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Abstract

Let P3(x, y) and Q3(x, y) be polynomials of degree three without constant or linear terms.
We characterize the global centers of all polynomial differential systems of the form ẋ = y +
P3(x, y), ẏ = Q3(x, y) that are reversible and invariant with respect to the x-axis.
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1 Introduction and statement of the main results

A planar polynomial differential system of degree three having a nilpotent center at the origin can
be written as

x′ = y + a20x
2 + a11xy + a02y

2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3,

y′ = b20x
2 + b11xy + b02y

2 + b30x
3 + b21x

2y + b12xy
2 + b03y

3.
(1)

We consider systems (1) that are invariant under the symmetry (x, y, t) 7→ (x,−y,−t). Imposing
that systems (1) are invariant under such symmetry we get that a20 = a30 = a02 = a12 = b11 =
b21 = b03 = 0 and they become

x′ = y(1 + a11x+ a21x
2 + a03y

2),

y′ = b20x
2 + b30x

3 + b02y
2 + b12xy

2.
(2)

1

This is a preprint of: “Global nilpotent reversible centers with cubic nonlinearities symmetric with
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Note that (0, 0) is a nilpotent singular point. To be isolated we need that the second equation in
(2) is not identically zero (which yields b220 + b230 + b202 + b212 > 0) and that both equations in (2) do
not have the common factor y (which gives b220 + b230 > 0). We can prove that if b220 + b230 > 0, then
the two equations in (2) cannot have a common factor of the form ax+ by with a ̸= 0 or of the form
ax2 + bxy + cy2 + dx+ ey with a2 + b2 + c2 > 0. In short, the singular point (0, 0) is isolated if and
only if b220 + b230 > 0.

Now we apply [5, Theorem 3.5] to ensure that the singular point is a linear nilpotent center.
Since system (3) is reversible, such a linear nilpotent center will be indeed a center. We compute the
functions F and G defined in [5, Theorem 3.5] and we get

F (x) = b20x
2 + b30x

3 and G(x) = 0.

So the origin is a nilpotent center if and only b20 = 0 and b30 < 0. Note that under these conditions
the origin is an isolated singular point.

Assume that b20 = 0 and b30 = −α2 with α ̸= 0. Then system (2) becomes

x′ = y(1 + a11x+ a21x
2 + a03y

2),

y′ = −α2x3 + b02y
2 + b12xy

2.
(3)

We characterize the planar polynomial differential systems (3) having a global center at the origin,
called from now on global nilpotent centers. We recall that a center is a singular point filled up with
periodic orbits and that it is global when the period annulus of that center is the plane R2. The
existence of global centers is a key point in a proof of the Jacobian conjecture (see, for instance, [13]).

Global centers are only possible in polynomials with odd degree (see, for instance, [6, 12]). The
classification of global centers of planar polynomial vector fields is a very difficult problem mainly due
to the fact that until now the complete characterization of centers of planar polynomial differential
systems of degree higher than or equal to three has not been done due to its difficulty (and it is even
worse for the characterization of global centers). Up to now the classification of global centers has
been done for some subclasses of cubic and quintic planar polynomial differential systems for which
the existence of centers come automatically from the existence of a linear center. In this scenario we
cite [8] where the authors characterized the global nilpotent centers of planar polynomial differential
systems of the form: linear + homogeneous cubic polynomials (for which the classification of centers
is known) and we also want to cite [3] where the authors provided the global phase portraits in
the Poincaré disk of all planar cubic Hamiltonian polynomial differential systems symmetric with
respect to the x-axis having a nilpotent center at the origin (the Hamiltonian structure forces that a
linear center is indeed a center). For other papers studying global centers in polynomial differential
systems of degree three and five see the references [9, 14, 15] and the recent ones [2, 4, 7, 10, 11].

System (3) when b02 = a11 = 0 has been studied in [8] and when b02 = −a11/2 and b12 = −a21
has been studied in [3]. From now on we study system (3) assuming that b02 and a11 are not
simultaneously zero, because it has already been studied. To extract from (3) the conditions studied
in [3] make the computations much more involved and so we prefer not to exclude them from our
system (3).

So we assume b202 + a211 > 0 and we consider the change of variables

X = Ax, Y = By, T = Ct. (4)

When b02 = 0 and a11 ̸= 0, by the change given in (4), system (3) with A = a11, B = a211/α,
C = α/a11 can be written as

X ′ = Y +XY + aX2Y + bY 3, Y ′ = −X3 + cXY 2, (5)

where a = a21/a
2
11, b = α2a03/a

4
11, c = b12/a

2
11.

When b02 ̸= 0, by the change given in (4), system (3) with A = b02, B = b202/α, C = α/b02 can
be written as

X ′ = Y + aXY + bX2Y + cY 3, Y ′ = −X3 + Y 2 + dXY 2, (6)
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where a = a11/b02, b = a21/b
2
02, c = α2a03/b

4
02 and d = b12/b

2
02.

The main theorems of the paper are the following ones.
Theorem 1. System (6) has a global nilpotent center at the origin if and only {(a, b, c, d)} ∈ di for
some i = 1, . . . , 107 (see Appendix A).
Theorem 2. System (5) has a global nilpotent center at the origin if and only {(a, b, c)} ∈ ei for
some i = 1, . . . , 8 (see Appendix B).

The proof of Theorem 1 is given in Section 3 and the proof of Theorem 2 is given in Section 2.
We have included two appendices with the definition of the sets di and ej for i = 1, . . . , 107 and
j = 1, . . . , 8 as well as some other sets of conditions that will appear in their proofs. In the appendices
we also provide values of the parameters belonging to each one of the sets di and ej , showing that
the sets d1–d107 and e1–e8 are not empty. From their definitions it is also easy to see that all these
sets are disjoint.

2 Proof of Theorem 1

Consider system (6) which, after abuse of notation, can be written as

x′ = y(1 + a x+ b x2 + c y2), y′ = −x3 + y2 + d x y2, (7)

for some a, b, c, d ∈ R.

2.1 Finite singular points of equation (3)

From the first equation of (7) we have that either y = 0 or

1 + ax+ bx2 + cy2 = 0. (8)

Clearly if y = 0 the unique finite singular point of system (7) is the origin. Now we analyze the
singular points coming from solutions of equation (8). We distinguish four cases: c = 0, b = 0 and
a = 0; c = 0, b = 0 and a ̸= 0; c = 0, b ̸= 0; and c ̸= 0.

When c = 0, b = 0 and a = 0 equation (8) is never satisfied, so the unique singular point of
system (7) is the origin. This provides condition c1 in Appendix A.

If c = 0, b = 0 and a ̸= 0, then from (8) we get x = −1/a. Substituting it into the second
equation of (7) we get

1

a3
+

a− d

a
y2 = 0.

If d = a, this last equation is never satisfied. If d ̸= a, system (7) has no solutions different from the
origin when

y2 = − 1

a2(a− d)
< 0,

and so a > d. In short, if c = 0, b = 0, a ̸= 0 and a ≥ d, the unique singular point of (7) is the
origin. This provides condition c2 in Appendix A.

When c = 0, b ̸= 0, from (8) we get

x = x± =
−a±

√
a2 − 4b

2b
.

If a2 − 4b < 0 the solutions x± are not defined and consequently the unique singular point of (7) is
the origin. This gives condition c3 in Appendix A. Assume now that a2 − 4b ≥ 0. Notice that x± is
never zero. By substituting x = x± into the second equation of (7) we get (1 + dx±)y2 − (x±)3 = 0.
Let

D± =
2b

a∓
√
a2 − 4b

and k± =
(x±)3

1 + d x± ,

where d = D± is the solution of 1+dx± = 0. The second equation of (7) has no real solutions either
when d = D+ and k− < 0 which is not possible; when d = D− and k+ < 0 which is satisfied in
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the set {b < 0, d = D−} ∪ {0 < b < a2/4, d = D−}; when d = D+ = D− which is satisfied in the
set {a ̸= 0, b = a2/4, d = a/2}; and when d ̸= D±, k+ < 0 and k− < 0 which is satisfied in the set
{b < 0, d < D−} ∪ {0 < b ≤ a2/4, d < D−}. In short, (7) has no real solutions different from the
origin in the set

{0 < b ≤ a2/4, d ≤ D−} ∪ {b < 0, d ≤ D−}.
This set provides, respectively, conditions c4 and c5 in Appendix A.

Now we consider the case c ̸= 0. Isolating y2 from equation (8) we get

y2 = −1 + ax+ bx2

c
. (9)

By substituting (9) into the second equation of (7) we obtain the equation

(c+ bd)x3 + (b+ ad)x2 + (a+ d)x+ 1 = 0. (10)

Thus when c ̸= 0 the origin is the unique finite singular point if either (10) has no real solutions or
the expression of y2 in (9) evaluated at the real solutions of (10) is negative. We distinguish four
cases: c + bd = 0, b + ad = 0 and a + d = 0; c + bd = 0, b + ad = 0 and a + d ̸= 0; c + bd = 0 and
b+ ad ̸= 0; and c+ bd ̸= 0.

If c+ bd = 0, b+ ad = 0 and a+ d = 0, then equation (10) is never satisfied. After simplification
we get condition c6 in Appendix A.

When c+ bd = 0, b+ ad = 0 and a+ d ̸= 0 the solution of (10) is

x = − 1

a+ d
.

Substituting this solution into (9) we get

y2 = −b+ ad+ d2

c(a+ d)2
,

and since b+ ad = 0 this last expression is negative when c > 0. Therefore the origin is the unique
singular point of (7). After simplification we get condition c7 in Appendix A.

Now we analyze the case c+bd = 0 and b+ad ̸= 0. Under these conditions equation (10) becomes

(b+ ad)x2 + (a+ d)x+ 1 = 0. (11)

Solving equation (11) we get

x = x̃± = −a+ d±
√

(a− d)2 − 4b

2(ad+ b)
.

If (a − d)2 − 4b < 0, or equivalently if b > (a − d)2/4, the solutions x̃± are not real. Therefore
the unique real solution of (7) is the origin. This provides condition c8 in Appendix A. When
(a− d)2 − 4b ≥ 0, or equivalently b ≤ (a− d)2/4, the solutions x̃± are real and they are never zero.
Since we are interested in solutions of (11) that do no provide real solutions of (7) we need that (9)
evaluated at x = x̃± and c = −bd be negative. We can see that the Gröbner basis of the polynomials
−(1 + ax+ bx2)/c and (b+ ad)x2 + (a+ d)x+ 1 is 1. So there are no solutions of system

−1 + ax+ bx2

c
= 0, (b+ ad)x2 + (a+ d)x+ 1 = 0,

and consequently (9) evaluated at x = x̃± and c = −bd is never zero. Then the sign of (9) evaluated
at x = x̃± and c = −bd can change only either on the boundaries of the definition domain of x̃± or
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when −bd changes it sign. We consider the following regions

B1 = {bd > 0, b+ ad > 0, b ≤ (a− d)2/4}, B2 = {bd > 0, b+ ad < 0, b ≤ (a− d)2/4},
B3 = {bd < 0, b+ ad > 0, b ≤ (a− d)2/4}, B4 = {bd < 0, b+ ad < 0, b ≤ (a− d)2/4},

whose boundaries are the sets b = 0, d = 0 b = −ad and b = (a− d)2/4. Analyzing the intersections
of these boundaries we can decompose each region Bi with i = 1, . . . , 4 as union of several disjoint
connected components. In particular the region B1 can be decomposed as union of the following
regions

B11 = {d > 0, a > d, 0 < b ≤ (a− d)2/4},
B12 = {d > 0, a < −d,−ad < b ≤ (a− d)2/4},
B13 = {d < 0, a < 0, b < 0,−ad < b},
B14 = {d > 0, 0 < a < d, 0 < b ≤ (a− d)2/4},
B15 = {d > 0,−d < a ≤ 0,−ad < b ≤ (a− d)2/4};

the region B2 can be decomposed as union of

B21 = {d < 0, a > 0, b < 0},
B22 = {d < 0, a ≤ 0, b < −ad},
B23 = {d > 0, a < 0, 0 < b < −ad};

the region B3 can be decomposed as union of

B31 = {d > 0, a > 0,−ad < b < 0},
B32 = {d < 0, a > −d,−ad < b ≤ (a− d)2/4},
B33 = {d < 0, a < d, 0 < b ≤ (a− d)2/4},
B34 = {d < 0, 0 < a < −d,−ad < b ≤ (a− d)2/4},
B35 = {d < 0, d < a ≤ 0, 0 < b ≤ (a− d)2/4};

and the region B4 can be decomposed as union of

B41 = {d > 0, a > 0, b < −ad},
B42 = {d > 0, b < 0, a ≤ 0},
B43 = {d < 0, a > 0, 0 < b < −ad}.

In order to decompose the regions Bi as union of disjoint connected components we have used the
REDUCE function of Mathematica. This will allow us to automate the process in such a way that it
can be applied to the remaining cases in this paper. In particular, in the case c ̸= 0 and c+ bd ̸= 0.

The sign of (9) evaluated at c = −bd and x = x± does not change within the same connected
component but it could change from one component to the other. We pick up a point in each
connected component and we compute the signs of (9) evaluated at c = −bd and the solutions
x = x± at this point. We see that (9) evaluated at c = −bd and x = x+ is negative in B11, B32, B34,
B35, B43; and (9) evaluated at c = −bd and x = x− is negative in B11, B13, B21, B22, B31, B32,
B34, B35, B41, B42 and B43. In order that the unique finite singular point of (7) be the origin we
need (9) evaluated at the solutions x = x+ and x = x− to be both negative. Thus the parameters
must belong to one of the sets B11, B32, B34, B35, or B43 and they provide, respectively, conditions
c9, c10, c11, c12 and c13 in Appendix A.

Finally we consider the case c ̸= 0 and c+bd ̸= 0. In this case (10) is a cubic equation of the form

αx3 + βx2 + γx+ 1 = 0, (12)
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where α = c+ bd, β = b+ ad and γ = a+ d. Thus if the discriminant ∆ = −27α2 +18αβγ− 4αγ3 −
4β3 + β2γ2 of (12) satisfies ∆ < 0 then (12) has one real root and two complex ones, if ∆ > 0 it has
three distinct real roots, and finally if ∆ = 0 it has either a unique real root with multiplicity three
when β2 = 3αγ or two different reals roots one of them with multiplicity 2 when β2 ̸= 3αγ.

By substituting α = c+ bd, β = b+ ad and γ = a+ d the discriminant ∆ becomes

∆ = a4d2 − 2a3bd− 4a3c− 2a3d3 + a2b2 − 2a2bd2 + 6a2cd+ a2d4

+ 8ab2d+ 18abc+ 8abd3 + 6acd2 − 4b3 − 8b2d2 − 36bcd− 4bd4 − 27c2 − 4cd3,

and the equation β2 = 3αγ becomes

−3c(a+ d)− bd(a+ 3d) + b2 + a2d2 = 0. (13)

We analyze the set where (10) has a unique real root with multiplicity three. The solutions of
(13) are 



c =

a2d2 − bd(a+ 3d) + b2

3(a+ d)
when a+ d ̸= 0,

b = d2 when a+ d = 0.

(14)

Substituting (14) into equation ∆ = 0 we get




− (ad+ b)2

(
a2 − ad− 3b+ d2

)2

3(a+ d)2
= 0 when a+ d ̸= 0,

c = −d3 when a+ d = 0.

Thus the system formed by the equations ∆ = 0 and (13) has the solutions

{
b = 1

3 (a
2 − ad+ d2), c = 1

27 (a− 2d)3 and b = −ad, c = ad2 when a+ d ̸= 0,

b = d2, c = −d3 when a+ d = 0.
(15)

However the second solution in (15) when a+ d ̸= 0 does not satisfy the condition c+ bd ̸= 0 and so
it is not possible. Moreover, the solution when a+d = 0 coincides with the first solution in (15) when
a+ d ̸= 0 with a = d. In short equation (10) has a unique real root with multiplicity three in the set

∆1 =
{
c ̸= 0, c+ bd ̸= 0, b =

1

3
(a2 − ad+ d2), c =

1

27
(a− 2d)3

}
.

On the other hand, solving equation ∆ = 0 we get the solutions c = K± (see Appendix A for the
expressions of K±). Then equation (10) has two different reals roots one of them with multiplicity
2 in the set ∆2 = ∆+

2 ∪∆−
2 with

∆±
2 =

{
c ̸= 0, c+ bd ̸= 0, c = K±, b ̸= 1

3
(a2 − ad+ d2)

}
.

Notice that K±|b=(a2−ad+d2)/3 = (a− 2d)3/27.
Since we want that the origin be the unique real solution of (7) we need (9) evaluated at all

the real roots of (10) to be negative. To find where this condition is satisfied we proceed as in the
previous case. First we see that (9) does not vanish on the solutions of (10). Indeed, the Gröbner
basis of the polynomials −(1+ ax+ bx2)/c and (c+ bd)x3 +(b+ ad)x2 +(a+ d)x+1 is 1. Therefore
(9) evaluated at the solutions of (10) can change its sign only when c = 0 or on the boundaries of
the definition domain of the solutions of (10). We consider the four regions

C1 = {c > 0, c+ bd > 0}, C2 = {c > 0, c+ bd < 0},
C3 = {c < 0, c+ bd > 0}, C4 = {c < 0, c+ bd < 0}.
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When ∆ < 0 equation (10) has a unique real solution. Regions C1, C2, C3 and C4 with the additional
constraint ∆ < 0 can be decomposed, respectively as union of 56, 51, 51 and 72 disjoint regions where
the sign of (9) does not change. We pickup a point in each one of these regions, we compute the
real solution of (10) at this point and finally we compute the sign of (9) evaluated at this solution.
Doing so we get that (9) is negative in all regions of C1 and C2 and positive in all regions of C3 and
C4. The regions C1 and C2 provide, respectively, conditions c14 and c15 in Appendix A.

Now we consider the case ∆ > 0 with corresponds to the case of the existence of three distinct
real roots. Regions C1, C2, C3 and C4 with the additional constraint ∆ > 0 can be decomposed,
respectively, as union of 39, 29, 29 and 45 disjoint regions where the signs of (9) evaluated at the
solutions do not change. In this case we need (9) to be negative at the three solutions. This is
only possible at some subsets of C1 and C2. More precisely at 10 subsets of C1, the sets ci with
i = 16, . . . , 25 and 24 subsets of C2, which provide the sets ci with i = 26, . . . , 49 in Appendix A.

Regions C1, C2, C3 and C4 with the additional constraint ∆1 which correspond to a triple real
root of (10) can be decomposed, respectively, as union of 2,1,1 and 2 disjoint regions where the signs
of (9) evaluated at the solution do not change. In this case (9) evaluated at the solution is negative
at the entire C1 and C2 which gives, respectively, the sets ci with i = 50, . . . , 52 in Appendix A.

Regions C1, C2, C3 and C4 with the additional constraint ∆2 which corresponds to a double real
root of (10) can be decomposed, respectively, as union of 30, 24, 24 and 34 disjoint regions where the
signs of (9) evaluated at the solutions do not change. In this case we need the sign of (9) evaluated at
the two solution to be negative. This happen at 11 subsets of C1, the subsets ci with i = 53, . . . , 63
in Appendix A, and 22 subsets of C2, the subsets ci with i = 64, . . . , 85 in Appendix A.

2.2 Infinite singular points in the local chart U1 of system (7)

In the local chart U1 system (7) becomes

u′ = −au2v − bu2 − cu4 + du2 − u2v2 + u2v − 1, v′ = −u(b+ cu2)v − auv2 − uv3. (16)

The inifinite singular points (that is the ones with v = 0) satisfy

−cu4 + u2(d− b)− 1 = 0. (17)

The Jacobian matrix of (16) evaluated at v = 0 becomes

J = u

(
−2(2cu2 + b− d) (1− a)u

0 −(cu2 + b)

)
.

In order the origin to be a global center we need that either there are no infinite singular points on
the local chart U1 or that the singular points, in case they exist, they are all formed by the union of
two hyperbolic sectors (and in particular, they are linearly zero). We distinguish three cases: c = 0
and d− b = 0; c = 0 and d− b ̸= 0; and c ̸= 0.

If c = 0 and d− b = 0, equation (17) has no real solutions. This gives the set i1 in Appendix A.
If c = 0 and d− b ̸= 0, the solutions of (17) are

u = u± = ± 1√
d− b

.

Thus if d− b < 0 then (17) has no real solutions yielding the set i2 in Appendix A. When d− b > 0
the two solutions u = u± exist, so the points (u±, 0) must be linearly zero. The Jacobian matrix
evaluated at the solutions u = u± is

(
±2

√
d− b (a− 1)/(b− d)

0 ∓b/
√
d− b

)
,

which is never identically zero. Therefore the points (u±, 0) are never linearly zero.
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Finally, when c ̸= 0 the solutions of (17) are

u = ũ±
1 =

√
E±
√
2

, u = ũ±
2 = −

√
E±
√
2

,

where

E± = ±
√
b2 − 2bd− 4c+ d2

c
− b

c
+

d

c
.

If either b2 − 4c − 2bd + d2 < 0, or b2 − 4c − 2bd + d2 ≥ 0 and E+ and E− are both negative,
then (17) has no real solutions yielding, respectively, the sets i3 and i4 in Appendix A.

Assume now that b2 − 4c− 2bd+ d2 ≥ 0 and E+ or E− are positive. Since the solutions of (16)
are never zero, a solution (u, 0) of (17) is linearly zero if it is a solution of the system of equations

f1 = −cu4 + u2(d− b)− 1 = 0, f2 = −2
(
2cu2 + b− d

)
= 0,

f3 = 1− a = 0, f4 = −
(
cu2 + b

)
= 0.

(18)

By computing the Gröbner basis of the polynomials f1, f2, f3, f4 with respect to u we get the set
of polynomials

{−1 + a,−c+ d2, b+ d,−d+ cu2,−1 + du2}.
Thus system (18) has solution only when a = 1, b = −d, c = d2 and d ̸= 0 and in this case the
solutions are u = ±1/

√
d, both with multiplicity two. They are real when d > 0.

Now we study the linearly zero singular points by doing blow ups (see for instance [1]). Assume
that a = 1, b = −d, c = d2 and d > 0. We start studying the singular point u = 1/

√
d. First we do

the change of variables (U, V ) = (u− 1/
√
d, v) to move the singular point to the origin and we get

u′ = −4d3/2u3 − d2u4 − 4du2 − 2uv2√
d

− v2

d
− u2v2,

v′ = −3d3/2u2v − d2u3v − 2duv − v3√
d
− v2√

d
− uv3 − uv2.

(19)

Notice that we have renamed the new variables U and V as u and v. The characteristic polynomial
of (19) at the origin is F = v(2d2u2−

√
duv+ v2)/d. Since v = 0 is a simple characteristic direction,

we apply the u-directional blow up (u, v) → (u, uw). Doing so and rescaling the time to eliminate
the common factor u, system (19) in the new variables and time becomes

u′ = −u

d
(4d5/2u+ d3u2 + 4d2 + du2w2 + 2

√
duw2 + w2),

w′ =
w

d
(d5/2u+ 2d2 +

√
duw2 − duw −

√
dw + w2).

(20)

The singular points of (20) with u = 0 are

(0, 0), (0, w̃±) =
(
0,

√
d

2
(1±

√
1− 8d)

)
.

The points (0, w̃±) are defined only when 0 < d ≤ 1/8. Moreover w̃+ > w̃− > 0 for all 0 < d < 1/8
and they coincide at the point w = w̃∗ = 1/(4

√
2) when d = 1/8. The point (0, 0) is a saddle with

Jacobian matrix

(
−4d 0
0 2d

)
(we recall that d > 0). The Jacobian matrix at the points (0, w̃±) is

(
α±
11 0

α±
21 α±

22

)
=

(
−(4d+ 1±

√
1− 8d)/2 0

−d2(1±
√
1− 8d)/2 (−8d+ 1±

√
1− 8d)/2

)
.

It is easy to see that if 0 < d < 1/8, then α+
11 < 0, α+

22 > 0, α−
11 < 0, and α−

22 < 0 so the point
(0, w̃+) is a saddle whereas the point (0, w̃−) is a stable node.

8



u

w

System (20)

u

w

System (20) with the
common factor u

u

v

System (19)

Fig. 1 Sequence of phase portraits near the origin of system (19) with 0 < d < 1/8.

If d = 1/8 then the Jacobian matrix at the singular point (0, w̃∗) becomes

(
−3/4 0
−1/128 0

)
so the

point is semi-hyperbolic. By doing the change of variables (U,W ) = (u − 96(w − 1/(4
√
2)), u) we

simultaneously move the point (0, w̃∗) to the origin and we transform the system into the normal
form for applying [5, Theorem 2.19]. The resulting system becomes

u′ =
1

9216
(−96

√
2U2 + 96

√
2UW − 2304

√
2W 2 + 8U3 − 80U2W + 328UW 2 − 688W 3

+ 2
√
2U3W − 10

√
2U2W 2 + 38

√
2UW 3 − 30

√
2W 4 − U2W 3 + 2UW 4 −W 5),

w′ =− W

9216
(6912− 192

√
2U + 2496

√
2W + 8U2 − 208UW + 632W 2 + 4

√
2U2W

− 32
√
2UW 2 + 28

√
2W 3 + U2W 2 − 2UW 3 +W 4).

(21)

Then applying [5, Theorem 2.19] we get that the singular point (0, w̃∗) is a saddle-node.
Going back trhought the u–directional blow up, undoing the rescaling of time, and taking into

account that

(u̇, v̇)|u=0 = (−v2/
√
d,−v2 − v3)/

√
d and (u̇, v̇)|v=0 = (−4du2 − 4d3/2u3 − d2u4, 0),

we get the sequence of phase portraits given in Figure 1 when 0 < d < 1/8, in Figure 2 when d = 1/8,
and in Figure 3 when d > 1/8. Notice that when d = 1/8 we have taken into account that in system
(21) the separatrices of the saddle are tangent to U = 0 and W = 0, so in the initial system (20) they
are tangent to u = 96(w−1/(4

√
2)) and u = 0, respectively. So the singular point (1/

√
d, 0) of (16) is

formed by the union of two hyperbolic and four parabolic sectors when 0 < d < 1/8; two hyperbolic
and two parabolic sectors when d = 1/8; and exactly two hyperbolic sectors when d > 1/8.

We proceed in the same way with the linearly zero singular point (u−, 0) = (−1/
√
d, 0) and we

also get that it is formed by the union of two hyperbolic sectors only when d > 1/8. These possible
cases are given in condition i5 in Appendix A.

Notice that when going back through the u–directional blow ups all separatrices transversal to
the straight line u = 0 persist and they divide different sectors. The parabolic sectors associated
to the nodal parts can go back either to parabolic or to elliptic sectors, and the elliptic sectors go
back to elliptic sectors. Taking this into account, in order that in the blow down process we could
get that the singular point is formed by two degenerated hyperbolic sectors we need that in the last
step of the chain of blow ups the origin be a saddle or a linearly zero singular point and the other
possible singular points whenever exist be linearly zero. If in the last step of the chain of blow ups
we have more than one non linearly zero singular point, then going back through the u–directional
blow ups we will obtain either more than two hyperbolic sectors or some parabolic/elliptic sectors.

9
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w
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common factor u

u

v

System (19)

Fig. 2 Sequence of phase portraits near the origin of system (19) with d = 1/8.

u

w

System (20)

u

w

System (20) with the
common factor u

u

v

System (19)

Fig. 3 Sequence of phase portraits near the origin of system (19) with d > 1/8.

2.3 Infinite singular points in the local chart U2 of system (7)

In the local chart U2 system (7) becomes

u′ = auv + bu2 + c− du2 + u4 − uv + v2, v′ = −v
(
du− u3 + v

)
. (22)

We are interested in the cases where either the origin is not a singular point or if it is a singular
point it is formed by the union of two hyperbolic sectors.

If c ̸= 0 the origin is not a singular point. This gives condition j1 in Appendix A.
If c = 0 then the origin is a linearly zero singular point and we study this point by means of

blow ups. The characteristic polynomial of (22) with c = 0 at the origin is F = −v(auv+ bu2 + v2).
Since v = 0 is a simple characteristic direction, we apply the u-directional blow up (u, v) → (u, uw)
and after dividing by the common factor u we get

u′ = u(aw + b− d+ u2 + w2 − w),

w′ = −w(aw + b+ w2).
(23)

The singular points of (23) with u = 0 are

(0, 0) and (0, w±) =
(
0,

1

2
(−a±

√
a2 − 4b)

)
.

The points (0, w±) only exists when a2 − 4b ≥ 0. Moreover w+ = w− = 0 when a = b = 0.
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The Jacobian matrix at the origin is

(
b− d 0
0 −b

)
and the Jacobian matrices at the points (0, w±)

are, respectively,

(
λ±
1 0
0 λ±

2

)
where λ±

1 = (a−2d∓
√
a2 − 4b)/2 and λ±

2 = (−a2+4b±a
√
a2 − 4b)/2.

Now we analyze the cases where the origin (0, 0) and (0, w±) are linearly zero.
We start with the origin. The origin is linearly zero when b = d = 0. The characteristic polynomial

of (23) at the origin when b = d = 0 is F = (1− 2a)uw2.
We start analyzing the case a = 1/2 where F ≡ 0. System (23) when a = 1/2 can be written as

u′ = −uw

2
+ h.o.t., v′ = −w2

2
+ h.o.t.,

so w = 0 is a singular direction (see [1]). Hence there exists exactly one semipath tending to the
origin in the direction given by the angle θ in forward or backward time for every θ ̸∈ {0, π}. So in
this case the origin of (23) must have parabolic sectors.

Assume now that a ̸= 1/2. Since u = 0 is a simple characteristic direction of (23) at the origin, we
apply the u–directional blow up (u, v) → (u, uw1) and after dividing by the common factor u we get

u′ = u(aw1 + uw2
1 + u− w1),

w′
1 = −w1(2aw1 + 2uw2

1 + u− w1).
(24)

The unique singular point of (24) with u = 0 is the origin which is again linearly zero. The char-
acteristic polynomial at the origin of (24) is F = −uw1(3aw1 + 2u − 2w1). Since u = 0 is a simple
characteristic direction of (24) at the origin, we apply the u–directional blow up (u, v) → (u, uw2)
and after dividing by the common factor u we get

u′ = u(aw2 + u2w2
2 − w2 + 1),

w′
2 = −w2(3aw2 + 3u2w2

2 − 2w2 + 2).
(25)

The singular points of (25) are the origin and the point (0, w∗
2) = (0,−2/(3a − 2)), the last one

defined only when a ̸= 2/3. If a = 2/3 the unique singular point is the origin. The origin is always a

saddle with Jacobian matrix

(
1 0
0 −2

)
. The Jacobian matrix at the point (0, w∗

2) is

(
a/(3a− 2) 0

0 2

)
,

so the point is an unstable hyperbolic node when a ∈ (−∞, 0)∪(2/3,+∞), a hyperbolic saddle when
a ∈ (0, 2/3), and it is semi-hyperbolic when a = 0. Applying [5, Theorem 2.19] in a similar way than
in Section 2.2 we get that w∗

2 is a semi-hyperbolic saddle when a = 0.
The singular points (0, w±) are both linearly zero when d = a/2, b = a2/4 and a ̸= 0 and when

d = 0, b = 0 and a = 0 (in this case w+ = w− = 0 and the origin is the unique linearly zero singular
point, so it has already been studied). If d = 0, b = 0 and a > 0, then (0, w+) = (0, 0) is linearly
zero, and (0, w−) = (0,−a) is a saddle. If d = 0, b = 0 and a < 0, then (0, w−) = (0, 0) is linearly
zero, and (0, w+) = (0,−a) is a stable node. Now we study the case d = a/2, b = a2/4 and a ̸= 0.
In this case w+ = w− = −a/2. We do the change of variables (U,W ) = (u,w + a/2) to move the
singular point (0,−a/2) to the origin and we get system

u′ = u(u2 + w2 − w), w′ =
1

2
w2(a− 2w). (26)

Notice that we have renamed the new variables U and W as u and w. The characteristic polynomial
of (26) at the origin is F = 1

2 (a+ 2)uw2. When a = −2 the characteristic polynomial is identically
zero with w = 0 a singular direction, thus as above the origin of (26) must have parabolic sectors.
If a ̸= −2 then u = 0 is a simple characteristic direction so we apply the u–directional blow up

11



(u, v) → (u, uw1) and after eliminating the common factor u we get

u′ = u(uw2
1 + u− w1),

w′
1 = −1

2
w1(−aw1 + 4uw2

1 + 2u− 2w1),
(27)

The origin is the unique singular point of (27) which is again linearly zero. The characteristic
polynomial of (27) at the origin is F = − 1

2uw1(−aw1+4u−4w1), then u = 0 is a simple characteristic
direction so we apply the u–directional blow up (u, v) → (u, uw2) and after eliminating the common
factor u we get

u′ = u(u2w2
2 − w2 + 1),

w′
2 = −1

2
w2(−aw2 + 6u2w2

2 − 4w2 + 4),
(28)

The singular points of (28) are the origin which is always a saddle with Jacobian matrix

(
1 0
0 −2

)
;

and the point (0, w̃∗
2) = (0, 4/(a + 4)) which is defined for a ̸= −4 and it is an unstable node

when a ∈ (−∞,−4) ∪ (0,∞) and a saddle when a ∈ (−4, 0) and in view of [5, Theorem 2.19] a
semi-hyperbolic saddle when a = 0.

Now we go back through the u–directional blow ups in a similar way as in Section 2.2. We start
going back from blow up (28) to blow up (26). The existence of the point w̃∗

2 would provide either
more than two hyperbolic sectors or parabolic sectors. So we are only interested in the case where
the origin is the unique singular point of (28). This happens when a = −4. In this case going back
to the chain of blow ups we have that the origin of (26) is the union of two hyperbolic and two
parabolic sectors. Thus the existence of the singular points (0, w±) would provide either more than
two hyperbolic sectors or parabolic sectors, and so they cannot exist. Thus a2 − 4b < 0.

Now we go back from blow up (25) to blow up (23). The existence of the point w∗
2 would provide

either more than two hyperbolic sectors or parabolic sectors, so the origin must be the unique
singular point of (25) implying that a = 2/3. Going back to the chain of blow ups up to blow up
(23) we have that the origin of (23) is the union of two hyperbolic and two parabolic sectors. Thus
the case where the origin is linearly zero is not possible.

In short, the unique case that could be possible is the case where the origin is the unique singular
point of (23) (i.e., a2− 4b < 0), it is not linearly zero (i.e., b2+d2 ̸= 0) and it is a saddle. The origin
is the unique singular point either when a2−4b < 0 (implying that b > 0), or when a = b = 0. When
a = b = 0, in wiew of [5, Theorem 2.19] the origin is a semi-hyperbolic saddle when d < 0 and an
stable node when d > 0. When a2 − 4b < 0, the origin is a hyperbolic saddle when −b(b − d) < 0,
which together with b > 0 implies that b > d, and it is a semi-hyperbolic singular point when
b = d. In this last case, since b = d > 0, applying [5, Theorem 2.19] we get that the origin is a
semi-hyperbolic saddle.

The only possibilities for the origin of the local chart U2 to be formed by two degenerate
hyperbolic sectors are when any of the conditions j2, j3 and j4 in Appendix A hold.

2.4 Proof of Theorem 1

In order to have a global center we need the origin to be the unique finite singular point (correspond-
ing to one of the conditions c1–c85), that the local chart U1 has either no infinite singular points or all
the infinite singular points are formed by two degenerated hyperbolic sectors (corresponding to one
of the conditions i1–i5), and that the origin of the local chart U2 is either not a singular point or it
is formed by two degenerated hyperbolic sectors (corresponding to one of the conditions j1–j4). Let

ĩ = {(a, b, c, d) ∈ R4 : i1 ∪ i2 ∪ i3 ∪ i4 ∪ i5},

be the set where one of the conditions i1–i5 is satisfied and

j̃ = {(a, b, c, d) ∈ R4 : j1 ∪ j2 ∪ j3 ∪ j4},
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be the set where one of the conditions j1–j4 is satisfied. Then the set ĩ ∩ j̃ can be written as

{(a, b, c, d) ∈ R4 : ij1 ∪ ij2 ∪ ij3 ∪ ij4 ∪ ij5 ∪ ij6},

where the sets iji for i = 1, . . . , 6 are defined in Appendix A.
In short, system (7) has a global center if (a, b, c, d) belong to one of the sets ci ∩ ijj for i =

1, . . . , 85, and j = 1, . . . , 6. The sets ci ∩ ijj that are not empty yield the sets d1–d107 in Appendix
A. This completes the proof of Theorem 1.

3 Proof of Theorem 2

Consider system (5) and write it as

x′ = y(1 + x+ ax2 + by2), y′ = −x(x2 − cy2), (29)

for some a, b, c ∈ R.

3.1 Finite singular points of equation (29)

From the second equation of (29) we have that either x = 0 or y2 = x2/c whenever c > 0. If x = 0
then from the first equation of (29) we get y(1 + by2) = 0 which has solutions different from the
origin when b < 0.

If c ≤ 0 the origin is the unique finite singular point when b ≥ 0 providing condition C1 in
Appendix B.

Assume now that c > 0, introducing y2 = x2/c into the second factor of the first equation in (29)
we get an equation equivalent to

(ac+ b)x2 + cx+ c = 0,

whose solutions

x =
−c±

√
c(−4ac− 4b+ c)

2(ac+ b)
,

cannot exist. Thus when c > 0 the origin is the unique finite singular point if b ≥ 0 and a >
(c− 4b)/(4c), providing condition C2 in Appendix B.

3.2 Infinite singular points in the local chart U1 of system (29)

In the local chart U1 system (29) becomes

u′ = −au2 − bu4 + cu2 − u2v2 − u2v − 1, v′ = −uv
(
a+ bu2 + v2 + v

)
. (30)

The infinite singular points satisfy v = 0 and

−bu4 + (c− a)u2 − 1 = 0. (31)

The Jacobian matrix of (30) evaluated at v = 0 becomes

J =

(
−2u

(
2bu2 + a− c

)
−u2

0 −u(bu2 + a)

)
.

Since the solutions of (31) are always different from zero, the infinite singular points on the local
chart U1 whenever exist are never linearly zero, so they cannot exist.

We distinguish three cases: b = 0 and c− a = 0; b = 0 and c− a ̸= 0; and b ̸= 0.
If b = 0 and c− a = 0, equation (31) has no real solutions. This gives the set I1 in Appendix B.
If b = 0 and c− a ̸= 0, the solutions of (31) are

u = u± = ± 1√
c− a

.
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Thus (31) has no real solutions when c− a < 0, yielding the set I2 in Appendix B.
Finally, when b ̸= 0 the solutions of (31) are

u = ũ±
1 =

√
E±
√
2

, u = ũ±
2 = −

√
E±
√
2

,

where

E± = −a

b
± c

b
+

√
(a− c)2 − 4b

b
.

The solutions ũ±
1 do not exist either when (a− c)2 − 4b < 0, or when (a− c)2 − 4b ≥ 0 and E+ and

E− are both negative, this provide the sets I3 and I4, respectively, in Appendix B.

3.3 Infinite singular points in the local chart U2 of system (29)

In the local chart U2 system (29) becomes

u′ = au2 + b− cu2 + u4 + uv + v2, v′ = v
(
u3 − cu

)
. (32)

If b ̸= 0 the origin is not a singular point. This gives condition J1 in Appendix B.
If b = 0 then the origin is a linearly zero singular point and as in the previous section we study

this point by means of blow ups. The characteristic polynomial of (32) with b = 0 at the origin is
F = −v

(
au2 + uv + v2

)
. Since v = 0 is a simple characteristic direction, we apply the u-directional

blow up (u, v) → (u, uw) and after dividing by the common factor u we get

u′ = u
(
a− c+ u2 + w2 + w

)
,

w′ = −w
(
a+ w2 + w

)
.

(33)

The singular points of (33) with u = 0 are

(0, 0) and (0, w±) =
(
0,

1

2

(
−1±

√
1− 4a

) )
.

The points (0, w±) only exists when a ≤ 1/4.

The Jacobian matrix at the origin is

(
a− c 0
0 −a

)
and the Jacobian matrices at the points (0, w±)

are

(
−c 0
0 1

2

(
4a− 1±

√
1− 4a

)
)
.

Now we analyze the cases where the origin (0, 0) and (0, w±) are linearly zero.
We start with the origin. The origin is linearly zero when a = c = 0. The characteristic polynomial

of (33) at the origin when a = c = 0 is F = −2uw2. Since u = 0 is a simple characteristic direction
of (33) at the origin, we apply the u–directional blow up (u, v) → (u, uw1) and after dividing by the
common factor u we get

u′ = u
(
uw2

1 + u+ w1

)
,

w′
1 = −w1

(
2uw2

1 + u+ 2w1

)
.

(34)

The unique singular point of (34) with u = 0 is the origin which is again linearly zero. The character-
istic polynomial at the origin of (24) is F = −uw1(2u+ 3w1). Since u = 0 is a simple characteristic
direction of (24) at the origin, we apply the u–directional blow up (u, v) → (u, uw2) and after
dividing by the common factor u we get

u′ = u
(
u2w2

2 + w2 + 1
)
,

w′
2 = −w2

(
3u2w2

2 + 3w2 + 2
)
.

(35)
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The singular points of (35) with u = 0 are the origin and the point (0,−2/3). The origin is a saddle
and the point (0,−2/3) is an unstable node. Going back to the chain of blow ups the point (0, 2/3)
would provide parabolic sectors. Therefore this case is not possible.

The singular points (0, w±) are both linearly zero when c = 0 and a = 1/4. Under these assump-
tions w± = −1/2. We do the change of variables (U,W ) = (u,w + 1/2) to move the singular point
(0,−1/2) to the origin and we get system

u′ = u(u2 + w2), w′ =
1

2
w2(1− 2w). (36)

Notice that we have renamed the new variables U and W as u and w. The characteristic polynomial
of (36) at the origin is F = 1

2uw
2. Since u = 0 is a simple characteristic direction we apply the

u–directional blow up (u, v) → (u, uw1) and after eliminating the common factor u we get

u′ = u2
(
w2

1 + 1
)
,

w′
1 = −1

2
w1

(
4uw2

1 + 2u− w1

)
,

(37)

The origin is the unique singular point of (37) which is again linearly zero. The characteristic
polynomial of (27) at the origin is F = − 1

2uw1(4u − w1), then u = 0 is a simple characteristic
direction so we apply the u–directional blow up (u, v) → (u, uw2) and after eliminating the common
factor u we get

u′ = u
(
u2w2

2 + 1
)
,

w′
2 = −1

2
w2

(
6u2w2

2 − w2 + 4
)
,

(38)

The singular points of (38) on u = 0 are the origin which is always a saddle, and the point (0, 4)
which is an unstable node. Going back to the chain of blow ups the points w± would provide more
that two hyperbolic sectors and parabolic sectors. Therefore they cannot exist.

Hence, the origin is a singular point in the local chart U2 formed by two hyperbolic sectors if the
points w± do no exist and the point (0, 0) is a saddle. The points w± do not exist when a > 1/4.
Assuming that a > 1/4, the origin is a hyperbolic saddle when −a(a − c) < 0 and in view of [5,
Theorem 2.19] it is a semi-hyperbolic saddle when a = c. In short we get conditions J2 and J3 in
Appendix B.

3.4 Proof of Theorem 2

In order to have a global center we need the origin to be the unique finite singular point (correspond-
ing to one of the conditions C1–C2), that the local chart U1 has either no infinite singular points or
all of them are formed by two degenerated hyperbolic sectors (corresponding to one of the condi-
tions I1–I4), and that the origin of the local chart U2 is either not a singular point or it is formed
by two degenerated hyperbolic sectors (corresponding to one of the conditions J1–J3). The set

{(a, b, c) ∈ R3 : I1 ∪ I2 ∪ I3 ∪ I4} ∩ {(a, b, c, d) ∈ R4 : J1 ∪ J2 ∪ J3}

can be written as
{(a, b, c) ∈ R3 : IJ1 ∪ IJ2 ∪ IJ3 ∪ IJ4 ∪ IJ5},

with the sets IJi for i = 1, . . . , 5 being defined in Appendix B.
In short, system (29) has a global center if (a, b, c) belong to one of the sets Ci ∩ IJj for i = 1, 2,

and j = 1, . . . , 5. The sets Ci ∩ IJj that are not empty yield the sets e1–e8 in Appendix B. This
completes the proof of Theorem 2.
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Appendix A Conditions in Theorem 1

Let

K± =
1

27

(
−2a3 + 3a2d+ 9ab+ 3ad2 − 18bd− 2d3 ± 2

√
(a2 − ad− 3b+ d2)

3

)
.

The conditions in order that the origin is the unique finite singular point are the following ones:

c1 = {c = 0, b = 0, a = 0},
c2 = {c = 0, b = 0, a ̸= 0, a ≥ d},
c3 = {c = 0, b ̸= 0, a2 − 4b < 0},
c4 = {c = 0, 0 < b ≤ a2/4, d ≤ D−},
c5 = {c = 0, b < 0, d ≤ D−},
c6 = {c ̸= 0, a = −d, b = d2, c = −d3},
c7 = {c > 0, a = c/d2, b = −c/d, c ̸= −d3, d ̸= 0},
c8 = {c ̸= 0, c = −bd, b ̸= −ad, b > (a− d)2/4},
c9 = {c ̸= 0, c = −bd, a > d, 0 < b ≤ (a− d)2/4, d > 0},
c10 = {c ̸= 0, c = −bd, a > −d,−ad < b ≤ (a− d)2/4, d < 0},
c11 = {c ̸= 0, c = −bd, 0 < a < −d,−ad < b ≤ (a− d)2/4, d < 0},
c12 = {c ̸= 0, c = −bd, d < a ≤ 0, 0 < b ≤ (a− d)2/4, d < 0},
c13 = {c ̸= 0, c = −bd, a > 0, 0 < b < −ad, d < 0}
c14 = {c > 0, c+ bd > 0,∆ < 0},
c15 = {c > 0, c+ bd < 0,∆ < 0},
c16 = {a > 0, 0 < b ≤ a2/4, 0 < c < K+|d=0, d = 0},
c17 = {a > 0, a2/4 < b < a2/3,K−|d=0 < c < K+|d=0, d = 0},
c18 = {a > −d, 0 < b < −ad,−bd < c < K+, d < 0},
c19 = {a > −d, d(a− d) < b ≤ 0, 0 < c < K+, d < 0},
c20 = {a > −d, (a− d)2/4 < b < (a2 − ad+ d2)/3,K− < c < K+, d < 0},
c21 = {a > −d,−ad < b ≤ (a− d)2/4,−bd < c < K+, d < 0},
c22 = {a > 2d, d(a− d) < b ≤ a2/4, 0 < c < K+, d > 0},
c23 = {a > 2d, a2/4 < b < (a2 − ad+ d2)/3,K− < c < K+, d > 0},
c24 = {d < a ≤ −d, 0 < b < (a− d)2/4,−bd < c < K+, d < 0},
c25 = {d < a ≤ −d, d(a− d) < b ≤ 0, 0 < c < K+, d < 0},
c26 = {a = −4d, 0 < b ≤ 4d2, 0 < c < −bd, d < 0},
c27 = {a = −4d, 4d2 < b < 25d2/4,K−|a=−4d < c < −bd, d < 0},
c28 = {a = −d, 0 < b ≤ d2/4, 0 < c < −bd, d < 0},
c29 = {a = −d, d2/4 < b < d2,K−|a=−d < c < −bd, d < 0},
c30 = {a = d/2, 0 < b ≤ d2/16, 0 < c < −bd, d < 0},
c31 = {a = d/2, d2/16 < b < d2/4,K−|a=d/2 < c < K+|a=d/2, d < 0},
c32 = {a = d, 0 < b ≤ d2/4, 0 < c < K+|a=d, d < 0},
c33 = {a = d, d2/4 < b < d2/3,K−|a=d < c < K+|a=d, d < 0},
c34 = {a > −4d, 0 < b ≤ a2/4, 0 < c < −bd, d < 0},
c35 = {a > −4d, a2/4 < b < (a− d)2/4,K− < c < −bd, d < 0},
c36 = {0 < a < −d, 0 < b ≤ a2/4, 0 < c < −bd, d < 0},
c37 = {0 < a < −d, a2/4 < b < −ad,K− < c < −bd, d < 0},
c38 = {0 < a < −d, (a− d)2/4 < b < (a2 − ad+ d2)/3,K− < c < K+, d < 0},
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c39 = {0 < a < −d,−ad < b ≤ (a− d)2/4,K− < c < −bd, d < 0},
c40 = {−d < a < −4d, 0 < b ≤ a2/4, 0 < c < −bd, d < 0},
c41 = {d < a < d/2, 0 < b ≤ (a− d)2/4, 0 < c < −bd, d < 0},
c42 = {d/2 < a ≤ 0, 0 < b ≤ a2/4, 0 < c < −bd, d < 0},
c43 = {d < a < d/2, (a− d)2/4 < b ≤ a2/4, 0 < c < K+, d < 0},
c44 = {2d < a < d, d(a− d) < b ≤ a2/4, 0 < c < K+, d < 0},
c45 = {−d < a < −4d, a2/4 < b < (a− d)2/4,K− < c < −bd, d < 0},
c46 = {d < a < d/2, a2/4 < b < (a2 − ad+ d2)/3,K− < c < K+, d < 0},
c47 = {2d < a < d, a2/4 < b < (a2 − ad+ d2)/3,K− < c < K+, d < 0},
c48 = {d/2 < a ≤ 0, a2/4 < b ≤ (a− d)2/4,K− < c < −bd, d < 0},
c49 = {d/2 < a ≤ 0, (a− d)2/4 < b < (a2 − ad+ d2)/3,K− < c < K+, d < 0},
c50 = {a > −d, b = (a2 − ad+ d2)/3, c = (a− 2d)3/27, d ≤ 0},
c51 = {a > 2d, b = (a2 − ad+ d2)/3, c = (a− 2d)3/27, d > 0},
c52 = {2d < a < −d, b = (a2 − ad+ d2)/3, c = (a− 2d)3/27, d < 0},
c53 = {a > 0, a2/4 < b < a2/3, c = K−|d=0, d = 0},
c54 = {a > 0, 0 < b ≤ a2/4, c = K+|d=0, d = 0},
c55 = {a > 0, a2/4 < b < a2/3, c = K+|d=0, d = 0},
c56 = {a > −d, (a− d)2/4 < b < (a2 − ad+ d2)/3, c = K−, d < 0},
c57 = {a > 2d, a2/4 < b < (a2 − ad+ d2)/3, c = K−, d > 0},
c58 = {a > −d, d(a− d) < b < −ad, c = K+, d < 0},
c59 = {a > −d, (a− d)2/4 < b < (a2 − ad+ d2)/3, c = K+, d < 0},
c60 = {a > −d,−ad < b ≤ (a− d)2/4, c = K+, d < 0},
c61 = {a > 2d, a2/4 < b < (a2 − ad+ d2)/3, c = K+, d > 0},
c62 = {a > 2d, d(a− d) < b ≤ a2/4, c = K+, d > 0},
c63 = {d < a ≤ −d, d(a− d) < b < (a− d)2/4, c = K+, d < 0},
c64 = {a = −4d, 4d2 < b < 25d2/4, c = K−|a=−4d, d < 0},
c65 = {a = −d, d2/4 < b < d2, c = K−|a=−d, d < 0},
c66 = {a = d/2, d2/16 < b < d2/4, c = K−|a=d/2, d < 0},
c67 = {a = d/2, d2/16 < b < d2/4, c = K+|a=d/2, d < 0},
c68 = {a = d, d2/4 < b < d2/3, c = K−|a=d, d < 0},
c69 = {a = d, d2/4 < b < d2/3, c = K+|a=d, d < 0},
c70 = {a = d, 0 < b ≤ d2/4, c = K+|a=d, d < 0},
c71 = {a > −4d, a2/4 < b < (a− d)2/4, c = K−, d < 0},
c72 = {0 < a < −d, a2/4 < b < −ad, c = K−, d < 0},
c73 = {0 < a < −d, (a− d)2/4 < b < (a2 − ad+ d2)/3, c = K−, d < 0},
c74 = {0 < a < −d,−ad < b ≤ (a− d)2/4, c = K−, d < 0},
c75 = {−d < a < −4d, a2/4 < b < (a− d)2/4, c = K−, d < 0},
c76 = {d < a < d/2, a2/4 < b < (a2 − ad+ d2)/3, c = K−, d < 0},
c77 = {2d < a < d, a2/4 < b < (a2 − ad+ d2)/3, c = K−, d < 0},
c78 = {d/2 < a ≤ 0, a2/4 < b ≤ (a− d)2/4, c = K−, d < 0},
c79 = {d/2 < a ≤ 0, (a− d)2/4 < b < (a2 − ad+ d2)/3, c = K−, d < 0},
c80 = {0 < a < −d, (a− d)2/4 < b < (a2 − ad+ d2)/3, c = K+, d < 0},
c81 = {d < a < d/2, a2/4 < b < (a2 − ad+ d2)/3, c = K+, d < 0},
c82 = {d < a < d/2, (a− d)2/4 < b ≤ a2/4, c = K+, d < 0},
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c83 = {2d < a < d, a2/4 < b < (a2 − ad+ d2)/3, c = K+, d < 0},
c84 = {2d < a < d, d(a− d) < b ≤ a2/4, c = K+, d < 0},
c85 = {d/2 < a ≤ 0, (a− d)2/4 < b < (a2 − ad+ d2)/3, c = K+, d < 0}.

The conditions in order that the local chart U1 has either no infinite singular points or all the
infinite singular points in the local chart U1 are formed by two degenerated hyperbolic sectors are
the following:

i1 = {c = 0, b = d},
i2 = {c = 0, b > d},
i3 = {c ̸= 0, b2 − 4c− 2bd+ d2 < 0},
i4 = {c ̸= 0, b > d, 0 < c ≤ (b− d)2/4},
i5 = {c ̸= 0, a = 1, b = −d, c = d2, d > 1/8}.

The conditions in order that the origin of the local chart U2 is either not a singular point or it
is formed by two degenerated hyperbolic sectors are:

j1 = {c ̸= 0},
j2 = {c = 0, a2 − 4b < 0, b > d},
j3 = {c = 0, a2 − 4b < 0, b = d, d > 0},
j4 = {c = 0, a = b = 0, d < 0}.

The sets iji for i = 1, . . . , 6 are:

ij1 = {b > a2/4, b = d, c = 0},
ij2 = {a = 0, b = 0, c = 0, d < 0},
ij3 = {b > a2/4, c = 0, d < b},
ij4 = {a = 1, b = −d, c = d2, d > 1/8},
ij5 = {b > d, 0 < c ≤ (b− d)2/4},
ij6 = {c > (b− d)2/4}.

The sets di in Theorem 1 are:

d1 = {(a, b, c, d) ∈ R4 : c3 ∩ ij1} ∋ (0, 1, 0, 1) ,

d2 = {(a, b, c, d) ∈ R4 : c1 ∩ ij2} ∋ (0, 0, 0,−1) ,

d3 = {(a, b, c, d) ∈ R4 : c3 ∩ ij3} ∋ (0, 1, 0, 1/2) ,

d4 = {(a, b, c, d) ∈ R4 : c7 ∩ ij4} ∋ (1,−1, 1, 1) ,

d5 = {(a, b, c, d) ∈ R4 : c6 ∩ ij5} ∋ (2, 4, 8,−2) ,

d6 = {(a, b, c, d) ∈ R4 : c7 ∩ ij5} ∋ (1/2, 1/8, 1/32,−1/4) ,

d7 = {(a, b, c, d) ∈ R4 : c8 ∩ ij5} ∋ (0, 3/2, 3,−2) ,

d8 = {(a, b, c, d) ∈ R4 : c10 ∩ ij5} ∋ (2, 17/8, 17/8,−1) ,

d9 = {(a, b, c, d) ∈ R4 : c11 ∩ ij5} ∋ (1/2, 3, 15,−5) ,

d10 = {(a, b, c, d) ∈ R4 : c12 ∩ ij5} ∋ (−1, 5/2, 25/2,−5) ,

d11 = {(a, b, c, d) ∈ R4 : c13 ∩ ij5} ∋ (1, 1/2, 1/2,−1) ,

d12 = {(a, b, c, d) ∈ R4 : c14 ∩ ij5} ∋ (−3, 17/8, 161/512, 1) ,

d13 = {(a, b, c, d) ∈ R4 : c15 ∩ ij5} ∋ (−2333/8, 137, 280725/8,−269) ,
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d14 = {(a, b, c, d) ∈ R4 : c16 ∩ ij5} ∋ (1/2, 1/32, 1/8192, 0) ,

d15 = {(a, b, c, d) ∈ R4 : c17 ∩ ij5} ∋ (1/2, 133/2048, 27/32768, 0) ,

d16 = {(a, b, c, d) ∈ R4 : c18 ∩ ij5} ∋ (3/2, 1/4, 5/16,−1) ,

d17 = {(a, b, c, d) ∈ R4 : c19 ∩ ij5} ∋ (7/4,−1/2, 1/32,−1) ,

d18 = {(a, b, c, d) ∈ R4 : c20 ∩ ij5} ∋ (7/4, 245/128, 985/512,−1) ,

d19 = {(a, b, c, d) ∈ R4 : c21 ∩ ij5} ∋ (3/2, 49/32, 6273/4096,−1) ,

d20 = {(a, b, c, d) ∈ R4 : c22 ∩ ij5} ∋ (13/4, 39/16, 1/256, 1) ,

d21 = {(a, b, c, d) ∈ R4 : c23 ∩ ij5} ∋ (13/4, 173/64, 45/1024, 1) ,

d22 = {(a, b, c, d) ∈ R4 : c24 ∩ ij5} ∋ (−27/32, 3/1024, 9/2048,−1) ,

d23 = {(a, b, c, d) ∈ R4 : c25 ∩ ij5} ∋ (−1/2,−1/4, 3/512,−1) ,

d24 = {(a, b, c, d) ∈ R4 : c26 ∩ ij5} ∋ (4, 1/2, 1/4,−1) ,

d25 = {(a, b, c, d) ∈ R4 : c27 ∩ ij5} ∋ (4, 37/8, 3,−1) ,

d26 = {(a, b, c, d) ∈ R4 : c28 ∩ ij5} ∋ (5, 3, 29/2,−5) ,

d27 = {(a, b, c, d) ∈ R4 : c29 ∩ ij5} ∋ (1, 11/32, 11/64,−1) ,

d28 = {(a, b, c, d) ∈ R4 : c30 ∩ ij5} ∋ (−1/2, 1/32, 1/64,−1) ,

d29 = {(a, b, c, d) ∈ R4 : c31 ∩ ij5} ∋ (−1/2, 13/128, 5/128,−1) ,

d30 = {(a, b, c, d) ∈ R4 : c32 ∩ ij5} ∋ (−4, 2, 1/8,−4) ,

d31 = {(a, b, c, d) ∈ R4 : c33 ∩ ij5} ∋ (−4, 37/8, 23/16,−4) ,

d32 = {(a, b, c, d) ∈ R4 : c34 ∩ ij5} ∋ (5, 1/2, 1/4,−1) ,

d33 = {(a, b, c, d) ∈ R4 : c35 ∩ ij5} ∋ (8, 18, 14,−1) ,

d34 = {(a, b, c, d) ∈ R4 : c36 ∩ ij5} ∋ (5/2, 1, 5/2,−3) ,

d35 = {(a, b, c, d) ∈ R4 : c37 ∩ ij5} ∋ (1/8, 1/4, 511/512,−4) ,

d36 = {(a, b, c, d) ∈ R4 : c38 ∩ ij5} ∋ (5/32, 39/8, 73/4,−4) ,

d37 = {(a, b, c, d) ∈ R4 : c39 ∩ ij5} ∋ (1/8, 9/4, 569/64,−4) ,

d38 = {(a, b, c, d) ∈ R4 : c40 ∩ ij5} ∋ (5/4, 1/4, 1/8,−1) ,

d39 = {(a, b, c, d) ∈ R4 : c41 ∩ ij5} ∋ (−12, 7/2, 59,−17) ,

d40 = {(a, b, c, d) ∈ R4 : c42 ∩ ij5} ∋ (−9, 21/2, 220,−21) ,

d41 = {(a, b, c, d) ∈ R4 : c43 ∩ ij5} ∋ (−16, 53, 648,−29) ,

d42 = {(a, b, c, d) ∈ R4 : c44 ∩ ij5} ∋ (−4, 7/2, 1/64,−3) ,

d43 = {(a, b, c, d) ∈ R4 : c45 ∩ ij5} ∋ (3/2, 25/32, 19/32,−1) ,

d44 = {(a, b, c, d) ∈ R4 : c46 ∩ ij5} ∋ (−3/4, 13/64, 45/1024,−1) ,

d45 = {(a, b, c, d) ∈ R4 : c47 ∩ ij5} ∋ (−4, 17/4, 45/128,−13/4) ,

d46 = {(a, b, c, d) ∈ R4 : c48 ∩ ij5} ∋ (−1/4, 5/64, 17/256,−1) ,

d47 = {(a, b, c, d) ∈ R4 : c49 ∩ ij5} ∋ (−1/4, 13/64, 163/1024,−1) ,

d48 = {(a, b, c, d) ∈ R4 : c50 ∩ ij5} ∋ (2, 7/3, 64/27,−1) ,

d49 = {(a, b, c, d) ∈ R4 : c51 ∩ ij5} ∋ (3, 7/3, 1/27, 1) ,

d50 = {(a, b, c, d) ∈ R4 : c52 ∩ ij5} ∋ (−2, 4/3, 8/27,−2) ,

d51 = {(a, b, c, d) ∈ R4 : c53 ∩ ij5} ∋
(
1/2, 133/2048, (2768− 113

√
226)/1769472, 0

)
,

d52 = {(a, b, c, d) ∈ R4 : c54 ∩ ij5} ∋
(
35/32, 3/32, (−27755 + 937

√
937)/442368, 0

)
,

d53 = {(a, b, c, d) ∈ R4 : c55 ∩ ij5} ∋ (81/64, 57/128, 49/1024, 0) ,

d54 = {(a, b, c, d) ∈ R4 : c56 ∩ ij5} ∋
(
7/4, 245/128, (1970−

√
2)/1024,−1

)
,

d55 = {(a, b, c, d) ∈ R4 : c57 ∩ ij5} ∋
(
4, 133/32, (616− 17

√
34)/3456, 1

)
,
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d56 = {(a, b, c, d) ∈ R4 : c58 ∩ ij5} ∋
(
7/4, 25/16, (95 + 4

√
2)/64,−1

)
,

d57 = {(a, b, c, d) ∈ R4 : c59 ∩ ij5} ∋
(
7/4, 245/128, (1970 +

√
2)/1024,−1

)
,

d58 = {(a, b, c, d) ∈ R4 : c60 ∩ ij5} ∋
(
7/4, 29/16, (1035 + 4

√
6)/576,−1

)
,

d59 = {(a, b, c, d) ∈ R4 : c61 ∩ ij5} ∋
(
4, 133/32, (616 + 17

√
34)/3456, 1

)
,

d60 = {(a, b, c, d) ∈ R4 : c62 ∩ ij5} ∋
(
4, 7/2, (−14 + 5

√
10)/54, 1

)
,

d61 = {(a, b, c, d) ∈ R4 : c63 ∩ ij5} ∋
(
−3/4,−1/8, (−80 + 19

√
19)/864,−1

)
,

d62 = {(a, b, c, d) ∈ R4 : c64 ∩ ij5} ∋
(
4, 5, (36− 4

√
6)/9,−1

)
,

d63 = {(a, b, c, d) ∈ R4 : c65 ∩ ij5} ∋
(
1/4, 5/128, (10−

√
2)/1024,−1/4

)
,

d64 = {(a, b, c, d) ∈ R4 : c66 ∩ ij5} ∋
(
−16, 160, 2560− 256

√
2,−32

)
,

d65 = {(a, b, c, d) ∈ R4 : c67 ∩ ij5} ∋
(
−16, 160, 2560 + 256

√
2,−32

)
,

d66 = {(a, b, c, d) ∈ R4 : c68 ∩ ij5} ∋
(
−1, 37/128, (616− 17

√
34)/27648,−1

)
,

d67 = {(a, b, c, d) ∈ R4 : c69 ∩ ij5} ∋
(
−1, 37/128, (616 + 17

√
34)/27648,−1

)
,

d68 = {(a, b, c, d) ∈ R4 : c70 ∩ ij5} ∋
(
−1, 1/8, (−14 + 5

√
10)/432,−1

)
,

d69 = {(a, b, c, d) ∈ R4 : c71 ∩ ij5} ∋
(
8, 18, (430− 38

√
19)/27,−1

)
,

d70 = {(a, b, c, d) ∈ R4 : c72 ∩ ij5} ∋
(
1/8, 1/8, (1881− 83

√
249)/2304,−2

)
,

d71 = {(a, b, c, d) ∈ R4 : c73 ∩ ij5} ∋
(
5/32, 39/8, (2692737− 691

√
2073)/147456,−4

)
,

d72 = {(a, b, c, d) ∈ R4 : c74 ∩ ij5} ∋ (1/8, 9/4, 1125/128,−4) ,

d73 = {(a, b, c, d) ∈ R4 : c75 ∩ ij5} ∋
(
7/4, 17/16, (495− 28

√
42)/576,−1

)
,

d74 = {(a, b, c, d) ∈ R4 : c76 ∩ ij5} ∋
(
−16, 118, 1080− 108

√
2,−26

)
,

d75 = {(a, b, c, d) ∈ R4 : c77 ∩ ij5} ∋
(
−4, 17/4, (305− 13

√
13)/864,−13/4

)
,

d76 = {(a, b, c, d) ∈ R4 : c78 ∩ ij5} ∋
(
−1/4, 5/64, (595− 37

√
37)/6912,−1

)
,

d77 = {(a, b, c, d) ∈ R4 : c79 ∩ ij5} ∋
(
−1/4, 13/64, (1099− 13

√
13)/6912,−1

)
,

d78 = {(a, b, c, d) ∈ R4 : c80 ∩ ij5} ∋
(
7/32, 51/128, (171181 + 73

√
73)/442368,−1

)
,

d79 = {(a, b, c, d) ∈ R4 : c81 ∩ ij5} ∋
(
−16, 118, 1080 + 108

√
2,−26

)
,

d80 = {(a, b, c, d) ∈ R4 : c82 ∩ ij5} ∋
(
−3/4, 5/64, (−55 + 37

√
37)/6912,−1

)
,

d81 = {(a, b, c, d) ∈ R4 : c83 ∩ ij5} ∋
(
−4, 17/4, (305 + 13

√
13)/864,−13/4

)
,

d82 = {(a, b, c, d) ∈ R4 : c84 ∩ ij5} ∋
(
−4, 7/2, (−14 + 5

√
10)/54,−3

)
,

d83 = {(a, b, c, d) ∈ R4 : c85 ∩ ij5} ∋
(
−1/4, 13/64, (1099 + 13

√
13)/6912,−1

)
,

d84 = {(a, b, c, d) ∈ R4 : c14 ∩ ij6} ∋ (−5,−70, 1280, 1) ,

d85 = {(a, b, c, d) ∈ R4 : c16 ∩ ij6} ∋ (1/2, 1/32, 13/32768, 0) ,

d86 = {(a, b, c, d) ∈ R4 : c17 ∩ ij6} ∋ (1/2, 133/2048, 15/8192, 0) ,
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d87 = {(a, b, c, d) ∈ R4 : c18 ∩ ij6} ∋ (3/2, 1/4, 1/2,−1) ,

d88 = {(a, b, c, d) ∈ R4 : c19 ∩ ij6} ∋ (7/4,−21/16, 11/128,−1) ,

d89 = {(a, b, c, d) ∈ R4 : c20 ∩ ij6} ∋ (1, 53831/65536, 87485/131072,−13/16) ,

d90 = {(a, b, c, d) ∈ R4 : c21 ∩ ij6} ∋ (1, 209/256, 347783/524288,−13/16) ,

d91 = {(a, b, c, d) ∈ R4 : c22 ∩ ij6} ∋ (5/16, 19/2048, 1/65536, 3/256) ,

d92 = {(a, b, c, d) ∈ R4 : c23 ∩ ij6} ∋ (5/16, 805/32768, 1/4096, 3/256) ,

d93 = {(a, b, c, d) ∈ R4 : c24 ∩ ij6} ∋ (29/64, 7/512, 1055/4096,−1) ,

d94 = {(a, b, c, d) ∈ R4 : c25 ∩ ij6} ∋ (7/32,−67/64, 1/512,−1) ,

d95 = {(a, b, c, d) ∈ R4 : c50 ∩ ij6} ∋ (1/2, 7/64, 1/64,−1/8) ,

d96 = {(a, b, c, d) ∈ R4 : c51 ∩ ij6} ∋ (1/2, 19/256, 1/512, 1/16) ,

d97 = {(a, b, c, d) ∈ R4 : c53 ∩ ij6} ∋
(
1/2, 39/512, (760− 11

√
22)/221184, 0

)
,

d98 = {(a, b, c, d) ∈ R4 : c54 ∩ ij6} ∋
(
1/2, 1/32, (−14 + 5

√
10)/3456, 0

)
,

d99 = {(a, b, c, d) ∈ R4 : c55 ∩ ij6} ∋
(
1/2, 133/2048, (2768 + 113

√
226)/1769472, 0

)
,

d100 = {(a, b, c, d) ∈ R4 : c56 ∩ ij6} ∋
(
1, 1685/2048, (43820−

√
2)/65536,−13/16

)
,

d101 = {(a, b, c, d) ∈ R4 : c57 ∩ ij6} ∋ (1, 37/128, 121/8192, 3/32) ,

d102 = {(a, b, c, d) ∈ R4 : c58 ∩ ij6} ∋
(
8, 0, (−1280 + 896

√
7)/27,−4

)
,

d103 = {(a, b, c, d) ∈ R4 : c59 ∩ ij6} ∋
(
5/32, 589/65536, (148715 + 217

√
217)/536870912,−25/1024

)
,

d104 = {(a, b, c, d) ∈ R4 : c60 ∩ ij6} ∋
(
1/8, 75/16384, (7652195 + 15577

√
15577)/115964116992,−27/2048

)
,

d105 = {(a, b, c, d) ∈ R4 : c61 ∩ ij6} ∋
(
5/16, 805/32768, (53983 + 1339

√
1339)/226492416, 3/256

)
,

d106 = {(a, b, c, d) ∈ R4 : c62 ∩ ij6} ∋
(
5/16, 1/64, (−141155 + 3097

√
3097)/226492416, 3/256

)
,

d107 = {(a, b, c, d) ∈ R4 : c63 ∩ ij6} ∋
(
−9/2, 0, (−575 + 193

√
193)/108,−8

)
.

Appendix B Conditions in Theorem 2

The conditions in order that the origin is the unique finite singular point are:

C1 = {b ≥ 0, c ≤ 0},

C2 = {b ≥ 0, c > 0, a >
c− 4b

4c
}.

The conditions in order that the local chart U1 has either no infinite singular points or all the
infinite singular points in the local chart U1 are formed by two degenerated hyperbolic sectors are
the following:

I1 = {b = 0, a = c},
I2 = {b = 0, a > c},
I3 = {b ̸= 0, b > (a− c)2/4},
I4 = {b ̸= 0, a > c, 0 < b ≤ (a− c)2/4}.

The conditions in order that the origin of the local chart U2 is either not a singular point or it
is formed by two degenerated hyperbolic sectors are:

J1 = {b ̸= 0},
J2 = {b = 0, a > 1/4, a > c},
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J3 = {b = 0, a = c > 1/4}.

The sets IJi for i = 1, . . . 5 are:

IJ1 = {b > (a− c)2/4},
IJ2 = {b > 0, a > c},
IJ3 = {b = 0, a = c > 1/4},
IJ4 = {b = 0, a > 1/4, c ≤ 1/4},
IJ5 = {b = 0, a > c > 1/4}.

The conditions in Theorem 2 are:

e1 = {(a, b, c) ∈ R3 : C1 ∩ IJ1} ∋ (0, 2,−1) ,

e2 = {(a, b, c) ∈ R3 : C1 ∩ IJ2} ∋ (0, 1,−1) ,

e3 = {(a, b, c) ∈ R3 : C1 ∩ IJ4} ∋ (5/4, 0, 0) ,

e4 = {(a, b, c) ∈ R3 : C2 ∩ IJ1} ∋ (0, 2, 1) ,

e5 = {(a, b, c) ∈ R3 : C2 ∩ IJ2} ∋ (2, 1, 1) ,

e6 = {(a, b, c) ∈ R3 : C2 ∩ IJ3} ∋ (1, 0, 1) ,

e7 = {(a, b, c) ∈ R3 : C2 ∩ IJ4} ∋ (1, 0, 1/8) ,

e8 = {(a, b, c) ∈ R3 : C2 ∩ IJ5} ∋ (2, 0, 1) .
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