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Abstract

Let P3(x,y) and Qs(xz,y) be polynomials of degree three without constant or linear terms.
We characterize the global centers of all polynomial differential systems of the form & = y +
Ps(x,y), y = Qs(z,y) that are reversible and invariant with respect to the z-axis.
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1 Introduction and statement of the main results

A planar polynomial differential system of degree three having a nilpotent center at the origin can

be written as

2’ =y + axr? + anzy + a2y’ + azor® + as12’y + araxy® + aosy’,

Y = booz”® + b117Y + booy® + baox® + ba12?y + biowy® + bosy®.

(1)

We consider systems (1) that are invariant under the symmetry (x,y,t) — (z, —y, —t). Imposing
that systems (1) are invariant under such symmetry we get that asg = agp = a2 = a12 = b11 =
ba1 = bgs = 0 and they become

o' = y(1+anx + azz? + apzy?),
Y = booz? + b3ox® + boay? + brazy®.

(2)
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Note that (0,0) is a nilpotent singular point. To be isolated we need that the second equation in
(2) is not identically zero (which yields b3, + b3, + b3, + b5 > 0) and that both equations in (2) do
not have the common factor y (which gives b3, + b3, > 0). We can prove that if b3, + b%, > 0, then
the two equations in (2) cannot have a common factor of the form ax 4 by with a # 0 or of the form
ax? + bry + cy? + dx + ey with a? + b2 + ¢ > 0. In short, the singular point (0, 0) is isolated if and
only if b3, + b3, > 0.

Now we apply [5, Theorem 3.5] to ensure that the singular point is a linear nilpotent center.
Since system (3) is reversible, such a linear nilpotent center will be indeed a center. We compute the
functions F' and G defined in [5, Theorem 3.5] and we get

F(x) = byox® + bgox® and G(z) =0.

So the origin is a nilpotent center if and only bog = 0 and b3y < 0. Note that under these conditions
the origin is an isolated singular point.
Assume that byg = 0 and bzg = —a? with a # 0. Then system (2) becomes

' =y(1 + a1z + ao12”® + agsy?), @)

Y = —a?z® + booy® + biowy?.

We characterize the planar polynomial differential systems (3) having a global center at the origin,
called from now on global nilpotent centers. We recall that a center is a singular point filled up with
periodic orbits and that it is global when the period annulus of that center is the plane R2. The
existence of global centers is a key point in a proof of the Jacobian conjecture (see, for instance, [13]).

Global centers are only possible in polynomials with odd degree (see, for instance, [6, 12]). The
classification of global centers of planar polynomial vector fields is a very difficult problem mainly due
to the fact that until now the complete characterization of centers of planar polynomial differential
systems of degree higher than or equal to three has not been done due to its difficulty (and it is even
worse for the characterization of global centers). Up to now the classification of global centers has
been done for some subclasses of cubic and quintic planar polynomial differential systems for which
the existence of centers come automatically from the existence of a linear center. In this scenario we
cite [8] where the authors characterized the global nilpotent centers of planar polynomial differential
systems of the form: linear + homogeneous cubic polynomials (for which the classification of centers
is known) and we also want to cite [3] where the authors provided the global phase portraits in
the Poincaré disk of all planar cubic Hamiltonian polynomial differential systems symmetric with
respect to the z-axis having a nilpotent center at the origin (the Hamiltonian structure forces that a
linear center is indeed a center). For other papers studying global centers in polynomial differential
systems of degree three and five see the references [9, 14, 15] and the recent ones [2, 4, 7, 10, 11].

System (3) when by = a1 = 0 has been studied in [8] and when byy = —aj1/2 and b1y = —ag
has been studied in [3]. From now on we study system (3) assuming that bp2 and aj; are not
simultaneously zero, because it has already been studied. To extract from (3) the conditions studied
in [3] make the computations much more involved and so we prefer not to exclude them from our
system (3).

So we assume b3, + a?; > 0 and we consider the change of variables

X = Ax, Y =By, T =Ct. (4)

When by = 0 and a3 # 0, by the change given in (4), system (3) with A = a11, B = a%,/q,
C = a/ay1 can be written as

X' =Y + XY 4+ aX?Y +bY3, Y = —X3 4+ ¢eXY?, (5)

where a = a1 /a?,, b = a?ap3/at;, c = bia/a?;.
When bgs # 0, by the change given in (4), system (3) with A = b2, B = b2,/a, C = a/bpa can
be written as
X' =Y +aXY +bX?Y + V3, Y = -X3+Y?+dXY?, (6)



where a = a1 /b2, b = a1 /b3y, ¢ = aag3 /b3y and d = bya/b3,.

The main theorems of the paper are the following ones.

Theorem 1. System (6) has a global nilpotent center at the origin if and only {(a,b,c,d)} € d; for
somei=1,...,107 (see Appendiz A).

Theorem 2. System (5) has a global nilpotent center at the origin if and only {(a,b,c)} € e; for
somei=1,...,8 (see Appendiz B).

The proof of Theorem 1 is given in Section 3 and the proof of Theorem 2 is given in Section 2.
We have included two appendices with the definition of the sets d; and e; for ¢« = 1,...,107 and
j=1,...,8 as well as some other sets of conditions that will appear in their proofs. In the appendices
we also provide values of the parameters belonging to each one of the sets d; and e;, showing that
the sets d1—d197 and e;—eg are not empty. From their definitions it is also easy to see that all these
sets are disjoint.

2 Proof of Theorem 1

Consider system (6) which, after abuse of notation, can be written as
¢ =y(l+azx+bz?+cy?), y = —2® +y* +dry?, (7)
for some a,b,c,d € R.

2.1 Finite singular points of equation (3)

From the first equation of (7) we have that either y = 0 or
1+azx+bx? +cy?> =0. (8)

Clearly if y = 0 the unique finite singular point of system (7) is the origin. Now we analyze the
singular points coming from solutions of equation (8). We distinguish four cases: ¢ = 0, b = 0 and
a=0;¢c=0,b=0and a #0; c=0,b#0; and ¢ # 0.

When ¢ = 0, b = 0 and @ = 0 equation (8) is never satisfied, so the unique singular point of
system (7) is the origin. This provides condition ¢; in Appendix A.

If¢c=0,b=0and a # 0, then from (8) we get £ = —1/a. Substituting it into the second
equation of (7) we get

1 a—d

a? + a
If d = a, this last equation is never satisfied. If d # a, system (7) has no solutions different from the
origin when

y? = 0.

o____ 1
a?(a —d)
and so a > d. In short, if ¢ =0, b =0, a # 0 and a > d, the unique singular point of (7) is the

origin. This provides condition ¢o in Appendix A.
When ¢ =0, b # 0, from (8) we get

Y <0,

L, —a*tva?-—4b

If a® — 4b < 0 the solutions 2% are not defined and consequently the unique singular point of (7) is
the origin. This gives condition ¢z in Appendix A. Assume now that a® — 4b > 0. Notice that =& is
never zero. By substituting = = 2% into the second equation of (7) we get (14 dax™)y? — (%)% = 0.

Let s
:7% and kizi(x) ,
aF Va? —4b 1+ da*

where d = D is the solution of 14 dz* = 0. The second equation of (7) has no real solutions either
when d = DT and k= < 0 which is not possible; when d = D~ and kT < 0 which is satisfied in

Di



the set {b < 0,d = D~} U{0 < b < a®/4,d = D~}; when d = D* = D~ which is satisfied in the
set {a # 0,b = a?/4,d = a/2}; and when d # D*, k* < 0 and k= < 0 which is satisfied in the set
{b<0,d <D }uU{0<b<a?/4,d < D~ }. In short, (7) has no real solutions different from the
origin in the set
{0<b<a?/4,d <D }U{b<0,d< D }.
This set provides, respectively, conditions ¢4 and c¢5 in Appendix A.
Now we consider the case ¢ # 0. Isolating y? from equation (8) we get

9 1+ ax + bz?

T ©)

By substituting (9) into the second equation of (7) we obtain the equation
(c+bd)x® + (b+ad)x® + (a+d)x +1=0. (10)

Thus when ¢ # 0 the origin is the unique finite singular point if either (10) has no real solutions or
the expression of y? in (9) evaluated at the real solutions of (10) is negative. We distinguish four
cases: c+bd=0,b+ad=0and a+d=0;¢c+bd=0,b+ad =0and a+d # 0; c+ bd = 0 and
b+ ad # 0; and ¢ + bd # 0.

Ifc+bd=0,b+ad =0 and a+d = 0, then equation (10) is never satisfied. After simplification
we get condition cg in Appendix A.

When ¢+ bd =0, b+ ad = 0 and a + d # 0 the solution of (10) is

1
a+d

Substituting this solution into (9) we get

o btad+d
cla+d)?”’

and since b 4 ad = 0 this last expression is negative when ¢ > 0. Therefore the origin is the unique
singular point of (7). After simplification we get condition ¢; in Appendix A.
Now we analyze the case c+bd = 0 and b+ad # 0. Under these conditions equation (10) becomes

(b4 ad)z? + (a +d)z +1=0. (11)

Solving equation (11) we get

v atdty/(a—d)?—4b

rer= 2(ad + b)

If (a —d)? —4b < 0, or equivalently if b > (a — d)?/4, the solutions #* are not real. Therefore
the unique real solution of (7) is the origin. This provides condition ¢g in Appendix A. When
(a —d)? —4b > 0, or equivalently b < (a — d)?/4, the solutions #* are real and they are never zero.
Since we are interested in solutions of (11) that do no provide real solutions of (7) we need that (9)
evaluated at z = % and ¢ = —bd be negative. We can see that the Grébner basis of the polynomials
—(1+ az + bz?)/c and (b+ ad)z? + (a + d)z + 1 is 1. So there are no solutions of system

1 ba?
—yzo, (b4 ad)z* + (a+d)z +1=0,
and consequently (9) evaluated at z = #* and ¢ = —bd is never zero. Then the sign of (9) evaluated
at © = #* and ¢ = —bd can change only either on the boundaries of the definition domain of Z* or



when —bd changes it sign. We consider the following regions

By ={bd>0,b+ad>0,b< (

b<(a—d)?/4},  By={bd>0b+ad<0,b<(
By ={bd < 0,b+ad>0,b< (

b < (a—d)*/4},
d)?/4},  By={bd<0,b+ad<0,b<(

" o—d)?/a),

whose boundaries are the sets b= 0, d =0 b= —ad and b = (a — d)?/4. Analyzing the intersections
of these boundaries we can decompose each region B; with ¢ = 1,...,4 as union of several disjoint
connected components. In particular the region By can be decomposed as union of the following
regions

By = {d>0,a>d,0<b< (a—d)?/4},

Bis = {d>0,a < —d,—ad < b < (a— d)?/4},
Bis = {d<0,a<0,b<0,—ad < b},

By ={d>0,0<a<d0<b< (a—d)?/4},
Bis = {d>0,-d<a<0,—ad <b< (a—d)?/4};

the region By can be decomposed as union of

By = {d < 0,a >0,b< 0},
By = {d<0,a§0,b< *ad},
Bos = {d>0,a<0,0<b< —ad};

the region Bj can be decomposed as union of

B3y = {d>0,a>0,—ad < b < 0},

By = {d<0,a> —d,—ad < b < (a— d)*/4},
B33 = {d<0,a<d,0<b< (a—d)?/4},

Bss = {d<0,0<a<—d,—ad<b< (a—d)?/4},
Bgs = {d < 0,d<a<0,0<b< (a—d)?/4};

and the region B, can be decomposed as union of

By = {d>0,a>0,b< —ad},
By = {d>0,b<0,a§0},
Bys = {d<0,a>0,0<b< —ad}.

In order to decompose the regions B; as union of disjoint connected components we have used the
REDUCE function of Mathematica. This will allow us to automate the process in such a way that it
can be applied to the remaining cases in this paper. In particular, in the case ¢ # 0 and ¢ + bd # 0.

The sign of (9) evaluated at ¢ = —bd and * = z* does not change within the same connected
component but it could change from one component to the other. We pick up a point in each
connected component and we compute the signs of (9) evaluated at ¢ = —bd and the solutions
x = ¥ at this point. We see that (9) evaluated at ¢ = —bd and z = x™ is negative in By, B3z, Baa,
Bss, Byz; and (9) evaluated at ¢ = —bd and & = x~ is negative in By1, B3, Ba21, Baa, B31, Bsa,
Bsy, Bss, By, By and Bys. In order that the unique finite singular point of (7) be the origin we
need (9) evaluated at the solutions & = 27 and = 2~ to be both negative. Thus the parameters
must belong to one of the sets By, Bsa, B34, Bss, or By and they provide, respectively, conditions
Cg, C10, C11, C12 and C13 in Appendix A.

Finally we consider the case ¢ # 0 and ¢+ bd # 0. In this case (10) is a cubic equation of the form

ar® + Bt +yr +1=0, (12)



where o = ¢+ bd, B = b+ ad and v = a + d. Thus if the discriminant A = —27a2 + 18afy — 4ay> —
4% + 3242 of (12) satisfies A < 0 then (12) has one real root and two complex ones, if A > 0 it has
three distinct real roots, and finally if A = 0 it has either a unique real root with multiplicity three
when 32 = 3ay or two different reals roots one of them with multiplicity 2 when 82 # 3a7y.

By substituting a = ¢+ bd, 8 = b+ ad and v = a + d the discriminant A becomes

A = a*d* - 2abd — 4a®c — 2a*d® + a®b* — 2a*bd* + 6a*cd + a*d*
+ 8ab?d + 18abc + 8abd® + 6acd® — 4b% — 8b2d% — 36bed — 4bd* — 27¢ — 4ed?,
and the equation 5% = 3ay becomes
—3c(a+d) —bd(a +3d) + b* + a*d* = 0. (13)
We analyze the set where (10) has a unique real root with multiplicity three. The solutions of

(13) are

272 _ 2
c:ad bd(a +3d) +b when a + d # 0,

3(a+d) (14)
b= d? when a + d = 0.
Substituting (14) into equation A = 0 we get
2
(ad +b)? (a* — ad — 3b+ d?)
— =0 wh d#0
3(a+ d)? when a+d #0,
c=—d3 when a +d = 0.
Thus the system formed by the equations A = 0 and (13) has the solutions
b=1(a®>—ad+d?), c=3-(a—2d)® and b= —ad, c=ad> whena+d#0, (15)
b=d? c=—-d° when a +d = 0.

However the second solution in (15) when a + d # 0 does not satisfy the condition ¢+ bd # 0 and so
it is not possible. Moreover, the solution when a+d = 0 coincides with the first solution in (15) when
a+d # 0 with a = d. In short equation (10) has a unique real root with multiplicity three in the set

1 1
A = {c;é(),c—i-bd;é 0,b= §(a2 —ad+d?%),c= E(a—Qd):g}.
On the other hand, solving equation A = 0 we get the solutions ¢ = K* (see Appendix A for the

expressions of K*). Then equation (10) has two different reals roots one of them with multiplicity
2 in the set Ay = A U A, with

1
AE = {c;éo,c+bd7é07c:Ki7b;ég(aQ—ad—kdz)}.

Notice that K% |p—(a2_qata2)/3 = (a — 2d)®/27.

Since we want that the origin be the unique real solution of (7) we need (9) evaluated at all
the real roots of (10) to be negative. To find where this condition is satisfied we proceed as in the
previous case. First we see that (9) does not vanish on the solutions of (10). Indeed, the Grdébner
basis of the polynomials —(1 + ax + bx?)/c and (c+ bd)x® + (b + ad)x? + (a+d)z + 1 is 1. Therefore
(9) evaluated at the solutions of (10) can change its sign only when ¢ = 0 or on the boundaries of
the definition domain of the solutions of (10). We consider the four regions

Cy ={c>0,c+bd > 0}, Cy={c>0,c+bd < 0},
C3 ={c<0,c+bd >0}, Cy={c<0,c+bd <0}



When A < 0 equation (10) has a unique real solution. Regions C1, Cs, C3 and Cy with the additional
constraint A < 0 can be decomposed, respectively as union of 56, 51, 51 and 72 disjoint regions where
the sign of (9) does not change. We pickup a point in each one of these regions, we compute the
real solution of (10) at this point and finally we compute the sign of (9) evaluated at this solution.
Doing so we get that (9) is negative in all regions of C; and Cy and positive in all regions of C5 and
Cy. The regions Cy and Cy provide, respectively, conditions ¢4 and ¢15 in Appendix A.

Now we consider the case A > 0 with corresponds to the case of the existence of three distinct
real roots. Regions Cy, C3, C3 and C4 with the additional constraint A > 0 can be decomposed,
respectively, as union of 39, 29, 29 and 45 disjoint regions where the signs of (9) evaluated at the
solutions do not change. In this case we need (9) to be negative at the three solutions. This is
only possible at some subsets of C; and C5. More precisely at 10 subsets of Cy, the sets ¢; with
1 =16,...,25 and 24 subsets of C5, which provide the sets ¢; with ¢ = 26,...,49 in Appendix A.

Regions C7, Cy, C3 and C4 with the additional constraint A; which correspond to a triple real
root of (10) can be decomposed, respectively, as union of 2,1,1 and 2 disjoint regions where the signs
of (9) evaluated at the solution do not change. In this case (9) evaluated at the solution is negative
at the entire C; and Cy which gives, respectively, the sets ¢; with ¢ = 50,...,52 in Appendix A.

Regions Cy, Cs, C3 and C4 with the additional constraint As which corresponds to a double real
root of (10) can be decomposed, respectively, as union of 30, 24, 24 and 34 disjoint regions where the
signs of (9) evaluated at the solutions do not change. In this case we need the sign of (9) evaluated at
the two solution to be negative. This happen at 11 subsets of C7, the subsets ¢; with ¢ = 53,...,63
in Appendix A, and 22 subsets of Cs, the subsets ¢; with i = 64,...,85 in Appendix A.

2.2 Infinite singular points in the local chart U; of system (7)

In the local chart U; system (7) becomes

u' = —autv — bu® — cu + du? —u*o® +utv — 1, v = —u(b+ cu?)v — auv® — uv. (16)

The inifinite singular points (that is the ones with v = 0) satisfy
—cut +u?(d—Db) —1=0. (17)
The Jacobian matrix of (16) evaluated at v = 0 becomes

J—u (—2(20u20+ b—d) _((10;26212)> .

In order the origin to be a global center we need that either there are no infinite singular points on
the local chart U; or that the singular points, in case they exist, they are all formed by the union of
two hyperbolic sectors (and in particular, they are linearly zero). We distinguish three cases: ¢ = 0
andd—b=0;c=0and d—0b#0; and ¢ # 0.
If c=0and d — b =0, equation (17) has no real solutions. This gives the set ¢; in Appendix A.
If c=0and d — b # 0, the solutions of (17) are

d—b

Thus if d — b < 0 then (17) has no real solutions yielding the set is in Appendix A. When d — b > 0
the two solutions u = u® exist, so the points (u*,0) must be linearly zero. The Jacobian matrix
evaluated at the solutions v = u® is

+2y/d—b (a—1)/(b— d)
( 0 Fb/Vd—D )

which is never identically zero. Therefore the points (u®,0) are never linearly zero.



Finally, when ¢ # 0 the solutions of (17) are

where

gt :j:\/bQ—2bd—40—|—al2 _§+§.
c c c
If either b2 — 4c — 2bd + d? < 0, or b®> — 4c — 2bd + d?> > 0 and E1 and E~ are both negative,
then (17) has no real solutions yielding, respectively, the sets i3 and i4 in Appendix A.
Assume now that b? — 4¢ — 2bd + d®> > 0 and E* or E~ are positive. Since the solutions of (16)

are never zero, a solution (u,0) of (17) is linearly zero if it is a solution of the system of equations

fi=—cut +uP(d—b)—1=0, fo=-2(2ct®>+b—d)=0, 18
fa=1—a=0, fa=—(cu® +b) =0. (18)
By computing the Grobner basis of the polynomials f1, fo, f3, f4 with respect to u we get the set
of polynomials
{-14a,—c+d*b+d,—d+ cu?, —1+ du?}.

Thus system (18) has solution only when a = 1, b = —d, ¢ = d? and d # 0 and in this case the
solutions are u = +1/ V/d, both with multiplicity two. They are real when d > 0.

Now we study the linearly zero singular points by doing blow ups (see for instance [1]). Assume
that a =1, b = —d, ¢ = d? and d > 0. We start studying the singular point u = 1/\/& First we do
the change of variables (U, V) = (u — 1/v/d,v) to move the singular point to the origin and we get

= —4d3?u® — dPut — 4du® — QU\;; — % —u%?,
v = —3d%?uv — dPuPv — 2duv — i — U—2 — wv® — wv? 1)
= 7V )

Notice that we have renamed the new variables U and V as v and v. The characteristic polynomial
of (19) at the origin is F = v(2d?u? — v/duv +v?)/d. Since v = 0 is a simple characteristic direction,
we apply the wu-directional blow up (u,v) — (u,uw). Doing so and rescaling the time to eliminate
the common factor u, system (19) in the new variables and time becomes

u = —%(4d5/2u + d*u? + 4d® + duw? + 2V duw? + w?),
(20)

w' = %(d‘:’/Qu + 2d? + Vduw? — duw — Vdw + w?).

The singular points of (20) with u = 0 are

d
0,0),  (0,@%) = (0, ga V1o Sd)).
The points (0,%T) are defined only when 0 < d < 1/8. Moreover w" > @~ >0 forall 0 < d < 1/8
and they coincide at the point w = w* = 1/(4y/2) when d = 1/8. The point (0,0) is a saddle with
d 0

70 Qd) (we recall that d > 0). The Jacobian matrix at the points (0,%%) is

Jacobian matrix (

ot _ [(—(4d+1+v1—28d)/2 0

af of) T\ —2(1£V1—=8d)/2 (—8d+1+v1—-28d)/2)"

It is easy to see that if 0 < d < 1/8, then of; < 0, ady > 0, aj; < 0, and @y, < 0 so the point
(0,w™) is a saddle whereas the point (0,w™) is a stable node.
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If d = 1/8 then the Jacobian matrix at the singular point (0,w*) becomes (—_1%;18 8) so the

point is semi-hyperbolic. By doing the change of variables (U, W) = (u — 96(w — 1/(4v/2)), u) we
simultaneously move the point (0,@*) to the origin and we transform the system into the normal
form for applying [5, Theorem 2.19]. The resulting system becomes

9216
+ 2V2U3 W — 10vV2U2W? + 38V2U W3 — 30vV2W* — UPW?3 + 20W* — W?),

!

u —96v2U2 + 96V2UW — 2304v/2W? + 8U3 — 80UW + 328U W?2 — 688W°

(21)

!

~ 7 (6912 — 192V2U + 2496V2W + 8U% — 208UW + 632W° + 4v3U*W

— 32V2UW? + 28V2W? 4 U2W? — 2UW3 4 W?).

Then applying [5, Theorem 2.19] we get that the singular point (0,w*) is a saddle-node.
Going back trhought the u—directional blow up, undoing the rescaling of time, and taking into
account that

(i1, ) lumo = (—0%/Vd, —v® — v3)/Vd and (1, 0)|y—o = (—4du? — 4d*/?u® — d*u*,0),

we get the sequence of phase portraits given in Figure 1 when 0 < d < 1/8, in Figure 2 when d = 1/8,
and in Figure 3 when d > 1/8. Notice that when d = 1/8 we have taken into account that in system
(21) the separatrices of the saddle are tangent to U = 0 and W = 0, so in the initial system (20) they
are tangent to u = 96(w—1/(4v/2)) and u = 0, respectively. So the singular point (1/+/d,0) of (16) is
formed by the union of two hyperbolic and four parabolic sectors when 0 < d < 1/8; two hyperbolic
and two parabolic sectors when d = 1/8; and exactly two hyperbolic sectors when d > 1/8.

We proceed in the same way with the linearly zero singular point (u~,0) = (—=1/+/d,0) and we
also get that it is formed by the union of two hyperbolic sectors only when d > 1/8. These possible
cases are given in condition i5 in Appendix A.

Notice that when going back through the u—directional blow ups all separatrices transversal to
the straight line © = 0 persist and they divide different sectors. The parabolic sectors associated
to the nodal parts can go back either to parabolic or to elliptic sectors, and the elliptic sectors go
back to elliptic sectors. Taking this into account, in order that in the blow down process we could
get that the singular point is formed by two degenerated hyperbolic sectors we need that in the last
step of the chain of blow ups the origin be a saddle or a linearly zero singular point and the other
possible singular points whenever exist be linearly zero. If in the last step of the chain of blow ups
we have more than one non linearly zero singular point, then going back through the u—directional
blow ups we will obtain either more than two hyperbolic sectors or some parabolic/elliptic sectors.



u u

System (20) with the
System (20) common factor u System (19)

Fig. 2 Sequence of phase portraits near the origin of system (19) with d = 1/8.

System (20) with the
System (20) common factor u System (19)

Fig. 3 Sequence of phase portraits near the origin of system (19) with d > 1/8.

2.3 Infinite singular points in the local chart U, of system (7)

In the local chart Us system (7) becomes

u' = auv +bu® 4+ c— du® +ut —uv+0*, v =—v(du—u®+v).

(22)

We are interested in the cases where either the origin is not a singular point or if it is a singular

point it is formed by the union of two hyperbolic sectors.

If ¢ # 0 the origin is not a singular point. This gives condition j; in Appendix A.

If ¢ = 0 then the origin is a linearly zero singular point and we study this point by means of
blow ups. The characteristic polynomial of (22) with ¢ = 0 at the origin is F = —v(auv + bu? + v?).
Since v = 0 is a simple characteristic direction, we apply the u-directional blow up (u,v) = (u, uw)

and after dividing by the common factor u we get

u(aw + b —d + u? + w? — w),

u =
w' = —w(aw + b+ w?).

The singular points of (23) with u = 0 are

(0,0) and (0,w®) = (O, %(—a +vVa?— 4b)>.

The points (0, w®) only exists when a? — 4b > 0. Moreover w™ = w™ = 0 when a = b = 0.
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(23)



The Jacobian matrix at the origin is <b 6 d Ob> and the Jacobian matrices at the points (0, w®)
+
1
0 A
Now we analyze the cases where the origin (0,0) and (0, w®) are linearly zero.
We start with the origin. The origin is linearly zero when b = d = 0. The characteristic polynomial
of (23) at the origin when b=d =0 is F = (1 — 2a)uw?.
We start analyzing the case a = 1/2 where F = 0. System (23) when a = 1/2 can be written as

are, respectively, (A 0 ) where A\f = (a —2dF /a2 — 4b)/2 and \f = (—a®+4b+ava? — 4b)/2.

2

, uw , w
=——+ h.o.t. = —— + h.o.t.
U 5 + h.o.t., v 5 + n.o.t.,

so w = 0 is a singular direction (see [1]). Hence there exists exactly one semipath tending to the
origin in the direction given by the angle 6 in forward or backward time for every 6 ¢ {0, 7}. So in
this case the origin of (23) must have parabolic sectors.

Assume now that a # 1/2. Since u = 0 is a simple characteristic direction of (23) at the origin, we
apply the u—directional blow up (u,v) — (u,uw,) and after dividing by the common factor u we get

v = u(aw; + uw? + u —wy), (24)
wi = _w1(2aw1 + Zuwf +u— wl).

The unique singular point of (24) with u = 0 is the origin which is again linearly zero. The char-
acteristic polynomial at the origin of (24) is F = —uww; (3aw; + 2u — 2wy). Since u = 0 is a simple
characteristic direction of (24) at the origin, we apply the u—directional blow up (u,v) — (u,uvws)
and after dividing by the common factor u we get

v = u(awsy + uPwi —wy + 1),

25
wh = —wa(3aws + 3utw3 — 2wy + 2). (25)

The singular points of (25) are the origin and the point (0,w3) = (0,—2/(3a — 2)), the last one
defined only when a # 2/3. If a = 2/3 the unique singular point is the origin. The origin is always a

saddle with Jacobian matrix <1 . The Jacobian matrix at the point (0, w3) is o/(3a -2) 0) ,

0
0 -2 0 2
so the point is an unstable hyperbolic node when a € (—o0,0)U(2/3, +0), a hyperbolic saddle when
a € (0,2/3), and it is semi-hyperbolic when a = 0. Applying [5, Theorem 2.19] in a similar way than
in Section 2.2 we get that wj is a semi-hyperbolic saddle when a = 0.

The singular points (0,w*) are both linearly zero when d = a/2, b = a%/4 and a # 0 and when
d=0,b=0and a =0 (in this case w™ = w™ = 0 and the origin is the unique linearly zero singular
point, so it has already been studied). If d = 0, b = 0 and a > 0, then (0,w™) = (0,0) is linearly
zero, and (0,w™) = (0, —a) is a saddle. If d =0, b = 0 and a < 0, then (0,w~) = (0,0) is linearly
zero, and (0,w*) = (0, —a) is a stable node. Now we study the case d = a/2, b = a®/4 and a # 0.
In this case wt = w™ = —a/2. We do the change of variables (U, W) = (u,w + a/2) to move the
singular point (0, —a/2) to the origin and we get system

1
v = u(u® + w? — w), w = §w2(a — 2w). (26)
Notice that we have renamed the new variables U and W as u and w. The characteristic polynomial
of (26) at the origin is 7 = 3(a + 2)uw?. When a = —2 the characteristic polynomial is identically
zero with w = 0 a singular direction, thus as above the origin of (26) must have parabolic sectors.
If a # —2 then v = 0 is a simple characteristic direction so we apply the u—directional blow up

11



(u,v) = (u,uw;) and after eliminating the common factor u we get

u' = u(uwi +u —wy),
o 2 (n)
wy = _gwl(—awl + duwi 4 2u — 2wy ),

The origin is the unique singular point of (27) which is again linearly zero. The characteristic
polynomial of (27) at the origin is F = —%uwl (—awi +4u—4w;), then u = 0 is a simple characteristic
direction so we apply the u—directional blow up (u,v) — (u,uws) and after eliminating the common

factor u we get

v = u(u®ws —wy + 1),

1 (28)
w/2 = —iwg(—a’UJQ + 6u2w§ - 4U}2 + 4)7

The singular points of (28) are the origin which is always a saddle with Jacobian matrix ((1) _02>;

and the point (0,%3) = (0,4/(a + 4)) which is defined for a # —4 and it is an unstable node
when a € (—o0,—4) U (0,00) and a saddle when a € (—4,0) and in view of [5, Theorem 2.19] a
semi-hyperbolic saddle when a = 0.

Now we go back through the u—directional blow ups in a similar way as in Section 2.2. We start
going back from blow up (28) to blow up (26). The existence of the point w3 would provide either
more than two hyperbolic sectors or parabolic sectors. So we are only interested in the case where
the origin is the unique singular point of (28). This happens when a = —4. In this case going back
to the chain of blow ups we have that the origin of (26) is the union of two hyperbolic and two
parabolic sectors. Thus the existence of the singular points (0, w+) would provide either more than
two hyperbolic sectors or parabolic sectors, and so they cannot exist. Thus a® — 4b < 0.

Now we go back from blow up (25) to blow up (23). The existence of the point wj would provide
either more than two hyperbolic sectors or parabolic sectors, so the origin must be the unique
singular point of (25) implying that a = 2/3. Going back to the chain of blow ups up to blow up
(23) we have that the origin of (23) is the union of two hyperbolic and two parabolic sectors. Thus
the case where the origin is linearly zero is not possible.

In short, the unique case that could be possible is the case where the origin is the unique singular
point of (23) (i.e., a® —4b < 0), it is not linearly zero (i.e., b2 +d? # 0) and it is a saddle. The origin
is the unique singular point either when a? —4b < 0 (implying that b > 0), or when a = b = 0. When
a=1b=0, in wiew of [5, Theorem 2.19] the origin is a semi-hyperbolic saddle when d < 0 and an
stable node when d > 0. When a? — 4b < 0, the origin is a hyperbolic saddle when —b(b — d) < 0,
which together with b > 0 implies that b > d, and it is a semi-hyperbolic singular point when
b = d. In this last case, since b = d > 0, applying [5, Theorem 2.19] we get that the origin is a
semi-hyperbolic saddle.

The only possibilities for the origin of the local chart U; to be formed by two degenerate
hyperbolic sectors are when any of the conditions js, j3 and js in Appendix A hold.

2.4 Proof of Theorem 1

In order to have a global center we need the origin to be the unique finite singular point (correspond-
ing to one of the conditions ¢;—cgs), that the local chart U; has either no infinite singular points or all
the infinite singular points are formed by two degenerated hyperbolic sectors (corresponding to one
of the conditions i1—i5), and that the origin of the local chart Us is either not a singular point or it
is formed by two degenerated hyperbolic sectors (corresponding to one of the conditions j;—j,). Let

gz{(a,b,c,d)ER‘l :iluigui3Ui4Ui5},
be the set where one of the conditions i;—i5 is satisfied and
j={(a,b,c,d) €R* : j1UjaUjzUja},
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be the set where one of the conditions j;—j4 is satisfied. Then the set ¢ N j can be written as
{(a,b,e,d) € R* : ijy Uija Uijs Uijy Uijs Uijs},

where the sets ij; for ¢ = 1,...,6 are defined in Appendix A.

In short, system (7) has a global center if (a,b,c,d) belong to one of the sets ¢; Nij; for i =
1,...,85,and j =1,...,6. The sets ¢; N ij; that are not empty yield the sets di—d1o7 in Appendix
A. This completes the proof of Theorem 1.

3 Proof of Theorem 2

Consider system (5) and write it as

/

o =y(l+z+a® +by?), ¢ =-2(@® -y, (29)
for some a,b,c € R.

3.1 Finite singular points of equation (29)

From the second equation of (29) we have that either z = 0 or y? = 2%/c whenever ¢ > 0. If z = 0
then from the first equation of (29) we get y(1 + by?) = 0 which has solutions different from the
origin when b < 0.

If ¢ < 0 the origin is the unique finite singular point when b > 0 providing condition C; in
Appendix B.

Assume now that ¢ > 0, introducing y? = 2% /c into the second factor of the first equation in (29)
we get an equation equivalent to

(ac+b)x? +cx +c =0,

whose solutions

_ —cE/e(—4ac—4b+c)
2(ac+b) ’
cannot exist. Thus when ¢ > 0 the origin is the unique finite singular point if & > 0 and a >
(c — 4b)/(4c), providing condition Cy in Appendix B.

3.2 Infinite singular points in the local chart U; of system (29)
In the local chart U; system (29) becomes

v =—au® —but +cu® —uPo® —vPv—1, v =—wv(a+bu®+0>+v). (30)

The infinite singular points satisfy v = 0 and
—bu + (c —a)u®> =1 =0. (31)

The Jacobian matrix of (30) evaluated at v = 0 becomes

J— —2u (2bu2 +a— c) —1;2 .
0 —u(bu® + a)

Since the solutions of (31) are always different from zero, the infinite singular points on the local
chart U; whenever exist are never linearly zero, so they cannot exist.
We distinguish three cases: b=0and ¢ —a=0; b=0 and ¢ —a # 0; and b # 0.
If b =0 and ¢ — a = 0, equation (31) has no real solutions. This gives the set I; in Appendix B.
If b= 0 and ¢ — a # 0, the solutions of (31) are




Thus (31) has no real solutions when ¢ — a < 0, yielding the set I in Appendix B.
Finally, when b # 0 the solutions of (31) are

where

b b b
The solutions 4 do not exist either when (a — ¢)? — 4b < 0, or when (a — ¢)? —4b > 0 and E* and
E~ are both negative, this provide the sets I3 and I4, respectively, in Appendix B.

3.3 Infinite singular points in the local chart U, of system (29)
In the local chart Us system (29) becomes

v =au’+b—cuP+ut +uv+0?, v =0 —cu). (32)

If b # 0 the origin is not a singular point. This gives condition J; in Appendix B.

If b = 0 then the origin is a linearly zero singular point and as in the previous section we study
this point by means of blow ups. The characteristic polynomial of (32) with b = 0 at the origin is
F = —v (au? + uv + v?). Since v = 0 is a simple characteristic direction, we apply the u-directional
blow up (u,v) = (u,uw) and after dividing by the common factor u we get

v =u(a—c+u*+w+w),

w’:fw(aererw).

(33)
The singular points of (33) with u =0 are

(0,0) and (o,wi):(o, (—1:|:\/1—4a)).

N | =

The points (0, w*) only exists when a < 1/4.

The Jacobian matrix at the origin is

0 _Oa) and the Jacobian matrices at the points (0, w™)

—c 0
are (0 %(4a—1:|:\/1—4a))'

Now we analyze the cases where the origin (0,0) and (0,w¥) are linearly zero.

We start with the origin. The origin is linearly zero when a = ¢ = 0. The characteristic polynomial
of (33) at the origin when a = ¢ = 0 is F = —2uw?. Since u = 0 is a simple characteristic direction
of (33) at the origin, we apply the u—directional blow up (u,v) = (u,uw;) and after dividing by the
common factor u we get

v =u(uwwi +u+uw),

34
wi = —w; (2uwi +u+2w). (34)

The unique singular point of (34) with u = 0 is the origin which is again linearly zero. The character-
istic polynomial at the origin of (24) is F = —uw; (2u + 3wy ). Since w = 0 is a simple characteristic
direction of (24) at the origin, we apply the u—directional blow up (u,v) — (u,uws) and after
dividing by the common factor u we get

v =u(vwl +ws +1),

35
wh = —wsy (3u’w) + 3wy +2) . (35)
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The singular points of (35) with « = 0 are the origin and the point (0,—2/3). The origin is a saddle
and the point (0, —2/3) is an unstable node. Going back to the chain of blow ups the point (0,2/3)
would provide parabolic sectors. Therefore this case is not possible.

The singular points (0, w*) are both linearly zero when ¢ = 0 and a = 1/4. Under these assump-
tions w* = —1/2. We do the change of variables (U, W) = (u,w + 1/2) to move the singular point
(0,—1/2) to the origin and we get system

1
v = u(u® + w?), w = §w2(1 — 2w). (36)
Notice that we have renamed the new variables U and W as u and w. The characteristic polynomial
of (36) at the origin is F = %uwz. Since u = 0 is a simple characteristic direction we apply the
u—directional blow up (u,v) — (u,uw;) and after eliminating the common factor u we get

v =u? (wi+1),
37
w) = —%wl (duwf + 2u —wy), 37)

The origin is the unique singular point of (37) which is again linearly zero. The characteristic
polynomial of (27) at the origin is 7 = —2uw;(4u — w1), then u = 0 is a simple characteristic
direction so we apply the u—directional blow up (u,v) — (u,uwsy) and after eliminating the common
factor u we get

v =u(vwi +1),
38
wh = —%wg (6u*w; — wy +4) , (38)

The singular points of (38) on u = 0 are the origin which is always a saddle, and the point (0,4)
which is an unstable node. Going back to the chain of blow ups the points w* would provide more
that two hyperbolic sectors and parabolic sectors. Therefore they cannot exist.

Hence, the origin is a singular point in the local chart U; formed by two hyperbolic sectors if the
points w® do no exist and the point (0,0) is a saddle. The points w® do not exist when a > 1/4.
Assuming that a > 1/4, the origin is a hyperbolic saddle when —a(a — ¢) < 0 and in view of [5,
Theorem 2.19] it is a semi-hyperbolic saddle when a = ¢. In short we get conditions Jy and J3 in
Appendix B.

3.4 Proof of Theorem 2

In order to have a global center we need the origin to be the unique finite singular point (correspond-
ing to one of the conditions C1—C5), that the local chart U; has either no infinite singular points or
all of them are formed by two degenerated hyperbolic sectors (corresponding to one of the condi-
tions I;-1I4), and that the origin of the local chart Us is either not a singular point or it is formed
by two degenerated hyperbolic sectors (corresponding to one of the conditions J;—J3). The set

{(a,b,c) €eR® : [ULUI3UI}Nn{(a,bc,d) eR* : JyUJyUJ3}

can be written as
{(a,b,c) €R® : IJy, UTJoUIJ3UIJ,UILJ;5},
with the sets IJ; for i =1,...,5 being defined in Appendix B.
In short, system (29) has a global center if (a, b, ¢) belong to one of the sets C; N I.J; for i =1,2,
and j = 1,...,5. The sets C; N IJ; that are not empty yield the sets e;—eg in Appendix B. This
completes the proof of Theorem 2.
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Appendix A Conditions in Theorem 1

Let

1
K* = o (—2a3 + 3a®d + 9ab + 3ad® — 18bd — 2d° + 2\/(a2 —ad — 3b+ d2)3> )

The conditions in order that the origin is the unique finite singular point are the following ones:

1 = {c=0,b=0,a =0},

co = {c=0,b=0,a#0,a > d},

c3 = {c=0,b#0,a>—4b < 0},

s ={c=0,0<b<a*/4,d< D7},

¢5s = {c=0,b<0,d< D7},

6 = {c#0,a=—db=d* c=—d*},

cr ={c>0,a=c/d® b= —c/d,c# —d> d#0},

cs = {c#0,c=—bd,b# —ad,b> (a —d)*/4},

co = {c#0,c=—bd,a>d,0<b< (a—d)?*/4,d> 0},

cio = {c#0,c=—bd,a > —d,—ad < b < (a —d)?*/4,d < 0},

c11 = {c#0,c=-bd,0<a< —d,—ad <b < (a —d)*/4,d < 0},
c1a = {c#0,c=—bd,d<a<0,0<b< (a—d)?*/4,d <0},

c13 = {c#£0,c=—-bd,a>0,0<b< —ad,d <0}

c1g = {¢>0,¢+bd >0,A <0},

c15 = {¢>0,c+bd < 0,A <0},

c16 = {a>0,0<b<a?/4,0<c< K" |4—0,d = 0},

ci7 = {a>0,a2/4<b<a2/3,K_|d:0 <c< K'|j=0,d =0},
cig = {a>—-d,0<b< —ad,~bd <c< K", d<0},

ci9 = {a>—d,dla—d) <b<0,0<c< K", d<0},

coo = {a>—d,(a—d)?*/4<b< (a®> —ad+d*)/3, K~ <c< K", d<0},
co1 = {a>—d,—ad < b < (a—d)?*/4,—bd < c< KT ,d <0},
con = {a>2d,d(a—d) <b<a?/4,0 <c< KT ,d> 0},

co3 = {a>2d,a*/4 <b< (a®* —ad+d*)/3, K~ <c< K*,d >0},
cos = {d<a<—d,0<b< (a—d)?/4,—bd <c< K" d<0},
cs = {d<a<—ddla—d) <b<0,0<c< K", d<0},

cos = {a=—4d,0 < b<4d* 0<c< —bd,d <0},

cor = {a = —4d,4d* < b < 25d* /4, K |a=_4a < ¢ < —bd,d < 0},

cos = {a=—d,0<b<d?/4,0 < c< —bd,d < 0},

e = {a=—d,d*/4<b< d® K |4e_q<c< —bd,d<0},

c30 = {a=d/2,0 <b<d*/16,0 < c < —bd,d < 0},

cs1 = f{a=d/2,d°/16 <b < d*/4, K™ |ocaje < ¢ < K¥|4—q/2,d < 0},
c30 ={a=d,0<b<d*/4,0<c< K" |4=g,d < 0},

33 = {a=d,d*/4 <b< d?/3, K |4eqg < ¢ < K*|4q,d < 0},

c3q = {a>—4d,0 <b<a?/4,0 < ¢ < —bd,d < 0},

css = {a> —4d,a®/4 <b< (a—d)*/4, K~ < c< —bd,d < 0},

c36 = {0<a< —d,0<b<a’/4,0<c< —bd,d <0},

csr ={0<a<—d,a*/A<b< —ad, K~ <c< —bd,d <0},

c3s ={0<a<—d (a—d)?/A<b< (a* —ad+d*)/3, K~ <c< K" ,d<0},
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cz0 = {0<a< —d,—ad <b< (a—d)?/4, K~ <c< —bd,d < 0},

ca0 = {—d<a<—4d,0 <b<a?/4,0 < c< —bd,d <0},

ci1 ={d<a<d/2,0<b< (a—d)?/4,0<c< —bd,d <0},

caz = {d/2<a<0,0<b<a’/4,0<c<—bd,d<0},

a3 ={d<a<d/2,(a—d)?/A<b<a’/4,0<c< Kt d<0},

cu = {2d<a<dda—d) <b<a?/4,0<c< KT,d <0},

cys = {—d<a<—-4d,a*/4 <b< (a—d)*/4, K~ < c < —bd,d < 0},
e = {d<a<d/2,a®/4<b< (a*> —ad+d?*)/3, K~ <c< K',d <0},
caor = {2d<a<da®/4<b< (a*>—ad+d*)/3, K~ <c< K" ,d<0},
cs = {d/2<a<0,a*/4<b<(a—d)?/4, K~ <c< —bd,d <0},

ci9 = {d/2<a<0,(a—d)?/A<b< (a®>—ad+d?)/3, K~ <c< K",d <0},
cso = {a > —d,b=(a® —ad+ d*)/3,c = (a — 2d)*/27,d < 0},

cs1 = {a>2d,b=(a®> —ad +d*)/3,c = (a — 2d)*/27,d > 0},

cso = {2d < a < —d,b=(a® —ad +d?)/3,c = (a — 2d)%/27,d < 0},
cs3 = {a>0,0%/4 <b<a?®/3,¢c= K |4—0,d = 0},

css = {a>0,0<b<a?*/4,c=K"|4—0,d =0},

css = {a>0,a2/4 <b<da®/3,c=K"|4=9,d =0},

cs6 = {a>—d,(a—d)*/A<b< (a* —ad+d*)/3,c= K ,d <0},
cs7 = {a>2d,a*/4 < b< (a® —ad+d?)/3,c= K~ ,d > 0},

css = {a>—d,d(a—d) <b< —ad,c=K",d <0},

cso = {a>—d,(a—d)?/A<b< (a* —ad+d*)/3,c= K", d <0},
cso = {a> —d,—ad < b < (a—d)?/4,c=K",d<0},

ce1 = {a>2d,a*/4 <b< (a®> —ad+d*)/3,c=K",d> 0},

cg2 = {a>2d,dla—d) <b<a®/4,c=KT,d> 0},

s = {d<a<—ddla—d) <b<(a—d)?/dc=K",d<0},

ces = {a = —4d,4d* < b < 25d*/4,¢c = K™ |qe_4q,d < 0},

ces = {a=—d,d*/A<b< d’ c=K |oe_qg,d <0},

ces = {a=d/2,d*/16 <b< d*/4,c = K |,—q/2,d < 0},

cer = {a=d/2,d*/16 <b < d?/4,c = K" |,_4/2,d < 0},

cos = {a=d,d*/4 <b<d®[3,c=K |,g,d < 0},

oo = {a=d,d*/4 <b<d?/3,c=K*|,_q,d <0},

cro = {a=d,0<b<d*/4,c=K"|,—q,d < 0},

cr1 = {a>—4d,a®/4 < b < (a—d)*/4,c= K~ ,d <0},

e ={0<a< —d,a*/4 <b< —ad,c= K~ ,d <0},

cr3 = {0<a<—d,(a—d)?/4<b< (a® —ad+d?)/3,c=K~,d <0},
ey ={0<a< —d,—ad <b<(a—d)?*/4,c=K ,d <0},

ers = {—d<a<—-4d,a*/4<b< (a—d)*/4,c=K ,d <0},

cre = {d<a<d/2,d®/4<b< (a* —ad+ d?*)/3,c= K ,d <0},

crr = {2d<a<d,a®/4 <b< (a* —ad+d*)/3,c= K ,d <0},

crs = {d/2<a<0,a®/4<b< (a—d)?/4,c=K,d <0},

cro = {d/2<a<0,(a—d)?/d<b< (a®*—ad+d*)/3,c= K ,d <0},
cso = {0<a<—d(a—d)?/4<b< (a®—ad+d?*/3,c=K",d <0}
cg1 = {d<a<d/2,d®/4<b<(a®—ad+d*)/3,c= K" d<0}

cgo = {d<a<d/2,(a—d)?/4<b<a?/4,c=K", d <0},
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cs3 = {2d < a<d,a®/4 <b< (a* —ad+d*)/3,c=K",d <0},
cgs = {2d < a < d,d(a—d) <b<a*/4,c=K" d<0},
css = {d/2<a<0,(a—d)?/A<b< (a* —ad+d*)/3,c= K", d<0}.

The conditions in order that the local chart U; has either no infinite singular points or all the
infinite singular points in the local chart U; are formed by two degenerated hyperbolic sectors are
the following;:

i1 = {c=0,b=d},

ia = {c=0,b> d},

ig = {c# 0,b% — 4c — 2bd + d* < 0},

iv = {c#0,b>d,0<c< (b—d)?/4},

is = {c£0,a=1b=—d,c=d* d>1/8}.

The conditions in order that the origin of the local chart U, is either not a singular point or it
is formed by two degenerated hyperbolic sectors are:

J1 = {07&0}7

g2 = {c=0,a® —4b < 0,b > d},

gz = {c¢=0,a®> —4b < 0,b =d,d > 0},
ja ={c=0,a=b=0,d < 0}.

The sets ij; for i =1,...,6 are:

ij1 = {b>a?/4,b=d,c =0},

ijo = {a=0,b=0,c=0,d <0},

ijzs = {b>a?/4,c=0,d < b},

ijs = {a=1,b=—d,c=d* d > 1/8},
ijs = {b>d,0<c<(b—d)?*/4},

ije = {c> (b—d)?/4}.

The sets d; in Theorem 1 are:

dy = {(a,b,c,d) € R* : c3Niji} > (0,1,0,1),

dy = {(a,b,c,d) € R* : ¢; Nija} 3 (0,0,0,—1),

ds = {(a,b,c,d) € R* : c3Nijz} 3(0,1,0,1/2),

dy = {(a,b,c,d) €R* : crNijg} > (1,-1,1,1),

ds = {(a,b,c,d) €R* : cgNijs} > (2,4,8,-2),

de = {(a,b,c,d) € R* : cyNijs} > (1/2,1/8,1/32,-1/4),
dr = {(a,b,c,d) € R* : cs Nijs} 2 (0,3/2,3,-2),

ds = {(a,b,c,d) € R* : ci9Nijs} > (2,17/8,17/8, 1),

dy = {(a,b,c,d) € R* : ¢11Nijs} 3 (1/2,3,15,-5),

dio = {(a,b,c,d) € R* : cioNijs} 3 (—1,5/2,25/2,-5),
diy = {(a,b,c,d) €R* : ci3Nigjs} 3 (1,1/2,1/2,-1),

diz = {(a,b,c,d) € R* : cy4Nijs} 3 (—3,17/8,161/512,1),
diz = {(a,b,c,d) € R* : c15Nijs} 3 (—2333/8,137,280725/8, —269)
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a,b,c,d
a,b,c,d
a,b,c,d

eR* : cipNijs} 2 (1/2,1/32,1/8192,0),

eR* @ ci7Nijs} 3 (1/2,133/2048,27/32768,0),

eR* : cigNijs} 2 (3/2,1/4,5/16,—1),

eR* : cigNijs}y > (7/4,-1/2,1/32, 1),

€R* 1 cooNijs}y > (7/4,245/128,985/512, 1),

€R* : ey Nijs} 2 (3/2,49/32,6273/4096, 1),

€R? : cooNijs} > (13/4,39/16,1/256,1),

€R* : co3Mijs}y > (13/4,173/64,45/1024,1) ,

€R? : coy Nijs}y > (—27/32,3/1024,9/2048, 1),

€R* : co5Nijs}y 2 (—1/2,-1/4,3/512, 1),

ER* i cogNijs} 3 (4,1/2,1/4,-1),

€R* : corNijs}y 2 (4,37/8,3,—1),

€R* : g Nijs} 2 (5,3,29/2,—5),

€R* @ co9 Nijs} 2 (1,11/32,11/64, 1),

€R* : czoNijsy > (—1/2,1/32,1/64, 1),

eR* : ¢z Nijs} > (—1/2,13/128,5/128, —1),

ERY : c3pNijs} > (—4,2,1/8,—4),

€ R* : c33Nijs} > (—4,37/8,23/16, —4),

:c3aNijs} > (5,1/2,1/4,-1),

eR? : c35Nijs} > (8,18,14, 1),

eR* : cz6Nijs} 2 (5/2,1,5/2,-3),

eR* : czrNijs}y > (1/8,1/4,511/512, —4),

€R* : ez Nijs} 2 (5/32,39/8,73/4,—4),

€R? : cz9Nijs}t > (1/8,9/4,569/64, —4),

eR* i cyNijs} > (5/4,1/4,1/8,-1),

€RY : ¢y Nijs} 3 (—12,7/2,59, —17),

€ R* : cypNijs} 3 (—9,21/2,220,-21),

€R* : cy3Nijs} > (—16, 53,648, —29),

ER* : cyqNijs} > (—4,7/2,1/64,-3)

ER* : cy5Nijs} 2 (3/2,25/32,19/32, 1),

€RY : cyp Nijs}y > (—3/4,13/64,45/1024, 1),

€RY : cyrNijs} > (—4,17/4,45/128, —13/4),

€R* : cygNijs} > (—1/4,5/64,17/256, 1),

€R i caoNijs} > (—1/4,13/64,163/1024, —1),

€R* 1 c5oNijs} 3 (2,7/3,64/27, 1),

eR* ¢ c5 Nijs} 2 (3,7/3,1/27,1),

€R* : csaNijs} 3 (—2,4/3,8/27,-2),

€R* : cs3Nijs} > (1/2,133/2048, (2768 — 113\/%)/1769472,0),
(

)

(=
(=
(=
(—4
(
(=
(=
(=
(=
(

e e e o o Nrn ow Now on o on o en on Non Bon on on en o o o o on e on e e o en o e on o on T Non e
=

D DD DD DD DD DD oD DD oD DD DD oD DD oI
'S

(a,b,c,d) € R* : 54 Nijs} > (35/32,3/32, (—27755 4+ 937v/937) /442368,0) :
(a,b,c,d) € R* = c55 Nijs} > (81/64,57/128,49/1024,0),
(a,b,c,d) € R* : cs6Nijs} 3 (7 ,245/128, (1970 — \/i)/1024,—1),

(a,b,c,d) € R* : cs7 Nijs} 5 (4,133/32, (616 — 17/34) /3456, 1)
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dss = {(a,b,c,d) € R* : css Nijs} > (7/4,25/16, (95+4\/§)/64,71>,

ds7 = {(a,b,c,d) € R* : csoNijis} > (7/4,245/128, (1970 + \@)/1024,_1) :
dss = {(a,b,c,d) € R* : cgoNijs} > 7/4,29/16,(1035+4\/6’)/576,—1),
dso = {(a,b,c,d) € R* : ce1 Nijs} > (4,133/32, (616 + 17\/371)/3456,1),
deo = {(a,b,c,d) € R* : cgo Nijs} 5 (4,7/2, (14 + 5V10) /54, 1),
der = {(a,b,c,d) € R* : cg3 Nijs} > 73/4,71/8,(780+19\/@)/864,71),
des = {(a,b,c,d) € R* : cgy Nijs} D 4,5,(36—4\/6)/9,—1),
des = {(a,b,c,d) € R* : ce5 Nijs) 5 (1/4,5/128, (10 — \/5)/1024,—1/4),
des = {(a,b,c,d) € RY : cgsNijs}t > (—16,160,2560 — 256v/2, —32),
des = {(a,b,c,d) € R* : cerNijs} > (—16,160,2560 + 256v/2, —32),
des = {(a,b,c,d) € RY : ces Nijs} > (—1,37/128, (616 — 17\/371)/27648,4),
der = {(a.b,c,d) € RY : cgo Nijs} 5 (—1,37/128, (616 + 17\/@/27648,—1),
des = {(a,b,c,d) € R* : cyoNijs} > —1,1/8,(—14+5\EO)/432,—1),
deo = {(a,b,c,d) € R* : ey Nijs} > (8,18, (430—38\/@/27,—1),
dro = {(a.b,c,d) € RY : e Nijs) 5 (1/8,1/8, (1881 —83@)/2304,—2),

dn = {(a,b,c,d) € R* : cr3Nijs} >

N N N S N S N N NS N NS NS NS, NS, NS, NS, N, N

5/32,39/8, (2692737 — 691v/2073) /147456, 74) :
dry = {(a,b,c,d) € R* : craNijs} > (1/8,9/4,1125/128, —4)

drs = {(a,b,c,d) € RY : cr5Nijs} 3 (7/4,17/16, (495 — 28\/@)/576,—1>7

dys = {(a,b,c,d) € R* : crgNijs} > (—16,118,1080 — 108v/2, —26),
dvs = {(a,b,c,d) € R* : ez nijs) > (—4,17/4, (305 — 13@)/864,—13/4),
drs = {(a,b,c,d) € R* : crsNijs} > (—1/4,5/64, (595 — 37@)/6912,—1),
dyr = {(a,b,c,d) € RY : croNijs} > (—1/4,13/64, (1099 — 13@)/6912,71),
drs = {(a,b,c,d) € R* : egonijs} > (7/32,51/128, (171181 +73\/ﬁ)/442368,—1)7
dro = {(a,b,c,d) € R* : sy Nijs} > (—16,118,1080 + 108v/2, —26),
dso = {(a,b,c,d) € R* : cgaNijs} > —3/4,5/64,(—55+37\/ﬁ)/6912,—1),

dsi = {(a,b,c,d) € R* : cg3Nijs} 5 (—4,17/4, (305 + 13\/@/864,—13/4),

N T N T NS NS NS NS NS NS, NN, N

dss = {(a,b,c,d) € RY : cga Nijs} 3 (—4,7/2, (—14 + 5V/10) /54, —3),

dss = {(a,b,c;d) € RY : cgs Nijs) 3 (—1/4,13/64, (1099 + 13\/@/6912,—1),
dss = {(a,b,c,d) € R* : cy4Nije} 3 (=5, —70,1280,1),

dss = {(a,b,c,d) € RY : c16Nijs} 3 (1/2,1/32,13/32768,0)

dss = {(a,b,¢,d) € R* : c17Nijs} 3 (1/2,133/2048,15/8192,0),
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d87 = {(aa ba ) d) € R4 tcigN Z]G} > (3/2a 1/47 1/2? _1) )

dss = {(a,b,c,d) € R* : ci9Nije} > (7/4,—-21/16,11/128, 1),

dso = {(a,b,c,d) € RY : coo Nijs} > (1,53831/65536,87485/131072, —13/16),

doo = {(a,b,c,d) € RY : ca1 Nijo} 3 (1,209/256, 347783 /524288, —13/16) ,

dor = {(a,b,c,d) € RY : con Nijs} 3 (5/16,19,/2048, 1/65536, 3/256),

dos = {(a,b,c,d) € RY : coz Nijs} > (5/16,805/32768, 1/4096, 3/256)

doz = {(a,b,c,d) € R : ¢y Nijg} > (29/64,7/512,1055/4096, —1),

dos = {(a,b,c,d) € RY : co5 Nijo} 3 (7/32,—67/64,1/512, —1),

d95 = {(aa ba ) d) € R4 t C50 M 2]6} 2 (1/2a 7/647 1/64a _1/8) )

dos = {(a,b,c,d) € RY : c51 Nijs} > (1/2,19/256,1/512,1/16) ,

dor = {(a,b,c.d) € R : 53 Nijo} 3 (1/2,39/512, (760 - 11v/22)/221184,0) ,

dos = {(a,b,¢,d) € R? : csa Nije} > (1/2,1/32,(—14+5\@)/3456,0>,

dog = {(a,b,c,d) € R? : c55Nije} > (1/27 133/2048, (2768 + 113\/226)/176947270> :

dioo = {(a,b,c,d) € R* : c56 Nije} > (1,1685/2048,(43820— ﬂ)/65536,—13/16),

dior = {(a,b,c,d) € R* : c57Nijs} > (1,37/128,121/8192,3/32),

dioz = {(a,b,c,d) € RY : csg Nije} o (8,0,(—1280+896\f7)/27, —4),

dios = {(a,b,c,d) € RY : c59 Nijo} > (5/32,589/65536, (148715 + 217/217) /536870912,—25/1024) ,
dios = {(a,b,¢,d) € RY : cgo Nije} > (1/8,75/16384, (7652195 + 15577/15577)/115964116992, —27/2048) ,
dios = {(a,b,c,d) € RY : cg1 Nije} o (5/16,805/327687 (53983 + 1339v/1339) /226492416,3/256) :
dios = {(a,b,c,d) € R* : cgo Nije} > (5/16,1/64, (—141155 + 3097\/3097)/226492416,3/256) ,

dior = {(a,b,c,d) € RY : cg3 Nije} > (—9/2,0,(—575+ 193\/193)/108,—8).

Appendix B Conditions in Theorem 2

The conditions in order that the origin is the unique finite singular point are:

Cl = {b2070§0},

—4b
C’Q:{b207c>0,a>c4c 3.

The conditions in order that the local chart U; has either no infinite singular points or all the
infinite singular points in the local chart U; are formed by two degenerated hyperbolic sectors are
the following;:

IL ={b=0,a=c},

I, = {b=0,a>c},

Iy = {b£0,b> (a— /4,

I = {b#0,a>c,0<b< (a—c)*/4}.

The conditions in order that the origin of the local chart U, is either not a singular point or it
is formed by two degenerated hyperbolic sectors are:

Ji = {b#0},
Jy ={b=0,a>1/4,a > c},
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J3 = {b=0,a=c>1/4}.
The sets IJ; for i =1,...5 are:

IJy = {b> (a—c)?/4},

IJ; = {b>0,a>c},

IJ; = {b=0,a=c>1/4},
IJy = {b=0,a>1/4,c<1/4},
IJs = {b=0,a>c>1/4}.

The conditions in Theorem 2 are:

e1 = {(a,b,c) €eR3 : C;NIJ}3(0,2,—1),
es = {(a,b,c) R : C;NIJy}>(0,1,-1),
es = {(a,b,c) eR® : CyNIJs} > (5/4,0,0),
es = {(a,b,c) €R® : ConIJ1}3(0,2,1),
es = {(a,b,c) eR® : Con L} 3(2,1,1),
e = {(a,b,c) eR® : CoNIJs} 3 (1,0,1),
er = {(a,b,c) eR® : CaN1J4} > (1,0,1/8),
es = {(a,b,c) ER® : ConNIJs}>(2,0,1).
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