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In this article we study the family of quadratic Riccati differential systems. Our goal is to obtain

the complete topological classification of this family on the Poincaré disk compactification of

the plane. The family was partially studied before but never from a truly global viewpoint.

Our approach is global and we use geometry to achive our goal. The geometric analysis we

perform is via the presence of two invariant parallel straight lines in any generic Riccati system.

We obtain a total of 119 topologically distinct phase portraits for this family. Furthermore we

give the complete bifurcation diagram in the 12-dimensional space of parameters of this family

in terms of invariant polynomials, that means it is independent of the normal forms in which

the systems may be presented. This bifurcation diagram provides an algorithm to decide for

any given quadratic system in any form it may be presented, whether it is a Riccati system or

not, and in case it is to provide its phase portrait.

1. Introduction and the statement of the

main theorem

We consider here polynomial differential systems

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

where P,Q ∈ R[x, y] i.e. P,Q are polynomials in

x, y with real coefficients. We call degree of a system

(1) the number m̃ = max(deg(P ), deg(Q)). Among

the planar polynomial differential systems the sim-

plest are the quadratic ones, i.e. m̃ = 2 and they

are of the form:

dx

dt
=a+ cx+ dy + gx2 + 2hxy + ky2,

dy

dt
=b+ ex+ fy + lx2 + 2mxy + ny2.

(2)

We call cubic a system (1) with m̃ = 3.
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Studies on some quadratic systems are old as

it is the case with the Riccati systems. They go

back over 300 years (see [Jungers, 2017] for their

history).

Definition 1.1. The quadratic Riccati systems are

of the form:

dx

dt
=a+ cx+ gx2,

dy

dt
=b+ ex+ fy + lx2 + 2mxy + ny2.

(3)

Notation 1.1. We denote the family of quadratic

Riccati differential systems by the symbol QSRic.

As indicated in [Jungers, 2017] the first time

that Riccati equations occurred in the literature

was in 1694 in a paper of Johann I. Bernoulli. They

are however called after Jacopo F. Riccati who first

mentioned them in 1718 in a letter to Giovanni

Poleni, where the Riccati equations were not nec-

essarily quadratic. Apart from Johann I. Bernoulli,

several members of the Bernoulli family had contri-

butions on this subject. Initially the problem was

to solve the equations, at least in some particular

cases, using separation of variables. Seeing that for

the higher degree equations the generic case was

hard to treat, Riccati proposed to consider the par-

ticular quadratic case. This case proved to be useful

in areas of applied mathematics, for example in con-

trol theory. For more applications consult [Llibre et

al., 2021].

In [Llibre et al., 2021] the authors say in their

abstract that they “give the complete description

of the phase portraits in the Poincaré disk (i.e. in

the compactification of R2 adding the circle S1 of

the infinity) modulo topological equivalence” of the

Riccati systems with n(b2 + e2 + l2) ̸= 0. The mo-

tivation for this exclusion was firstly that for n = 0

the systems are Liénard and secondly that in case

b = e = l = 0 the systems are Bernoulli equa-

tions. We point out however that any Bernoulli

system can be transformed by only using a trans-

lation y → y + α, α ̸= 0 into a Riccati system

with new coefficients a, c, g, b′, e′, f ′, l′,m′, n′ such

that b′2 + c′2 + l′2 ̸= 0 and hence it is useless to

add this restriction. The authors provided five nor-

mal forms covering the whole parameter space, each

one with fewer parameters and obtained by classi-

cal methods 74 phase portraits none of them with

limit cycles.. It turns out that they missed some

phase portraits.

The problem of classifying topologically any

quadratic family of equations is global in the pa-

rameter space as we want phase portraits on the

Poincaré disk for all values of the parameters of

the equations. In particular the Riccati family de-

pends on nine parameters (modulo rescaling only

eight) and clearly we expect to have many phase

portraits. It is therefore convenient to split the

family into smaller ones where we have fewer phase

portraits and hence we have a better control not to

miss any.

The authors did not rely on the geometry of

the systems. In the generic case each system in this

family has two parallel invariant lines. The notion

of Configuration of invariant algebraic curves of a

polynomial differential system is a powerful affine

invariant. Using it in this paper allows us to apply

to the Ricatti family results already obtained about

systems with configurations of invariant lines (see

Definition 1.2 for configuration of invariant lines on

next page).

At the beginning of this century global geomet-

ric tools began to be used see for example [Llibre &

Schlomiuk, 2004, Schlomiuk & Vulpe, 2004]. Fur-

thermore using these tools together with polyno-

mial invariants a number of families of quadratic or

cubic differential systems were topologically classi-

fied.

An interesting case is the study of all Lotka-

Volterra differential systems, well known for their

many applications. We recall that a Lotka-Volterra

differential system is defined to be a quadratic sys-

tem (1) with P (x, y) = x(ax+by+c) and Q(x, y) =

y(dx+ ey + f), with a, . . . , f ∈ R.
As in the Riccati family the phase portraits

of the Lotka-Volterra family were studied first by

using only the classical methods and three papers

were written in this way, none of them complete

and each of them with repeated phase portraits and
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some with errors.

The Lotka-Volterra systems have an algebraic

geometric property, namely they possess two dis-

tinct real invariant lines (x = 0, y = 0) intersecting

in the finite plane (at (0, 0)). This geometric prop-

erty actually defines them as any quadratic system

possessing two real invariant lines intersecting at a

finite point can be brought via an affine transfor-

mation to one of this form. To obtain the global

topological classification the authors of [Schlomiuk

& Vulpe, 2012] used this algebraic geometric prop-

erty valid for all Lotka-Volterra systems and the no-

tion of configuration of invariant lines introduced

by them in [Schlomiuk & Vulpe, 2004].

Definition 1.2. We call configuration of invariant

lines (or simply configuration) of a system (1) the

set of all its invariant lines (real or complex), each

endowed with its own multiplicity and together

with all the real singular points of the system lo-

cated on these lines, each one endowed with its own

multiplicity.

The notion of multiplicity of an invariant line

was introduced in [Schlomiuk & Vulpe, 2004].

Definition 1.3. We say that an invariant straight

line L(x, y) = ux + vy + w = 0, (u, v) ̸= (0, 0),

(u, v, w) ∈ C3 for a real polynomial differential sys-

tem (S) has multiplicitym if there exists a sequence

of real polynomial systems (Sk) k ≥ 1 converging to

(S), such that each (Sk) has m distinct (complex)

invariant straight lines Lj
k = ujkx + vjky + wj

k = 0,

j = 0, . . .m, converging to L = 0 as k → ∞, i.e.

[ujk : vjk : wj
k] → [u : v : w] as k → ∞ in P2(C) and

this does not occur for m+ 1.

An analogous definition of multiplicity of the

line at infinity was also introduced in [Schlomiuk &

Vulpe, 2004].

Definition 1.4. We say that the line at infinity is

an invariant line of multiplicity m for a system (S)

of the form (1) if and only if there exists a sequence

of systems (Si) of the form (1) tending to (S) when

i → ∞ and (Si) have m− 1 distinct invariant affine

lines Lj
i = ujix + vji y + wj

i = 0 (uji , v
j
i ) ̸= (0, 0),

(uji , v
j
i , w

j
i ) ∈ C3, (j = 1, . . . ,m − 1) such that for

every j, (uji , v
j
i , w

j
i ) → (0, 0, 1) and they do not have

m invariant such lines Li
j j = 1, ...,m holding the

above mentioned conditions.

Note that in the previous definition the multi-

plicity is m because apart from the m− 1 lines we

must also take into account the line at infinity that

is invariant.

In the above definitions the convergence of the

systems means convergence of the coefficients of the

systems in the (N − 1)-dimensional sphere SN−1

after time rescaling by the square root of the sum

of the squares of the N = (m+1)(m+2) coefficients

of the systems involved where m = deg(S).

Definition 1.5. We call total multiplicity of in-

variant lines of a polynomial system (1) the sum

of multiplicities of all its invariant lines including

the multiplicity of the line at infinity.

A quadratic system (1) is non-degenerate if the

polynomials P,Q have no common real factors other

than constants.

Proposition 1.6. (Corollary 5 [Artés et al.,

1998]) A non-degenerate quadratic system could

have invariant lines, including the line at infinity,

of total multiplicity at most six.

Notation 1.2. We denote by QSL≥n, the family

of non-degenerate quadratic systems possessing in-

variant lines of total multiplicity at least n, (1 ≤
n ≤ 6).

Like in the case of the Lotka-Volterra differen-

tial systems the quadratic Riccati systems have in-

variant lines so we can use this geometric property

in order to first find their possible configurations

of invariant lines and classify the whole family in

subfamilies of systems according to their configura-

tions.

We note that the presence of an invariant line

does not affect the topological equivalence relation

as it can be deformed by a homeomorphism. How-
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ever, the presence of invariant lines is very useful

as the affine transformations conserve them and

they also preserve the topological equivalence class

Any polynomial system (1) has singularities, but

the condition to possess invariant lines is a sub-

stantial restriction that turns out to be valuable for

handling the large number of phase portraits. Fur-

thermore although a configuration of invariant lines

is not a phase portrait it is at least part of one and

occasionally this information even leads to a single

phase portrait.

The above observations show that whenever

the systems have some algebraic geometric prop-

erty, it is useful to pay attention and use it for the

topological classifications. In particular, the fam-

ily QSL≥2 is an interesting object to study and

this provides us with additional motivation for this

work as QSRic ⊂QSL≥3 ⊂QSL≥2.

Our topological classification of QSRic was the

only piece so far lacking in the global topological

classification of QSL≥3. Indeed, the case when we

have two affine invariant lines intersecting in the

finite space is solved (if the lines are real this is the

Lotka-Volterra case and if they are complex this

problem was solved in [Schlomiuk & Zhang, 2018]).

The Riccati systems cover the case of two parallel

lines, real or complex that intersect at infinity and

their limiting cases.

All that remains to do in order to obtain the

topological classification of QSL≥2 is to construct

all phase portraits of quadratic systems having ex-

actly two invariant lines, both simple, i.e. a real

simple affine line and the line at infinity simple, or

no affine invariant line and the infinite line double.

Knowing the configuration of invariant lines

of a system gives a part of the information on

the phase portrait that can then be completed by

adding what else is missing, for example the proof

of absence of limit cycles as it is the case for the

quadratic Riccati family, or the proof of presence of

limit cycles a fact occurring in other families such

as for example the family of quadratic systems pos-

sessing two complex invariant lines intersecting at

a finite point (see [Schlomiuk & Zhang, 2018]).

Our goal in this paper is to obtain the classifi-

cation of the phase portraitsof the Ricatti family in

the Poincaré disk according to topological equiva-

lence relation. To do this we rely on the geometric

lemma:

Lemma 1.7. If a real quadratic system (1) pos-

sesses two distinct parallel invariant affine lines

(real or complex) this system could be brought via

a real affine transformation to a quadratic Riccati

system (3).

We denote by QSL2p the class of non-

degenerate quadratic systems which via an affine

transformation could be brought to the canonical

form (3). The notation QSL2p brings into focus

the principal property of Riccati systems, i.e. that

generically they have two parallel invariant lines.

In [Bujac et al., 2022] the author’s obtained

configurations of invariant lines (real or complex)

for the family QSL2p. Except for seven configura-

tions heir list is complete. In this paper we provide

the complete list of configurations of this family by

adding the seven missing configurations in [Bujac et

al., 2022]. We also give the bifurcation diagram of

these configurations in the 12-dimensional space of

coefficients of systems in this family was obtained in

terms of invariant polynomials. To reach our goal

of obtaining the topological classification all that

remains to be done is to obtain the phase portraits

for each one of the configurations.

We have QSRic ⊂QSL2p and any system in

QSL2p is affinely equivalent to one in QSRic.

Clearly the two families QSRic and QSL2p thus

have the same set of phase portraits. Our goal now

is to find all phase portraits of QSL2p.

When in the systems of the Lemma 1.7 we have

c2−4ag ̸= 0 then a+cx+gx2 splits into two distinct

factors giving two invariant straight lines intersect-

ing at infinity, parallel to the y-axis. But the fam-

ily QSL2p contains also the limit cases, i.e. when

c2 − 4ag = 0. If g = 0 and c ̸= 0 (or g = c = 0),

systems (3) possess only one (respectively do not

possess any) invariant straight line in the direction

x = 0. If a = c = 0 the y-axis x = 0 is a double

affine line.
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Theorem 1.8 ([Bujac et al., 2022]). Assume

that a quadratic non-degenerate system (S) belongs

to QSL2p, then (S) possesses one of the distinct

configurations of invariant straight lines presented

in Figures 1–4.

We need to specify when two configurations are

to be considered as distinct or equivalently. We first

introduce some notions.

Suppose we have an invariant straight line l =

ax+by+c = 0, with a, b, c ∈ R. Let L = aX+bY +

cZ = 0 be its projective completion in the complex

projective plane P2(C).

Definition 1.9. We call total curve F (X,Y, Z) =

0 of a configuration C of invariant straight lines

with projective invariant straight lines Li = 0,

where F =
∏

Lmi
i

∏
Zm, mi is the multiplicity of

Li = 0 and m is the multiplicity of Z = 0.

Definition 1.10. We say that two configurations

C1 and C2 of invariant straight lines are equivalent

if the following conditions hold:

1) we have a bijection f from the set of invariant

straight lines of C1 to the set of invariant straight

lines of C2;

2) for each straight line L of C1 we have a bijection

r of the set of real singularities (finite and infinite)

of L to the set of real singularities of f(L), send-

ing a finite (respectively infinite) singularity to a

finite (respectively infinite) singularity and preserv-

ing their multiplicities;

3) each such map r conserves the multiplicity of the

real singular points considered as simple or multiple

singular points of the total curve F = 0.

Our goals in this paper are:

� to find all phase portraits of the family

QSL2p;

� this classification should be done in the twelve

parameters space R12 independently of the

normal forms the systems may be presented;

� to determine the bifurcation diagram of the

phase portraits in the same space R12 of the

coefficients of systems.

Our main result in this paper is the following

theorem:

Main Theorem. The following statements hold:

(i) The family QSL2p (as well as the family

QSRic) possesses a total of 118 Configura-

tions of invariant straight lines given in Fig-

ures 5 to 6 and a total of 119 phase topologi-

cally distinct phase portraits given in Figures

5 and 6 all of them without limit cycles.

(ii) The topological classification is done using al-

gebraic invariants and hence it is independent

of the normal forms in which the systems may

be presented.

(iii) The bifurcation diagram of the phase portraits

of systems in the family QSL2p is done in

the twelve-dimensional parameter space R12

and it is presented in Diagrams j for j ∈
{5, 6, 7, 8}. These diagrams give an algorithm

to determine for any given system if it belongs

or not to the family QSL2p and in case it be-

longs to this family, it gives the specific phase

portrait.

Remark 1.11. Phase portraits for the quadratic

Riccati family were given before in [Llibre et al.,

2021]. However this is the first time that a com-

plete topological classification of this family was

achieved. This family has numerous phase por-

traits and to be able to obtain a complete list of

them we not only relied on the classical methods but

also used modern ones, practically all methods for

topologically classifying large families of quadratic

systems available to us today. We gave in the Ap-

pendix of preprint [Artés et al., 2023] a critical re-

view of [Llibre et al., 2021] that also sums up all

the methods we used in this work.

The main tool we used for obtaining the global

topological classification of this family was the ge-

ometry of the non-degenerate systems expressed

in their 118 distinct configurations of invariant

straight lines. In constructing the phase portraits
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this splitting of the family into 118 smaller subfam-

ilies, each one having the same configuration is very

helpful for handling the mass of phase portraits as

we pursue with our study of the phase portraits

within each one of the subfamilies of systems hav-

ing the same configuration. Furthermore we can

then use the bifurcation diagram in intrinsic form

in terms of invariant polynomials given in [Bujac

et al., 2022] to obtain an intrinsic bifurcation di-

agram of the phase portraits of the whole Ricatti

family in terms of polynomial invariants in the 12-

dimensional space

The main idea of the proof of our main theorem

is first to pick a specific configuration and then fol-

low the bifurcation diagram calculating the invari-

ants that lead to the chosen configuration, and then

calculating its resulting normal form. Once we have

this normal form we calculate the phase portraits

for that specific configuration by the usual classi-

cal method. Thus the splitting of the family into

normal forms is done here not only by the group

action but also by using the geometry of the sys-

tems. It is only afterwards that the computation

of all the phase portraits for each one of the 118

configurations is done, by usual classical methods .

The bifurcation diagram, done in terms of al-

gebraic invariants is also an algorithm for deciding

for any system given in any normal form if it is or

not a Riccati system, and if it is then to provide

with its phase portrait.

Both geometric and algebraic tools were used.

But for some configurations more tools were needed.

In the cases where there exist several potential

phase portraits we needed to rely on papers (on

structurally stable [Artés et al., 1998], codimension

1 systems [Artés et al., 2018b] and a paper on codi-

mension 2 systems [Artés et al., 2020b]) that have

studied the realizability of those potential phase

portraits. We also had to check if these phase

portraits were compatible or not with the geomet-

ric property expressed in the presence of invariant

straight lines as in Riccati systems. This geometric

property of the Riccati systems was instrumental in

eliminating some of the potential phase portraits.

This paper thus relies on most of the diverse

available techniques (geometric, algebraic, analyti-

cal and topological) in the global topological clas-

sifications of families of planar polynomial vector

fields.

Our article is organized as follows: In Section

2 we exhibit the main affine invariant polynomials

that intervene in this classification. In Section 3 we

present some preliminary results involving the use

of invariant polynomials, in particular we present

the bifurcation diagram in the 12-dimensional space

of the parameters, in terms of invariant polynomials

of the configurations of the family QSL2p obtained

in [Bujac et al., 2022]. The actual construction of

the phase portraits of the Riccati systems is done in

Section 4 where the statement (i) of Theorem 4.1

(corresponding to the case η > 0) is completely

proved). The rest on the proof of Theorem 4.1

comes from preprint [Artés et al., 2023]. The proof

of our Main Theorem follows from the classification

given in Theorem 4.1.

2. The main invariant polynomials associ-

ated to the class QSRic

Consider quadratic systems of the form (2). It

is known that on the set QS acts the group

Aff (2,R) of affine transformations on the plane

(cf. [Schlomiuk & Vulpe, 2005]). For every sub-

group G ⊆ Aff (2,R) we have an induced action of

G on QS. We can identify the set QS of systems

(2) with a subset of R12 via the map QS−→ R12

which associates to each system (2) the 12–tuple

ã = (a, c, d, g, h, k, b, e, f, l,m, n) of its coefficients.

We associate to this group action polynomials in

x, y and parameters which behave well with respect

to this action, the GL–comitants (GL–invariants),

the T–comitants (affine invariants) and the CT–

comitants. For their definitions as well as their de-

tailed constructions we refer the reader to the pa-

per [Schlomiuk & Vulpe, 2005] (see also [Artés et

al., 2021]).

Next we define the following 40 invariant poly-
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nomials needed for the class QSRic :

{
µ0, . . . , µ4, D, R, U, η, B1, B2, B3, M̃ , C2, θ, θ3,

θ5, K̃, Ñ , D̃, H1, H3, . . . ,H12, H15, H16, D1, N1,

N2, N5, N6, G2,G3

}
.

(4)

According to [Artés et al., 2021] (see also [Bal-

tag & Vulpe, 1997]) we apply the differential oper-

ator L = x · L2 − y · L1 acting on R[ã, x, y] with

L1 =2a
∂

∂c
+ c

∂

∂g
+

1

2
d
∂

∂h
+ 2b

∂

∂e
+ e

∂

∂l
+

1

2
f

∂

∂m
,

L2 =2a
∂

∂d
+ d

∂

∂k
+

1

2
c
∂

∂h
+ 2b

∂

∂f
+ f

∂

∂n
+

1

2
e

∂

∂m
,

to construct several invariant polynomi-

als from the set (4). More precisely us-

ing this operator and the affine invariant

µ0 = Res x
(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we con-

struct the following polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4,

where L(i)(µ0) = L(L(i−1)(µ0)).

Using these polynomial invariants we define some

new ones, which according to [Artés et al., 2021]

are responsible for the number and multiplicities of

the finite singular points of (2):

D =
[
3
(
(µ3, µ3)

(2), µ2

)(2)−
(
6µ0µ4 − 3µ1µ3 + µ2

2, µ4

)(4)]
/48,

P =12µ0µ4 − 3µ1µ3 + µ2
2,

R =3µ2
1 − 8µ0µ2,

S =R2 − 16µ2
0P,

T =18µ2
0(3µ

2
3 − 8µ2µ4) + 2µ0(2µ

3
2−

9µ1µ2µ3 + 27µ2
1µ4)−PR,

U =µ2
3 − 4µ2µ4.

In what follows we also need the so-called

transvectant of order k (see [Grace & Young, 1941],

[Olver, 1999]) of two polynomials f, g ∈ R[ã, x, y]

(f, g)(k) =
k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

In order to construct the remaining invariant

polynomials contained in the set (4) we first need

to define some elemental bricks which help us to

construct these elements of the set.

We remark that the following polynomials in

R[ã, x, y] are the simplest invariant polynomials of

degree one with respect to the coefficients of the

differential systems (2) which are GL-comitants:

Ci(x, y) = ypi(x, y)− xqi(x, y), i = 0, 1, 2;

Di(x, y) =
∂

∂x
pi(x, y) +

∂

∂y
qi(x, y), i = 1, 2.

Apart from these simple invariant polynomials we

shall also make use of the following nine GL-

invariant polynomials:

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) ,

T3 = (C0, D2)
(1) , T4 = (C1, C1)

(2) ,

T5 = (C1, C2)
(1) , T6 = (C1, C2)

(2) ,

T7 = (C1, D2)
(1) , T8 = (C2, C2)

(2) ,

T9 = (C2, D2)
(1) .

These are of degree two with respect to the coeffi-

cients of systems (2).

We next define a list of T -comitants:

Â(ã) = (C1, T8 − 2T9 +D2
2)

(2)/144,

D̂(ã, x, y) =
[
2C0(T8−8T9−2D2

2)+C1(6T7−T6)−
(C1, T5)

(1)−9D2
1C2+6D1(C1D2−T5)

]
/36,

Ê(ã, x, y) =
[
D1(2T9 − T8)− 3(C1, T9)

(1)−
D2(3T7 +D1D2)

]
/72,

K̂(ã, x, y) = (T8 + 4T9 + 4D2
2)/72,

Ĥ(ã, x, y) = (−T8 + 8T9 + 2D2
2)/72,
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B̂(ã, x, y) =
{
16D1(D2, T8)

(1)(3C1D1 − 2C0D2+

4T2) + 32C0(D2, T9)
(1)(3D1D2 − 5T6+

9T7) + 2(D2, T9)
(1)

(
27C1T4− 18C1D

2
1−

32D1T2+32(C0, T5)
(1)

)
+ 6(D2, T7)

(1)×
[
8C0(T8 − 12T9)− 12C1(D1D2+T7)+

D1(26C2D1+32T5) + C2(9T4 + 96T3)
]
+

6(D2, T6)
(1)

[
32C0T9 − C1(12T7+

52D1D2)− 32C2D
2
1

]
+ 48D2(D2, T1)

(1)×
(2D2

2 − T8)+6D1D2T4(T8−7D2
2−42T9)−

32D1T8(D2, T2)
(1) + 9D2

2T4(T6 − 2T7)−
16D1(C2, T8)

(1)(D2
1 + 4T3)+

12D1(C1, T8)
(2)(C1D2 − 2C2D1)+

12D1(C1, T8)
(1)(T7 + 2D1D2) + 96D2

2×[
D1(C1, T6t)

(1) +D2(C0, T6)
(1)

]
−

4D3
1D2(D

2
2 + 3T8 + 6T9)− 16D1D2T3×

(2D2
2+3T8) + 6D2

1D
2
2(7T6+2T7)−

252D1D2T4T9

}
/(2833),

F̂ (ã, x, y) =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7)+

48C0(D2, T9)
(1) − 9D2

2T4 + 288D1Ê−
24(C2, D̂)(2) + 120(D2, D̂)(1) − 36C1×
(D2, T7)

(1) + 8D1(D2, T5)
(1)

]
/144,

as well as the needed bricks:

A2(ã) =(C2, D̂)(3)/12,

A8(ã) =
(
(D̂, Ĥ)(2), D2

)(1)
/8,

A11(ã) =(F̂ , K̂)(2)/4,

A20(ã) =
(
(C2, D̂)(2), F̂

)(2)
/16,

A21(ã) =
(
(D̂, D̂)(2), K̂

)(2)
/16,

A39(ã) =
(
((D̂, D̂)(2), F̂

)(1)
, Ĥ

)(2)
/64,

A42(ã) =
(
((D̂, F̂ )(2), F̂

)(1)
, D2

)(1)
/16.

Now we can define the remaining invariant

polynomials of the set (4):

K̃(ã, x, y) = 4K̂ ≡ Jacob
(
p2(ã, x, y), q2(ã, x, y)

)
,

M̃(ã, x, y) = (C2, C2)
(2) ≡ 2Hess

(
C2(ã, x, y)

)
,

Ñ(ã, x, y) = K̃ − 4Ĥ,

η(ã) = (M̃, M̃)(2)/384 ≡ Discrim
(
C2(ã, x, y)

)
,

θ(ã) = − (Ñ , Ñ)(2)/2 ≡ Discrim
(
Ñ(ã, x, y)

)
;

θ3(ã) =A8 +A11,

B1(ã) =Res x

(
C2, D̃

)
/y9 = −2−93−8 (B2, B3)

(4) ,

B2(ã, x, y) = (B3, B3)
(2) − 6B3(C2, D̃)(3),

B3(ã, x, y) = (C2, D̃)(1) ≡ Jacob
(
C2, D̃

)
,

H1(ã) =−
(
(C2, C2)

(2), C2)
(1), D

)(3)
,

H3(ã, x, y) =(C2, D)(2),

H4(ã) =
(
(C2, D)(2), (C2, D2)

(1)
)(2)

,

H5(ã) =
(
(C2, C2)

(2), (D,D)(2)
)(2)

+

8
(
(C2, D)(2), (D,D2)

(1)
)(2)

,

H6(ã, x, y) =16N2(C2, D)(2) +H2
2 (C2, C2)

(2),

H7(ã) = (Ñ , C1)
(2),

H8(ã) =9
(
(C2, D)(2), (D,D2)

(1)
)(2)

+

2
[
(C2, D)(3)

]2
,

H9(ã) = −
(((

D̃, D̃)(2), D̃,
)(1)

, D̃
)(3)

,

H10(ã) =
(
(Ñ , D̃)(2), D2

)(1)
,

H11(ã, x, y) = 8Ĥ
[
(C2, D̃)(2) + 8(D̃,D2)

(1)
]
+

3
[
(C1, 2Ĥ − Ñ)(1) − 2D1Ñ

]2
,

H12(ã, x, y) = (D̃, D̃)(2) ≡ Hessian(D̃),

H15(ã) =
(
(D̃, D̃)(2), −4Ĥ

)(2)
,

H16(ã) =14A4
2 −A2

2(10A20 + 33A21)−
2A2(15A39 +A42),

G2(ã) =8H8 − 9H5,

G3(ã) =(µ0 − η)H1 − 6η(H4 + 12H10).

We remark that the above invariant polynomials

were constructed and used in [Artés et al., 2015,

Schlomiuk & Vulpe, 2008d, Schlomiuk & Vulpe,

2008c].

3. Preliminary results involving the use of

polynomial invariants

The following two lemmas reveal the geometrical

meaning of the invariant polynomials B1, B2, B3, θ

and Ñ .
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Lemma 3.1 ([Schlomiuk & Vulpe, 2004]).

For the existence of an invariant straight line in

one (respectively 2; 3 distinct) directions in the

affine plane it is necessary that B1 = 0 (respectively

B2 = 0; B3 = 0).

Lemma 3.2 ([Schlomiuk & Vulpe, 2004]). A

necessary condition for the existence of one couple

(respectively, two couples) of parallel invariant

straight lines of a system (2) corresponding to

a ∈ R12 is the condition θ(a) = 0 (respectively,

Ñ(a, x, y) = 0).

We remark that the invariant polynomials

µi(ã, x, y) (i = 0, 1, . . . , 4) defined earlier are re-

sponsible for the total multiplicity of the finite sin-

gularities of quadratic systems (2). Moreover they

detect whether a quadratic system is degenerate or

not. More exactly, according to [Baltag & Vulpe,

1997] (see also [Artés et al., 2021] we have the fol-

lowing lemma.

Lemma 3.3. Consider a quadratic system (S)

with coefficients a ∈ R12. Then:

(i) The total multiplicity of the finite singular-

ities of this system is 4− k if and only if for every

i such that 0 ≤ i ≤ k − 1 we have µi(a, x, y) = 0 in

R[x, y] and µk(a, x, y) ̸= 0.

(ii) The system (S) is degenerate (i.e.

gcd(p, q) ̸= constant) if and only if µi(a, x, y) = 0

in R[x, y] for every i = 0, 1, 2, 3, 4.

On the other hand the invariant polynomials

η, M̃ and C2 govern the number of real and com-

plex infinite singularities. More precisely, according

to [Sibirskii, 1998] (see also [Schlomiuk & Vulpe,

2005]) we have the next result.

Lemma 3.4. The number of infinite singularities

(real and complex) of a quadratic system in QS is

determined by the following conditions:

(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real if η = 0 and M̃ ̸= 0;

(iv) 1 real if η = M̃ = 0 and C2 ̸= 0;

(v) ∞ if η = M̃ = C2 = 0.

Moreover, the quadratic systems (2), for each one

of these cases, can be brought via a linear transfor-

mation to the corresponding case of the following

canonical systems (SI)− (SV ):
{
ẋ =a+ cx+ dy + gx2 + (h− 1)xy,

ẏ =b+ ex+ fy + (g − 1)xy + hy2;
(SI)

{
ẋ =a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ =b+ ex+ fy − x2 + gxy + hy2;
(SII)

{
ẋ =a+ cx+ dy + gx2 + hxy,

ẏ =b+ ex+ fy + (g − 1)xy + hy2;
(SIII)

{
ẋ =a+ cx+ dy + gx2 + hxy,

ẏ =b+ ex+ fy − x2 + gxy + hy2;
(SIV )

{
ẋ =a+ cx+ dy + x2,

ẏ =b+ ex+ fy + xy.
(SV )

Now we define the affine comitants which are

responsible for the existence of invariant lines for a

non-degenerate quadratic system (2).

Let us apply a translation x = x′+x0, y = y′+
y0 to the polynomials p(ã, x, y) and q(ã, x, y). We

obtain p̂(â(ã, x0, y0), x
′, y′) = p(ã, x′ + x0, y

′ + y0),

q̂(â(ã, x0, y0), x
′, y′) = q(ã, x′ + x0, y

′ + y0). Let us

construct the following polynomials

Γi(ã, x0, y0) ≡Res x′
(
Ci

(
â(ã, x0, y0), x

′, y′
)
,

C0

(
â(ã, x0, y0), x

′, y′
))

/(y′)i+1,

Γi(ã, x0, y0) ∈R[ã, x0, y0], (i = 1, 2).

Notation 3.1.

Ẽi(ã, x, y) = Γi(ã, x0, y0)|{x0=x, y0=y} ,

Ẽi(ã, x, y) ∈R[ã, x, y] (i = 1, 2).
(5)

Observation 3.1. We note that the polynomials

Ẽ1(ã, x, y) and Ẽ2(ã, x, y) thus constructed are affine

comitants of systems (2) and are homogeneous

polynomials in the coefficients a, . . . , n and non-

homogeneous in x, y and

degã Ẽ1 =3, deg (x,y) Ẽ1 = 5,

degã Ẽ2 =4, deg (x,y) Ẽ2 = 6.
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Notation 3.2. Let Ei(ã, X, Y, Z) (i = 1, 2) be the

homogenization of Ẽi(ã, x, y), i.e.

E1(ã, X, Y, Z) =Z5Ẽ1(ã, X/Z, Y/Z),

E2(ã, X, Y, Z) =Z6Ẽ2(ã, X/Z, Y/Z)

and

H(ã, X, Y, Z) = gcd
(
E1(ã, X, Y, Z), E2(ã, X, Y, Z)

)

in R[ã, X, Y, Z].

The geometrical meaning of these affine comi-

tants is given by the two following lemmas (see

[Schlomiuk & Vulpe, 2004]):

Lemma 3.5. The straight line L(x, y) ≡ ux+vy+

w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0) is an invari-

ant line for a quadratic system (2) if and only if

the polynomial L(x, y) is a common factor of the

polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) over C, i.e.

Ẽi(a, x, y) = (ux+ vy + w)W̃i(x, y) (i = 1, 2),

where W̃i(x, y) ∈ C[x, y].

Lemma 3.6. 1) If L(x, y) ≡ ux + vy + w = 0,

u, v, w ∈ C, (u, v) ̸= (0, 0) is an invariant straight

line of multiplicity k for a quadratic system (2)

corresponding to a point a ∈ R12then L(x, y)]k |
gcd(Ẽ1, Ẽ2) in C[x, y], i.e. there exist Wi(a, x, y) ∈
C[x, y] (i = 1, 2) such that

Ẽi(a, x, y) = (ux+vy+w)kWi(a, x, y), i = 1, 2. (6)

2) If the line l∞ : Z = 0 is of multiplicity k >

1 then Zk−1 | gcd(E1, E2), in other words we have

Zk−1 | H(a, X, Y, Z).

In [Bujac et al., 2022] the classification of the

family QSL2p of quadratic differential systems pos-

sessing two parallel invariant affine lines according

to their configurations of invariant lines is given.

Since the family QSRic of quadratic Riccati systems

is a subfamily of QSL2p it is clear that this clas-

sification is a very useful one in order to classify

topologically the family QSRic .

We mention that in [Bujac et al., 2022, see

Theorem 5.1] the authors determined the neces-

sary and sufficient conditions for an arbitrary non-

degenerate quadratic system to belong to the family

QSL2p . We have the following lemma.

Lemma 3.7. An arbitrary quadratic system (2)

belongs to the class QSL2p if and only if θ = B1 =

H7 = 0 and one of the following conditions holds:

(i) If η > 0 then either Ñ ̸= 0, or Ñ = 0, θ3 = 0.

(ii) If η < 0 then Ñ ̸= 0.

(iii) If η = 0, M̃ ̸= 0 then either Ñ ̸= 0, or Ñ = 0,

K̃ ̸= 0, θ3 = 0, or Ñ = K̃ = 0, B2 ̸= 0,

θ5 = 0, or Ñ = K̃ = B2 = 0.

(iv) If η = M̃ = 0, C2 ̸= 0 then either Ñ ̸= 0, or

Ñ = B2 = 0.

(v) If η = M̃ = C2 = 0.

Remark 3.8. We point out that in the statement

(iv) of the above lemma (which is the same as in

[Bujac et al., 2022, see Theorem 5.1]) it is claimed

that in the case Ñ = 0 the condition B2 = 0 is

necessary for a quadratic system to be in the class

QSL2p . However this condition was omitted in

Diagram 4 of [Bujac et al., 2022]. Here we presented

Diagrams 1 to 4 given in [Bujac et al., 2022] but

with the correction to Diagram 4 by addition of the

corresponding branch.

Based on [Bujac et al., 2022, see Theorem 6.1]

the next theorem describes all the configurations

which could have systems in QSL2p as well as the

corresponding invariant criteria for their realiza-

tion.

Theorem 3.9. If a quadratic non-degenerate sys-

tem (S) belongs to the class of systems QSL2p, then

this system possesses one of the configurations of in-

variant lines indicated below if and only if the cor-

responding conditions hold respectively:

(i) For η > 0 the system (S) possesses one of the

configurations given in Figure 1 if and only
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if one of the sets of conditions given in the

Diagram 1 holds, correspondingly.

(ii) For η < 0 the system (S) possesses one of the

configurations given in Figure 2 if and only if

the one of the sets of conditions given in the

Diagram 2 holds, correspondingly.

(iii) For η = 0 and M̃ ̸= 0 the system (S) pos-

sesses one of the configurations given in Fig-

ure 3 if and only if one of the sets of con-

ditions given in the Diagram 3 holds, corre-

spondingly.

(iv) For η = M̃ = 0 the system (S) possesses one

of the configurations given in Figure 4 if and

only if one of the sets of conditions given in

the Diagram 4 holds, correspondingly.
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Figure 1. The configurations of quadratic systems in QSL2p (case η > 0)
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Figure 2. The configurations of quadratic systems in QSL2p (case η < 0)
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Figure 3. The configurations of quadratic systems in QSL2p (case η = 0 ̸= M̃)
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Figure 3 (continued): The configurations of quadratic systems in QSL2p (case η = 0 ̸= M̃)
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Figure 4. The configurations of quadratic systems in QSL2p (case η = M̃ = 0)
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Diagram 1. The invariant criteria for configurations of systems in QSL2p (case η > 0)
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Diagram 1 (continued): The invariant criteria for configurations of systems in QSL2p (case η > 0)
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Diagram 2. The invariant criteria for configurations of systems in QSL2p (case η < 0)
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Diagram 3. The invariant criteria for configurations of systems in QSL2p (case η = 0 ̸= M̃)
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Diagram 3 (continued): The invariant criteria for configurations of systems in QSL2p (case η = 0 ̸= M̃)
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Diagram 3 (continued): The invariant criteria for configurations of systems in QSL2p (case η = 0 ̸= M̃)

Diagram 4. The invariant criteria for configurations of systems in QSL2p (case η = 0 = M̃)
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4. Phase portraits of the Riccati systems

Theorem 4.1. If a quadratic system (S) belongs

to the class of Riccati systems QSRic , then system

(S) possesses one of the following phase portraits

if and only if the corresponding conditions hold re-

spectively:

(i) For η > 0 a non-degenerate (respectively,

degenerate) system (S) possesses one of the

phase portraits Ric. 1–Ric. 27 (respectively,

Ric.D1–Ric.D3 ) given in Figure 5 (respec-

tively, Figure 6) if and only if one of the sets

of conditions given in Diagram 5 holds, cor-

respondingly.

(ii) For η < 0 a non-degenerate (respectively,

degenerate) system (S) possesses one of the

phase portraits Ric. 28–Ric. 35 (respectively,

Ric.D4, Ric. 28d and Ric. 35d) if and only if

one of the sets of conditions given in Diagram

6 holds, correspondingly. The phase por-

traits Ric. 28–Ric. 35 (respectively, Ric.D4)

are given in Figure 5 (respectively, Figure 6),

whereas Ric. 28d and Ric. 35d are topologi-

cally equivalent to Ric. 28 and Ric. 35, corre-

spondingly.

(iii) For η = 0 and M̃ ̸= 0 a non-degenerate (re-

spectively, degenerate) system (S) possesses

one of the phase portraits Ric. 36–Ric. 76 (re-

spectively, Ric.D5–Ric.D18 and Ric. 53d) if

and only if one of the sets of conditions given

in Diagram 7 holds, correspondingly. The

phase portraits Ric. 36–Ric. 76 (respectively,

Ric.D5–Ric.D18) are given in Figure 5 (re-

spectively, Figure 6), whereas Ric. 53d is topo-

logically equivalent to Ric. 53.

(iv) For η = M̃ = 0 a non-degenerate (respec-

tively, degenerate) system (S) possesses one

of the phase portraits Ric. 28 and Ric. 77–

Ric. 93 (respectively, Ric.D19–Ric.D26 and

Ric. 28d) if and only if one of the sets of

conditions given in Diagram 8 holds, cor-

respondingly. The phase portraits Ric. 28

and Ric. 77–Ric. 93 (respectively, Ric.D19–

Ric.D26) are given in Figure 5 (respectively,

Figure 6), whereas Ric. 28d is topologically

equivalent to Ric. 28.

Proof of Theorem 4.1: First of all we prove the

following lemma.

Lemma 4.2. Consider an arbitrary quadratic sys-

tem (2) and assume that its phase portrait possesses

a separatrix connection between two singularities p1
and p2 at least one of them finite. Suppose that this

connection is not part of an invariant straight line.

Then inside the region R bordered by this separatrix

and the segment p1p2 necessarily there exists either

one singularity or at least one of the points p1 or p2
is a non-elemental singularity which is α− (or ω−)

limit for orbits that reach the singular point inside

the region R.

Proof: According to [Artés et al., 2018, Lemma 3.4]

(see also [Ye et al., 1986]) if a straight line in a

quadratic system passes through two finite singu-

larities p1 and p2 then either this straight line is

invariant or the trajectories of the flow crossing the

segment p1p2 do it in the opposite direction as the

trajectories that cross the half lines ∞p1 and p2∞.

On the other hand by Lemma [Artés et al.,

2018, Lemma 3.5] (see also [Ye et al., 1986]) the

straight line connecting one finite singular point and

a couple of infinite singular points in a quadratic

system is either formed by trajectories or it is a line

with exactly one contact point. This contact point

is the finite singularity. For the latter case the flow

goes in different directions on each half line.

An orbit passing through a point inside R can

neither have its α− nor ω−limit inside the closure

R of R. Thus the orbits must come from outside R

and proceed by going out of it, forcing then the ex-

istence of at least one contact point on the segment

p1p2 which contradicts Lemma 3.4 (or Lemma 3.5)

from [Artés et al., 2018].

In the following we will prove only the case (i)

of Theorem 4.1, i.e. the condition η > 0 holds. The

rest of the cases are proved in [Artés et al., 2023].
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Figure 5. The phase portraits of Riccati quadratic systems
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Figure 5 (continuation): The phase portraits of Riccati quadratic systems
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Figure 6. The phase portraits of Riccati degenerate quadratic systems

Corollary 4.3. If the phase portrait of a quadratic system possesses a separatrix connection between two

singularities p1 and p2 at least one of them being finite and the region R is defined like in previous lemma

and does not contain the required elements imposed by Lemma 4.2 then the region R is empty and the

separatrix connection is part of an invariant straight line.

According to the Diagram 1 we examine two subcases: Ñ ̸= 0 and Ñ = 0.

4.1. The subcase Ñ ̸= 0

Since η > 0, according to [Sibirskii, 1998] (see also [Schlomiuk & Vulpe, 2005]) we consider the following

canonical form:
ẋ =a+ cx+ dy + gx2 + (h− 1)xy,

ẏ =b+ ex+ fy + (g − 1)xy + hy2,
(7)

for which by Lemma 3.7 the conditions θ = B1 = H7 = 0 have to be fulfilled.
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Diagram 5. The invariant criteria for phase portraits of systems in QSRic (case η > 0).
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Diagram5 (continuation): The invariant criteria for phase portraits of systems in QSRic (case η > 0).
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Diagram5 (continuation): The invariant criteria for phase portraits of systems in QSRic (case η > 0).

Diagram 6. The invariant criteria for phase portraits of systems in QSRic (case η < 0).
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Diagram 7. The invariant criteria for phase portraits of systems in QSRic (case η = 0 ̸= M̃).
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Diagram7 (continuation): The invariant criteria for phase portraits of systems in QSRic (case η = 0 ̸= M̃).
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Diagram7 (continuation): The invariant criteria for phase portraits of systems in QSRic (case η = 0 ̸= M̃).
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Diagram7 (continuation): The invariant criteria for phase portraits of systems in QSRic (case η = 0 ̸= M̃).

As it was shown in [Bujac et al., 2022] forcing the conditions θ = B1 = H7 = 0 we arrive to the family

of systems (11) (from [Bujac et al., 2022]), i.e. we obtain the following family of a Riccati systems:

ẋ =a+ cx+ gx2,

ẏ =b+ ex+ fy + (g − 1)xy + y2.
(8)

We observe that for these systems µ0 = g2 ≥ 0 and since η > 0 considering [Artés et al., 2015] (see

Diagram 1 on the page 36) we have the next remark.
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Diagram 8. The invariant criteria for phase portraits of systems in QSRic (case η = 0 = M̃).
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Remark 4.4. In the case µ0 ̸= 0 (then µ0 > 0)

systems (8) possess at infinity one saddle and two

nodes, all elemental.

Since by Lemma 3.1 the condition B2 = 0

is necessary for the existence of invariant lines at

least in two directions, we consider two possibili-

ties: B2 = 0 and B2 ̸= 0. Even if in the Diagram 1

the case B2 = 0 follows after B2 ̸= 0 we begin here

with B2 = 0. Our motivation is because in the case

B2 = 0 the systems belong to a higher codimension

subfamilies and these subfamilies form an skeleton

from which the systems with B2 ̸= 0 will bifurcate.

4.1(A). The possibility B2 = 0.

According to Diagram 1 we examine two cases:

B3 ̸= 0 and B3 = 0.

The case B3 ̸= 0. Then by Lemma 3.1 we could

not have invariant lines in three directions and we

examine the corresponding cases provided by Dia-

gram 1. Following this diagram we consider each

one of the configurations of invariant lines in order

to determine how many topological phase portraits

could be obtained from each one of the configura-

tions.

1: µ0 ̸= 0, ÑH10 < 0 ⇒ Config. 4.13. Since

we are in the class of quadratic systems possess-

ing invariant lines of total multiplicity 4 we shall

use the classification given in [Schlomiuk & Vulpe,

2008d]. According to this classification the config-

uration Config. 4.13 leads to the two phase por-

traits: Portrait 4.13(a) and Portrait 4.13(b). How-

ever we have detected an inexactitude concerning

these two phase portraits. More exactly we have

the next remark.

Remark 4.5. In Table 2 [Schlomiuk & Vulpe,

2008d, page 55] it is claimed that in the case Ñ ̸= 0

we have Portrait 4.13(a) if G2 < 0 and Portrait

4.13(b) if G2 > 0. On the other hand in the proof

of the Main Theorem (see page 68) we find an op-

posite affirmation, i.e. we have Portrait 4.13(a) if

G2 > 0 and Portrait 4.13(b) if G2 < 0. This is

correct and in Table 2 the conditions G2 < 0 and

G2 > 0 from the 3rd column and 1st and 2nd lines,

respectively, must be interchanged.

We denote the phase portraits Portrait 4.13(b)

and Portrait 4.13(a) by Ric. 1 and Ric. 2 .

For each branch of the Diagrams 1 to 4 for the

configurations of the family QSL2p leading to a

specific configuration we find the phase portraits of

the systems having that configuration of invariant

lines and complete these diagrams by adding the

branch of these various phase portraits. Many of

these phase portraits have been encountered before

in the papers on QSL≥3. Since this paper is the

first one that has the complete topological classifi-

cation of Riccati systems, we denote a phase por-

trait of the Riccati family by Ric. i starting with

the two phase portraits Ric. 1 and Ric. 2 just in-

troduced here above and of course taking care not

to repeat anyone of these phase portraits in this list.

Thus considering Remark 4.5 we get Ric. 1 if

G2 < 0 and Ric. 2 if G2 > 0.

2: µ0 ̸= 0, ÑH10 > 0, H9 ̸= 0 and either (i)

H16 < 0 ⇒ Config. 4.9a or (ii) H16 > 0 ⇒ Config.

4.9. We examine these two cases together because

in the paper [Schlomiuk & Vulpe, 2008d] (as well

as in [Schlomiuk & Vulpe, 2008]) the configuration

Config. 4.9a is omitted. This mistake was cor-

rected in [Bujac et al., 2022] (see Remark 6.2 and

Lemma 6.1) where a new invariant polynomial H16

was defined. This invariant distinguishes these two

configurations as it is indicated above. To be more

precise we present here jointly one result from [Bu-

jac et al., 2022] (see Lemma 6.1) and one result

from [Schlomiuk & Vulpe, 2008d] (see Table 2).

Lemma 4.6. Assume that for an arbitrary

quadratic system (2) the conditions η > 0,

θ = H7 = B2 = 0, µ0B3H4H9 ̸= 0 and ÑH10 > 0

hold. Then the configuration of the invariant

lines of this system corresponds to Config. 4.9a if

H16 < 0 and to Config. 4.9 if H16 > 0. Moreover

the phase portrait of this system corresponds to

one of the portraits given below if and only if the

corresponding set of the conditions hold:



36 J.C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe

Portrait 4.9(a) ⇔ G2 > 0, H4 > 0, G3 < 0;

Portrait 4.9(b) ⇔ either G2 > 0, H4 < 0

or G2 < 0;

Portrait 4.9(c) ⇔ G2 > 0, H4 > 0, G3 > 0.

Next we would like to distinguish which of these

three phase portraits is generated by the configura-

tion Config. 4.9a and which by Config. 4.9.

Assume that for an arbitrary quadratic system

(2) the conditions provided by Lemma 4.6 hold.

Then as it was shown in [Bujac et al., 2022] (see the

proof of Lemma 6.1), this system could be brought

via an affine transformation and time rescaling to

the 2-parameter family of systems

ẋ = x2 − 1, ẏ = y(y + ax+ b). (9)

For these systems we calculate

H4 =− 48a
[
(a− 2)2 − b2

]
,

H16 =180(b2 − a2)
[
(a− 2)2 − b2

]2
,

G2 =13824(a− 1)(b2 − a2),

G3 =288a(a− 1)
[
(a− 2)2 − b2

]
.

Considering these expressions it is not too difficult

to prove the following implications:

� The conditions H16 < 0, G2 > 0 and H4 > 0

imply G3 > 0.

� The conditions H16 > 0 and G2 > 0 imply

H4 > 0 and G3 < 0.

Therefore taking into account Lemma 4.6 we can

state the next remark.

Remark 4.7. (i) The configuration Config. 4.9a

(i.e. H16 < 0) leads to the phase portrait Portrait

4.9(b) if and only if either G2 < 0, or G2 > 0 and

H4 < 0; and it leads to the phase portrait Portrait

4.9(c) if and only if G2 > 0 and H4 > 0.

(ii) The configuration Config. 4.9 (i.e. H16 >

0) leads to the phase portrait Portrait 4.9(b) if and

only if G2 < 0 and to the phase portrait Portrait

4.9(a) if and only if G2 > 0.

We denote Portrait 4.9(b), Portrait 4.9(c) and

Portrait 4.9(a) by Ric. 3, Ric. 4 and Ric. 5, respec-

tively.

3: µ0 ̸= 0, ÑH10 > 0, H9 = 0 ⇒ Config. 4.10.

Considering [Schlomiuk & Vulpe, 2008d] (see Table

2) and taking into account the condition Ñ ̸= 0

we obtain that Config. 4.10 leads to one of the

three possible phase portraits, determined by the

invariant polynomials H4 and G3. More exactly we

have the following classification of the correspond-

ing phase portraits:

Portrait 4.10(a) ⇔ H4 > 0, G3 > 0;

Portrait 4.10(b) ⇔ H4 < 0;

Portrait 4.10(c) ⇔ H4 > 0, G3 < 0.

We denote Portrait 4.10(b), Portrait 4.10(c) and

Portrait 4.10(a) by Ric. 6, Ric. 7 and Ric. 8, respec-

tively.

4: µ0 ̸= 0, H10 = 0 ⇒ Config. 4.22. Since

Ñ ̸= 0 according to [Schlomiuk & Vulpe, 2008d] we

get Portrait 4.22(a) if H1 > 0 and Portrait 4.22(b)

if H1 < 0. We denote here Portrait 4.22(b) by

Ric. 9 and Portrait 4.22(a) by Ric. 10.

5: µ0 = 0, µ2 ̸= 0, H9 ̸= 0 ⇒ Config. 4.16. By

[Schlomiuk & Vulpe, 2008d] we get Portrait 4.16(a)

if G2 > 0 and Portrait 4.16(b) if G2 < 0. We denote

Portrait 4.16(b) and Portrait 4.16(a) by Ric. 11,

and Ric. 12, respectively.

6: µ0 = 0, µ2 ̸= 0, H9 = 0 ⇒ Config. 4.17.

According to [Schlomiuk & Vulpe, 2008d, Table 2]

this configuration leads to a unique phase portrait

which we denote by Ric. 13.

7: µ0 = 0, µ2 = 0 ⇒ Config. 4.34. In this case

according to [Schlomiuk & Vulpe, 2008d] (see page

56, Table 2) we could have only two phase portraits:

Portrait 4.34(a) and Portrait 4.34(b). Moreover it

is claimed that the first phase portrait is defined by

the condition H4 < 0 and the second one by the

condition H4 > 0.

However we have detected an error in the above

paper. More precisely the next remark holds.

Remark 4.8. In the article [Schlomiuk & Vulpe,

2008d] in Table 3(a) on page 57 there appear
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the phase portraits Portrait 4.34(a) with Portrait

4.34(b). In the proof for the invariant conditions

for these two phase portraits each one of them ap-

peared with the correct conditions. However in the

Table these conditions were interchanged. More ex-

actly, in the case H4 > 0 (respectively H4 < 0)

we must have a phase portrait with a separatrix

connection (respectively without separatrix connec-

tion).

Considering this remark we deduce that in the

caseH4 < 0 the phase portrait corresponds to Ric. 2

(which is equivalent to Portrait 4.34(b)), whereas in

the case H4 > 0 the phase portrait corresponds to

Ric. 1 (which is equivalent to Portrait 4.34(a)).

The case B3 = 0. Then by Lemma 3.1 we could

have invariant lines in three directions. Moreover

according to Diagram 1 the systems in this class

possess invariant lines of total multiplicity five. So

we shall apply the classification of this family of

systems given in [Schlomiuk & Vulpe, 2004]. Ac-

cording to Diagram 1 we have to consider the next

3 possibilities.

1: µ0 ̸= 0, H1 ̸= 0 ⇒ Config. 5.1. Accord-

ing to [Schlomiuk & Vulpe, 2008b] (see Diagram 3)

this configuration leads to the unique phase portrait

given by Picture 5.1 which is topologically equiva-

lent to Ric. 3.

2: µ0 ̸= 0, H1 = 0 ⇒ Config. 5.8 By [Schlomiuk

& Vulpe, 2008b] we arrive at the unique phase

portrait given by Picture 5.8 which we denote by

Ric. 14.

3: µ0 = 0 ⇒ Config. 5.7. According to

[Schlomiuk & Vulpe, 2008b] we get the unique

phase portrait given by Picture 5.7 (≃ Ric. 12 )

4.1(B). The possibility B2 ̸= 0.

By Lemma 3.1 systems (8) could possess invariant

lines only in the direction x = 0 and we examine

the corresponding cases provided by Diagram 1.

1: µ0 ̸= 0, ÑH10 < 0. According to Diagram 1

these conditions lead to Config. 3.14. We observe

that due to the condition µ0 ̸= 0 by Remark 4.4 at

infinity there are one saddle and two nodes.

On the other hand, according to [Sotomayor &

Paterlini, 1983] for quadratic systems we have the

next lemma.

Lemma 4.9. If two affine separatrices of a pair of

opposite infinite saddles connect, then this separa-

trix connection is an invariant straight line.

Therefore by B2 ̸= 0 we could not have a sepa-

ratrix connection and this leads to the unique phase

portrait which is topological equivalent to the one

given by Ric. 2.

Remark 4.10. We point out that some of the phase

portraits that we will obtain for the systems with

B2 ̸= 0 are topologically equivalent to some already

obtained for the case B2 = 0. This happens even if

the systems with B2 ̸= 0 belong to the class QSL3,

whereas the systems with B2 = 0 belong to the class

QSL≥4. The affine equivalence relation is finer than

the topological one. This means that a topological

equivalence class is a union of distinct affine equiv-

alence classes. This is basically what occurs here it

is then not at all surprising that two portraits from

distinct affine equivalence classes are united into a

unique larger topological equivalence class

2: µ0 ̸= 0, ÑH10 > 0,D < 0, H15 < 0 ⇒ Config.

3.15. We observe that the phase plane is divided

by two parallel real invariant lines in three regions.

And for the affine separatrices of the opposite in-

finite saddles there exists the unique possibility to

go to the infinite node located at the intersections

of invariant lines (in the corresponding direction).

As a result we arrive at the unique phase portrait

Ric. 2.

3: µ0 ̸= 0, ÑH10 > 0,D < 0, H15 > 0 ⇒ Con-

fig. 3.16. This family has four finite singularities:

two saddles and two nodes and three elemental in-

finite singularities: two nodes and one saddle (see

Remark 4.4). Similarly to the case of Config. 3.15

the phase plane of this family is divided by two par-

allel real invariant lines in three regions. The finite
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singularities are located on these lines, more exactly

a saddle and a node on each line. Clearly the sin-

gular point at infinity common to the two lines is a

node. So in each one of the three regions there are

two separatrices which may either connect or not.

If there is no separatrix connection, then sys-

tems (8) belong to family 10 of the structurally sta-

ble quadratic systems modulo limit cycles [Artés et

al., 1998]. From the 16 possible phase portraits of

this family it is easy to see that only three of them

are compatible with the existence of two real paral-

lel invariant lines. More exactly we have the phase

portraits presented in Figure 7 as S210,14, S210,15 and

S210,16.

Figure 7. Potential phase portraits generated by

Config. 3.16

In the case when they have a connection of sep-

aratrices then according to [Artés et al., 2018] they

must be either the phase portrait U1
D,44 or U1

D,60

(see Figure 7), which bifurcate in the previously

mentioned structurally stable systems.

According to [Artés et al., 2018, Lemma 3.5]

(see also [Ye et al., 1986]) these two phase portraits

force (in this family) the existence of another in-

variant line which contradicts the condition B2 ̸= 0

(see Lemma 3.1).

So Config. 3.16 leads to three topologically dis-

tinct phase portraits: two of them, corresponding

to S210,15 and S210,14 are new and we denote them

by Ric. 15 and Ric. 16, respectively. The remain-

ing one which corresponds to S210,16 is topologically

equivalent to Ric. 3.

In order to construct the affine invariant con-

ditions for distinguishing each one of the detected

phase portraits we determine first the correspond-

ing canonical form of the Riccati systems possessing

Config. 3.16.

As it was shown in [Bujac et al., 2022] if for a

system (8) the conditions

η > 0, Ñ ̸= 0, µ0 ̸= 0, ÑH10 > 0, D < 0, H15 > 0

hold, then this system possess Config. 3.16 and via

an affine transformation and time rescaling it could

be brought to the canonical form (37) from [Bujac

et al., 2022], i.e. it belongs to the family of systems

ẋ =g(x2−1), ẏ = b+ ex+ (g − 1)xy + y2. (10)

For these systems calculations yield

B2 =− 648
[
e2 + b(g − 1)2

]
×

[
e2+(b+g)(1+g)2

]
x4≡−648x4Φ1Φ2,

D =− 768g6
[
(g − 1)2 − 4(b+ e)

]
×

[
(g − 1)2 − 4(b− e)

]
≡ −768g6V1V2,

H15 =256g4(1− 4b− 2g + g2) ≡
128(V1 + V2),

Ñ =(g2 − 1)x2, µ0 = g2

(11)

and we observe that the conditions D < 0 and

H15 > 0 imply V1 > 0 and V2 > 0 which in addition

with µ0 ̸= 0 guarantee the existence of four finite

real distinct singularities. We prove the following

lemma.

Lemma 4.11. For the 3-parameter family of sys-

tems (10) we may assume without loosing the gen-

erality that the conditions g > 0 and e > 0 hold.

Proof: Applying the linear transformation x1 = −x,

y1 = −x+y to systems (10) we arrive at the systems

ẋ1 =g1(x
2
1 − 1),

ẏ1 =b1 + e1x1 + (g1 − 1)x1y1 + y21
(12)

which have exactly the form (10) but with new pa-

rameters

g1 = −g, b1 = b+ g, e1 = −e.
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Thus we may assume in systems (10) g > 0. Then

keeping the sign of this parameter via the rescaling

(x, y, t) → (−x,−y,−t) we change the sign of the

parameter e and this completes the proof of Lemma

4.11.

Next we fix the parameter g = g0 obtaining

a family of two parameters b and e. We point

out, that due to the conditions (11) the condition

g0(g
2
0 − 1) ̸= 0 has to hold. However consider-

ing Lemma 4.11 it is clear that we could choose

g0 ∈ (0, 1) ∪ (1,∞) and clearly these two intervals

are distinguished by the invariant polynomial Ñ .

More exactly we could choose g0 ∈ (0, 1) if Ñ < 0

and g0 ∈ (1,∞) if Ñ > 0.

In order to construct the bifurcation diagram

for (10) with fixed g = g0, additionally to the in-

variant polynomials D and B2 we consider here two

other invariant polynomials: G2 and H16. For sys-

tems (10) we calculate

G2 =13824g2
[
2b(1 + g2) + 2e2 + g(g − 1)2

]
,

H16 =− 180g6
[
4b+ (1 + g)2

]
×

[
16b2 + 16bg − 8e2 + (g2 − 1)2

]
.

In what follows we investigate the locations in

the plane (e, b) and their geometry of the following

curves, depending on the parameter g0:

V1(b, e, g0) = 0 ⇒ b = −e+ (g0 − 1)2/4; (V1)

V2(b, e, g0) = 0 ⇒ b = e+ (g0 − 1)2/4; (V2)

Φ1(b, e, g0) = 0 ⇒ b = − e2

(g0 − 1)2
; (F1)

Φ2(b, e, g0) = 0 ⇒ b = − e2

(g0 + 1)2
− g0; (F2)

G2(b, e, g0) = 0 ⇒ b =− e2

g20 + 1
− (g0 − 1)2g0

2
(
g20 + 1

) ; (G′)

H16(b, e, g0) = 0 ⇒





b = −(g0 + 1)2/4;

16b2 + 16bg0 − 8e2+

(g20 − 1)2 = 0.

(H′)

(H′′)

(13)

Remark 4.12. We observe that for any value of the

parameter g0 ̸= 0,±1 the curves (V1), (V2) and (H′)
are lines; (F1) and (F2) are parabolas and the curve

(H′′)) is a hyperbola.

It is not too difficult to determine that in the

domain D̂ defined by the condition 0 < e ≤ −b +

(g0 − 1)2/4 (where we have V1 ≥ 0 and V2 > 0)

there are located only the following four points of

intersection of some of the above defined curves:

E1

(1
2
(g0 − 1)2, −1

4
(g0 − 1)2

)
:

intersection of (V1), (F1), (G′), (H′′);

E2

(1
2
(g0 + 1)2,

1

4
(1 + 6g0 + g20)

)
:

intersection of (V1), (F2), (G′), (H′′);

E3

(1
2
(g20 − 1), −1

4
(g0 + 1)2

)
:

intersection of (H′), (H′′), (F1), (F2);

E4

(1
2
(g20 + 1), −1

4
(g0 + 1)2

)
:

intersection of (V1), (H′).

We point out that the point E3 is located in the

domain D̂ for g20 − 1 > 0 (i.e. Ñ > 0). In this case

the corresponding symmetric point with respect to

the axis e = 0 is E′
3

(
− 1

2(g
2
0 − 1), −1

4(g0 + 1)2
)
.

So in the case Ñ < 0 the point E′
3 is located in

the domain D̂. However this does not affect the

number and the positions of the intersection points

Ei depending on the parameter g0.

We point out several properties of the curves

(V1), (F1), (F2), (H′) and (H′′) as well as of their

intersection points.

Lemma 4.13. For any value of the parameter g0 >

0, g0 ̸= 1 the following properties hold:

(i) The four points Ej (j = 1, 2, 3, 4) are distinct,

i.e. Ej ̸= Ek, j, k ∈ {1, 2, 3, 4}, j ̸= k.

(ii) The parabolas (F1) and (F2) are located en-

tirely in the domain b − (g0 − 1)2/4 ≤ e ≤
−b+ (g0 − 1)2/4 and each one of them has a

tangent point with the line (V1).

(iii) For g0 > 0 the hyperbola (H′′) is reducible into
two intersecting straight lines for two distinct

values of g0: g′0 ∈ (0, 1) and g′′0 ∈ (1,∞).

Proof: The statement (i) follows directly from

the comparison of the coordinates of the points



40 J.C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe

Ej(ej , bj) (j = 1, 2, 3, 4). We have

e1 − e2 = −2g0, e1 − e3 = 1− g0, e1 − e4 = −g0,

e2 − e3 = g0 + 1, e2 − e4 = g0, e3 − e4 = −1

and evidently due to the conditions µ0Ñ ̸= 0 (i.e.

g0(g
2
0−1) ̸= 0) we have ej−ek ̸= 0, j, k ∈ {1, 2, 3, 4},

j ̸= k. In other words all four mentioned points of

intersections are distinct for any value of the pa-

rameter g0 holding the condition g0(g
2
0 − 1) ̸= 0.

(ii) Consider now the curves (F1) (i.e. b =

−e2/(g0 − 1)2) and (F2) (i.e. b = −e2/(g0 + 1)2 −
g0) and taking into account (11) we calculate:

V1,2(b, e, g0)
∣∣∣
(F1)

=
[
(g0 − 1)2 − 4(b± e)

]∣∣∣
(F1)

=

[
(g0 − 1)2 ∓ 2e

]2

(g0 − 1)2
;

V1,2(b, e, g0)
∣∣∣
(F2)

=
[
(g0 − 1)2 − 4(b± e)

]∣∣∣
(F2)

=

[
(g0 + 1)2 ∓ 2e

]2

(g0 + 1)2
.

So we obtain that on the parabolas (F1) and (F2)

we have V1 ≥ 0 and V2 ≥ 0, i.e. these curves are

entirely located on the domain b − (g0 − 1)2/4 ≤
e ≤ −b+(g0−1)2/4. Moreover since the curve (F1)

(respectively (F2)) for e > 0 has the unique point

of intersection E1 (respectively E2) with the line

(V1) we deduce that this point is a tangent point of

the parabola (F1) (respectively (F2)) with the line

(V1). This completes the proof of statement (ii) of

the lemma.

(iii) Calculating the discriminant ∆̄ of the

conic (H′′) (which is a hyperbola) we obtain:

∆̄ = −128
(
g20 − 2g0 − 1

) (
g20 + 2g0 − 1

)
.

Therefore for g0 > 0 we have two values g′0 =
√
2−1

and g′′0 =
√
2 + 1 of this parameter for which ∆̄ =

0 and hence the hyperbola (H′′) is reducible. We

observe that g′0 ∈ (0, 1) and g′′0 ∈ (1,∞). Lemma

4.13 is proved.

Remark 4.14. We point out that the values g0 = g′0,
g0 = g′′0 for which the hyperbola (H′′) becomes re-

ducible are not bifurcation points for the phase por-

traits. Moreover we could have one of the following

possibilities:

� when (H′′) does not intersect the axis e = 0

then the same branch of the hyperbola passes

through both points E1 and E2 (as it is shown

in Figure 8);

� when (H′′) intersects the axis e = 0 then one

branch of the hyperbola passes through E1

and another one through E2 (as it is shown

in Figure 9);

� when (H′′) is reducible then both its compo-

nents (i.e. straight lines) intersect at the axis

e = 0, one line passing through E1 and an-

other one through E2.

Considering the fact that the invariant polynomial

H16 contains as components the line (H′) and the

hyperbola (H′′), it is clear that the sign of H16 is al-

ways negative (respectively positive) in the domains

(A) (respectively (B)) independently of the position

of the branches of the hyperbola (see Figures 8 and

9) or if it splits into two intersecting straight lines..

Taking into account Remarks 4.12 and 4.14 as

well as Lemma 4.13 we conclude that in order to

detect the affine invariant conditions for the real-

ization of each one of the phase portraits Ric. 3,

Ric. 15 and Ric. 16 it is sufficient to examine the

bifurcation diagram in the space (e, b) of the sys-

tems (10) with g = g0 > 0 taking only two values of

the parameter g0: one from the interval (0, 1) and

another from (1,∞).

In Figure 8 we have the bifurcation diagram

for systems (10) with g > 1. As it can be observed

directly from this diagram the next remark follows.

Remark 4.15. Assume that for a system (10) the

conditions µ0 ̸= 0 and Ñ > 0 hold. Then under one

of the conditions listed below we have on its right

side the corresponding phase portrait:
G2 ≤ 0 ⇒ Ric. 3 ;

G2 > 0, B2 > 0 ⇒ Ric. 3 ;

G2 > 0, B2 < 0, H16 < 0 ⇒ Ric. 3 ;

G2 > 0, B2 < 0, H16 > 0 ⇒ Ric. 16.
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Figure 8. Bifurcation diagram for systems (10) with g > 1

In the case Ñ < 0 we take a value of the parameter g0 ∈ (0, 1) and we arrive at the bifurcation diagram

represented in Figure 9. As it can be detected directly from this diagram the next remark follows.

Remark 4.16. Assume that for a system (10) the conditions µ0 ̸= 0 and Ñ < 0 hold. Then the phase

portrait of this system corresponds to the one of the indicated below if the corresponding conditions hold,

respectively:

G2 ≤ 0 ⇒ Ric. 3 ;

G2 > 0, B2 > 0 ⇒ Ric. 3 ;

G2 > 0, B2 < 0, H16 < 0 ⇒ Ric. 15 ;

G2 > 0, B2 < 0, H16 > 0 ⇒ Ric. 16.

We observe that the conditions provided by Remarks 4.15 and 4.16 could be joined and we arrive at

the next lemma.

Lemma 4.17. Assume that for a system (10) the condition µ0Ñ ̸= 0 holds. Then under the conditions

given below on the left we obtain the corresponding phase portrait on the right.
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Figure 9. Bifurcation diagram for systems (10) with 0 < g < 1

G2 ≤ 0 ⇒ Ric. 3;

G2 > 0, B2 > 0 ⇒ Ric. 3;

G2 > 0, B2 < 0, H16 < 0, Ñ < 0 ⇒ Ric. 15;

G2 > 0, B2 < 0, H16 < 0, Ñ > 0 ⇒ Ric. 3;

G2 > 0, B2 < 0, H16 > 0 ⇒ Ric. 16.

4: µ0 ̸= 0, ÑH10 > 0,D > 0 ⇒ Config. 3.17. Considering this configuration it is easy to detect that it

leads to the three potential topologically distinct phase portraits: S29,1, U1
I,18 and I9,1 (see Figure 10).

Figure 10. Potential phase portraits generated by Config. 3.17
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These phase portraits are given in [Artés et al.,

2018, Figure 5.133] where it is shown that the last

two are not realizable. Thus there remains only the

phase portrait S29,1 which we denote by Ric. 17.

5: µ0 ̸= 0, ÑH10 > 0,D = 0, H15 < 0 ⇒ Config.

3.18. We observe that this configuration is obtained

from Config. 3.17 by coalescing the two singulari-

ties (a node and a saddle) on the invariant line. As

a consequence by continuity we obtain the unique

phase portrait which we denote by Ric. 18.

6: µ0 ̸= 0, ÑH10 > 0,D = 0, H15 > 0 ⇒ Config.

3.19. It is evident that this configuration could be

obtained from Config. 3.16 by coalescing the two

singularities (a node and a saddle) on one of the

invariant lines. We recall that Config. 3.16 leads

to the phase portraits Ric. 3, Ric. 15 and Ric. 16.

From Ric. 3 as well as from Ric. 15 (due to the

symmetry that they have) only one phase portrait

is possible to obtain from each of them and they are

respectively Ric. 6 and a new phase portrait which

we denote by Ric. 19.

However in Ric. 16 we have 2 possibilities to

produce the coalescence, but from [Artés et al.,

2018] if follows that only one is realizable (U1
A,52)

which is denoted here by Ric. 20.

We point out that the conditions for distin-

guishing these three phase portraits can be obtained

from Lemma 4.17 and Figures 8 and 9 because the

bifurcation surface D = 0 borders the generic re-

gions where Config. 3.16 is given.

On the other hand for systems (10) for D = 0

(we can take V1 = 0 due to e > 0) we have b =
1
4

[
(g − 1)2 − 4e

]
and this gives us

B2 = −81

2

[
(g − 1)2 + 2e

]2[
(g − 1)2 − 2e

]2
x4 < 0.

Therefore considering Lemma 4.17 and Figures 8

and 9 the next lemma follows.

Lemma 4.18. Assume that for a system (10) the

conditions µ0Ñ ̸= 0 and D = 0 hold. Then under

the conditions given below on the left we obtain the

corresponding phase portrait on the right.

G2 ≤ 0 ⇒ Ric. 6;

G2 > 0, H16 < 0, Ñ < 0 ⇒ Ric. 19;

G2 > 0, H16 < 0, Ñ > 0 ⇒ Ric. 6;

G2 > 0, H16 > 0 ⇒ Ric. 20.

7: µ0 ̸= 0, ÑH10 > 0,D = 0, H15 = 0 ⇒ Config.

3.20. We observe that this configuration could be

obtained from Config. 3.19 by coalescing the ele-

mental singularities (a node and a saddle). Then

from Ric. 19 and Ric. 6 we produce new phase por-

traits which we denote respectively by Ric. 21 and

Ric. 22. These pictures are topologically equivalent

to the phase portraits given in Table 9 on page 37

in [Artés et al., 2020b] under the names AAsnsn
19 and

AAsnsn
20 (see Remark 4.19 below).

However it is not possible to do the same from

Ric. 20 (as from Ric. 19 and Ric. 6 ) because as we

have shown earlier for Config. 3.19 only one of the

couples of elemental singularities from Ric. 16 can

coalesce. As a result we arrive at two topologically

distinct phase portraits in the case of Config. 3.20.

We determine that the conditions D = H16 =

0 define the point of intersection of the lines V1

and V2 on both diagrams in Figures 8 and 9. We

observe that in the interior of the region (A) in

Figure 8 corresponding to the condition Ñ > 0 we

have Ric. 3 and on the line V1 (border of (A)) we

have Ric. 6. Therefore as it was mentioned above

we get Ric. 22 at the point of intersection of the

lines V1 and V2.

Similarly if Ñ < 0 considering Figure 9 we have

respectively Ric. 15, Ric. 19 and Ric. 21.

Thus we get Ric. 21 for Ñ < 0 and Ric. 22 for

Ñ > 0.

Remark 4.19. A final enumeration of phase por-

traits determined in the article [Artés et al., 2020b]

is given in Table 9. However there exists a gap

in this enumeration namely the notation U2
AA,32 is

skipped. So in the last three cases from the Table 9

it must be U2
AA,32, U2

AA,33 and U2
AA,34 instead of the

notations U2
AA,33, U2

AA,34 and U2
AA,35, respectively.

8: µ0 ̸= 0, H10 = 0,R < 0 ⇒ Config. 3.21.

Since we do not have real finite singularities and
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there is an invariant (double) straight line it is clear

that we get a unique phase portrait which is topo-

logically equivalent to Ric. 2.

9: µ0 ̸= 0, H10 = 0,R > 0 ⇒ Config. 3.22. We

have two saddle-nodes on the double invariant line.

It is clear that a perturbation of this configuration

could lead to Config. 3.16 whose singularities are

saddles and nodes in a convex quadrilateral. Then

when we pass from Config. 3.16 to Config. 3.22

the parabolic sectors of the saddle–nodes must be

on the opposite sides of the semi-planes defined by

the double invariant line. Therefore there are two

possibilities: (a) the separatrices (with zero eigen-

value) of the saddle-nodes have the same stability

(seen from their respective saddle-node) as the sep-

aratrix of the infinite saddle (seen from the infinite

saddle) or (b) they have opposite stabilities(see Fig-

ure 11)

In the first case both separatrices (finite and

infinite) in every semi-plane must come/go from/to

the infinite node N3[0 : 1 : 0]. However this phase

portrait (see Figure 11 (a1)) is impossible because

by a perturbation, it leads to the phase portrait

I10,20 from [Artés et al., 2018] (see Figure 11 (a2))

which was proved to be impossible in [Artés et al.,

1998].

In the case (b) we have three generic potential

phase portraits (b1)–(b3) given in Figure 11 and two

that have a separatrix connection. The cases (b1)

and (b2) are realizable whereas (b3) is impossible

because a perturbation of it may lead to the phase

portrait (a2) (≃ I10,20 from [Artés et al., 1998] )

which is impossible as it is mentioned above. More-

over the phase portrait (b1) is topologically equiv-

alent to Ric. 10 whereas (b2) is new and we denote

it by Ric. 23.

Next we claim that if there is any separatrix

connection then either this connection is part of

an invariant straight line or the phase portrait is

impossible. Indeed there are two potential ways

to produce a separatrix connection. One leads to

a phase portrait topologically equivalent to Ric. 9

and by Lemma 3.5 of [Artés et al., 2018], this sep-

aratrix connection must be part of an invariant

straight line which contradicts B2 ̸= 0. We observe

Figure 11. Generic potential phase portraits gener-

ated by Config. 3.22

that Ric. 9 may bifurcate in Ric. 10 or Ric. 23. The

phase portrait with the second potential connection

would bifurcate into Ric. 23 or the phase portrait

(b3) of Figure 11. Since the latter has already been

proved to be impossible we deduce that the connec-

tion is also impossible.

As it was shown in [Bujac et al., 2022] if for a

system (8) the conditions

η > 0, Ñ ̸= 0, µ0 ̸= 0, H10 = 0,R > 0

hold then this system possesses Config. 3.22 and

via an affine transformation and time rescaling it

could be brought to the canonical form (39) from

[Bujac et al., 2022], i.e. it belongs to the family of

systems

ẋ = gx2, ẏ = b+ ex+ (g − 1)xy + y2.

For these systems we have µ0 = g2, R = −16bg4x2

and due to µ0 ̸= 0 the condition R > 0 implies

b < 0. Then we may assume b = −1 due to the

rescaling (x, y, t) 7→ (
√
−b x,

√
−b y, t/

√
−b). Then

we arrive at the 2-parameter family of systems

ẋ =gx2, ẏ = −1 + ex+ (g − 1)xy + y2 (14)
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for which we may assume g > 0 and e ≥ 0 be-

cause this can be achieved via the transformation

(x, y, t) → ξ(−x, y − x, t), where ξ = −sign (e) (see

also the proof of Lemma 4.11).

Next we construct the bifurcation diagram in

the space (e, g) of systems (14) (see Figure 12).

Figure 12. Bifurcation diagram of systems (14) for

g ̸= 0

The following Remark follows directly from this

diagram.

Remark 4.20. The phase portraits of systems (14)

with µ0Ñ ̸= 0 correspond to the ones indicated

below if the corresponding conditions on the left

hold, respectively:

B2 > 0 ⇒ Ric. 10 ;

B2 < 0, H1 < 0 ⇒ Ric. 23 ;

B2 < 0, H1 > 0 ⇒ Ric. 10.

10: µ0 ̸= 0, H10 = 0,R = 0 ⇒ Config.3.23.

It is not so difficult to determine that the unique

finite singularity of multiplicity four is a nilpotent

saddle-node. More precisely two separatrices of this

singular point form the invariant line x = 0 and the

third one lies on one of the semi-planes divided by

invariant line. As a result we arrive at the unique

phase portrait which is equivalent to Ric. 18.

11: µ0 = 0, µ2 ̸= 0,D < 0 ⇒ Config. 3.24. Ac-

cording to [Bujac et al., 2022] a system (8) possess-

ing this configuration could be brought via an affine

transformation and time rescaling to the canonical

form (41) from [Bujac et al., 2022], i.e. we consider

the family of systems

ẋ =a+ x, ẏ = b− xy + y2. (15)

We observe that for B2 = −648b(1 − a + b)x4 = 0

the above systems gain an invariant straight line:

y = 0 if b = 0 and y = x + 1 if b = a − 1. In the

case B2 = 0 we obtain Config. 4.16 and as it was

shown earlier (see page 36, p. 5:) this configuration

generates two phase portraits: Ric. 11 if G2 < 0 and

Ric. 12 if G2 > 0.

Since Ric. 11 contains no separatrix connection

it is clear that after breaking the non-vertical in-

variant line then we get the same phase portrait

Ric. 11.

On the other hand Ric. 12 contains a separa-

trix connection (which is part of the invariant line)

and after breaking this connection we get either

Ric. 11 or Ric. 24. In order to determine the condi-

tions for distinguishing these two phase portraits we

construct the bifurcation diagram in the parameter

space (a, b) of systems (15) (see Figure 13). The

next remark follows directly from this diagram.

Remark 4.21. A phase portrait of systems (15) with

D < 0 under one of the conditions indicated below

on the left side is the portrait indicated on the right

side.
G2 ≤ 0 ⇒ Ric. 11 ;

G2 > 0, B2 < 0 ⇒ Ric. 24 ;

G2 > 0, B2 > 0 ⇒ Ric. 11.

12: µ0 = 0, µ2 ̸= 0,D > 0 ⇒ Config. 3.25.

According to this configuration we do not have real

finite singularities and moreover at infinity we have

the node N3[0 : 1 : 0] and two double singularities

which are saddle-nodes. We observe that we could

not have the two finite separatrices of the infinite

saddle-nodes on the same semi-plane with respect

to invariant line because on the other semi-plane

there would be two sources of orbits and two sinks

without any separatrix. However this contradicts

Lemma 4.7 from [Artés et al., 1998]. As a result we

arrive at a single phase portrait which we denote

by Ric. 25.
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Figure 13. Bifurcation diagram of systems (15).

13: µ0 = 0, µ2 ̸= 0,D = 0 ⇒ Config. 3.26. This configuration is related with Config. 3.24 which

generates two phase portraits Ric. 11 and Ric. 24. So if we force the coalescence of the two elemental

finite singular points along the invariant line in Ric. 11 we obtain a new phase portrait which we denote

by Ric. 26. If we do the the same for Ric. 24 we obtain again a new phase portrait which we denote by

Ric. 27.

We point out that this information can be obtained from the bifurcation diagram in Figure 13 consideing

the parabola D = −48(a2 − 4b) = 0. So we observe that we get the phase portrait Ric. 26 if G2 < 0 and

Ric. 27 if G2 > 0.

14: µ0 = 0, µ2 = 0 ⇒ Config. 3.27. In this family we have no finite real singular points and the line

at infinity is triple. Moreover we have two triple semi-elemental singularities which are a saddle and a

node in the vicinity of which the behavior of the trajectories is the same as around elemental singularities.

Therefore as in the case of the configuration Config. 3.14 we arrive at the same phase portrait Ric. 2.

4.2. The subcase Ñ = 0

According to Lemma 3.7 in this case a quadratic system with θ3 ̸= 0 could not belong to the class

QSL2p and hence, it could neither belong to the family QSRic .

On the other hand according to [Bujac et al., 2022] for θ3 = 0 this system could be brought via an

affine transformation and time rescaling to the form (14) (from [Bujac et al., 2022]), i.e. we arrive at the

subfamily of the Riccati systems

ẋ = a+ x2, ẏ = b+ ex+ y2. (16)

We observe that for these systems µ0 = 1 > 0 and since η > 0 we conclude that Remark 4.4 also holds for

the above systems. So systems (16) possess at infinity one saddle and two nodes, all elemental.
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According to Diagram 1 we examine again two

possibilities: B2 = 0 and B2 ̸= 0.

4.2(A). The possibility B2 = 0.

Following Diagram 1 we examine the next cases

considering the topological classifications of sys-

tems in the families QSL≥4 given in the arti-

cles [Schlomiuk & Vulpe, 2008b] and [Schlomiuk &

Vulpe, 2008d].

1: H4 ̸= 0, H8 < 0 ⇒ Config. 4.13. Since the

condition Ñ = 0 holds, according to [Schlomiuk

& Vulpe, 2008d] (see Table 2) we get the unique

phase portrait Portrait 4.13(b) which is topologi-

cally equivalent to Ric. 1.

2: H4 ̸= 0, H8 > 0, H9 ̸= 0 and either (i)

H16 < 0 ⇒ Config. 4.9a or (ii) H16 > 0 ⇒ Config.

4.9. We examine these two cases together due to

the inexactitude in [Schlomiuk & Vulpe, 2008d] (as

well as in [Schlomiuk & Vulpe, 2008]) concerning

the configuration Config. 4.9 (see Lemma 4.6). As

it was shown earlier in the case Ñ ̸= 0 (see Re-

mark 4.7) we distinguished which of the phase por-

traits Portrait 4.9(a), Portrait 4.9(b) and Portrait

4.9(c) are generated by Config. 4.9a and which by

Config.4.9.

Then we have to do the same in the case Ñ = 0.

First of all we give here the next lemma which is

analogous to Lemma 4.6 and whose proof follows

directly from [Bujac et al., 2022] (see Lemma 6.2)

and from [Schlomiuk & Vulpe, 2008d] (see Table 2).

Lemma 4.22. Assume that for an arbitrary

quadratic system the conditions η > 0, θ = H7 =

B2 = 0, µ0B3H4H9 ̸= 0, Ñ = 0 and H8 > 0 hold.

Then the configuration of the invariant lines of this

system corresponds to Config. 4.9a if H16 < 0 and

to Config. 4.9 if H16 > 0. Moreover the phase por-

trait of this system corresponds to one of the por-

traits given below if and only if the corresponding

set of the conditions hold, respectively:

Portrait 4.9(a) ⇔ G2 > 0, H4 > 0, G3 < 0;

Portrait 4.9(b) ⇔ either G2 > 0, H4 < 0

or G2 < 0;

Portrait 4.9(c) ⇔ G2 > 0, H4 > 0, G3 > 0.

Next we would like to distinguish which of these

three phase portraits is generated by the configura-

tion Config. 4.9a and which by Config. 4.9.

Assume that for an arbitrary quadratic system

(2) the conditions provided by Lemma 4.22 hold.

Then as it was shown in [Bujac et al., 2022] (see the

proof of Lemma 6.2), this system could be brought

via an affine transformation and time rescaling to

the 1-parameter family of systems

ẋ = x2 − 1, ẏ = −1− e2/4 + ex+ y2. (17)

For these systems we calculate

H4 =96e2, H16 = 180(−2 + e)e4(2 + e),

G2 =13824(−2 + e)(2 + e), G3 = −576e2.

Since for the above systems the condition H4 ̸= 0

holds we obtain H4 > 0, G3 < 0 and sign (G2) =

sign (H16). Therefore considering Lemma 4.22 we

evidently arrive at the next remark.

Remark 4.23. If for a quadratic system the condi-

tions provided by Lemma 4.22 hold then this system

possesses the phase portrait Portrait 4.9(b) (i.e.

Ric. 3 ) if H16 < 0 and Portrait 4.9(a) (i.e. Ric. 5 )

if H16 > 0.

Observation 4.1. According to the above remark

we conclude that in the case Ñ = 0 the phase por-

trait Portrait 4.9(c) is not realizable.

3: H4 ̸= 0, H8 > 0, H9 = 0 ⇒ Config. 4.10.

According to [Schlomiuk & Vulpe, 2008d] (see Table

2) due to the condition Ñ = 0 we get the unique

phase portrait Portrait 4.10(c) (≃ Ric. 7 ).

4: H4 ̸= 0, H8 = 0 ⇒ Config. 4.22. By

[Schlomiuk & Vulpe, 2008d, Table 2] ⇒ Portrait

4.22(b) (≃ Ric. 9 ).

5: H4 = 0, B3 ̸= 0, H5 < 0 ⇒ Config. 5.4. By

[Schlomiuk & Vulpe, 2008b, Diagram 3] ⇒ Picture

5.4 (≃ Ric. 2 ).

6: H4 = 0, B3 ̸= 0, H5 > 0, H1 < 0 ⇒ Config.

5.5. By [Schlomiuk & Vulpe, 2008b, Diagram 3] ⇒
Picture 5.5 (≃ Ric. 2 ).
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7: H4 = 0, B3 ̸= 0, H5 > 0, H1 > 0 ⇒ Config.

5.3. By [Schlomiuk & Vulpe, 2008b, Diagram 3] ⇒
Picture 5.3 (≃ Ric. 3 ).

8: H4 = 0, B3 ̸= 0, H5 = 0, H1 < 0 ⇒ Config.

5.16. By [Schlomiuk & Vulpe, 2008b, Diagram 3]

⇒ Picture 5.16 (≃ Ric. 2 ).

9: H4 = 0, B3 ̸= 0, H5 = 0, H1 > 0 ⇒ Config.

5.12. By [Schlomiuk & Vulpe, 2008b, Diagram 3]

⇒ Picture 5.12 (≃ Ric. 10 ).

10: H4 = 0, B3 = 0, H1 < 0 ⇒ Config. 6.2. By

[Schlomiuk & Vulpe, 2008b, Diagram 1] ⇒ Picture

6.2 (≃ Ric. 1 ).

11: H4 = 0, B3 = 0, H1 > 0 ⇒ Config. 6.1. By

[Schlomiuk & Vulpe, 2008b, Diagram 1] ⇒ Picture

6.1 (≃ Ric. 3 ).

12: H4 = 0, B3 = 0, H1 = 0 ⇒ Config. 6.5. By

[Schlomiuk & Vulpe, 2008b, Diagram 1] ⇒ Picture

6.5 (≃ Ric. 14 ).

4.2(B). The possibility B2 ̸= 0.

By Lemma 3.1 systems (16) could possess invariant

lines only in the direction x = 0.

In what follows we consider one by one all the

configurations provided by Diagram 1 and we de-

termine the corresponding phase portraits.

1: H8 < 0 ⇒ Config. 3.14. As it was shown

in the case Ñ ̸= 0 this configuration leads to the

unique phase portrait Ric. 2.

2: H8 > 0,D < 0, H15 < 0 ⇒ Config. 3.15. We

have exactly the same situation as in the previous

case and so we arrive at the same phase portrait

Ric. 2.

3: H8 > 0,D < 0, H15 > 0 ⇒ Config. 3.16.

Since for systems (16) we have

H8 =− 3456ae2, H15 = 1024ab,

B2 =− 648e2(−4a+ 4b+ e2)x4

the conditions B2 ̸= 0, H8 > 0 and H15 > 0 imply

e ̸= 0, a < 0 and b < 0. Therefore via the rescaling

(x, y, t) 7→ (
√−a x,

√−a y, t/
√−a) we may assume

a = −1 and we get the 2-parameter family of sys-

tems

ẋ = x2 − 1, ẏ = b+ ex+ y2. (18)

For these systems we calculate

H15 =−1024b > 0, B2 = −648e2(4+4b+e2)x4 ̸=0,

D =−12288(b−e)(b+e) < 0, G2 = 27648(2b+e2).

Taking into account the curves defined by the equa-

tions B2 = 0, D = 0 and G2 = 0 we arrive at the

bifurcation diagram for the phase portraits of sys-

tems (18) with the conditions H15 > 0 and D < 0

(see Figure 14).

From this diagram it follows that under the pro-

vided conditions we get the phase portrait Ric. 3 if

G2 ≤ 0. If G2 > 0 then we obtain Ric. 15 for B2 < 0

and Ric. 3 for B2 > 0.

4: H8 > 0,D > 0 ⇒ Config. 3.17. It was proved

earlier (see page 42) that this configuration leads to

the unique phase portrait Ric. 17.

5: H8 > 0,D = 0, H15 < 0 ⇒ Config. 3.18.

As it was shown earlier (see page 43) Config. 3.18

leads to the unique phase portrait Ric. 18.

6: H8 > 0,D = 0, H15 > 0 ⇒ Config. 3.19. We

examined this configuration earlier (see page 43)

and have shown that this configuration could only

lead to the two phase porraits: Ric. 19 and Ric. 6.

More exactly, by coalescing the two singularities (a

node and a saddle) on one of the invariant lines

(i.e. when D → 0) from Ric. 15 we obtain Ric. 19,

whereas from Ric. 3 we obtain Ric. 6.

Therefore considering diagram in Figure 14 we

conclude that the phase portrait corresponds to

Ric. 19 for G2 < 0 and Ric. 6 for G2 > 0.

7: H8 = 0,R < 0 ⇒ Config. 3.21. This

configurations was investigated earlier in the case

Ñ ̸= 0 where it was shown the existence of the

unique phase portrait Ric. 2 which is also realizable

for Ñ = 0.

8: H8 = 0,R > 0 ⇒ Config. 3.22. The con-

dition H8 = −3456ae2 = 0 due to B2 ̸= 0 (i.e.

e ̸= 0) gives us a = 0 for systems (16) and then

R = −16bx2 > 0 implies b < 0. Then we may

assume b = −1 due to the rescaling (x, y, t) 7→
(
√
−b x,

√
−b y, t/

√
−b) and we observe that in this

case we get a subfamily of systems (14) defined by

the condition g = 1.
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So from the bifurcation diagram of systems

(14) given in Figure 12, for systems (16) we obtain

Ric. 23 if B2 < 0 and Ric. 10 if B2 > 0.



50 J.C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe

Figure 14. Bifurcation diagram for systems (18) with b < 0 and b2 − e2 > 0

9: H8 = 0,R = 0 ⇒ Config. 3.23. As in the generic case Ñ ̸= 0 examined before we get the unique

phase portrait Ric. 18.
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