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Abstract

Exercise reduces cognitive deficits in traumatic brain injury (TBI), but early post-
trauma exercise is often discouraged due to potential harm. Purpose: To evaluate
the interaction between pre- and post-injury physical exercise on cognition, neuronal
survival and inflammation. Methods: Rats were either sham-operated and kept
sedentary (Sham) or subjected to controlled cortical impact injury and then
distributed into sedentary (Tbi), pre-injury exercise (Pre-Tbi), post-injury exercise
with early (24 h, Tbi-early) or late (6 d, Tbi-late) onset, and a combination of pre- and
post-injury exercise with early (Pre-Tbi-early) or late (Pre-Tbi-late) onset. Object
recognition memory, hippocampal volume, neuronal survival (NeuN+) in the
hippocampus and perirhinal cortex, and microglial activity (Iba-1) in the hippocampus
were evaluated. Results: All exercise conditions, except TBl-early, attenuated the
significant memory impairment at 24-h retention caused by TBI. Additionally, Pre-
TBIl-early treatment led to memory improvement at 3-h retention. Pre-TBI reduced
neuronal death and microglial activation in the hippocampus. TBl-late, but not TBI-
early, mitigated hippocampal volume loss, loss of mature neurons in the
hippocampus, and inflammation. Combining pre-injury and early-onset exercise
reduced memory deficits but did not affect neuronal death or microglial activation.
Combining pre-injury and late-onset exercise had a similar memory-enhancing effect
than late post-injury treatment alone, albeit with reduced effects on neuronal density
and neuroinflammation. Conclusions: Pre-TBI physical exercise reduces the
necessary onset delay of post-TBI exercise to obtain cognitive benefits, yet the exact
mechanisms underlying this reduction require further research. Keywords: Memory,

Neuroinflammation, Neuroprotection, Rehabilitation, Exercise, Traumatic Brain

Injury.



Introduction

Every year, millions worldwide experience traumatic brain injury (TBI)", with
many facing long-term cognitive issues including attention and memory deficits?, and
increased risk of dementia®. This underscores the need for treatment not only in the
acute phase but also long-term. Several non-pharmacological therapies such as
environmental enrichment**® and physical exercise (PE)"° have been suggested as a
potential therapeutic approach to improve cognitive recovery following mild,
moderate, and severe TBI.

Rest post-TBI has traditionally been recommended, but recent data challenges
prolonged rest, especially after mild TBI™. Identifying the ideal timing for transitioning
from rest to PE remains unclear, as it may depend on factors such as injury severity
and pre-injury fitness. Tailoring interventions to individual patient characteristics has
been proposed to address this variability''. The benefits of post-injury PE appear to
be linked to a decrease in the neurodegenerative processes, primarily a reduction of
inflammation'?'* and neuronal death' ¢, as well as an increase in regenerative
processes, mainly an increase in neuroplasticity’'*? and neurogenesis'>'>'°,

In animal models, post-injury PE has been shown to alleviate memory deficits,
but controversy exists regarding the optimal delay to start PE. While benefits are
generally observed with longer delays (over a week)''*"'° contradictory results
arise with shorter delays, with some papers reporting benefits'>'*1%! and others an
exacerbation of the deficits''8'°. Although experimental procedures may contribute
to these discrepancies, the nature of events occurring after the initial insult may also
play a role. TBI pathogenesis occurs in two phases: a primary injury caused by direct
mechanical forces and a secondary damage that develops later, offering a window

for therapeutic interventions. It is suggested® that the significant mitochondrial



damage and impact on brain metabolism? occurring in the initial hours and days
after injury could be exacerbated by PE during the acute post-injury phase, since the
energy demand associated to PE adds to an already compromised metabolism.
Thus, starting PE too early might worsen cognitive consequences. However, since
the secondary injury triggering cognitive issues involves early-activated processes,
initiating post-injury PE earlier may improve long-term prognosis.

Pre-injury PE can mitigate the consequences of trauma on the brain,
particularly in the initial hours or days. It helps stabilize brain metabolism post-

impact***” and diminishes the initial inflammatory reaction®*2%-*

, reducing neuronal
loss?*262830 and memory deficits®202%31,

As far as we know, the interaction between pre- and post-injury PE on
memory has not been studied. Given that pre-injury PE mitigates some of the early
effects of brain trauma, it is possible that this training may allow earlier initiation of
post-injury PE, enhancing its beneficial effects without negative consequences.
Considering that usual inpatient rehabilitation is mainly inactive or sedentary*?, this
could be relevant when trying to adjust the post-injury treatment to the specific
characteristics of the individual patients.

This study aims to investigate how pre-injury training influences the impact of
post-injury PE treatment on memory, neuroprotection, and microglial activation.

Specifically, it explores whether pre-injury PE could shorten the delay required to

initiate post-injury PE treatment.

Materials and Methods
Animal procedures followed European and local laws (2010/63/EU; Real

Decreto 1386/2018) and the protocols were approved by Animal Experimentation



Commission of Autonomous Government of Catalonia (No. 9734-P2). 82 six-week-
old male Sprague rats (Charles River Laboratories; Abresle, France) weighing
249.09+22.09 g were used. Animals were individually housed and maintained under
controlled conditions on a 12 h light-dark cycle (lights on at 8:00 a.m.), temperature
20-22 °C and 40-70 % humidity. Water was available ad libitum, while food was
provided in a fixed amount (30 g/day) to prevent overfeeding without caloric
restriction, promoting better long-term health compared to ad libitum conditions.
The animals were randomly divided into 7 groups (Figure 1): 1) Sham: sham-
surgery and sedentary condition; 2) Tbi: controlled cortical impact (CCI) surgery and
sedentary condition; 3) Pre-Tbi: voluntary exercise for 18 days before CCI surgery
and post-TBI sedentary condition; 4) Tbi-early: CCI surgery and voluntary exercise
for 14 days from 24 hpi; 5) Tbi-late: CCI surgery and voluntary exercise for 9 days
from 6 dpi; 6) Pre-Tbi-early: voluntary exercise for 18 days before CCI surgery and
from 24 hpi (14 days); 7) Pre-Tbi-late: voluntary exercise for 18 days before CCI

surgery and from 6 dpi (9 days).

Stereotaxic surgery and TBI

TBI was induced by means of CClI (Pittsburgh Precision Instruments, Inc,
Pittsburgh, PA), as described previously'. Anaesthesia was induced with 5%
isoflurane (Forane, Abbot Laboratories, SA, Madrid, Spain) in oxygen (1 I/min) for 5
min. The animals were then placed in a stereotaxic frame (David Kopf Instruments,
Tujunga, CA), and the anaesthesia was maintained by delivering 2% isoflurane in
oxygen (0.8 I/min) through a nose mask. The scalp was incised along the midline,
and after exposing the skull, a craniectomy (4 mm diameter) was performed over the

right hemisphere (4.5 mm posterior to bregma and 3 mm from midline). A 3-mm



diameter rod impacted into the right hemisphere at a speed of 6.0 m/s, reaching a
depth of 2.0 mm below the dura matter layer and persisting for 150 ms. Sham
animals underwent similar procedures, but no impact was applied. To control for
post-operative pain a non-invasive and stress-free oral treatment with buprenorphine
(0.4 mg/Kg) mixed in Nutella® (2g/Kg) was administered to all the animals 1 h pre-

and 23 h post-surgery®.

Physical exercise

During sedentary periods, animals were kept in their standard cages, while for
periods of PE activity, they were maintained in cages (48 x 26 x 20 cm) connected to
a 37 cm diameter running wheel (Rat Wheel W/Brake, ENV-042: Med Associates
Inc, St. Albans, VT, USA). The time and distance run were recorded daily and
analyzed in three different periods: 1) the last 4 days before surgery (for those
animals with pre-TBI training), 2) the initial 4 days of PE post-surgery, 3) the 4 days

during memory training.

Object recognition memory (ORM) task

The ORM task started 12 dpi as described previously'. Sessions were
recorded via software Anymaze (Stoelting Europe, Dublin, Ireland) and manually
analyzed in a blinded procedure.

Training began with three sessions (12 min each) of habituation to the
experimental box, two of which were held on the same day, separated by a 90-min
interval, and the third carried out on the following day. Locomotor activity during

these sessions was recorded. To assess potential anxiety reactions to novel objects,



a neophobia test was conducted 90 min after the last habituation session. During this
test, animals were allowed to explore a box containing an unfamiliar object for 10
min, and latency to initial exploration was recorded.

The subsequent day, a 15-min acquisition session took place, during which
animals explored two identical objects positioned 10 cm from the walls. Retention
sessions (5-min) occurred at 3 h and 24 h post-acquisition, involving one familiar
object from the acquisition session and one novel object. Object assignments and
positions were randomized to prevent bias. The position of the familiar object was
reversed between the 3-h and the 24-h test. Exploration time for each object was
recorded.

To analyze cognitive performance while accounting for differences in total
exploration time, a discrimination index was computed using the formula: [((time
exploring the novel object — time exploring the familiar object) / total time spent on
both objects) x 100]**. An index higher than zero indicates good recall of the familiar
object, as rats naturally tend to explore novel objects. A 10-s minimum exploration

time during the acquisition session was required for statistical analyses inclusion®.

Tissue Processing

Animals were euthanized 24 h post-memory test with sodium pentobarbital
(200 mg/kg), followed by 4% PFA intracardial perfusion. Brains were extracted, post-
fixed in PFA for 3 h, rinsed, cryoprotected in 30% sucrose/PB, frozen and stored at -
80°C. Coronal cryostat sections (40 um) were taken between -2.76 and -4.48
anteroposterior coordinates from bregma®. Each animal provided 9 series of free-
floating sections and 1 series of gelatin-coated slides, facilitating systematic random

sampling.



Nissl-stained sections were digitized, and hippocampal area was measured
using FIJI image analysis software®. Dorsal hippocampal volume was estimated by
multiplying total surface areas by section thickness. An interhemispheric ratio
[(ipsilateral volume / contralateral volume) x 100] was calculated to estimate
hippocampus volume loss.

Two series of free-floating slices from 6 animals per group were processed for
NeuN, a marker for mature neurons®, and Iba1, expressed by microglia/macrophage
cells®, following the procedure previously described.

For NeuN and Iba-1 immunohistochemistry, endogenous peroxidases were
blocked via incubation with 0.3% hydrogen peroxide solution. Sections were washed
and nonspecific binding was blocked with bovine serum solution for 1 h and
incubated overnight with primary antibody (Mouse anti-NeuN, MAB377, Sigma,
1:500 or rabbit anti-Iba-1, GTX100042 Genetex, AntibodyBCN, 1:1000). Following
washes, sections were incubated in biotinylated secondary antibody (NeuN, Goat
anti-Mouse 1gG (H+L), SAB 4600004, Sigma, 1:1000 or Iba-1, goat anti-rabbit A1664
Thermo Fisher Scientific, 1:500), and then in a streptavidin-biotin horseradish
peroxidase complex (1:3600, SA-HRP conjugate, NEL 750001EA: Perkin Elmer,
Tres Cantos, Spain) dilution followed by 3,3’-diaminobenzidine. Sections were

mounted on slides, dehydrated and cleared, and then cover-slipped.

Quantification of NeuN" cells

Serial digitized images of NeuN-stained sections were obtained at 10x
magnification for the hilus of dentate gyrus (Hil) of hippocampus and the perirhinal
cortex (PRhc) using a DSLR camera (EOS 6D Mark Il, Canon) coupled to a

microscope (Axio Imager A1, Carl Zeiss Iberia). FIJI software® stitched partial



images together to create whole Hil or PRhc images for each hemisphere.

In two or three slices between -2.76 and -4.20 from bregma®®, Hil region was
outlined and NeuN" cells were quantified manually due to the relatively low quantity
of neurons in this region. The density of neurons was calculated by dividing the
number of NeuN™ cells by the area of the Hil. To assess neuronal loss in the
ipsilateral hemisphere to the lesion, a ratio between hemispheres was calculated
[(ipsilateral density / contralateral density) x 100] for each slice, followed by the mean
of these ratios across all examined slices.

Due to the high neuronal density of the PRhc, stereological principles were
applied using a random uniform systematic sampling system. The PRhc area was
manually outlined, and a grid with counting frames of 1245 ym? was randomly
superimposed. Cells were manually counted in every 25 frames, excluding those
touching the right and lower edges but including those touching the left and upper
edges to avoid edge effects. Neuron density was calculated using a formula adapted
from optical dissector calculations*’:

Nv=>Q /(> Sdis x h)

Where Nv, numerical density; > Q°, sum of quantified cells; > Sdis, sum of
quantified dissectors (counting frames) by dissector area; h, height of the slice (given
a value of 1 as quantifications were carried out on microphotographs).

Finally, the neuron density ratio was calculated using the same method as in

the Hil.

Quantification of Iba1 staining
Serial digitized images of 3 Iba-1-stained sections between -2.76 and -4.20

from bregma®® were obtained at 5x magnification for the dorsal hippocampus using



the camera and microscope previously described. Consistency in illumination
parameters were ensured, and a post hoc correction was applied to prevent
vignetting effects*'. FIJI software® stitched partial images together to create whole
dorsal hippocampus images for each hemisphere. To assess the mean intensity and
the percentage of area stained, the following steps were followed: Black and white
inversion was performed so that higher values indicated higher staining. The
contralateral dorsal hippocampus was manually outlined. An automatic threshold
(Huang dark option) was applied, and the mean gray value and percentage of area
were measured. The ipsilateral dorsal hippocampus was manually outlined, and the
contralateral hemisphere’s minimum value was set as a threshold. The mean gray
value and percentage of area were measured.

Similar to NeuN analysis, a ratio was calculated [(ipsilateral / contralateral ) x

100] for each slice, followed by the mean of these ratios across all examined slices.

Statistical analyses

The analyses were conducted using the statistical programming language R
3.6.3*2 and the graphical interface Jamovi*. Outliers were identified using box-plot
analyses, confirmed with a one-sample t-test against the group mean, and
subsequently excluded from the corresponding analyses. Groups differences were
examined through a one-way analysis of variance using a between-group design,
and post-hoc comparisons were conducted with Tukey correction. If homogeneity of
variances was lacking, Welch and Games-Howell corrections were applied. One-
sample t-tests were used to determine whether group mean values significantly
differed from the reference value (0 for the discrimination index and 100 for the

interhemispheric ratio). Mean and SEM of all the variables can be found in the



supplementary material. Statistical significance was set at P<0.05.

Results

Three animals died due to complications from anaesthesia, and four were
excluded from the analysis due to abnormally large lesions not comparable with
those of the other animals (1 Tbi-sed, 1 Tbi-late, 1 Pre-Tbi-early, 1 Pre-Tbi-late). The
final sample comprised 75 rats: Sham (11), Tbi (12), Pre-Tbi (12), Tbi-early (11), Tbi-

late (9), Pre-Thi-early (10), and Pre-Tbi-late (10).

Exercise behavior

During the pre-injury period, no differences between groups were found
(Figure 2A). In the first 4 days post-injury (Figure 2B), differences between groups in
the mean distance run [F(3,17.76)= 10.57; p<0.001] were found. Pre-injury PE (Pre-
Tbi-early and Pre-Tbi-late) groups ran higher distances than non-pre-injury groups
(Tbi-early p=0.031, p=0.003; Tbi-late p=0.036, p=0.006). Similar results were
obtained for the time spent running for both the whole groups [F(3,18.08)=11.37;
p<0.001], and the post-hoc comparisons (Tbi-early p=0.015, p=0.003; Tbi-late
p=0.011, p=0.009).

Regarding the 4 days corresponding to the ORM (Figure 2C), differences
between groups were observed in the mean distance run [F(3,17.11)= 4.95; p=0.012]
and in the time spent running [F(3,17.23)= 4.94; p=0.012]. Specifically, Pre-Tbi-early
group ran a greater distance than Tbi-early (p=0.039) and Tbi-late (p=0.034) groups

and spent more time running than Tbi-late (p=0.021) group.

Object recognition memory (ORM)



Due to computer issues, data from three animals were lost in all ORM
sessions (1 Tbi, 2 Pre-Tbi-early), from one animal in the first retention session (Tbi-
early), and from three animals in the second one (2 Sham, 1 Thi-late).

Group differences were detected in the third habituation session [F(6,27.6)=
4.44; p=0.003]. The Pre-Tbi group showed higher locomotion compared to the Tbi-
late (p=0.016) and Pre-Tbi-late (p=0.035) groups. No group differences were
detected in the neophobia test.

In the acquisition session, between groups analysis [F(6,63)= 5.04; p<0.001]
and post-hoc comparisons revealed that total exploration time was lower in the Tbi-
early (p=0.006) and Pre-Tbi-early (p<0.001) groups compared to the Sham group,
and in the Pre-Tbi-early compared to the Tbi group (p=0.008).

In the 3-h retention session (Figure 2D), discrimination indices were
significantly higher than 0 only in the Sham [t(10)= 3.525; p=0.005] and Pre-Tbi-early
[t(7)= 4.171; p=0.004] groups. Between-groups differences were detected
[F(6,63)=2,68; p=0.022], indicating that the Pre-Tbi-early group had a higher
discrimination index than the Tbi-early group (p=0.045).

For the 24-h retention session (Figure 2E), one-sample t-tests revealed
discrimination indices above 0 in the Sham (p<0.001), Pre-Tbi (p=0.017), Pre-Tbi-
early (p<0.001), Tbi-late (p=0.002), and Pre-Tbi-late (p=0.013) groups. Between-
groups analyses [F(6,25.51)= 4.64; p=0.017] and post-hoc comparisons indicated a
lower discrimination index in the Tbi group compared to the Sham (p=0.007), Tbi-late
(p=0.015) and Pre-Tbi-late (p=0.006) groups. No between-groups differences were

detected in the total time of exploration in the two retention sessions.

Hippocampal volume



One Pre-Tbi-late subject’s tissue was damaged and excluded from staining.
All CCl rats exhibited a lesion cavity over the ipsilateral parietal lobe and a
deformation of the dorsal hippocampus (see Figure 3). Ipsilateral hippocampal
volume reductions compared to the contralateral side were found in the Tbi [t(11)= -
6.63; p<0.001], Pre-Tbi [t(10)=-5.38; p<0.001], Thi-early [t(10)=-4.68; p=0.001], Tbi-
late [t(7)=-3; p=0.02], Pre-Tbi-early [t(8)=-7.71; p<0.001] and Pre-Tbi-late [t(8)= -
5.25; p=0.005] groups, but not in the Sham group. Between-groups analysis
[F(6,25.41)= 26.53; p<0.001] and post-hoc comparisons showed a higher volume
ratio in the Sham group compared to the Tbi (p<0.001), Pre-Tbi (p=0.002), Tbi-early
(p=0.008), Pre-Tbi-early (p<0.001) and Pre-Tbi-late (p=0.005) groups, and in the Tbi-
late compared to the Tbi (p=0.004), Tbi-early (p=0.032) and Pre-Tbi-early (p=0.002)

groups. No differences were found between the Sham and Tbi-late groups.

Density of NeuN+ cells

Figure 4B depicts the mean interhemispheric ratio of NeuN+ cells density in
the Hil. One-sample t-tests showed that the Tbi [t(5)=-5.12; p=0.004], Pre-Tbi [t(5)=-
3.23; p=0.023], Tbi-early [t(5)=-19.5; p<0.001], Pre-Tbi-early [t(5)=-15.6; p<0.001]
and Pre-Tbi-late [t(5)=-3.34; p=0.021], but not the Sham and Tbi-late groups, had
lower ratios than 100. Between-group analysis [F(6,14.8)=57,9; p<0.001] and post-
hoc comparisons showed lower ratios in the Tbi (p=0.022), Tbi-early (p<0.001) and
Pre-Tbi-early groups (p<0.001) compared to the Sham group, and in the Tbi-early
(p=0.013) and Pre-Tbi-early (p=0.004) groups compared to the Tbi-late group.

Figure 5B depicts the mean interhemispheric NeuN* cells density ratio in the
PRhc. One-sample t-tests showed that ratios of the Tbi [t(5)=-13.7; p<0.001], Pre-Tbi

[t(5)=-5.07; p=0.004], Tbi-early [t(5)=-4.19; p=0.009], and Pre-Tbi-early [t(5)=-4.72;



p=0.005] groups, but not the Sham, Tbi-late and Pre-Tbi-late groups, were lower
than 100. Between-group analysis [F(6,14.34)=34.7; p<0.001] and post-hoc
comparisons showed lower ratios in the Tbi (p<0.001), Pre-Tbi (p=0.019) and Tbi-
early (p=0.045) and Pre-Tbi-early (p=0.032) compared to the Sham group, and in the
Tbi (<0.001), Pre-Tbi (p=0.009), Tbi-early (p=0.026) and Pre-Tbi-early (p=0.022)

groups compared to the Tbi-late group.

Iba staining in dorsal hippocampus

For the mean intensity ratio (Figure 6B top), one-sample t-tests showed that
the Thi [t(5)=7.79; p<0.001], Tbi-early [t(5)=9.46; p<0.001], Pre-Tbi-early [t(5)=7.08;
p<0.001] and Pre-Thi-late [t(5)=4.32; p=0.008] groups, but not the Sham, Pre-Tbi
and Tbi-late groups, were higher than 100. Between-groups analysis
[F(6,14.21)=28.35; p<0.001] and post-hoc comparisons showed higher ratios in the
Tbi (p=0.021), Tbi-early (p=0.019) and Pre-Tbi-early (0.006) groups compared to the
Sham group, and in the Tbi (0.005), Tbi-early (p=0.001) and Pre-Tbi-early (p=0.008)
groups compared to the Tbi-late group.

For the percentage of stained area ratio (Figure 6B bottom), one-sample t-
tests showed ratios exceeding 100 in the Tbi [t(5)=7.89; p<0.001], Tbi-early
[t(5)=15.55; p<0.001], Pre-Tbi-early [t(5)=5.82; p=0.002] and Pre-Tbi-late [t(5)=2.79;
p=0.039] groups, but not in the Sham, Pre-Tbi and Tbi-late groups. Between groups
analysis [F(6,14.73)=41.145; p<0.001] and post-hoc comparisons showed higher
ratios in the Tbi (p=0.002), Tbi-early (p<0.001) and Pre-Tbi-early (p=0.014) groups
compared to the Sham group, and in the Tbi (p=0.002), Tbi-early (p<0.001) and Pre-
Tbi-early (p=0.014) groups compared to the Tbi-late group. Additionally, the Tbi-early

group showed a higher ratio than the Tbi (p=0.008) group.



Discussion
Our findings emphasize the effectiveness of PE in treating cognitive deficits
post-TBI, highlighting the importance of two factors: the interval between the injury

and the onset of PE, and the interaction with prior training.

Effects of CCl

The TBI led to short (3 h) and long-term (24 h) memory deficits in the ORM
assessed two weeks post-trauma. These outcomes were not due to differences in
habituation, neophobia, or acquisition sessions. CCI also resulted in reduced volume
of the dorsal hippocampus and neuronal loss in both the Hil and PRhc, with
increased microglial reactivity in the dorsal hippocampus. Neuronal loss in the PRhc
may contribute to recall impairment at 3 h, as it is involved in recognizing familiarity
rather than long-term memory consolidation*. Long-term memory deficits may be
attributed to TBI-induced changes in the hippocampus, which is crucial for memory
retrieval during retention®. Its involvement becomes more pronounced when the
memory test has a significant spatial component*®, as evidenced by our 24 h test
where the location of the familiar object changes between the first and second tests.
These results were expected given TBI's consistent association with memory deficits
in ORM and other tasks'''>'94" ‘neurodegeneration in the PRhc'" and
hippocampus'*'**#_and increased microglial activity in the hippocampus, possibly

indicating an inflammatory response'244°,

Exercise as post-training treatment after a TBI: The earlier, the better?



Given the evidence that PE diminishes neurodegeneration after a TBI by

1213 and the associated neuronal death ', initiating PE

reducing neuroinflammation
earlier may yield greater benefits. In this study, we investigated two post-TBI PE
protocols (Tbi-early and Tbi-late groups). However, early initiation of PE did not
produce any cognitive or histological improvements compared to untreated injured
subjects. The lack of ORM improvement does not appear to be linked to reduced
exploration during acquisition, as all animals met criteria, and the Pre-Tbi-early
group, with similar exploration values, performed well in both retention sessions.
Previous experiments with short post-trauma delays (1-2 days), yielded conflicting
results: some positive'®?"?®, while others negative or none'®, suggesting caution in
recommending early treatment. In contrast, delayed PE reversed memory deficits
and reduced TBIl-associated histological changes, indicating neuroprotective and
anti-inflammatory effects. Our results confirm prior findings on the benefits of post-
TBI PE, especially with delayed onset'>'%171949%0 The variation in treatment efficacy
based on the onset delay of post-injury PE might be linked to events in the initial
hours and days post-TBI, marked by extensive mitochondrial damage and impaired
cerebral metabolism?. Our findings support the idea of a time window after TBI,
during which metabolic changes from the trauma and metabolic needs of PE may
interact, compromising PE efficacy and potentially causing harmful effects. As time
elapses post-trauma, compromised cerebral metabolism decreases, reducing its
interference with PE’s energetic demands. The timing of this interaction depends on
factors such as injury severity, treatment intensity, and pre-trauma fitness. The
window for obtaining benefits from post-training PE has been poorly studied, likely
due to the challenge of equalizing all temporal variables that influence PE effects.

Essentially, initiating treatment with different delays but maintaining the same



duration implies that the cognitive evaluation cannot be carried out at the same time
points post-trauma in all the groups ". Conversely, when treatment delays vary but
evaluation time and treatment duration are kept constant, a pause without PE is
required™. Thus, these designs imply either evaluating at different stages of
secondary damage evolution or introducing a significant temporal gap between PE
cessation and cognitive assessment. Our design lacks any treatment interruption of
the post-TBI treatment, with cognitive tests conducted at the same post-injury
moment, this, however, results in differences in treatment duration since this
treatment was initiated either early or late after CCI. This parallels the study by Chen
et al.?, using a closed-head injury model with mice and forced PE. In their study, the
early initiation group began PE after 48 h and continued for 14 d, while the delayed
initiation group started at 9 d and exercised for 7 d. In contrast to our findings, their
study demonstrated beneficial effects from early PE on behavior and histology after
TBI, with late initiation showing no such benefits. Various factors, including animal
type (rats vs. mice), TBI method (CClI vs. closed head impact) and severity, timing of
PE initiation (24 h vs. 48 h) and duration, and PE protocol (voluntary vs. forced), may

contribute to these disparate outcomes.

Is early onset of PE always harmful after TBI?

Our findings demonstrate that 18 days of pre-trauma PE (Pre-Tbi group)
alleviate long-term memory deficits. Similar outcomes have been reported in prior
studies using various tasks, such as the Morris water maze, with both voluntary and
forced PE**#%7! Histologically, pre-trauma PE did not alter the hippocampal volume
reduction induced by TBI, but partially mitigated neuronal density loss in the

ipsilateral Hil and reduced microglial reactivity in the hippocampus. Similar



neuroprotective effects have been previously described®%% Thus, given the
beneficial effects observed with pre-injury treatment at both behavioral and
histological levels, we hypothesize that pre-injury PE could enable an earlier initiation
of post-trauma treatment to harness its benefits from an early stage after the trauma.
The combined PE programs yielded unexpected results. Early post-TBI PE (Pre-Tbi-
early group) improved cognitive function by reducing short-term and long-term
memory deficits in trained subjects. However, this cognitive improvement was not
accompanied by neuroprotective effects on the PRhc or the Hil, nor by a decrease in
microglial reactivity in the hippocampus. Conversely, combining prior training with
delayed post-injury PE (Pre-Tbi-late) produced similar cognitive effects but with less
neuroprotection and reduced impact on neuroinflammation than delayed post-
treatment alone (Tbi-late). These outcomes might be linked to the amount of PE.
Animals with pre-injury training exhibited significantly higher levels of PE post-TBI
compared to those without prior training. This disparity stems from the fact that
subjects with pre-injury PE are already accustomed to the running wheel and are
more physically fit. Then, the increased metabolic demands associated with high
levels of PE may have counteracted the reduction produced by pre-trauma PE
treatment during the energy crisis post-TBI. This imbalance might be more
pronounced in the early stages post-TBI and gradually diminish as the delay
between trauma and initiation of PE increases. Consequently, the Pre-Tbi-early
group did not demonstrate neuroprotection, while the Pre-Tbi-late group exhibited
intermediate neuroprotection between the Pre-Tbi-early and Tbi-late groups.

If neuroprotection was compromised in the Pre-Tbi-early group, another mechanism
must explain the cognitive benefits observed. Previous studies indicate that PE not

only activates neuroprotection but also stimulates neurorepair processes like



1215 and neurotrophins such as BDNF*°. Studies have shown a positive

neurogenesis
correlation between the volume of voluntary PE and the increase in various
neurotrophins, and other molecules related to plasticity?>*'. Therefore, the beneficial
effects of the combined treatment could be explained by an enhancement of

repairing mechanisms rather than neuroprotective mechanisms. Further experiments

are needed to explore this alternative explanation.

Conclusions

Overall, PE may seem like a relatively simple treatment, but numerous factors
influence its effects, including the type of PE, as well as its frequency, duration,
intensity, volume, etc. Specifically, our findings demonstrate that both the delay in
treatment initiation and its interaction with previous training determine the efficacy
and underlying mechanisms of PE as a treatment after TBI, and support the notion
that the parameters of PE as a treatment after TBI should be tailored to individual

patient characteristics.
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Figure 3. Representative microphotography of a coronal section stained for cresyl violet in an animal with
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Figure 5. Detail of representative stitched images of the ipsilateral perirhinal cortex of NeuN immunostained
slices for each experimental group (A). Mean (+SEM) interhemispheric ratio of NeuN+ cells density in the
perirhinal cortex in each experimental group (B). * : Significant differences with regard to the reference
value (100); # : Significant differences compared to the Sham group;§ : Significant differences compared to
the Thi-late group.
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Table 1. Mean + SEM of the exercise variables during the 3 periods analyzed.

Experimental group

Sham Thi Pre-Thi Thi-early Thi-late Pre-Thi-early Pre-Thi-late
Time running last the 4 days before surgery 85.83+23.28 158.82+33.97 98.74£16.35
Distance (m) run last the 4 days before surgery 3795.65+1325.6 7041.5+1851.49 |3727.97+696.3
Time running initial the 4 days after surgery 19.7343.44 25.11+4.49 136.05+28.15 65.8819.4
Distance (m) run initial the 4 days after surgery 514.39+89.78 667.19+118.81 5849.75+1549.4 |2280.43+359.9
Time running during the 4 days of ORM task 70.66+23.74 33.39+5.69 172.4437.69 54.4+11.45

Distance (m) run during the 4 days of ORM task

2319.554846.1

992.78+179.85

7581+1948.18

2055.5+430.94




Table 2. Mean + SEM of the ORM related variables.

Experimental group

Sham Thi Pre-Thi Thi-early Thi-late Pre-Thi-early Pre-Thi-late
Locomotor activity (m) during habituation 1 of | 10.02+1.86 10.24+2.81 10.3+1.94 7.09+2.42 3.4610.64 6.1+2.57 3.32+0.81
ORM task
Locomotor activity (m) during habituation 2 of 6.18+1.4 7.13+£2.48 6.91+1.4 5.31+2.17 2.05+0.52 4.64+1.99 3.09+0.94
ORM task
Locomotor activity (m) during habituation 3 of 7.74£2.02 8.09+3.03 6.17+1.07 3.43+1.21 1.54+0.37 3.22+1.34 1.96+0.49
ORM task
Latency to 1% exploration (sec) in neophobia test |21+5.99 27.27+7.21 24.67+5.06 31.73+8.69 16.67+6.81 21.88+10.17 36.8+10.48
Total exploration (sec) during acquisition session | 165.6+22.68 141.09+11.04 110.46+12.16 81.44+12.92 123.85+16.92 54.58+15.66 111.97+16.66
of ORM task
Discrimination index on the 3-h retention test 28.4+8.06 8.45+5.52 6.28+4.49 1.9+17.7 12+6.73 33.818.1 10.33+9.48
Discrimination index on the 24-h retention test | 28.4412.6 -0.68+5.83 18.7416.58 10.37+9.87 40.7+8.21 35.38+10.77 34.36+5.8




Table 3. Mean + SEM of the histological variables.

Experimental group

(interhemispheric ratio)

Sham Thi Pre-Thi Thi-early Thi-late Pre-Thi-early Pre-Thi-late
Hippocampal volume (interhemispheric ratio) 100.41£1.05 78.7213.21 80.7+5.24 72.3945.9 92.44+3.4 74.58+4.27 83.7+3.1
PRhc NeuN+ cells density (interhemispheric 101.15+0.52 77.47+1.64 87.65+2.43 87.04+3.1 102.53+1.16 79.64+4.89 91.95+5.44
ratio)
Hil NeuN+ cells density (interhemispheric ratio) |101.73+2.15 55.42+8.7 62.94+11.47 33.5613.41 93.23+£10.19 21.34+5.05 63.19+11.02
Hippocampus mean intensity lbal 99.58+0.64 126.08+3.35 117.85+7.8 135.13+3.71 103.13+1.52 133.98+4.8 128.17+6.53
(interhemispheric ratio)
Hippocampus % of Ibal stained area 99.93+2.63 134.3344.35 122.68+13.85 163.53+4.09 98.57+1.61 160.12410.33 139.05+14.01




