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In this paper we draw on recent research on so called Fermi problems, and situate the fundamental 

principles underlying this type of tasks and their use from a task design perspective. We use the models 

and modelling perspective on teaching and learning to elaborate on aspects related to the design of 

single-use, as well as sequences of, Fermi problems. In addition, we discuss a framework (called the 

FPAT framework) for supporting the design and use of Fermi problems to facilitate students’ learning 

within particular mathematics content areas and/or aimed at particular concepts or higher order 

thinking skills. We also illustrate how the FPAT framework can be used to (i) facilitate 

interdisciplinary collaborations with other subjects such as the social sciences, but in particular with 

the other STEM subjects; and (ii) support teachers in adapting and implementing Fermi problems in 

their classrooms. 
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INTRODUCTION 

Since the 1970s, there has been a steadily increasing interest within the field of mathematical education 

centered around the idea of bringing mathematics classroom activities closer to phenomena and 

experiences in the real world (Blum, 2002). In this context, mathematical modelling, as generally 

understood, is the use of mathematics to describe, predict, understand or explain real world situations 

or phenomena (Blomhøj & Højgaard Jensen, 2003; Niss & Blum, 2020). However, studies have shown 

that although an increased emphasis in curricula on modelling, teachers have difficulties in adapting 

and implementing modelling tasks in their classrooms, especially dealing with the openness modelling 

tasks bring with respect to (1) the extra-mathematical knowledge needed; (2) how to tackle and 

productively use students’ diverse ideas and strategies; and (3) that engaging in modelling is time 

consuming (Blum, 2015; Borromeo Ferri, 2021; Borromeo Ferri & Blum, 2013). General potential 

solutions and strategies for coming to terms with these three difficulties have been discussed to various 

degrees, and mostly separately, in the research on task design (Margolinas, 2013; Watson & Ohtani, 

2015). Watson and Ohtani (2015) discuss three different theoretical grain sizes of frameworks and set 

of principles for task design: grand-, intermediate- and domain-specific frames. Grand frames are 

typically general learning theories and the implication of these how to best design tasks in line with 

the assumptions of the theory in question to support the learning of mathematics. Intermediate frames 

are more local in the sense that they acknowledge the situational complexity of leaning, and often 

involve interactions between task, teacher, teaching methods, educational environment, and 

mathematical knowledge. Domain-specific frames on the other hand “focus on particular areas of 

mathematical knowledge or activity and may not be generalizable across mathematics” (p. 6). In this 
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paper we want to connect to this line of research and discuss and highlight the potential of so-called 

Fermi problems to collectively address the three challenges in terms of domain-specific- and 

intermediate design ideas.  

Fermi problems 

Fermi problems (FPs) can be considered being miniature-modelling problems in the sense that they 

are smaller, more well-defined and delimited real-world problems (Robinson, 2008). As such, they 

capture the essence of full modelling problems, yet do not exhibit the same complexity nor put the 

same level of demands on teachers or students. FPs were originally used by the physicist Enrico Fermi 

to illustrate the power of deductive thinking and to prepare his own and his students’ experimental 

work in order to save time and work more effectively (Efthimiou & Llewellyn, 2006). The most 

prominent characteristic that defines FPs is the way in which their solutions are achieved. Fermi posed 

problems which at first glance seemed impossible to solve, but that could be tackled by making 

assumptions based on common knowledge, following simple chains of reasoning and engaging in 

simple calculations. This aspect of the modelling problem processes is what Edwards and Hamson 

(1996, p. 39-40) discuss in the development of mathematical models using rough estimates. The 

procedure proposed by Fermi was to decompose the original problem into simpler sub-problems to 

reach a solution of the original question by means of reasonable estimates or educated guesses 

(Carlson, 1997); see Figure 1 below. In the literature this way of working is known as the Fermi 

(estimates) method, and as Barahmeh, Hamad and Barahmeh (2017) showed, it can be both appreciated 

by, and successfully taught to, students. According to Efthimiou and Llewellyn (2006), FPs are often 

sparsely worded and provide a limited amount of information, such as the following examples of FPs: 

How many jelly beans can you fit in a one-litre bottle? How many pizzas are ordered in your city this 

year? How much gasoline is yearly consumed in our country? Some FPs may pose seemingly banal 

questions but do contain and connect to relevant mathematical content and skills, and in addition, can 

pinpoint and help focus students on important social or environmental issues (Carlson, 1997), as well 

as foster critical mathematical thinking (Sriraman & Knott, 2009). 

 

Figure 1: The Fermi estimate method visualized  
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FERMI PROBLEMS IN THE CONTEXT OF THE MODELS AND MODELLING 

PERSPECTIVE AND MODEL DEVELOPMENT SEQUENCES 

In this paper, we situate FPs with respect to the models and modelling perspective (MMP), in which a 

model is defined as a general system consisting of elements, relationships, rules and operations that 

can be used to make sense of, predict, describe or explain some other system. A mathematical model 

specifically focuses on the structural characteristics of the system in question (Lesh & Doerr, 2003). 

From this perspective learning is understood as developing useful and generalized models that are 

made up of (1) a set of concepts used to describe or explain the mathematical objects and aspects in 

context relevant to the phenomenon studied, and (2) procedures that can be used or re-used to create 

useful constructions, manipulations, or predictions for achieving clearly recognized goals in a range 

of contexts (Lesh & Harel, 2003). 

The elements of task design inherent in the MMP come to the fore in the three different types of 

structurally related activities organized in so-called model development sequences purposefully 

designed to support students’ learning towards a given learning goal. In short, the three types of 

activities are: model eliciting activities (MEAs) which aim to elicit the students’ ideas they bring the 

activity; model exploration activities (MXAs) that focus on the underling mathematical structure 

elicited by students; and model application activities (MAAs) were students apply their model in 

similar or new contexts (Lesh et al., 2003). In all three types of activities students iteratively engage 

in expressing, testing, revising and developing their models (Lesh & Doerr, 2003; Lesh et al., 2003). 

Fermi problems conceived as model eliciting activities 

Lesh et al. (2000) developed six design principles for MEAs that can be summarized as: (i) the activity 

must appear meaningful to the students; it should allow students to (ii) create and (iii) evaluate 

mathematical models, and the models should be (iv) effective but as simple as possible; (v) the 

students’ work must be adequately documented; and the constructed models should be (vi) 

generalizable and useable in other situations. These six design principles have strong resemblance with 

the characteristics of FPs (Ärlebäck, 2009) and can support the designing of FP focused on eliciting 

and introducing specific mathematical content, concepts and procedures for further development, such 

as for example the distribution of objects in a surface (How many people would fit in the Chase Center 

Arena (San Francisco) during a concert?) or in a volume (How many coins would fit into a cubic 

safebox of side 1 metre?), or the stratification of within a population (What is the sum of the ages of 

all the people in the school?) (Albarracín & Gorgorió, 2015). Situating FPs as MEAs highlight the 

potential of FPs function as vehicle for designing activities focusing on various subject matter content. 

However, as MEAs, FPs can additionally be considered means in themselves that facilitate designs of 

activities that support students toward developing higher order skills which are inherent in the Fermi 

method such as problem solving, modelling and critical thinking. For example, as noted in Ärlebäck 

and Albarracín (2019), previous studies FPs have been used successfully to introduce mathematical 

modelling in primary schools (Haberzettl, Klett & Schukajlow, 2018; Henze & Fritzlar, 2010; Peter-

Koop, 2009) and secondary schools (Albarracín & Gorgorió, 2014; Ärlebäck, 2009; Greefrath & 

Frenken, 2021), as well as at the undergraduate level (Czocher, 2016, 2018). Indeed, Borromeo Ferri 

(2018) stresses that FPs are useful to introduce modelling in classrooms since they allow students to 

develop problem-solving strategies based their own emerging questions about the real-life phenomena 
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studied. When working at the primary level, the role of the teacher becomes important in pre-

structuring the Fermi problem to facilitate that the students productively can engage in the Fermi 

method to elicit these higher order skills (Albarracín, 2021). Another approach to support students’ 

work on Fermi problems is to use sequences of Fermi problem to both familiarize the students to the 

way of working as well as providing a learning goal aimed towards a particular curricular content. 

Sequences of Fermi problems conceived within model development sequences 

From the MMP, and depending on the learning goal at hand, PFs can have different functions within 

a modelling development sequence. As pointed out above, FPs can quite naturally serve as MEAs. 

However, as the following example illustrates, FPs can also play the role as an MXA or as an MAA, 

or both. The potential in using a MEA, as emphasized by Ärlebäck and Doerr (2015), is that special 

attention can be given to the evolving learning space promoted by the MEA. In particular, this means 

that the activities that follow the MEA allow students to (1) refine or redefine the constructed models 

by contrasting the weaknesses and strengths of different types of representations; (2) using language 

in a precise manner; and (3) using representations purposely and productively (Ärlebäck & Doerr, 

2015). In Albarracín and Gorgorió (2018) a modelling development sequence was designed 

exclusively using FPs. The leaning goal of the sequence was to introduce students to ideas related to 

density, and the tasks were designed around different contexts in which students were asked to estimate 

the number of objects in two-dimensional enclosed areas. The FPs used were the following: 

• FP1:  How many people could we fit in the high school courtyard? 

• F2.1:  How many people could we fit in the Palau St. Jordi sport pavilion for a concert? 

• FP2.2: How many people could we fit in the town hall square during a public protest? 

• FP2.3:  How many people could we fit in Plaça Catalunya square during a public protest? 

• FP3:  How many trees are there in Central Park? 

FP1 acts as a MEA in that it aims at eliciting students’ initial ideas about how to solve the problem in 

the context of a situation that is highly relatable and accessible to the students. The proximity of the 

courtyard encourages the students to go outside to try out their ideas and explore to make informed 

decisions or take measurements. The problems FP2.1-3 maintain the same principle objective as FP1, 

but change (i) the accessibility of the enclosed area in the task; (ii) the geometrical characteristics of 

the enclosure; and/or (iii) the way in which people are placed or occupy space. This encourages the 

students to reconsider whether the models developed in FP1 allow them to tackle the new situation, 

leading them to adapt and develop their models, or even revise them completely. In this sense, the 

FP2.1-3 problems act as MXAs, encouraging the students to explore the mathematical structure of the 

elicited models in FP1. The last task in the sequence, FP3, function as a MAA in that it introduces 

variation in the objects being fitted (trees instead of people), which further promotes the students to 

readapt the concepts and procedures of their models used in the previous problems situations. The 

study by Albarracín and Gorgorió (2018) showed that students work in small groups on the sequence 

of FPs did promote the development and use of densities in terms of population density models. 

A selection of the sequence of problems listed above (FP1, FP2.2, FP2.3, and FP3) was also used in 

the study by Albarracín et al. (2022) with a slightly modification to the two locations mentioned in the 

FPs corresponding to FP2.2 and FP2.3. Drawing on a downscaling – upscaling task design framing of 

the sequences of tasks (c.f. Pla-Castells & Ferrando, 2019), and an experimental design using a 
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treatment- and a control group, Albarracín et al. (2021) found that (i) the experimental group working 

through the whole sequence of FPs were better equipped to tackle FP3 than the control group (which 

only worked on the FP3 problem); and (ii) that the experimental groups’ strategies were more 

homogenous with respect to the underlying idea (using iteration of a base unit) compared to the 

strategies employed by the control group. These two results show that by working through a well-

designed sequence of FPs, it is possible for students to successively be eased into increasingly more 

unfamiliar contexts entailing gradually more complex aspects that potentially could be in-cooperate in 

their solutions, and that this can be done in such a way that the students develop powerful models and 

skills to apply them effectively.  

FPAT – A TOOL FOR (INTERDISCIPLINARY) TASK DESIGN USING FERMI PROBLEMS 

In our review of the literature on FPs in different disciplines (Ärlebäck & Albarracín, 2019), we 

discussed FPs as integrators between the STEM disciplines; as facilitators for learning in the STEM 

disciplines; and their connections to learning 21st century skills (Binkley et al. 2012). In addition, doing 

the review allowed us to identify four types of mathematical activities (c.f. Rasmusen et al., 2005) that 

are broadly used to achieve the numerical values needed of quantities to be able to provide a solution 

and answer the problems in question. We have termed these four activities guesstimation (the 

estimation in “standard” FP solving), experimentation, looking for data and polling or statistical data 

collection. Below we briefly describe and provide examples of these four activities, discuss how these 

align with the problem solving process of FPs, and highlight the natural feature of FP to facilitate 

interdisciplinary collaboration in term of references from other fields. 

Guesstimation. An original feature of FPs is the answering of a question by combining educated 

guessed estimates to sub-problems. Generally, estimation is a process that gives a rough solution to a 

problem in counting or measurement. Shakerin (2006), working in a STEM setting, argues that part of 

an engineer’s practice is to use estimation to solve ill-defined problems or when detailed solutions are 

not required, which directly connects with FPs. In STEM, estimation particularly plays an important 

role in (a) preliminary stages of design processes; (b) decision-making based on incomplete or 

unavailable details/data; (c) forced selections made from a multitude of options affecting outcome 

variables; and (d) in checking the validity of decisions and calculations (Shakerin, 2006).  

Experimentation. Developing laboratory skills in planning and doing physical experiments was one of 

Fermi’s original motivations for using his method. Practical experiences and purposeful physical 

experimentation can result in adequate data for the quantities considered relevant to solve a given 

problem. In many cases this experimentation can be carried out outside the classroom and linked to 

for example counting or measuring processes. Gómez and Albarracín (2017) showcase this in the work 

of year 1 students, engaged in a practical activity outside the school, estimating the number of people 

living in their city by approximating the number of houses or flats in the students’ own street. On the 

other hand, Bentley (1984), when computer storage and computer speed were considerably more 

limited than today, showcased and argued that the using computer experimentation (running and 

clocking small and simple snippets of code) can productively inform Fermi method based on 

calculations to estimate the running time of computer programs and the need of memory. A similar 

argument like the one put forward by Bentley can be applied today in the context of questions regarding 

for example the dimensioning of artificial intelligent system, such as with respect to the number of 

layers and parameters in the design of a machine learning systems. 
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Looking for data. In many cases, some of the quantitative data needed in solving a FP can be found by 

consulting external records and sources, such as Wikipedia or national statistical institutes. This could 

be the case when for example the population of a city or a country is needed. However, in other cases 

identifying reliable sources might not be so easy, as they potentially contain errors or biases induced 

for unknown reasons. In this case, the work with FPs can function as a tool for critically evaluating 

the information to either repudiate or validate the public sources and published data. In biology, 

Phillips and Milo (2009) initiated the project www.bionumbers.org which collects experimentally 

reliable and validated values of quantities relevant for research in biology.  

Polling or statistical data collection. Sriraman and Knott (2009) suggest FPs to have the potential to 

lead to a growing awareness of ecological and environmental problems, as well as to provoke a critical 

stance toward governmental and corporate policies regarding freshwater consumption, gasoline 

consumption, wastage of food, amount of trash produced, etc. One way to get trustworthy values for 

relevant quantities in such questions, is to make estimates and subsequent checks with official data, 

but it is also possible to engage in data collection and statistical analysis in the classroom. In this latter 

case, the students can for example create surveys and decide on appropriate samples to explore and 

investigate various problems related to societal issues. An example of this approach is provided by 

Blomberg (2015) how studied upper secondary students learning statistic in a designed sequence of 

lessons working on the question “What proportion of Swedish youth walk at least 10,000 steps a day?”. 

The students first approached this question as a FP developing hypotheses which they tested by 

collecting data using pedometers and engaging in statistical analyses. 

In Albarracín and Ärlebäck (2019) we pull these four different activities together to a framework for 

analysis and design called Fermi Problem Activity Templates, FPATs. 

FERMI PROBLEMS ACTIVITY TEMPLATES – FPATs  

A Fermi Problem Activity Template (FPAT) is a characterization that focuses on the structure of the 

FP in terms of the four different types of activities outlined above. FPATs can, for example, be used 

(i) as a tool for designing and/or doing a priori analyses of FPs given particular learning goals; or (ii) 

for analyzing the work of students unguided work on modelling problems in general, and on FPs in 

particular. In terms of using FPATs as a tool for task design, a FPAT is especially helpful to the tackle 

some the difficulties related to the openness of FPs, and to realize and anticipate possible ways to 

divide the original problem into potential interconnected subproblems needed to be solved – and how 

these are related to the learning goal and other mathematical or STEM disciplinary content. The focus 

on different mathematical activities of the FPAT is an aspect of the framework that can be described 

as providing an intermediate frame for task design (cf. Watson & Ohtani, 2015) in that its four 

activities (guesstimation, experimentation, looking for data and polling or statistical data collection) 

are general problems-solving strategies applicable to many mathematical areas (as well as applied 

disciplines). Further, the FPAT framework used as a design tool facilitate to think about and 

acknowledge the situational complexity of leaning, and often involve such aspects as the interactions 

between task, teacher, teaching methods, educational environment, and mathematical knowledge, 

which also is characteristic for and intermediate frame for task design. Note however, that it is 

important to emphasize that each FP can be solved using different approaches (Albarracín & Gorgorió, 

2014) depending on the extra-mathematical knowledge available to students at each educational level 

http://www.bionumbers/


Ärlebäck & Albarracín 

7 

(Ärlebäck, 2009). Hence the FPAT framework in addition also exhibites domain-specific task design 

characteristics (cf. Watson & Ohtani, 2015) related to the FP at hand and its context. 

The inspiration for the FPAT categorization to include a geometrical representation comes from the 

work by Anderson and Sherman (2010) with university Economics and Business students. They apply 

the Fermi method to, and represent an a priori analysis of, the task How many hotdogs are consumed 

at the Major League Baseball (MLB) games each season in the US? using a simple graphical diagram 

(see Albarracín & Ärlebäck (2019) for more details). In the FPAT, we have developed their simple 

graphical representation and introduced a representation separating the different activities in Table 1 

above. To illustrate how our graphical representation enhances the accessibility and directness of the 

framework, we present a short example analogously to the task discussed by Anderson and Sherman 

(2010), namely: How many rolls of toilet paper are used in the schools in your country every year? 

By making an a priori analysis of, and explicitly differentiating between the sub-problems the students 

reasonably have to engage in to solve the problem, Figure 2 illustrate a FPAT for the so-called Toilet 

Roll Paper Task in terms of the structure of the solving process. In the FPAT the different sub-

problems are delimited using square brackets. As illustrated in Figure 2, the sub-problem to determine 

the amount of [Paper used per student and day] is to be calculated by multiplying the number of Toilet 

visits per person and school day with the Length of paper used per toilet visit. The result of this 

calculation ([Paper used per student and day]) is then going to be used as input to the calculation of 

the sub-problem determining the amount of [Paper used in school each year], by multiplying [Paper 

used per student and day] with both the number of Persons in the school and the number of School 

days in a year. Finally, the answer to the original question, the number of [Rolls of toilet paper used 

in school each year], is given by dividing the answer to the sub-problem [Paper used in school each 

year] with the Length of paper one toilet paper roll. 

Table 1: The FP Activity Template characterization (FPAT). 

Activity Geometrical 

representation 

Activity Description 

Students obtain the quantity by engaging in… 

Guesstimation Ellipse ...a mental process giving a rough solution through guessing 

based on previous experiences. 

Experimentation Trapezoid ...in-and-out-of-school experimentations and investigations, 

including making measurements. 

Looking for data Rectangle ... searching for numerical information in external sources. 

Polling or 

statistical data 

collection 

Hexagon ...suitable ways of selecting, collecting and analyzing 

statistical data. 

 

Importantly, there are different types of activities one can consider engaging in to achieve the 

numerical values needed in solving the different sub-problems. For example, rather than using a 

standard way of guesstimating based on previous experiences, consulting official school and 

governmental records might provide the number of persons in the schools (staff and students) and the 

number of school days in a year. To determine how many toilet visits a person make each day, a 
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(anonymous) statistical survey or data collection could be conducted, and, due to the potential delicate 

nature of the amount of toilet paper usage, a guesstimation could be used to estimate the average use 

of toilet paper per toilet visit. In the case of finding the length of the paper on a toilet paper roll, one 

can engage in trying to calculate the total length using a geometrical argument or, as suggested in 

Figure 2, conduct some investigation of a (number of) physical toilet paper roll(s), either involving 

unrolling the paper roll and measure the length or some weighing process. 

 

Figure 2: An a priori analysis of The Toilet Roll Paper Task characterized using FPAT  

In terms of using the FPAT as a tool for analyzing students’ work, Figure 3 provides an example of an 

a posteriori analysis of (a group of pre-service primary teacher) students’ work on the Toilet Roll Paper 

Task. Figure 3 provides the pre-service primary teacher students’ own generated representation of their 

solution after having solved the FP. The students participated in a 3-hour workshop on FPs in which   

they were introduced to the FPAT framework, and Figure 3a is their first unaltered attempt in using 

the framework for representing a solution to a FP. The fact that what is presented below is the students 

first unaltered attempt explains that there are shortcomings in the FPAT such that (a) not all sub-

problems are named and delimited adequately; (b) the use of square-brackets in not consistently 

applied; and (c) the only activity used to get the needed numerical values to solve the FP is 

guesstimation. However, the FPAT do capture and convey some of the key components in the students’ 

approach in solving the FP. In Figure 3b the students’ representation of their solution in terms of their 

constructed FPAT is unpacked and explained. Here, square brackets represents either subproblems, or 

a single quantity identified and delimited by the students as a subproblem to be determined it in its 

own right. Curly brackets are the authors’ identified subproblems the students actually calculate using 

the specified quantities as represented in their FPAT. The indexing letters A, B and C have been 

introduced to facilitate referencing the different subproblems and quantities in the solution. 
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Figure 3a. The unaltered a posteriori analysis made by a group of pre-service primary teachers of 

their solution to the Toilet Roll Paper Task using the FPAT framework for the first time. 

 

 

Figure 3b. The unpacked and translated a posteriori analysis of the pre-service primary teacher 

group’s solution to the Toilet Roll Paper Task using the FPAT framework in Figure 3a. 

The pre-service primary teacher students choose to answer the FP in terms of calculating the volume 

of the yearly needed amount of toilet paper. This amount of toilet paper was estimated by multiplying 

the {Number of bales of toilet paper rolls used per year} (which correspond to the larger square-

bracket sub-problem on the left, and which by the student incorrectly was named [A. Number of toilet 

paper rolls] by the students) with the [D. Volume of one bale of toilet paper rolls]. To do this: 

• First, the {Number of toilet paper rolls used per year} is calculated by multiplying the 

{Numbers of toilet paper rolls used in school per week} by the [B3. Number of weeks students 
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attend school in a year], were the {Numbers of toilet paper rolls used in school per week} is 

given by B1. How often toilet paper rolls are replaced each week per toilet multiplied by B2. 

How many toilets there are. 

• Secondly, the {Number of bales of toilet paper rolls used per year} is then calculated by 

dividing the {Number of toilet paper rolls used per year} by the [C. Number of toilet paper 

rolls on one bale]. 

Finally and thirdly, the annually needed amount of toilet paper in terms of volume of toilet paper, is 

calculated by multiplying the {Number of bales of toilet paper rolls used per year} with the [D. Volume 

of one bale of toilet paper rolls].  

FPAT AS FACILITATOR FOR INTERDISCIPLINARY COLLABORATION  

In identifying and outlining the four activities in the FPAT framework (guesstimation, 

experimentation, looking for data and polling or statistical data collection), we explicitly have drawn 

on literature from the STEM disciplines. This shows that FPATs as a tool for designing tasks in terms 

of a domain-specific frame (cf. Watson & Ohtani, 2015) can support teachers and researchers in 

identifying opportunities to connect and bring in other STEM-related contexts, subject matter and 

content into the teaching and learning of mathematics. Hence, FPs can be used as activities in which 

STEM disciplines are integrated into the teaching and learning of mathematics to increase students’ 

achievement in both the STEM disciplines and mathematics, centered around meaningful real-world 

challenges and problems (Roehrig, Moore, Wang, & Park, 2012). However, as illustrated in the Toilet 

Roll Task above, also content and topics from the social sciences potentially can come to the fore. 

Sriraman and Knott (2009) for example stress the suitability of FPs potential to make aspects of 

governmental and corporate policies visible and available for critical scrutiny. FPs, as miniature-

modelling problems (Robinson 2008), make them accessible tools for investigating the models used 

in for example economics, public health, history, sociology and political science. Although less 

experienced problem-solvers may face challenges in grasping and structuring specific given problem 

contexts, they can successively develop their FP solving competence to overcome this by for example 

engaging in carefully designed sequences of FPs, to be able to address socially relevant and critical 

problem situations. Here, the FPAT activates can support and facilitate the direct connections to areas 

outside traditional mathematics in various ways through the different nature inherent in the four 

activities. For a more detailed discussion see Ärlebäck and Albarracín (2019).  

FPAT AS A TOOL SUPPORTING TEACHERS TO IMPLEMENT FERMI PROBLEMS 

From a teacher perspective, the clear structure and accessibility of the FPAT framework offers a 

concrete tool for thinking about how to bring modelling into the classroom using problems posed in 

meaningful and relevant contexts, and potentially overcoming some of the difficulties discussed in the 

literature (Borromeo Ferri & Blum, 2013).  A FPAT characterization of a task prepares the teacher and 

provides input on what to expect, what to prepare, as well as picturing what different problem-solving 

routes the students might take. In this way the FPAT reduces some of the challenging aspects 

associated with the openness of modelling problems. In addition, the FPAT graphical representations 

of the four potentially involved activities (guesstimation, experimentation, looking for data, and 

polling or statistical data collection) provide a quick overview of the envisioned and potential 

development, as well as way to a posteriori analyze and represent students’ work. For example, in the 
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context of working with pre-service primary teachers, Figure 3 provides information on how to support 

students in developing and strengthen their abilities in terms of (i) what aspects of the problem solving 

process to emphasize; (ii) what the relevant sub-problems needed to solve the FP are; and (iii) how to 

think productively about involving other types of activities and making connections to other subjects. 

Taken together, this suggests that the FPAT potentially and productively can function as a intermediate 

frame for task design (cf. Watson & Ohtani, 2015) and support teachers in making conscious choices 

in designing, planning, implementing and evaluating both single FPs, as well as sequences of activities 

involving FPs, focusing on given mathematical contents and curricula (and possible interdisciplinary) 

goals. 

However, supporting teachers in overcoming the difficulties associated with implementing modelling 

is not trivial (Borromeo Ferri & Blum, 2013). Future research needs to study what challenges arises, 

and what support or training can facilitate to overcome these, when teachers try to use the FPAT as an 

a priori and a posteriori tool in their classroom practice engaging their students in modelling activities. 

CONCLUDING REMARKS 

In this paper we have discussed Fermi problems using the models and modelling perspective on 

teaching and learning to elaborate on aspects related to their use as stand-alone activities as well as in 

sequences of activities. We have also presented the FPAT framework for supporting the design and 

use of Fermi problems and discussed how this can support and to facilitate (the design of) (i) students’ 

learning within particular mathematics content areas; (ii) students’ learning of particular concepts or 

higher order thinking skills; (iii) interdisciplinary task (connected to the social sciences and the other 

STEM subjects); and (vi) for teachers adapting and implementing Fermi problems in their classrooms. 

With respect to the teaching and learning of mathematical modelling, our initial work has lead us to 

believe that the FPAT framework has the potential to support teachers and the training of pre-service 

teachers to overcome some of the difficulties identified in the literature (Blum, 2015; Borromeo Ferri 

& Blum, 2013). In particular, a FPAT framework provides an approach that allow us to potentially 

make progress in addressing the challenge of effectively introducing, and maintain a more regular use 

of, mathematical modelling activities in everyday classrooms (Borromeo Ferri, 2021). As such, our 

discussion and examples have shown how the FPAT framework can be seen to function as a theoretical 

framework of task design that is applicable at different grain sizes: both at (1) an intermediate frame 

size with its capacity to acknowledge the situational complexity of leaning, and often involve 

interactions between task, teacher, teaching methods, educational environment, and mathematical 

knowledge; as well as at a (2) domain-specific frame size with its capacity to focus on more narrow 

applicable content in mathematics and other disciplines (Watson & Ohtani, 2015). We are presently 

engaged in research further exploring these aspects using the FPAT framework as (a) an analytic tool 

of students’ and pre-service teacher’s work on FPs; and (b) a tool for pre-service teachers engaged in 

task design.  
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