0) to the plane (x1, y1), at a distance ∆zo, we used the Rayleigh–Sommerfeld
diffraction equation [26]:

uo(x1, y1) =
x

U
(

fx0, fy0
)
exp

{
i2π∆zo

λ

√[
1 − λ2

(
f 2
x0 + f 2

y0

)]}
exp

[
i2π
(

fx0x1 + fy0y1
)]

d fx0d fy0, (19)

where U
(

fx0, fy0
)

is the numerical Fourier transform of the distribution of transmittance of
the object, u(x0, y0):

U
(

fx0, fy0
)
=

∞x

−∞

u(x0, y0)exp
[
−i2π

(
x0 fx0 + y0 fy0

)]
dx0dy0, (20)

Note that, according to the Shannon theorem [24], to implement Equation (19), the
distance between the object and the propagated plane should verify ∆z0 ≤ Npixδx2/λ
where δx is the sensor’s pixel pitch, Npix is the number of pixels, and λ is the illuminat-
ing wavelength.

Finally, we also analyze the optimal reconstruction distance for the magnified and
focused image, which is determined by evaluating the sparsity of the reconstructed image
ur(xr, yr). In this study, three criteria were employed to this aim: the Tamura coefficient, the
Gini Index, and entropy. For each measurement, the image was reconstructed at various
distances, ∆zr, until reaching a maximum or minimum value in the sparsity image criteria,
which corresponds to the distance of the best focused image.

The Tamura coefficient (TC) is calculated based on the mean value ur and standard
deviation σ(ur) of the pixels in the reconstructed image ur(xr, yr), as given by the following
equation [27,28]:

TC(zr) =

√
σ(ur)

ur
. (21)

At the best focused distance, the standard deviation and the Tamura coefficient values
have their minimum value. However, for other reconstruction distances, ∆zr, both the
standard deviation and TC values increase.

The Gini Index (GI) is a measure of the sparsity level of the grey levels in the im-
age [29,30]. On the one hand, when the image intensity is concentrated in a small region
(few pixels), the GI value increases. On the other hand, when the intensity is sparse
throughout the whole image, the GI value decreases. The Gini Index is calculated using the
following equation:

GI
(

f
)

= 1 − 2
N

∑
k = 1

fk∥∥∥ f
∥∥∥

p = 1

(
N − k + 1

2
N

)
, (22)

where f is a vector containing the intensity values of the image pixels, arranged in ascending
order from the least to the greatest values f = [ f (1), . . . f (N)], and

∥ f ∥p = p
√
| f (1)|p + . . . + | f (N)|p is the norm.

The entropy criterion (Ent) measures the level of randomness in an image. The entropy
is calculated based on the image histogram, which represents the occurrence frequency of
different grey levels present in the image [31]. When the image is focused, the randomness
of the pixel values is minimized. Conversely, in a defocused image, the randomness of the
pixel values increases. The entropy of an image is calculated as follows:

Ent = −
N

∑
n = 1

Pnlog Pn, (23)
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where Pn represents the number of pixels with grey level n. In this case, the minimum
value of the entropy indicates the optimal focused distance ∆zr.

In each measurement, the image is reconstructed at several propagation distances,
∆zr, around the theoretical reconstruction image ∆zr = ML∆zo. The images are evaluated
using the three sparsity criteria to determine the reconstruction distance that produces the
best focused image, as is shown in Figure 4. Note how the three criteria lead to very similar
results in terms of the best focused plane for the evaluated image.
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3. Simulation

We calculated the theoretical magnification of the image formed by the lens L in
Figure 1a using Equation (1) for the transversal magnification and Equation (2) for the
longitudinal magnification. The simulated focal length was f = 85 mm and the distance
between the lens and the registration plane (x2, y2) was si = 347 mm. The obtained
transverse magnification was MT = −3.079 and the longitudinal magnification calculated
was ML = −9.480. In the simulations, xo was the width of a small area of the simulated
microscopic objects (see Figure 5).
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The selected microscopic objects to be simulated were (a) a resolution test USAF
1951 and (b) a microsphere, both shown in Figure 5. An extra object simulation was
also conducted, with a microscope reticle, but corresponding analysis is provided in the
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Supplementary Materials to ensure the manuscript remains concise. In the case of the
resolution test chart, the widths of a line in micrometers for the (elements) of group 4 are
31.25(1), 27.84(2), 24.80(3), 22.10(4), 19.69(5), 17.54(6); for group 5, they are 15.63(1), 13.92(2),
12.40(3), 11.05(4), 9.84(5), 8.77(6); for group 6. they are 7.81(1), 6.96(2), 6.20(3), 5.52(4),
4.92(5), 4.38(6); and for group 7, they are: 3.91(1), 3.48(2), 3.10(3), 2.76(4), 2.46(5), 2.19(6).
The width of the five vertical bars (three dark bars and two bright bars) corresponding to
element 2 of group 4 for the resolution test is xo = 139.2 µm, as is shown in Figure 5a.
Finally, in Figure 5b, the radius of the microsphere is xo = 50 µm.

In the simulation, the objects are shifted in steps of 1 mm in the axial direction,
covering a range from ∆zo = −10 mm to ∆zo = +10 mm. In each displacement, the
focused images were reconstructed, and the longitudinal and transverse magnifications
were calculated according to Equations (7) and (8), respectively. As stated in Equation (19),
its validity is ensured by accomplishing the Shannon theorem. In our case, the experimental
conditions were δx = 3.45 µm for the sensor’s pixel pitch, Npix = 1500 pixels, and
λ = 632.8 nm wavelength, then ensuring the use of the of the Rayleigh–Sommerfeld

theorem in adequate conditions (
Npixδx2

λ = 28.21 mm > 20 mm = ∆z0).

3.1. Simulation Results

The simulation results of the transverse and longitudinal magnifications of the recon-
structed images are presented for the two objects under test: the resolution USAF 1951 test
(Section 3.1.1) and the microsphere (Section 3.1.2). Simulations related to an extra example,
a microscope reticle, can be found in the Supplementary Materials.

3.1.1. Resolution Test USAF 1951

A reconstructed focused image of the simulated resolution test chart is shown in
Figure 6a. Note that, if compared with Figure 5a, the object is reasonably reconstructed, but
some artifacts can be observed in the reconstructed image. These artifacts are related to the
sampling of the original object because they are binary objects and so they are not band-
limited. As will be seen in the following subsections, this same situation is repeated for the
two objects studied in this work. However, we have chosen these examples because they
are useful to relate magnification results in terms of the comparisons between simulations
and experiments, which is one of the main goals of this work.
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Figure 6. (a) The resolution test image after reconstruction and focusing and (b) profile graph of the
horizontal yellow line that crosses the reconstructed image. The red line is the average value of the
light intensity that is transmitted through the transparent regions of the resolution test chart. The
blue line is the half value of the average intensity. The blue line is used to determine the width of the
bright and dark lines.
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In each displacement, Equation (8) is used to calculate MT; here, xr is the width of five
vertical bars (three dark bars and two bright bars) corresponding to element 2 of group 4 in
the reconstructed image, as is shown in Figure 6b.

Figure 7a shows that the calculated value of ML remains practically unchanged and
close to the theoretical value regardless of the displacement distance ∆zo of the resolution
test chart. Similarly, the values of MT calculated at the same displacement distance ∆zo
remain close to the theoretical value, as is shown in Figure 7b. The transverse magnifi-
cation MT was calculated after determining the reconstruction distance ∆zr of the best
focused image.
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3.1.2. Microspheres

Figure 8a shows the reconstructed and focused image of a glass microsphere. As shown
in Figure 8b, xr = ∅img/2 is the radius of a microsphere in the reconstructed image.
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Figure 8. (a) Reconstructed and focused image of a glass microsphere and (b) profile graph of the
horizontal yellow line that crosses the reconstructed image. ∅img represents the diameter of the
microsphere calculated as the full width at half maximum.

Figure 9a shows the calculated values of ML obtained with different object displace-
ments. The values of MT as a function of the object displacements ∆zo are plotted in
Figure 9b. The higher variation in the transversal magnification values is due to the low
number of pixels used to draw the microsphere in the simulation. The simulated glass
sphere’s region of interest comprised only an area of 115 × 115 pixels.
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The average and standard deviation of the transverse and longitudinal magnification
values presented in Figures 7 and 9 were calculated, and the results are summarized in
Table 1. The values with the least standard deviation are shaded.

Table 1. Summary of the average (Ave.) and the standard deviation (S.D.) values of ML and MT for
the two simulated microscopic objects for the three sparsity image criteria: Tamura coefficient (TC),
Gini Index (GI), and entropy (Ent).

USAF 1951 Microsphere
Ent TC GI Ent TC GI

Ave. −9.4841 −9.4786 −9.4511 −9.4686 −9.4756 −9.5697ML S.D. 0.0089 0.0058 0.0256 0.0138 0.0524 0.0693
Ave. −3.0767 −3.0776 −3.0837 −3.0770 −3.0738 −3.0864MT S.D. 0.0125 0.0120 0.0128 0.0176 0.0103 0.0572

The Tamura coefficient and the entropy exhibit the smallest standard deviation, in-
dicating that they are the most effective evaluation criteria for obtaining the best focused
images. Additional processing is required for the reconstructed images before they can be
evaluated using focusing criteria.

4. Experimental Validation

The in-line interferometer with the DSB filter shown in Figure 10 was implemented to
experimentally validate the theoretical analysis of the transverse and longitudinal magnifi-
cations of the reconstructed images.

The microscopic objects were illuminated using an expanded and collimated laser
beam, with a wavelength λ = 632.8 nm, manufactured by Lumentum. The lens L2, with a
focal length f = 85 mm, creates an image of the object plane (so = 113 mm) at the image
plane (si = 347 mm), where a CCD (model Blackfly BFS-U3-31S4M-C manufactured by
Flir) was positioned. The intensity recorded by the CCD was proportional to the square
of the complex amplitude in the image plane, resulting in the loss of phase information.
Consequently, during the reconstruction of the focused image, the conjugated defocused
image was superimposed. To reconstruct the focused image without the influence of the
conjugated image, it was essential to have complex amplitude data, which included both
magnitude and phase information.
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Figure 10. Experimental setup of the in-line interferometer with the DSB filter.

The DSB filter was employed in the in-line interferometer to obtain magnitude and
phase information (digital hologram). The experimental scheme used to implement the
DSB followed the proposal given in [25]. A description of the experimental arrangement
used to implement the DSB filter is provided in the Supplementary Materials.

The transverse and longitudinal magnifications of the reconstructed images were
calculated for the following microscopic objects: (a) a resolution test USAF 1951 and (b) glass
microspheres (diameter: 14.5 µm ± 1 µm), as shown in Figure 11. In agreement with the
simulations section, an extra example, a microscope reticle, was also experimentally studied,
and the obtained results are provided in the Supplementary Materials. The microscopic
objects were placed on a linear translation stage equipped with a vernier micrometer having
a resolution of 10 µm. The objects were shifted in steps of 1 mm in the axial direction,
covering a range from ∆zo = −10 mm to ∆zo = +10 mm. In each displacement, the
focused images were reconstructed.
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Figure 11. Image reconstruction of the microscopic objects: (a) resolution test USAF 1951 and (b) glass
microspheres (borosilicate).

4.1. Experimental Results

Hereafter, the experimental results for the transverse and longitudinal magnifications
of the reconstructed images are presented for the two objects under test: the resolution
USAF 1951 test (Section 4.1.1) and the glass microspheres (Section 4.1.2).
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4.1.1. Resolution Test USAF 1951

The magnifications ML and MT as a function of the displacement distance are shown
in Figure 12. The notable variation in the ML values observed in Figure 12a, compared with
the simulation values showed in Figure 7a, could be attributed to the error introduced by
the micrometer controlling the axial shifts in the linear translation stage. Consequently,
variations become evident in the ∆zo displacements. In contrast, the MT values exhibit
greater stability, as is shown in Figure 12b. These values were calculated by dividing the
width of five vertical bars (belonging to element 2, group 4) measured in the reconstructed
image by the width of the same five bars specified in the test resolution specifications.
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Figure 12. (a) Experimental longitudinal magnification ML as a function of displacement distance
∆zo and (b) experimental transverse magnification MT as a function of ∆zo. The error bars in (a) are
associated with the micrometer resolution of the linear translation stage, and the error bars in (b) are
associated with the resolution of the precision rules used for measuring the image distance.

Note that, on the one hand, the error bars in Figure 12a are associated with micrometer
resolution of the linear translation stage (∆z ± 20 µm). The error bars are centered around
the theoretical value of the longitudinal magnification, ML = −9.480 ± 0.1896. On the
other hand, the error bars in Figure 12b are attributed to the resolution of the precision
ruler utilized for measuring the image distance, si ± 1 mm. In this case, the error bars are
centered on the theoretical value of the transverse magnification, MT = −3.079 ± 0.01176.
For the sake of quantification, Table 2 presents the maximum and minimum values of the
longitudinal and transverse magnifications, accounting for experimental errors.

Table 2. Maximum and minimum values of longitudinal magnification ML and transverse magnifica-
tion MT attributed to experimental errors.

Theoretical Min. Max.

ML −9.480 −9.670 −9.290
MT −3.079 −3.090 −3.067

4.1.2. Glass Microspheres

The glass microspheres were shifted over a range of displacement distances ∆zo from
−10 mm to +7 mm, at increments of 1 mm. Figure 13a shows the experimental values of
ML obtained for different object displacements. In the calculation of the transverse magni-
fication, x0 = ∅sph/2 represents the radius of the microspheres, with ∅sph = 14.5 µm
and xr = ∅img/2 corresponding to the diameter of a microsphere in the reconstructed
image. The experimental values of MT as a function of ∆zo are plotted in Figure 13b. In this
case, the variation in the experimental values of the transverse magnification was greater
than the calculated in the simulation. This was attributed to the fact that the magnified
image of the diffracted wavefront by the microsphere was very small, and it was recorded
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in just a few pixels of the CCD. In such a form, tiny variations in the number of pixels of
the reconstructed image represent a significant change in the calculated size of the image.
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Figure 13. (a) Experimental ML as a function of the microsphere displacement ∆zo and (b) experi-
mental MT as a function of the microsphere displacement ∆zo. The error bars are associated with
micrometer resolution of the linear translation stage and the resolution of the precision ruler used for
measuring the image distance, respectively.

The average and standard deviation of the transverse and longitudinal magnification
values were calculated for the same two microscopic objects studied. The corresponding
results are summarized in Table 3. In almost all cases, the average values fall within
the maximum and minimum boundaries of the expected magnifications, considering
experimental errors. Note that the values with the least standard deviation for each object
are shaded in Table 3. The Tamura coefficient and the entropy exhibit the smallest standard
deviation, indicating that they are the most effective evaluation criteria for obtaining the
best focused images. In the case of the image reconstruction of the glass microsphere, the
standard deviation of the transverse magnification was higher, as observed in Figure 13b.

Table 3. Summary of average (Ave.) and standard deviation (S.D.) values of the experimental ML

and MT magnifications for the tested microscopic objects: the USAF 1951 resolution test and the glass
microsphere.

USAF 1951 Microsphere

Ent TC GI Ent TC GI

ML
Ave. −9.4867 −9.4490 −9.4543 −9.4695 −9.4742 −9.4857
S.D. 0.4799 0.2184 0.2471 0.4454 0.1191 0.2718

MT
Ave. −3.0834 −3.0787 −3.0776 −3.1198 −3.0931 −3.6058
S.D. 0.0286 0.0324 0.0323 0.2085 0.1586 0.2772

5. Discussion and Conclusions

Holographic interferometry is a mature optical tool of interest in multiple imaging
applications. In-line holographic configurations are especially interesting when some error
sources, as those related to mechanical vibrations or refractive index fluctuations, need
to be minimized. However, those configurations have the disadvantage of presenting the
conjugated images superimposed next to the reconstructed ones, which results in a loss
of efficiency in the final reconstructed images. Under this scenario, some authors have
presented a combination of the in-line interferometer with the DSB filter, providing the
usefulness of the technique with removed conjugated images. However, no analysis of
the magnification associated with such systems was presented in the literature, with this
information being crucial for efficiently applying the method in real applications.



Appl. Sci. 2024, 14, 5118 15 of 17

In this work, we provide a thorough study of the magnification relations (the transverse
and longitudinal magnifications) associated with an in-line interferometer system based
on a DSB filter. This analysis is combined with methods for hologram propagation and
optimal focused image identification. Results provided in this work highlight the suitability
of the approach for object position determination.

In particular, the presented simulations include computing the diffracted wavefront
by microscopic objects, applying the Rayleigh–Sommerfeld diffraction equation to model
the propagation of the diffracted wavefront. The numerical Fourier and the inverse Fourier
transforms were used to block half of the spatial–frequency spectrum of the diffracted
wavefront. Additional computing processes were used for simulating the transverse mag-
nification produced by the optical system. Finally, the magnified focused image was
reconstructed using the Rayleigh–Sommerfeld equation to propagate the digital hologram
to the reconstruction plane. The reconstruction distance, related to longitudinal magnifica-
tion, was estimated using three focusing criteria: the Tamura coefficient, the Gini Index,
and the entropy. The Tamura coefficient and the entropy demonstrated the lowest standard
deviation, suggesting that they are the most effective evaluation criteria for achieving the
best focused images. The simulation results have confirmed the validity of our theoretical
analysis. The fluctuations of the magnification values are not greater than 1%.

The presented methods were experimentally validated by analyzing the images ob-
tained of three different micro-objects: glass microspheres, a micrometric reticle, and a
resolution test chart USAF 1951. Experimental average values of the magnifications fall
within the expected range, considering the experimental errors. Additional processing is
required for the reconstructed images before they can be evaluated using focusing criteria.

The proposed configuration ensures that the reconstruction of 3D objects and the
trajectory of moving objects will be free from distortions.

In summary, the provided method is able to determine, with precision, the mag-
nification of the reconstructed image using an inline holography system based on the
double-sideband filter. We have demonstrated that the lateral and transverse magnifica-
tions depend on the focal length of the lens and the distance between the lens and the
camera. We used different focusing criteria to obtain the reconstructed and focused images.
The Tamura criterion was the most accurate, both in the simulations and in the experi-
mental validation. This study is useful for real-time measurements of the movement of
microparticles, in the 3D reconstruction of microscopic objects, in the characterization of
flows in microfluidic systems, etc.
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