
This is the **accepted version** of the journal article:

Soder-Walz, Jesica M.; Deobald, Darja; Vicent i Huguet, Teresa; [et al.]. «MecE, MecB, MecC proteins orchestrate methyl group transfer during dichloromethane fermentation». *Applied and Environmental Microbiology*, Vol. 90, issue 10 (October 2024), art. e00978-24. DOI 10.1128/aem.00978-24

This version is available at <https://ddd.uab.cat/record/302251>

under the terms of the license

1 **MecE, MecB, MecC proteins orchestrate methyl group transfer during**
2 **dichloromethane fermentation**

3 Jesica M. Soder-Walz,^a Darja Deobald,^b Teresa Vicent,^a Ernest Marco-Urrea,^a# Lorenz Adrian^{b,c}

4

5 ^aDepartament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona
6 (UAB), Bellaterra, Spain.

7 ^bHelmholtz Centre for Environmental Research – UFZ, Department Environmental Biotechnology,
8 Leipzig, Germany.

9 ^cChair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany.

10

11 Running head: *Dehalobacterium* methyltransferases

12

13 #Corresponding author: Ernest Marco-Urrea, Departament d'Enginyeria Química, Biològica i
14 Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain.

15 Phone: +34 935812694; Fax: +34 935812013; Email: ernest.marco@uab.es

16 Jesica M. Soder-Walz and Darja Deobald contributed equally to this work. The order of authorship
17 was determined by mutual agreement.

18

19

20 **Abstract**

21 Dichloromethane (DCM), a common hazardous industrial chemical, is anaerobically metabolized by
22 four bacterial genera: *Dehalobacter*, *Dehalobacterium*, *Ca.* *Dichloromethanomonas*, *Ca.*
23 *Formimonas*. However, the pivotal methyltransferases responsible for DCM transformation have
24 remained elusive. In this study, we investigated the DCM catabolism of *Dehalobacterium*
25 *formicoaceticum* strain EZ94, contained in an enriched culture, using a combination of biochemical
26 approaches. Initially, enzymatic assays were conducted with cell-free protein extracts, after protein
27 separation by blue native polyacrylamide gel electrophoresis. In the slices with the highest DCM
28 transformation activity a high absolute abundance of the methyltransferase MecC was revealed by
29 mass spectrometry. Enzymatic activity assays with heterologously expressed MecB, MecC, and
30 MecE from strain EZ94 showed complete DCM transformation only when all three enzymes were
31 present. Our experimental results, coupled with the computational analysis of MecB, MecC, and
32 MecE sequences enabled us to assign specific roles in DCM transformation to each of the proteins.
33 Our findings reveal that both MecE and MecC are zinc-dependent methyltransferases responsible for
34 DCM demethylation and re-methylation of a product, respectively. MecB functions as a cobalamin-
35 dependent shuttle protein transferring the methyl group between MecE and MecC. This study
36 provides the first biochemical evidence of the enzymes involved in the anaerobic metabolism of
37 DCM.

38 **Importance**

39 Dichloromethane (DCM) is a priority regulated pollutant frequently detected in groundwater. In this
40 work, we identify the proteins responsible for the transformation of DCM fermentation in
41 *Dehalobacterium formicoaceticum* strain EZ94 using a combination of biochemical approaches,
42 heterologous expression of proteins and computational analysis. These findings provide the basis to
43 apply these proteins as biological markers to monitor bioremediation processes in the field.

45 Keywords: *In vitro* activity test, anaerobic fermentation, heterologous expression, methyltransferase,
46 metalloprotein, *Dehalobacterium*.

47 **INTRODUCTION**

48 Dichloromethane (DCM), also known as methylene chloride, is a ubiquitous compound produced by
49 both, natural sources, such as oceanic emissions, biomass burning, and volcanoes (1, 2), and
50 anthropogenically through its widespread use as a solvent and intermediate in the chemical industry.
51 DCM often becomes a groundwater contaminant due to improper disposal or spills (3-5). Once
52 leaked, DCM, which is denser than water, can percolate through the soil and accumulate at the bottom
53 of the aquifer as a dense non-aqueous liquid phase. Additionally, microbially mediated processes,
54 including the reductive dechlorination of trichloromethane (TCM), can also contribute to DCM
55 occurrence (6,7).

56 Biodegradation of DCM under oxic and anoxic conditions has been repeatedly reported. Most DCM-
57 degrading bacteria described in the literature have been isolated from oxic environments. A
58 representative example are facultative methylotrophs catalyzing DCM transformation, *e.g.*, through
59 DcmA, a glutathione-S-transferase (GST) that leads to formaldehyde (8,9). However, as oxygen is
60 often limited in contaminated aquifers, anaerobic bacteria become viable candidates for groundwater
61 bioremediation. Under nitrate-reducing and methanogenic conditions, anaerobic microbial
62 transformation of DCM has been reported (10,11). To date, four anaerobic bacterial species capable
63 of transforming DCM have been reported: *Dehalobacterium formicoaceticum* strains DMC and
64 EZ94, that ferment DCM into formate, acetate and inorganic chloride (12-16), *Candidatus*
65 *Dichloromethanomonas elyunquensis* that mineralizes DCM into H₂, CO₂ and inorganic chloride
66 (17,18), *Ca. Formimonas warabiya*, formerly referred to as strain DCMF, that ferments DCM into
67 acetate and inorganic chloride (19), and a *Dehalobacter* sp. contained in the mixed cultures DCME
68 and SC05-UT (derived from KB-1 Plus CF) that mineralizes DCM into H₂, CO₂ and inorganic
69 chloride (20). *Ca. Formimonas warabiya* is the only bacterium described to use other non-chlorinated
70 substrates such as methanol, choline, and glycine betaine (quaternary amines) besides DCM (19,21),
71 while *D. formicoaceticum* strain DMC is the only isolate.

72 Recently, all the genomes of these bacteria or metagenomes from enriched cultures with them were
73 sequenced and annotated. The absence of reductive dehalogenase genes in the genomes of *D.*
74 *formicoaceticum* and *Ca. Formimonas warabiya*, coupled with the abundance of methyltransferase
75 genes, led to the hypothesis that methyltransferases might play a pivotal role in the initial step of
76 DCM transformation (12,22). In contrast, *Ca. Dichloromethanomonas elyunquensis*, despite
77 encoding numerous methyltransferases, also encodes three reductive dehalogenases (*rdhA*) in its
78 genome, expressing two of them in cultures growing with DCM (19). In the metagenome of the
79 mixed culture containing *Dehalobacter* SC05-UT and DCME, only one reductive dehalogenase
80 (*AcdA*) was detected in the proteome during complete TCM transformation, although 27 *rdhA* genes
81 are encoded in its genome. In this case, the authors argued that *AcdA* cannot dechlorinate DCM but
82 TCM, asserting that methyltransferases might be the primary enzymes responsible for DCM
83 transformation in *Dehalobacter* (20). Consequently, methyltransferases were pinpointed as the
84 primary agents responsible for DCM dechlorination, although the role of reductive dehalogenases in
85 the genus *Ca. Dichloromethanomonas elyunquensis* remains unexplained.

86 In the late 1990s, physiological and biochemical investigations on *D. formicoaceticum* strain DMC
87 using crude cell extracts revealed that DCM combined with tetrahydrofolate (THF) produces 5,10-
88 methylene-THF, which subsequently enters the Wood-Ljungdahl pathway (15). Additionally, these
89 studies postulated that the transformation of DCM was corrinoid-dependent, although the catalytic
90 enzyme was not identified (15). At present, it is widely accepted that the methyl group of the DCM
91 is metabolized by the Wood-Ljungdahl pathway in all reported anaerobic DCM degraders, even
92 though different catabolic pathways for DCM might operate among different genera.

93 Proteogenomic studies on *D. formicoaceticum* and *Ca. Dichloromethanomonas elyunquensis* have
94 identified a methyltransferase cassette, denominated the *mec* (methylene chloride catabolism)
95 cassette. The cassette, comprising ten genes from *mecA* through *mecJ*, is suspected to be implicated
96 in DCM transformation (23). Cultures of *D. formicoaceticum*, *Ca. Dichloromethanomonas*

97 *elyunquensis* and *Dehalobacter* sp. contained in the mixed cultures DCME and SC05-UT produced
98 a large number of proteins from the *mec* cassette, among them putative methyltransferases, during
99 growth with DCM (20,23). Moreover, *mecE* and *mecF* gene transcript levels in DCM-contaminated
100 groundwater correlated well with DCM pollution (23). Despite these findings, the key enzyme for
101 DCM transformation remains unknown in the four mentioned bacteria.

102 In our previous work, we have enriched an anaerobic DCM-fermenting bacterial consortium from a
103 membrane bioreactor at an industrial wastewater treatment plant (24). This consortium was
104 dominated by the genera *Dehalobacterium*, *Acetobacterium*, *Desulfovibrio*, and *Wolinella*, and
105 produced acetate, formate and chloride when grown with DCM in a bicarbonate-buffered medium
106 (16,24). Recently, we obtained the assembled genome of a *Dehalobacterium* strain in the consortium,
107 designated *Dehalobacterium formicoaceticum* strain EZ94, through metagenomic sequencing and
108 used the genome information to characterize the expressed proteome during growth with DCM (25).

109 The objective of the current study was to identify the enzymes involved in the DCM fermentation
110 process using *D. formicoaceticum* strain EZ94 as model organism. To achieve this, we employed
111 various approaches, including enzymatic assays using cell-free crude extracts separated through blue
112 native polyacrylamide gel electrophoresis (BNE), and protein mass spectrometry. Additionally, we
113 heterologously expressed candidate genes in *Escherichia coli* BL21 (DE3) and conducted enzyme
114 activity assays with the recombinant methyltransferases. These approaches enabled us to pinpoint
115 MecB, MecC, and MecE, all encoded in the *mec* cassette, to be involved in DCM transformation.
116 Bioinformatic analyses, including *in-silico* protein structure predictions of MecB, MecC, and MecE,
117 multiple sequence alignments, and the prediction of cofactor binding sites, enabled us to assign
118 specific functions in the transformation of DCM to the three proteins.

119 **RESULTS**

120 **Abundance and functional predictions of proteins from the *mec* operon in *D. formicoaceticum***
121 **strain EZ94**

122 First, we analyzed the proteome profile of the crude extract and the soluble protein fraction of the
123 *Dehalobacterium*-containing culture growing with DCM using shotgun proteomics. As recently
124 reported (23), the methyltransferases from the *mec* operon (Supplementary Figure 1) were among
125 the most abundant proteins (Supplementary Table 1). MecC was the most abundant protein in both
126 the protein crude extract and the soluble protein fraction. MecE, MecB, and MecF were also among
127 the top ten most abundant proteins in both samples (Supplementary Table 1). MecB is annotated as
128 a corrinoid methyltransferase, MecC and MecE are predicted as methylcobalamin
129 methyltransferases, whereas MecF is anticipated to act as a tetrahydromethanopterin
130 methyltransferase. MecI was identified in the soluble protein fraction and in the protein crude extract,
131 ranking at a relative abundance position of 122 and 110, respectively (comparing the absolute
132 abundance values of MS1 peak intensities within one sample), while MecH and MecJ were detected
133 only in the protein crude extract ranking at relative abundance positions of 377 and 592, respectively
134 (Supplementary Table 1). Functional annotation suggests that MecI serves as a uroporphyrinogen
135 decarboxylase, MecH as a methyltransferase corrinoid activation protein, and MecJ as a Na^+/H^+
136 antiporter. The remaining proteins of the Mec cassette, namely MecA, MecD, and MecG, were not
137 detected in either the crude protein extract or the soluble protein fraction. These proteins are predicted
138 to function as regulatory proteins, which might explain the lack of detection.

139 **Dichloromethane transformation activity in protein fractions of *D. formicoaceticum* strain**
140 **EZ94**

141 To localize the DCM transforming activity, enzymatic activity assays were conducted using different
142 protein fractions of strain EZ94 from the enriched culture: crude protein extract, membrane protein

143 fraction, and soluble protein fraction. Dechlorination/demethylation activity against DCM was
144 detected in both the protein crude extract and the soluble protein fraction, while it was absent in the
145 membrane protein fraction (Supplementary Figure 2). Subsequently, the soluble fraction was
146 fractionated by size into three distinct mass fractions using ultrafiltration with defined exclusion
147 sizes: (i) a soluble fraction below 30 kDa, (ii) a fraction of 30–100 kDa, and (iii) a fraction above
148 100 kDa. Transformation of DCM was solely observed in the soluble protein fraction above 100 kDa
149 (Supplementary Figure 2). Henceforth, the soluble protein fraction containing proteins and protein
150 complexes exceeding 100 kDa will be referred to as “large protein fraction” throughout this study.

151 The transformation of DCM was inhibited in the presence of propyl iodide, a compound known to
152 specifically target cobalamin-dependent proteins (26), suggesting the potential involvement of a
153 cobalamin-dependent methyltransferase in DCM transformation.

154 The large protein fraction was fractionated using anion exchange chromatography into 17 fractions
155 (see the section in Supplementary Results). Among these, the three fractions exhibiting DCM
156 transformation activity displayed high absorbance at 360 nm, indicative of cob(III)alamin
157 (Supplementary Figure 3). Subsequent mass spectrometric analysis of the proteins within these
158 fractions identified the presence of methyltransferases MecB, MecC, MecE, and MecF, indicating
159 their involvement in the observed activity.

160 **Identification of putative Mec proteins involved in dichloromethane transformation using BNE**
161 **followed by enzymatic assays and protein mass spectrometry**

162 To investigate the function of the Mec proteins in DCM transformation, BNE was conducted with
163 the large protein fraction from the *Dehalobacterium*-containing mixed culture. BNE separates
164 proteins under non-denaturing conditions, enabling us to investigate DCM transformation activity in
165 gel slices after protein separation and 24 h of incubation with reaction mixture.

166 In the initial experiment, gel lanes were loaded with protein from the large protein fraction, and each
167 replicate lane was cut into 6 slices. The highest DCM transformation activity was observed in slices
168 3 ($54.1 \pm 43.4\%$ DCM transformation after 24 h of incubation) and 4 ($44.8 \pm 10.1\%$), corresponding
169 to the molecular masses of 68–166 kDa and 166–322 kDa, respectively (Supplementary Figure 4A–
170 D). Subsequently, a second BNE was conducted with protein from the large protein fraction, and the
171 gel lanes were cut into 12 slices. Complete transformation of DCM was observed in slice 8 in both
172 replicate samples (Figure 1A, Supplementary Figure 4E), with the calculated molecular mass of the
173 active slice in the range of 114–215 kDa (Figure 1A). Gel slices obtained from stained lanes of the
174 BNE gel were excised, trypsin-digested, and analyzed by mass spectrometry. The absolute protein
175 abundance and the relative distribution across the gel slices of proteins encoded in the *mec* operon
176 were evaluated for both experiments (Figure 1B, Supplementary Figure 4F). In both BNE gel
177 experiments, positive controls were included. They contained 0.7 and 1.5 mg protein of the large
178 protein fraction, respectively, and exhibited DCM transformation rates of 91.0 ± 8.0 and $100 \pm 0\%$,
179 respectively. An additional positive control was the sample prepared for gel loading, which contained
180 1.4 and 2.2 mg of large protein fraction supplemented with 0.125% (w/v) Coomassie G-250, which
181 were not loaded onto the BNE. These samples showed 100% DCM transformation activity. Negative
182 controls lacking enzymes did not show DCM transformation after 24 h of incubation (data not
183 shown).

184

185 The nLC-MS/MS analysis revealed that in both BNE analyses, MecC was the predominant protein
186 in the active slices, which absolute protein abundance (MS1 peak intensity approximately 3×10^9)
187 was expressed one order of magnitude higher than other Mec proteins such as MecF, MecB, MecE
188 (MS1 peak intensities between 1.0×10^8 and 5.0×10^8), and two orders of magnitude higher than
189 MecI and MecH (Supplementary Figure 5). In the BNE gel cut into 12 slices, MecF co-eluted with
190 MecC, showing comparable relative abundance in slices 8 and 9 (Figure 1). However, complete

191 DCM transformation was only detected in slice 8, where MecC exceeded MecF in relative and
192 absolute abundance. Similar observations were made for the BNE gel lane cut in 6 slices, where
193 MecC, in absolute terms, was the most abundant protein identified in the active gel slices 3 and 4
194 (Supplementary Figure 4B, 4D and 5A). In both gels, MecB and MecE were found in the same gel
195 slices representing a gel area for proteins with molecular mass below 50 kDa. No DCM
196 transformation was observed in these slices (slice 4 in Figure 1 and Supplementary Figure 4E, and
197 slice 2 in Supplementary Figure 4A and 4C). Thus, both BNE gels display a similar pattern of Mec
198 protein separation and activity distribution across the gel, suggesting that MecC is directly involved
199 in DCM transformation.

200 **Transformation of dichloromethane by recombinant Mec proteins**

201 To determine if MecC serves as the active methyltransferase responsible for the first step of DCM
202 transformation, we heterologously expressed MecC in *E. coli* BL21 (DE3) and conducted methyl
203 viologen-based *in vitro* enzyme activity assays with the recombinant MecC. With MecC as the only
204 catalyst, no DCM transformation was observed (Figure 2A). Following this, we also heterologously
205 produced MecB and MecE, which were suggested to catalyze DCM transformation (23). These
206 authors proposed that MecE catalyzes the initial cleavage of DCM and transfers the methyl group to
207 the cobalamin bound to MecB. However, also with heterologously produced MecE we did not
208 observe DCM transformation (Figure 2A). Combinations of MecC with MecB (Figure 2A), or MecE
209 with MecC (data not shown), did also not show DCM transformation. In contrast, when MecE and
210 MecB were combined, there was a conversion of DCM at equimolar amounts to the MecB used in
211 the setup, resulting in the transformation of 5 μ M of DCM from the initial 50 μ M in the reaction.

212 Complete transformation of DCM was achieved when all three enzymes (MecB, MecC and MecE)
213 were present in the activity master mix (Figure 2A; lower right graph, MecEBC_{Ac}). The
214 transformation of DCM with MecB, MecC and MecE was much higher than equimolar with MecB
215 amounts as described above for the activity assays with MecE and MecB. Therefore, we investigated

216 the fate of the methyl group and searched for a methyl group acceptor in the reaction. The assay
217 solution contained acetate in the buffer, and accordingly, we detected large amounts of acetate by
218 mass spectrometry in all analyzed samples (Figure 3B, peak at m/z 59.0134). However, we detected
219 that acetate underwent methylation to form methyl acetate (MeOAc) solely in samples containing
220 MecEBC and acetate (MecEBC_{Ac}), as evidenced by a new signal at $[M+H]^+ = 75.0443$ m/z (Figure
221 2C). Given that the activity assay was conducted in a 100 mM acetate buffer containing only 50 μ M
222 DCM, the mass signal for acetate was notably higher than that for methyl acetate. In the no-enzyme
223 control (NEC), acetate remained unmethylated, showing only the MS signal for acetic acid at $[M-$
224 $H]^- = 59.0134$ m/z . Acetic acid (Ac) was detected in the negative ionization mode, while MeOAc
225 was measured in the positive ionization mode (Figure 2B–C).

226 The results unambiguously demonstrated that acetate is used by the methyltransferase system of *D.*
227 *formicoaceticum* as a methyl group acceptor. Considering the homology between MecC from *D.*
228 *formicoaceticum* with MtaA from methanogenic archaea (27), which utilize coenzyme M (CoM) as
229 a methyl group acceptor *in vivo*, we also tested CoM as an artificial methyl group acceptor. In the
230 presence of CoM and recombinant MecE, MecB and MecC, complete transformation of DCM
231 occurred after 18 h of incubation (Figure 2A), accompanied by the formation of methyl-CoM
232 (MeCoM), as indicated by the mass signal at $[M+H]^+ = 156.9908$ m/z (Figure 2E). CoM exhibiting
233 a signal at $[M-H]^- = 140.9684$ m/z was not completely converted to methyl-CoM because of the
234 higher CoM concentration (100 μ M) compared to the DCM concentration (50 μ M DCM) in the assay
235 (Figure 2E). In the NEC_{CoM} containing 100 μ M CoM and 5 μ M cyanocobalamin, a minor amount of
236 CoM was abiotically converted to methyl-CoM, indicated by the $[M+H]^+ = 156.9907$ m/z signal in
237 the mass spectrum (Figure 2D), even though no significant change was observed in the GC-MS signal
238 for DCM. Moreover, the mass signal for methyl-CoM at $[M+H]^+ = 156.9907$ m/z was absent in the
239 CoM stock solution used for the activity assays (Supplementary Figure 6). Given the low
240 cyanocobalamin concentration in the NEC_{CoM} and the abiotic reaction of cyanocobalamin with DCM

241 observed *via* spectrophotometric and mass spectrometric measurements, which is described in the
242 next section (Figure 3), abiotic demethylation of DCM by cyanocobalamin and CoM is plausible
243 here.

244 **Abiotic reaction of dichloromethane with cyanocobalamin**

245 Spectrophotometry and liquid chromatography coupled to mass spectrometry (LC-MS) were applied
246 to investigate whether the methyl group of DCM interacts abiotically with the corrinoid cofactor
247 under reducing conditions. Non-reduced cyanocob(III)alamin, with or without DCM, had a
248 maximum absorbance peak at 360 nm (Figure 3A). The observation that the peak was unchanged in
249 the presence of DCM indicates that DCM did not interact with the corrinoid in its oxidized Co(III)
250 state (Figure 3A, red dashed line). Reduced cyanocobalamin in its Co(I) state typically displays an
251 absorption maximum at around 390 nm under aqueous conditions, which was observed when reduced
252 cob(I)alamin was incubated without DCM (Figure 3A, green bold line). However, upon incubation
253 of DCM with cob(I)alamin, the absorption maximum at 390 nm (indicative of the Co(I) state)
254 decreased, while the absorption at 520–550 nm increased (indicative of the Co(III) state). This
255 indicates that Co(I) was oxidized to Co(III) due to the interaction between DCM and cob(I)alamin
256 (Figure 3A, orange dashed line) under abiotic conditions. Moreover, LC-MS analysis detected both,
257 methyl cobalamin (MeCbl, $[M+2H]^{2+} = 672.8055\text{ }m/z$ and $[M+H]^+ = 1344.6003\text{ }m/z$), and
258 chloromethyl-cobalamin (MeClCbl, $[M+2H]^{2+} = 689.7819\text{ }m/z$ and $[M+H]^+ = 1378.5598\text{ }m/z$) in
259 assays containing reduced cob(I)alamin and DCM. In contrast, in assays without DCM, only
260 cyanocobalamin (Cbl, $[M+2H]^{2+} = 678.2959\text{ }m/z$ and $[M+H]^+ = 1355.5723\text{ }m/z$) was identified
261 (Figure 3B). These results show that direct interaction between DCM and the reduced corrinoid in
262 the Co(I) state is feasible, leading to the removal of one or two chlorine atoms (Figure 3B), indicating
263 that cob(I)alamin, which is a strong nucleophile, can abiotically demethylate DCM. However, to
264 subsequently transfer the methyl group to a methyl group acceptor a strong nucleophile such as a
265 thiol group in CoM (Figure 2C, upper graph) is necessary.

266 **Purification, characterization and analysis of protein-protein-interactions of recombinant Mec**
267 **proteins**

268 The properties of MecB, MecC, and MecE were investigated with proteins that were heterologously
269 expressed in *E. coli* BL21 (DE3) and purified using immobilized metal affinity chromatography
270 (IMAC) *via* a polyhistidin tag (His-tag). The monomeric form of MecB exhibited an estimated
271 molecular mass (MM) of approximately 24 kDa, while MecC and MecE exhibited MMs of around
272 45 kDa and 40 kDa, respectively, as determined by SDS-PAGE (Supplementary Figure 7A). MecB,
273 MecC, and MecE were identified through nLC-MS/MS analysis of the respective gel bands excised
274 from SDS-PAGE. MecC and MecE were identified with a coverage of about 90% and over 870
275 peptide-spectrum matches (PSMs), while MecB was detected with a 65% coverage and over 550
276 PSMs. We also conducted pulldown assays using His-tagged MecC or MecE proteins in an attempt
277 to co-purify untagged MecB. First, soluble protein fractions containing tagged recombinant MecC
278 or MecE, obtained from *E. coli*, were bound to the IMAC column. Subsequently, soluble protein
279 extracts containing recombinant and untagged MecB were loaded onto the same column. The
280 standard IMAC purification procedure was then followed, which included two washing steps and
281 elution of the proteins with 250 mM imidazole buffer. The elution fractions of both pulldown
282 purifications were analyzed using SDS-PAGE. However, MecB could not be co-purified with MecC
283 (Supplementary Figure 7B), while it co-eluted with MecE as evidenced by the protein band at
284 approximately 24 kDa (Supplementary Figure 7C). The three suspected gel bands were cut and the
285 identity of MecB, MecC and MecE were confirmed through protein mass spectrometry. During the
286 pulldown purification, MecE was identified with an approximate coverage of 86% and over 820
287 PSMs, while MecB was detected with a 66% coverage and over 100 PSMs (Supplementary Figure
288 7C).

289 To evaluate metal cofactor binding to MecC and MecE proteins, we quantified seven metal ions by
290 ICP-QqQ-MS (Mg, Ca, Fe, Co, Ni, Cu, Zn). Zinc was detected in significant quantities bound to

291 MecC and MecE, with a value of 3.2 ± 0.1 zinc ions per MecC protein and 1.3 ± 0.2 zinc ions per
292 MecE protein. Other metals (Mg, Ca, Fe, Co, Ni, Cu) were detected at very low quantities, not
293 exceeding 0.2 ions per protein.

294 To evaluate if the recombinant Mec proteins after IMAC purification were present as monomers,
295 homooligomers or heterooligomers, we separated native protein complexes by BNE (Figure 4A) and
296 SEC (Supplementary Figure 8A). Post-IMAC purification, MecB was observed in both monomeric
297 and dimeric forms *via* BNE (Figure 4A, gel bands 1 and 2), although SEC predominantly showed a
298 monomeric form (Supplementary Figure 8A, peak 3-2). Conversely, MecC appeared as a multimer
299 consisting of three to eight subunits, as indicated by SEC (Supplementary Figure 8A, peak 1) or BNE
300 analysis (Figure 4A, gel band 3), respectively. This might not correspond to the native *in vivo* state
301 of MecC, but rather shows an oligomerization effect due to the very high concentration after
302 heterologous production in *E. coli* and protein concentration step using Amicon filters. However,
303 MecE was predominantly detected as a monomer or homodimer *via* BNE (Figure 4A, gel bands 4
304 and 5), contrasting with SEC results, where MecE were primarily observed as homotrimers
305 (Supplementary Figure 8A, peak 2-2). To investigate potential protein-protein interactions among
306 MecB, MecC, and MecE and the conditions influencing these interactions, we employed BNE
307 (Figure 4) and SEC (Supplementary Figure 8B). Protein mixtures comprising MecB, MecC, and
308 MecE in a 1:1:1 ratio were mixed and separated under anoxic conditions using BNE (Figure 4A) as
309 well as under oxidizing and reducing conditions (incubating with 0.5 mM titanium(III)citrate for 30
310 min) *via* SEC (Supplementary Figure 8B). However, when MecB, MecC, and MecE were incubated
311 in a 1:1:1 molar ratio under anoxic and non-reducing conditions, two faint new protein bands at
312 approximately 150 kDa and 60 kDa appeared in the BNE gel (Figure 4A, gel bands 6 and 8). Gel
313 band 6 (~150 kDa) exhibited MecE and MecB in an approximate 1:1 ratio, as determined *via* nLC-
314 MS/MS, suggesting the potential formation of a heterotetrameric Mec(BE)₂ complex with an
315 estimated molecular mass (MM) of ~128 kDa. Additionally, a small fraction of MecC was identified

316 in gel band 6, indicating the possibility of Mec(BE)₂C complex formation with a MM of ~173 kDa.
317 However, the formation of a minor fraction of a homotetrameric MecE₄ complex (~160 kDa) or
318 disaggregation of the polymeric MecC structure instead of Mec(BE)₂C cannot be ruled out. In gel
319 band 8, with an approximate MM of 60 kDa, MecB and MecE were detected in an approximate 3:1
320 ratio, indicating the potential formation of a heterodimeric MecBE complex with a MM of
321 approximately 64 kDa. Similar observations were made for the gel band 9, located directly beneath
322 band 8. However, a complete shift after combining MecB, MecC, and MecE was not observed,
323 indicating either highly dynamic interactions among the three proteins dependent on factors such as
324 the redox conditions of cofactors and substrate binding, or weak interactions between the subunits.
325 Moreover, the presence of the His-tag could also significantly influence interactions. Evidence that
326 protein-protein interaction may be influenced by the redox state of cofactors (particularly by
327 cobalamin in MecB) is apparent when mixtures of MecB, MecC, and MecE were incubated and
328 separated under reducing conditions (Supplementary Figure 8B), resulting in a distinct shift of
329 elution peaks to two main peaks.

330 **Structure prediction of MecB, MecC, and MecE using AlphaFold2**

331 To obtain information on the three-dimensional structure, mechanism and functionality of the MecB,
332 MecC, and MecE proteins in DCM transformation within *D. formicoaceticum* strain EZ94, various
333 computational analyses were undertaken.

334 MecB (213 amino acids, 23 kDa) shares complete amino acid identity with the MecB protein encoded
335 in *D. formicoaceticum* strain DMC. According to the AlphaFold2 predicted structure, MecB has two
336 domains: The N-terminal extension comprises four α -helices and is connected *via* a 12-amino acid
337 linker to a Rossmannoid domain, comprised of five central β -sheets surrounded by five α -helices at
338 the C-terminal end. Within the Rossmannoid domain of MecB, a highly conserved cobalamin binding
339 motif **DXHX₂G** was identified, which is characteristic for proteins with corrinoid bound in a
340 dimethylbenzimidazole (DMB) base-off/His-on configuration (28,29). The conserved histidine

341 residue His103 of MecB interacts with the cobalt atom of the cobalamin cofactor in the calculated
342 structure (Supplementary Figure 9). During the catalysis, the cobalt atom in the cobalamin cofactor
343 might undergo cycling through various conformations: a penta- or hexa-coordinated base-off/His-on
344 conformation in catalytically inactive cob(II)alamin or methyl-cob(III)alamin, and a base-off/His-
345 off in cob(I)alamin, where the cobalt atom is tetra-coordinated. However, a tight binding of
346 cob(I)alamin, even in the base-off/His-off state, is confirmed for other corrinoid-dependent proteins,
347 facilitated by the strong binding of the DMB tail by highly conserved hydrophobic amino acid
348 residues as has been already shown for other cobalamin-dependent proteins, *e.g.*, MetH and MtaC
349 (30). In the case of MecB, these residues include Ile105, Gly106, Ile109, Val110, Gly179, and
350 Gly180 (Supplementary Figure 9).

351 Despite only a 35% amino acid sequence identity, the *in silico* tertiary structure of MecB, calculated
352 with AlphaFold2 with an overall confidence score of 92.3%, resembles the MtaC crystal structure
353 (Supplementary Figure 9, grey cartoon). MtaC, a cobalamin-dependent methyltransferase from
354 *Methanosa*cina *barkeri*, is responsible for transferring the methyl group from methanol to coenzyme
355 M (CoM) with the aid of two methyltransferases (MTs). While the demethylation of methanol is
356 catalyzed by the MT MtaB, the methylation of CoM to methyl-CoM is performed by a second MT
357 MtaA. Both MecB and MtaC share similar architectural features. They bind a corrinoid cofactor as
358 a prosthetic group, exposing the upper ligand site of the cofactor for methylation by MT I and
359 demethylation by MT II. Additionally, both MecB and MtaC contain an N-terminal extension, with
360 highly conserved amino acid residues (in MecB: Gly56, Phe59, Leu60, Pro61), which may play a
361 role in the interaction and complex formation with an MT I as reported by previous studies (31,32).

362 For MecC (386 amino acids, 44 kDa) and MecE (337 amino acids, 38 kDa), the CDART server
363 analysis suggested the presence of a uroporphyrinogen decarboxylase (URO-D) domain. Analysis of
364 the *in silico* tertiary structures of MecC (confidence score of 89.6%) and MecE (confidence score of
365 98.7%), calculated using AlphaFold2, revealed a TIM-barrel-like conformation (Figure 5). Both

366 MecC and MecE are cobalamin-independent enzymes and are structurally very similar, with an
367 RMSD of approximately 1.6 Å when superimposed. Furthermore, their tertiary structures closely
368 resemble that of MtaA from *M. mazei* (27) (PDB: 4AY7) with RMSD values of approximately 2.2 Å
369 or 1.6 Å, respectively. However, despite this structural similarity, MecC shares only about 24%
370 amino acid sequence identity with MtaA, while MecE shares approximately 26%. Notably, MecE is
371 structurally and sequentially divergent from MtaB (PDB: 2I2X), the enzyme responsible for the
372 demethylation of methanol in the methanol:cobalamin methyltransferase complex of *M. barkeri* (33),
373 with RMSD of approximately 21.4 Å and no significant sequence similarity. Unlike MtaA, the
374 crystal structure of which reveals a zinc ion coordinated by the conserved zinc binding motive
375 **HXCX_nC** in the center of the funnel, such a motif was not found in MecC. Instead, ICP-MS data
376 suggest that three zinc atoms are bound to the structure. Using multiple sequence alignment of ten
377 homologous MecC proteins and the ZincBind webserver three consensus motifs with conserved
378 amino acid were identified in the periphery of the MecC model, potentially responsible for zinc
379 binding: (i) Glu238, His194 and probably Glu198 (not strictly conserved); (ii) Asp39, Cys345,
380 Cys349, and probably His37 (not strictly conserved), and (iii) Cys59, Asp65 and His69 (Figure 5B).
381 Calculated distances between the possible coordinating amino acids and putative zinc atoms were
382 mostly <3.0 Å (Figure 5C), indicating significant zinc-binding potential (34). In contrast, the highly
383 conserved zinc binding motif **HXCX_nC** was identified in the primary structure of MecE *via* multiple
384 sequence alignment, with residues Cys 193, His225, Cys227, and Cys312. These likely coordinate
385 the zinc atom with distances less than 2 Å (Figure 5D). Additionally, metal quantification in
386 recombinant MecE using ICP-MS indicates that only one zinc is bounded to MecE.
387 Subsequently, we calculated the structure of a heterodimer MecBC (Supplementary Figure 10) and
388 MecBE (Figure 6) using AlphaFold2 with overall confidence score of 82.0% and 84.0%,
389 respectively. In the case of the calculated MecBC heterodimer, cobalamin of MecB is directed
390 towards the zinc-free funnel of MecC, while the predicted zinc ions are bound in the periphery, at

391 distances disabling direct interaction with MecB's cobalamin. To enable interactions between the
392 cobalamin and zinc atoms of MecC, large protein movements are necessary (Supplementary Figure
393 10). The *in silico* predicted structure of MecBE forms a heterodimer, where the cobalamin at the top
394 of the Rossmannoid fold of MecB is orientated with its open coordination site facing the zinc ion of
395 MecE. This zinc ion is embedded in a funnel-shaped pocket of MecE (Figure 6). The calculated
396 distance between the zinc ion in MecE and the cobalt atom of cobalamin in MecB amounted to
397 approximately 8.2 Å (Figure 6).

398

399 **DISCUSSION**

400 Our experiments, combining BNE, *in vitro* enzyme assays utilizing both wild type and recombinant
401 enzymes from strain EZ94, along with mass spectrometry and computational analyses, strongly
402 support previous observations (23) that Mec proteins encoded by the *mec* gene cassette are pivotal
403 for DCM transformation. In our work, MecC was the most abundant protein in the crude extract,
404 followed by MecB, MecE, and MecF. In the subsequent sections, we will discuss the specific roles
405 of each protein and their involvement in the first steps of DCM transformation.

406 **The cobalamin-dependent step plays a pivotal role in DCM transformation**

407 In the fermentation of DCM by *D. formicoaceticum* strain DMC, a cobalamin-dependent protein has
408 been proposed to play a pivotal role in DCM transformation, supported by the light-reversible
409 inhibition of the reduced cobalamin protein with propyl iodide (15). Our biotic investigations using
410 crude protein extracts align with these prior findings for *D. formicoaceticum*, as evidenced by the
411 inhibition of DCM transformation by propyl iodide (Supplementary Figure 2) and the characteristic
412 cob(III)alamin absorbance detected in the active protein fractions separated by anion exchange
413 chromatography (Supplementary Results, Supplementary Figure 3). Furthermore, our abiotic
414 experiments reveal that under strongly reducing conditions, reduced cob(I)alamin can undergo

415 nucleophilic attack of the methyl group in DCM, thereby catalyzing the transformation of DCM into
416 chloromethyl-cob(III)alamin and methyl cob(III)alamin (Figure 3). Among the highly expressed
417 cobalamin-dependent enzymes from the *mec* operon, MecB emerges as the most plausible candidate
418 involved in DCM transformation in *D. formicoaceticum*. BNE gel activity assays experiments
419 showed significant DCM transformation in slices where MecB was present despite not being the
420 most abundant protein (Supplementary Figure 5). Moreover, in activity assays with recombinant Mec
421 proteins, DCM transformation occurred in stoichiometric amounts with the amount of MecB present
422 in the reaction when only MecB and MecE were tested together (further details are provided in the
423 subsequent section). Nevertheless, these findings indicate that MecB likely serves as a shuttle,
424 facilitating the transfer of the methyl group between an enzyme demethylating a methyl group donor
425 or methylating a methyl group acceptor. It may also function as a reservoir of binding and temporary
426 holding the methyl group until it is used by a methyltransferase. A better annotation for this protein
427 might therefore be a “corrinoid-dependent methyl shuttle protein”.

428 **MecC and MecE methyltransferases are responsible for DCM transformation *in vitro***

429 Recent studies have identified Mec proteins encoded by the *mec* operon as potential catalysts for
430 DCM transformation across various strains of *D. formicoaceticum*, including strains EZ94 and DMC,
431 as well as ‘*Ca. Dichloromethanomonas elyunquensis*’, ‘*Ca. Formimonas warabiya*’, and
432 *Dehalobacter* (20, 21, 23, 25). Comparative genomics suggests that the *mec* gene cassette lacks close
433 homologs in publicly available bacterial genomes, except for methanogenic archaea utilizing C1-
434 compounds such as methanol as a carbon source (27,33). Sequence analysis reveals that MecB of
435 strain EZ94 shares approximately 35% amino acid similarity with MtaC of *M. barkeri* and resembles
436 it structurally, while MecE and MecC closely resemble MtaA from *M. mazei*. In methanogenic
437 archaea, a methyltransferase shuttle system comprising MtaB, MtaC, and MtaA facilitates the
438 production of methyl-CoM from various methyl donors (33). However, while the structures of MecB,
439 MecC, and MecE bear resemblance to enzymes in this system, there is no evidence of methyl-CoM

440 and methane formation from DCM fermentation (14,15,18,19,24). Murdoch et al. (23) suggested that
441 the methyl transfer system responsible for DCM transformation in *D. formicoaceticum* involves
442 MecE and MecF as methyltransferases I and II (MT I and MT II), respectively, with MecB acting as
443 corrinoid protein (CoP). Another study aligns with Murdoch's proposal that MecE is responsible for
444 DCM demethylation, although other methyltransferases such as MecC and MecI were identified as
445 putative MT I enzymes (21). For these two proteins, no function was attributed. However, our BNE
446 experiments show that MecC is the most abundant protein in slices with the highest DCM
447 transformation activity, co-eluting with MecF, while MecB and MecE were less abundant (Figure 1,
448 Supplementary Figures 4 and 5). Moreover, MecB and MecE co-elute at high relative abundance in
449 slices where no DCM transformation is detected, questioning their previously hypothesized role in
450 DCM dechlorination (Figure 1). Thus, our data indicate that particularly MecC plays the pivotal role
451 in DCM transformation, despite not being included in the methyl transfer system proposed by others
452 (23). However, the analysis of MecC's *in silico* tertiary structure does not fully support this
453 hypothesis, but reveals important characteristics of this protein related to DCM transformation.
454 MecC appears to bind three zinc ions within its structure, all situated in the periphery rather than
455 within the funnel. This configuration makes it less likely to form a stable complex with MecB, which
456 might be crucial for DCM demethylation (Supplementary Figure 10).

457 In contrast, the *in silico* structure of MecE shows one zinc ion located in the center of the TIM-barrel
458 structure. This positioning could allow direct interaction with the corrinoid cofactor of MecB at
459 approximately 8.2 Å of distance, favoring the binding of a small substrate, such as DCM (Figure 2
460 and 6). Furthermore, the results of protein-protein interaction studies using both recombinant and
461 wild type enzymes, conducted through SEC and BNE, indicate that MecB forms a stable complex
462 primarily with MecE rather than MecC (Figures 1 and 4, Supplementary Figure 4 and 8).
463 Additionally, during IMAC purification, untagged MecB co-elutes with recombinant MecE, which
464 carried a His-tag. This co-elution phenomenon was not observed for MecC (Supplementary Figure

465 7). Therefore, our collective findings from BNE, SEC, and IMAC purification attempts strongly
466 suggest that MecB might rather form a stable complex with MecE necessary for demethylation of
467 DCM and thus, MecE acts as MT I, while MecC likely serves as MT II, catalyzing the transfer of the
468 methyl group onto an acceptor molecule.

469 In line with BNE results, activity assays employing recombinant Mec proteins expressed in *E. coli*
470 revealed that complete *in vitro* transformation of DCM occurred only when MecB, MecC and MecE
471 were combined. Notably, when MecB and MecE were mixed, a stoichiometric amount of DCM,
472 relative to the quantity of MecB in the reaction setup, was transformed, suggesting that DCM
473 transformation ceased due to the complete methylation of MecB by MecE (Figure 2A). These results
474 strongly suggest that MecE indeed carries out the demethylation of DCM, transferring the methyl
475 group from DCM to the cobalamin bound to MecB. However, the cessation of demethylating activity
476 by MecE and MecB in the absence of MecC indicates that MecC is involved in the removal of the
477 methyl group from MecB's methyl cobalamin, thereby making the cobalamin available for the next
478 methylation cycle. In the *in vitro* activity assays, MecC was observed to transfer the methyl group
479 either to acetate or to CoM, as confirmed by mass spectrometry. In contrast, when MecC was absent,
480 neither acetate nor CoM was methylated (Figure 2B–C).

481 Taken together, these findings indicate that *in vitro* DCM transformation using recombinant Mec
482 enzymes depend on the presence of MecC. Moreover, we suggest that even in activity assays
483 conducted with BNE slices, the demethylating activity of MecC was decisive to monitoring the DCM
484 transformation, given that MecE and MecB alone were not sufficient to reveal DCM transformation
485 in the gel slices. Therefore, our outcomes indicate that MT II enzyme (MecC) facilitates the removal
486 of the methyl group from MecB's methyl cobalamin *in vitro*.

487 **Proposed DCM transformation mechanism by MecEBC complex of *D. formicoaceticum***

488 Our data strongly supports the formation of a stable MecBE heterodimer, which may further dimerize
489 into a (MecBE)₂ heterotetrameric complex (Figures 4 and 6, Supplementary Figure 7), consistent
490 with previous research (31). MecBE might then undergo dynamic interactions with MecC (Figure 7
491 and Supplementary Figure 11), potentially influenced by the oxidation state of MecB's cobalamin or
492 its interactions with other protein partners. This observation aligns with our BNE results, revealing
493 dissociation of MecC from MecBE and resulting in the highest DCM transformation activity
494 exclusively in BNE slices containing high amounts of MecC and low amounts of MecBE. We
495 hypothesize that even minor quantities of MecB and MecE suffice to drive the demethylation of
496 DCM, provided that a sufficient amount of MecC is present. Considering that the *in silico* structure
497 of MecC predicts three zinc ions, it is possible that MecC may possess multiple active sites capable
498 of accepting various methyl group acceptors, which are subsequently methylated by MecB's methyl
499 cobalamin. However, it is also conceivable that two of the three zinc ions in MecC may have
500 stabilizing or structural role rather than a catalyzing function, as has been evidenced for other proteins
501 (35-37). Our current data cannot conclusively differentiate these possibilities.

502 Overall, our data, including abiotic experiments, suggest that cob(I)alamin within MecB initiates
503 nucleophilic attack on the chloromethyl group of DCM, coordinated by the zinc of MecE (MT I),
504 resulting in chloromethyl-cob(III)alamin bound to MecB and chloride release. Subsequently, MecC
505 (MT II) coordinates a nucleophilic methyl group acceptor at the catalytically active zinc, enhancing
506 its nucleophilicity. This enables it to attack the methyl group of chloromethyl-cob(III)alamin in
507 MecB. During this process, a second chloride is released, and the methyl group is likely protonated
508 by water (Figure 7). The exact nature of the second cleavage *in vivo*, whether it is a homolytic
509 cleavage releasing cob(II)alamin in MecB or a heterolytic cleavage releasing cob(I)alamin, remains
510 unclear. Further investigations are required in this regard. If the cleavage is homolytic, it would

511 necessitate reactivation of the catalytically inactive cob(II)alamin to cob(I)alamin bound to MecB,
512 potentially facilitated *in vivo* by MecH.

513 Finally, our experiments demonstrate that acetate and CoM can function as methyl group acceptors
514 for MecC *in vitro*. However, *in vivo*, it is expected that the chloromethyl group bound to MecB is
515 transferred to THF, forming methylene-THF *via* MecF, which is reduced to methyl-THF entering
516 the Wood-Ljungdahl pathway (23). Since MecC does not have a THF binding motif, we hypothesize
517 it cannot methylate THF. However, we did not test THF as methyl group acceptor *in vitro* and cannot
518 exclude this possibility. *In vivo*, MecC might play an important role as a versatile methyltransferase,
519 capable of conducting *O*- and *S*-methylations of various methyl group acceptors, thereby introducing
520 the methyl group into different C1-pathways of *Dehalobacterium*. This function could be important
521 in the biosynthesis of amino acids (*e.g.*, *L*-methionine), cofactors (*e.g.*, *S*-adenosylmethionine), and
522 the methylation of nucleotides. Identifying the *in vivo* methyl group acceptors of MecC was beyond
523 the scope of our study and cannot be determined from our data. Future studies should address this
524 important question.

525 Additionally, we cannot exclude the interaction of MecBE with other methyltransferases such as
526 MecF, which could potentially transfer the methyl group to other acceptors like tetrahydrofolate.
527 Consequently, further investigations are needed to elucidate the specificity and precise mechanism
528 of MecC, as well as the roles of other Mec proteins within the *mec* cassette, such as MecF.

529 MATERIALS AND METHODS

530 Cultivation, cell harvesting, and preparation of protein extracts

531 For wild type protein experiments, we used a *Dehalobacterium*-containing mixed culture, obtained
532 from slurry samples of the membrane bioreactor of an industrial wastewater treatment plant (24).
533 This culture was grown in 100 mL glass serum bottles, each containing 65 mL of reduced, anoxic,
534 bicarbonate-buffered mineral medium (pH 7), as described elsewhere (25). The active DCM

535 transforming culture was maintained for more than five years by periodic transfers every 10–15 days.
536 Quantification of chlorinated methanes in the 100 mL serum bottles was carried out by injecting 0.5
537 mL headspace samples into a gas chromatograph equipped with a flame ionization detector (GC-
538 FID), as described elsewhere (24). To obtain cell concentrates, protein crude extracts and soluble
539 protein fractions, cells were harvested from 210 mL of the culture containing *D. formicoaceticum*
540 strain EZ94 during the exponential transformation phase after consuming approximately 3 mM
541 DCM. This was achieved by centrifugation at 9,000 \times *g* for 1 h at 16 °C, removing 90% of the
542 supernatant, and then resuspending and combining the remaining volume. This centrifugation
543 process was repeated, and the final pellet was resuspended in 1 mL of a sterile, anaerobic buffer
544 solution containing 100 mM PBS and 1 mM *L*-cysteine as a reducing agent.

545 The crude protein extract from the *Dehalobacterium*-containing culture was obtained by lysing the
546 cell concentrate with 100 mg mL⁻¹ lysozyme at 37 °C for 30 min. Subsequently, two rounds of bead
547 beating (FastPrep FP120, Thermo) were performed at a speed of 6.5 m s⁻¹ for 35 s, with intervals of
548 1-min cooling on ice. The lysed cells were then centrifuged at 6,000 \times *g* to remove cell debris. Further
549 separation of proteins into membrane and soluble protein fractions was achieved by
550 ultracentrifugation (Optima MAX-XP Ultracentrifuge, Beckman Coulter) at 120,000 \times *g* for 1 h at 4
551 °C. The membrane protein fraction (pellet) obtained was resuspended in a buffer solution containing
552 100 mM PBS and 1 mM *L*-cysteine. The soluble fraction of the protein extract (supernatant) from
553 the enriched culture underwent size-based separation and concentration using Amicon ultrafilters
554 with exclusion sizes of 100 kDa and then 30 kDa (Amicon Ultra, 0.5 mL Centrifugal Filters,
555 Millipore). This involved centrifugation at 16 °C for 5 min at 14,000 \times *g*, with recovery of
556 concentrated soluble proteins by inverting the filters and centrifuging for 2 min at 1,000 \times *g* and 16
557 °C. Three soluble protein fractions with the following molecular mass sizes were obtained: one above
558 100 kDa, another between 30 and 100 kDa, and a third below 30 kDa. The protein content was
559 determined by measuring the absorbance at 280 nm using a nanodrop.

560 **Abiotic dechlorination of dichloromethane with reduced cyanocobalamin**

561 The initial abiotic test was conducted in a microtiter plate with spectrophotometric measurements of
562 the UV-Vis spectrum in the range between 300 and 700 nm (0.5 nm steps) during the reaction inside
563 an anaerobic chamber (Coy Laboratories, USA). Cyanocobalamin, titanium(III)citrate, and DCM
564 were used in the reaction at a concentration of 0.5 mM each, and the total reaction volume was
565 200 μ L. Four conditions were examined: *i*) cyanocobalamin reduced with titanium(III)citrate for 1 h
566 without DCM, *ii*) cyanocobalamin reduced with titanium(III)citrate for 1 h with DCM addition, *iii*)
567 non-reduced cyanocobalamin with DCM, and *iv*) non-reduced cyanocobalamin without DCM. The
568 reaction started with the addition of DCM, when indicated, and the UV/Vis spectrum was recorded
569 for 10 min. An iteration of the abiotic tests for conditions *i*) and *ii*) was performed using increased
570 concentrations of cyanocobalamin, titanium(III)citrate, and DCM of 0.75 mM each in 2 mL vials,
571 resulting in a total reaction volume of 400 μ L. The compounds formed in these reactions were
572 analyzed with a high-performance liquid chromatography (HPLC) system (Dionex 3000 Ultimate,
573 Thermo) coupled to tandem mass spectrometry Orbitrap Fusion (MS/MS, Thermo). Therefore, liquid
574 samples were diluted with ddH₂O to a total volume of 2 mL and were filtered through membrane
575 filter with a pore size of 0.22 μ m (Millex-GV, PVDF, Millipore). A Dionex autosampler injected 25
576 μ L of the sample into the HPLC system equipped with a LiChrospher 100 RP-18 (5 μ m)
577 LiChroCART 125-4 column. The column temperature was maintained at 25 °C, and the separation
578 was carried out isocratically for 60 min at a flow rate of 0.2 mL min⁻¹ using methanol and 0.1% (v/v)
579 formic acid as the mobile phase.

580 **Protein separation by blue native gel electrophoresis**

581 Blue native gel electrophoresis (BNE) was conducted inside the anaerobic chamber using soluble
582 protein fractions with a size above 100 kDa from the *Dehalobacterium*-containing culture. A volume
583 of 30 μ L containing 20 μ g or 40 μ g protein extracts supplemented with 0.125% (w/v) Coomassie G-
584 250 additive was loaded into each well of a pre-casted 4–16% gradient Bis-Tris gel (NativePAGE

585 Novex, Invitrogen). The electrophoresis was run inside the anaerobic chamber at 150 V for 1 h,
586 followed by an increase in voltage to 250 V for an additional 30 min. The system was maintained at
587 a low temperature using ice packs. The NativeMark Unstained Protein Standard (Invitrogen) was
588 used as the protein ladder. Anode buffer and “light blue cathode buffer” required for the
589 electrophoresis were prepared according to the manufacturer’s instructions, degassed, and chilled to
590 4 °C before use. After the electrophoresis run, two replicate lanes loaded with 20 µg and 40 µg of
591 soluble protein fraction together with two protein ladders were separated from the rest of the gel.
592 These four lanes were silver-stained using a mass-spectrometry compatible procedure (38).
593 Additionally, triplicate lanes loaded with a minimum of 2,200 µg of soluble protein extract from the
594 *Dehalobacterium*-containing culture were not stained; they were kept cold and wetted with anode
595 buffer until they were cut into slices using a scalpel that was cleaned with anoxic sterile water after
596 each cut. The cuts were guided by the protein ladder and the protein bands observed in the parallel
597 silver-stained lanes. The unstained gel slices were placed in individual 10 mL GC crimp vials for
598 enzymatic assays. The two stained gel lanes were used to identify proteins through protein mass
599 spectrometry and were cut into slices of equal size for subsequent in-gel trypsin digestion.

600 **Enzymatic assays with wild type proteins**

601 The enzymatic transformation of DCM was set up inside the anaerobic chamber using 10 mL GC
602 crimp vials. The reaction mixture, with a final volume of 0.5 or 1 mL, included 100 mM potassium
603 acetate buffer (pH 5.8), 0.5 mM methyl viologen as electron donor, 1 mM titanium(III)citrate as
604 reducing agent, and either the protein fraction or the gel slice. Vials were sealed with Teflon-coated
605 rubber septa and aluminum crimps, then amended with 45 µM DCM from acetone stock solutions
606 using a Hamilton glass syringe. Subsequently, the vials were vortexed and incubated upside down in
607 the dark at room temperature. After 24 h, transformation of DCM was analyzed by gas
608 chromatography. For all enzymatic assays, controls were added in triplicates. Abiotic controls
609 comprised 1 mL of the reaction mixture amended with 45 µM of DCM, excluding the addition of

610 cells, protein extracts, or blue native gel slices. In the case of the activity assays conducted with the
611 gel slices post-blue native gel electrophoresis, three additional controls were included: *i*) a positive
612 control in which the soluble protein fraction replaced the gel slices, *ii*) another positive control
613 containing soluble protein fraction supplemented with 0.125% (w/v) Coomassie G-250 and sample
614 buffer, and *iii*) a negative control that contained pellet of cell debris after cell lysis to evaluate cell
615 disruption performance. All the controls were set up in the reaction mixture and subsequently
616 incubated at room temperature for 24 h.

617 **Bioinformatics and protein structure prediction**

618 The genomic assembly of *D. formicoaceticum* strain EZ94 has been previously published (25), with
619 the sequenced and annotated genome available on the Microscope platform under ID 13191
620 (<https://mage.genoscope.cns.fr/microscope/>), and deposited at NCBI under accession number
621 GCA_024705665.

622 Protein structure prediction for MecB, MecC, and MecE proteins of *D. formicoaceticum* strain EZ94
623 was conducted using the AlphaFold2 ColabFold platform (39). Structure visualization, refinement,
624 and superposition of protein structures was done with PyMOL 2.5.4 (40). Cofactor binding sites were
625 predicted with the COFACTOR server (41,42), while I-TASSER was used for calculating ligand-
626 binding sites and predicting protein functions based on the obtained structures (43-45). The ZincBind
627 webserver aided in the prediction of zinc binding sites (34). The identification of conserved amino
628 acid residues involved multiple sequence alignments of MecB, MecC, and MecE homologs from
629 various microorganisms, which was carried out using MEGA 11 (46).

630 **Construction of expression vectors**

631 Genomic DNA from the *Dehalobacterium* strain EZ94-containing mixed culture was isolated using
632 the DNeasy PowerSoil Pro Kit (Qiagen), following the manufacturer's instructions. Expression
633 plasmids pET22B:MecE, pET22B:MecB, and pETDuet:MecC, were constructed for this study. To

634 integrate *mecE* and *mecB* from strain EZ94 into the pET22B vector, the plasmid was linearized with
635 NdeI and BamHI or NdeI and NcoI, respectively. For the cloning of *mecC*, the pETDuet vector was
636 linearized with BamHI and SacI. For the digestion process FastDigest restriction enzymes (Thermo
637 Fisher Scientific) were used, following the manufacturer's instructions. Concurrently, *mecE*, *mecB*,
638 and *mecC* genes were PCR-amplified using the CloneAmp HiFi PCR Premix (Takara Bio) and
639 primers with 15-nucleotide overhangs identical with the insertion sites of the vector (indicated below
640 by the underlined sequence). For *mecE* amplification, the forward primer 5'-aag gag ata tac ata tga
641 att cga gag aga gag ttt ttg c-3' and reverse primer 5'-gct cga att cgg atc ctc gta ccg ccc aaa ttt ttc tg-
642 3' were used; for *mecB*, the primers were 5'-aag gag ata tac ata tga gca aaa aaa ttt tag aac-3' and 5'-
643 att ccg ata tcc atg ttc acc ctc cag caa tct tc-3'; and for *mecC*, the primers were 5'-acc aca gcc agg atc
644 tgt cca gta aag agc aaa cgg aa-3' and 5'-cct gca ggc gcg ccg tta tcc caa ttt gct caa att aat g-3'. PCR
645 amplicons and linearized plasmids were purified using the GeneJET PCR Purification Kit (Thermo
646 Fisher Scientific) directly from solution or from 0.7% (w/v) agarose gels, respectively. Subsequently,
647 PCR fragments were cloned into linearized plasmids using the In-Fusion HD Cloning Kit (Takara
648 Bio), following the manufacturer's protocol. The resulting plasmids pET22:MecE and
649 pET22B:MecB featured a C-terminal polyhistidine-tag fused to the coding sequence. In the
650 pETDuet:MecC vector, MecC carried an N-terminal polyhistidine-tag.

651 **Heterologous production and purification of recombinant proteins**

652 MecE and MecC proteins were heterologously expressed in *E. coli* BL21 (DE3) without the
653 assistance of any auxiliary plasmid. In contrast, MecB production was done in *E. coli* BL21 (DE3)
654 carrying the auxiliary plasmid pBAD:BtuB-F, responsible for cobalamin uptake from the medium
655 (47). Precultures of *E. coli* BL21 (DE3) strains containing either pET22B:MecE or pETDuet:MecC,
656 and *E. coli* BL21 (DE3) carrying pET22B:MecB along with the auxiliary plasmid pBAD:BtuB-F,
657 were set up in Luria-Bertani (LB) medium supplemented with 100 µg mL⁻¹ ampicillin or
658 100 µg mL⁻¹ ampicillin and 50 µg mL⁻¹ spectinomycin, respectively. These cultures were grown

659 overnight on a rotary shaker at 37 °C and 140 rpm. On the following day, 1% (v/v) of the overnight
660 cultures was used to inoculate fresh LB medium containing the appropriate antibiotics. The cultures
661 were incubated at 37 °C with agitation at 140 rpm until the OD₆₀₀ reached 0.6–0.8. For strains lacking
662 pBAD42:BtuB–F, induction of MecE and MecC protein expression was initiated with 100 µM IPTG,
663 and the growth medium was supplemented with 1 mM zinc sulfate. In contrast, for the strain
664 producing MecB and carrying pBAD42:BtuB–F, a pre-induction was done with 0.05% (w/v) *L*-
665 arabinose. Subsequently, the culture was supplemented with 5 µM cyanocobalamin and agitated for
666 1 h at 37 °C. Following pre-induction, expression of *mecB* was induced with 100 µM IPTG. To
667 facilitate slow protein synthesis, thus ensuring correct protein folding and minimizing inclusion body
668 formation, all target proteins were produced for approximately 18 h at 20 °C. The cells were then
669 harvested by centrifugation, and cell pellets were washed with 50 mM Tris/HCl (pH 7.5).

670 For subsequent protein purification, cell pellets were resuspended in 50 mM Tris/HCl, 10% (v/v)
671 glycerol (pH 7.5), and cells were disrupted at 6 m s⁻¹ for 2 x 30 s using 200 µm silica beads by a
672 FastPrep-24TM 5G (MP Biomedicals). Soluble protein fraction was obtained by centrifuging crude
673 extracts at 4 °C and 100,000 x *g* for 1 h (Beckman Optima MAX-XP). Target proteins were purified
674 from the supernatant, containing the soluble protein fraction, using an ÄKTA purifier FPLC system
675 (GE Healthcare Life Sciences) equipped with a 1 mL His60 Ni Superflow column (Takara Bio)
676 through immobilized metal affinity chromatography (IMAC). All purification steps were conducted
677 at a flow rate of 1 mL min⁻¹. The soluble protein fraction was applied to the column, which had been
678 equilibrated with 50 mM Tris/HCl, 10% glycerol (pH 7.5) buffer. After protein binding, the column
679 was washed with five column volumes of the corresponding buffer, followed by a second washing
680 step with 50 mM Tris/HCl, 10% glycerol, 10 mM imidazole (pH 7.5) buffer. The target proteins were
681 eluted with 250 mM imidazole. Protein elution was monitored by measuring absorbance at 280 nm
682 (and 360 nm for MecB). Fractions containing the target proteins, identified by high absorbance at
683 280 nm and SDS-PAGE analysis, were pooled, and imidazole was removed using a Sephadex G-25

684 containing HiTrap desalting column (Cytiva), replacing the elution buffer with 50 mM Tris/HCl,
685 10% (v/v) glycerol (pH 7.5). Desalted fractions containing the target proteins were pooled and
686 concentrated with Amicon Ultra-4 centrifugal filter units with a molecular mass cutoff of 30 kDa for
687 MecE and MecC and 10 kDa for MecB. Protein concentrations were determined using the BCA assay
688 (Thermo Fisher Scientific) following the manufacturer's protocol.

689 **Sodium dodecyl sulfate polyacrylamide gel electrophoresis**

690 The purity of MecB, MecC, and MecE subunits following purification was assessed through 10%
691 SDS-PAGE analysis. Post-electrophoresis, the gel was stained with a 1 x Coomassie Brilliant Blue
692 R-250 solution comprising 10% (v/v) ethanol, 2% (v/v) acetic acid, and 0.02% (w/v) Coomassie R-
693 250. The gel was initially washed with ddH₂O, then covered with the staining solution and heated in
694 a microwave, followed by incubation for 20 min with coverage. Excessive staining was removed
695 through multiple washing steps with hot ddH₂O, utilizing microwave-assisted heating. For
696 qualitative identification, protein bands corresponding to the respective proteins' molecular masses
697 were excised from the 10% SDS-PAGE gels and prepared for mass spectrometric analysis.

698 **Size exclusion chromatography with recombinant proteins**

699 The interaction between MecB, MecC, and MecE, as well as the oligomeric states of these proteins
700 after heterologous production and IMAC purification, were examined using size exclusion
701 chromatography (SEC) with an analytical Superose 6 Increase 3.2/300 column (Cytiva). To ensure
702 equilibration, the SEC column was equilibrated with a minimum of 1.5 column volumes (one column
703 volume was approximately 2.4 mL) of 50 mM Tris/HCl, 10% (v/v) glycerol (pH 7.5) buffer at a flow
704 rate of 0.03 mL min⁻¹. To assess the oligomeric state of the proteins after IMAC purification, 20 μ L
705 samples, each containing 10 μ M protein, were injected onto the SEC column and separated at a flow
706 rate of 0.03 mL min⁻¹. Protein interactions were investigated under both oxidizing and reducing
707 conditions. For both conditions, a mixture comprising all three proteins at a 1:1:1 ratio (10 μ M each)

708 was prepared, resulting in a total volume of 20 μ L. To ensure reducing conditions, the protein mixture
709 was additionally treated with 0.5 mM titanium(III)citrate before SEC. The mixtures were separated
710 at a flow rate of 0.03 mL min⁻¹. In the case of protein interaction and complex formation, a shift in
711 protein elution peaks was anticipated. The molecular mass of each elution peak was determined
712 relative to the elution volume of the SEC protein standard mix ranging from 15 to 600 kDa (Merck).

713 **Enzymatic assays with recombinant proteins**

714 To examine demethylation of DCM catalyzed by Mec proteins, we conducted enzyme activity assays
715 based on methyl viologen under dim light and strictly anoxic conditions. The assays, with a total
716 volume of 0.5 mL, were set up in 10 mL GC crimp vials. The assay buffer comprised final
717 concentrations of 100 mM potassium acetate buffer (pH 5.8), 1 mM methyl viologen (as an artificial
718 electron donor, reduced with 1 mM titanium(III)citrate) and 5 μ M cyanocobalamin. Recombinant
719 proteins MecB, MecC, and MecE were used in different combinations at a concentration of 5 μ M
720 each. Coenzyme M at a concentration of 100 μ M was used as an artificial methyl group acceptor.
721 After mixing all components, the GC vials were crimped, and the reaction was started by adding 50
722 μ M DCM through a septum using a Hamilton syringe. Following an incubation period of 18 h at
723 30 °C, the reactions were analyzed by GC-FID (Agilent 7820A, Agilent Technologies). To account
724 for abiotic reactions, no-substrate-controls (NSC) and no-enzyme-controls (NEC) were prepared.
725 NSC contained buffer instead of DCM in the assay buffer, while NEC included buffer instead of
726 enzymes in the suspension. Additionally, we investigated the identities of methylated products in the
727 assay buffer resulting from the demethylation of DCM through mass spectrometry in direct injection
728 mode.

729 **Dichloromethane quantification by gas chromatography-flame ionization**

730 Details regarding DCM quantification in enzymatic assays containing wild type enzymes or
731 recombinant MecB, MecC and MecE proteins are described in the Supplementary Material and
732 methods.

733 **Protein identification by nano-liquid chromatography-tandem mass spectrometry**

734 For in-solution proteomic analysis of different protein fractions from the *Dehalobacterium*-
735 containing culture, the samples underwent reduction of disulfide bridges using 62.5 mM
736 dithiothreitol, followed by alkylation of cysteine residues with 128 mM iodoacetamide.
737 Subsequently, 0.6 µg trypsin (Promega) was used for digestion at 37 °C overnight, with termination
738 of the reaction with 0.1% (v/v) formic acid. The resulting peptides were desalted using C₁₈ Zip Tips
739 (Merck Millipore) for subsequent nano-liquid chromatography-tandem mass spectrometry (nLC-
740 MS/MS), as described elsewhere (48).

741 For in-gel trypsin digestion of silver-stained gels and protein mass spectrometry, duplicate silver
742 stained slices from BNE gels were processed. These slices, concurrently used for activity assays,
743 underwent a series of preparatory steps. Initially, they were washed with LC-MS grade ddH₂O and
744 de-stained in a 1:1 (v/v) solution containing 30 mM K₃[Fe(CN)₆] and 100 mM Na₂O₃S₂. Protein
745 reduction within the gel slices was achieved with 10 mM dithiothreitol, followed by carbamidylation
746 of cysteine residues with 100 mM iodoacetamide. In the case of in-gel trypsin digestion of
747 Coomassie-stained gel bands, acetonitrile, 10 mM dithiothreitol and 100 mM iodoacetamide were
748 used for destaining, reduction and alkylation of proteins within the protein bands. Subsequently, the
749 proteins were digested with 0.1 µg trypsin (Promega) at 37 °C overnight. The resulting peptides were
750 extracted from the gel pieces and dried in a vacuum centrifuge as previously described (49). Then,
751 the peptides were dissolved in 10 µL of 0.1% (v/v) formic acid, further desalted using C₁₈ ZipTip

752 Pipette Tips (Merck Millipore) and dried in a vacuum centrifuge. Prior analysis, the peptides were
753 resuspended in 20 μ L of 0.1% (v/v) formic acid.

754 Peptide samples obtained from both in-solution and in-gel digestions were analyzed using a nLC-
755 MS/MS composed of a nanoUPLC system (UltiMate 3000 RSLC nano System, Thermo Fisher
756 Scientific) equipped with an Acclaim PepMap 100 C₁₈ column (75 μ m \times 25 cm), coupled to an
757 Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific) *via* an electrospray ion source
758 (TriVersa NanoMate, Advion), following established procedure (48). Proteome Discoverer (v2.4,
759 Thermo Fisher Scientific) was used for the identification of proteins, based on a protein database
760 constructed from the genome sequence of *D. formicoaceticum* strain EZ94 (NCBI accession number
761 GCA_024705665), with SequestHT used as the search engine. Stringent criteria were set with a false
762 discovery rate threshold of 1% for peptide identification using the Target Decoy PSM Validator
763 node. The Minora node in Proteome Discoverer was used for protein quantification through label-
764 free quantification based on intensity values of MS1 precursors. The relative protein abundance
765 presented in this study represents the ratio of a protein's abundance in a specific gel slice to its overall
766 abundance across all slices within a given BNE gel lane.

767 **Metal analysis using inductively coupled plasma-triple quadrupole-mass spectrometry**

768 Purified and desalted MecC and MecE proteins underwent acid digestion through incubation in 11%
769 (v/v) HNO₃ (Suprapur) at 80 °C for 3 h. Subsequently, the samples were diluted with ultrapure water,
770 achieving a final HNO₃ concentration of 2% (v/v). A rhodium internal standard solution was
771 introduced to all samples, resulting in a final rhodium concentration of 1 μ g L⁻¹. Calibration
772 standards ranging between 5 ng L⁻¹ and 500 μ g L⁻¹ were prepared by serially diluting ICP multi-
773 element standard solution Merck XVI (Merck Millipore) in 2% (v/v) HNO₃, supplemented with the
774 internal rhodium standard to a final concentration of 1 μ g L⁻¹.

775 Analysis of the samples was conducted using an inductively coupled plasma-triple quadrupole-mass
776 spectrometry system (ICP-QqQ-MS) Agilent 8800 (Agilent Technologies) in direct infusion mode
777 with an integrated auto-sampler. The injection system comprised a Peltier-cooled (2 °C) Scott-type
778 spray chamber with a perfluoroalkoxy alkane (PFA) nebulizer, which operated at a speed of 0.3 rps
779 (revolutions per second), employing an internal tube diameter of 1.02 mm for 45 s. Seven metals:
780 ^{56}Fe , ^{58}Ni , ^{59}Co , ^{63}Cu , ^{66}Zn , ^{95}Mo , and ^{103}Rh , were quantified. All measurements were normalized
781 with the internal standard. To mitigate polyatomic interferences, the Octopole Reaction System
782 (ORS³) with a collision/reaction cell (CRC) was used. Helium and hydrogen were introduced to the
783 CRC as collision or reduction gases at flow rates of 2.5 mL min⁻¹ and 0.5 mL min⁻¹, respectively.
784 Argon, the carrier gas, maintained a flow rate of 2.7 mL min⁻¹. For each metal, the first (Q1) and
785 second (Q2) quadrupoles were set to the same *m/z* value: Fe (56→56), Ni (58→58), Co (59→59),
786 Cu (63→63), Zn (66→66), Mo (95→95), and Rh (103→103), with an integration time of 1 s under
787 auto-detector mode. All other parameters underwent optimization through the auto-tune function in
788 the MassHunter 4.2 operation software (Agilent Technologies).

789 **ACKNOWLEDGEMENTS**

790 This work was supported by the Spanish Ministry of Science and Innovation (projects PID2022-
791 138929OB-I00 and PID2019-103989RB-100), the Bundesministerium für Bildung und Forschung
792 (German Federal Ministry of Education and Research, project 031B1507), and the Generalitat de
793 Catalunya (Consolidate Research Group 2021-SGR-01008). Protein mass spectrometry was
794 performed at the Centre for Chemical Microscopy (ProVIS) at the Helmholtz Centre for
795 Environmental Research – UFZ. ICP-MS was performed at the Department Environmental
796 Analytical Chemistry (UFZ), Leipzig.

797 **REFERENCES**

798 1. Gribble GW. 2023. Naturally occurring organohalogen compounds—A comprehensive review.
799 *In* Kinghorn AD, Falk H, Gibbons S, Asakawa Y, Liu JK, Dirsch VM (ed), *Naturally occurring*
800 *organohalogen compounds. Progress in the Chemistry of Organic Natural Products*, vol 121.
801 Springer.

802 2. Kolusu SR, Schlünzen KH, Grawe D, Seifert R. 2018. Determination of chloromethane and
803 dichloromethane in a tropical terrestrial mangrove forest in Brazil by measurements and
804 modelling. *Atmospheric Environ* 173:185–197.

805 3. Hossaini R, Chipperfield MP, Harrison JJ, Glasow R, Sommariva R, Atlas E, Navarro M,
806 Montzka S, Feng W, Dhomse S, Harth C, Mühle J, Lunder C, Doherty SO, Young D, Reimann
807 S, Vollmer MK, Krummel PB, Bernath PF. 2015. Growth in stratospheric chlorine from short-
808 lived chemicals. *Geophys Res Lett*:42:1–8.

809 4. Rowe BL, Toccalino PL, Moran MJ, Zogorski JS, Price CV. 2007. Occurrence and potential
810 human-health relevance of volatile organic compounds in drinking water from domestic wells in
811 the United States. *Environ Health Perspect* 115:1539–1546.

812 5. Shestakova M, Sillanpää M. 2013. Removal of dichloromethane from ground and wastewater: A
813 review. *Chemosphere* 93:1258–1267.

814 6. Blázquez-Pallí N, Shouakar-Stash O, Palau J, Trueba-Santiso A, Varias J, Bosch M, Soler A,
815 Vicent T, Marco-Urrea E, Rosell M. 2019. Use of dual element isotope analysis and microcosm
816 studies to determine the origin and potential anaerobic biodegradation of dichloromethane in two
817 multi-contaminated aquifers. *Sci Total Environ* 696:134066.

818 7. Soder-Walz JM, Torrentó C, Algora C, Wasmund K, Cortés P, Soler A, Vicent T, Rosell M,
819 Marco-Urrea E. 2022. Trichloromethane dechlorination by a novel *Dehalobacter* sp. strain 8M
820 reveals a third contrasting C and Cl isotope fractionation pattern within this genus. *Sci Total
821 Environ* 813:152659.

822 8. Hayoun K, Geersens E, Lacyny CC, Halder R, Sánchez CL, Manna A, Bringel F, Ryckelynck
823 M, Wilmes P, Muller EEL, Alpha-Bazin B, Armengaud J, Vuilleumier S. 2020. Dichloromethane
824 degradation pathway from unsequenced *Hyphomicrobium* sp. Mc8b rapidly explored by pan-
825 proteomics. *Microorganisms* 8:1–16.

826 9. Muller EEL, Bringel F, Vuilleumier S. 2011. Dichloromethane-degrading bacteria in the
827 genomic age. *Res Microbiol* 162:869–876.

828 10. Freedman DL, Gossett JM. 1991. Biodegradation of dichloromethane and its utilization as a
829 growth substrate under methanogenic conditions. *Appl Environ Microbiol*, 57:2847–2857.

830 11. Freedman DL, Smith CR, Noguera DR. 1997. Dichloromethane biodegradation under nitrate-
831 reducing conditions. *Water Environ Res* 69:115–122.

832 12. Chen G, Murdoch RW, Mack EE, Seger ES, Löffler FE. 2017. Complete genome sequence of
833 *Dehalobacterium formicoaceticum* strain DMC, a strictly anaerobic dichloromethane-degrading
834 bacterium. *Genome Announc* 5:18–19.

835 13. Mägli A, Rainey FA, Leisinger T. 1995. Acetogenesis from dichloromethane by a two-
836 component mixed culture comprising a novel bacterium. *Appl Environ Microbiol* 61:2943–2949.

837 14. Mägli A, Wendt M, Leisinger T. 1996. Isolation and characterization of *Dehalobacterium*
838 *formicoaceticum* gen. nov. sp. nov., a strictly anaerobic bacterium utilizing dichloromethane as
839 source of carbon and energy. *Arch Microbiol* 166:101–108.

840 15. Mägli A, Messmer M, Leisinger T. 1998. Metabolism of dichloromethane by the strict anaerobe
841 *Dehalobacterium formicoaceticum*. *Appl Environ Microbiol* 64:646–650.

842 16. Trueba-Santiso A, Fernández-Verdejo D, Marco-Rius I, Soder-Walz JM, Casabella O, Vicent T,
843 Marco-Urrea E. 2020. Interspecies interaction and effect of co-contaminants in an anaerobic
844 dichloromethane-degrading culture. *Chemosphere* 240:124877.

845 17. Chen G, Shouakar-Stash O, Phillips E, Justicia-Leon SD, Gilevska T, Sherwood Lollar B, Mack
846 EE, Seger ES, Löffler FE. 2018. Dual carbon-chlorine isotope analysis indicates distinct
847 anaerobic dichloromethane degradation pathways in two members of Peptococcaceae. *Environ
848 Sci Technol* 52:8607–8616.

849 18. Kleindienst S, Chourey K, Chen G, Murdoc RW, Higgins SA, Iyer R, Campagna SR, Erin Mack
850 E, Seger ES, Hettich RL, Löffler FE. 2019. Proteogenomics reveals novel reductive
851 dehalogenases and methyltransferases expressed during anaerobic dichloromethane metabolism.
852 *Appl Environ Microbiol* 85:e02768-18.

853 19. Holland SI, Ertan H, Montgomery K, Manefield MJ, Lee M. 2021. Novel dichloromethane-
854 fermenting bacteria in the Peptococcaceae family. *ISME J* 15:1709–1721.

855 20. Bulka O, Picott K, Mahadevan R, Edwards EA. 2024. From *mec* cassette to *rdhA*: a
856 key *Dehalobacter* genomic neighborhood in a chloroform and dichloromethane-transforming
857 microbial consortium. *Appl Environ Microbiol* 90:e00732-24..

858 21. Holland SI, Vázquez-Campos X, Ertan H, Edwards RJ, Manefield MJ, Lee M. 2022.
859 Metaproteomics reveals methyltransferases implicated in dichloromethane and glycine betaine
860 fermentation by ‘*Candidatus Formimonas warabiya*’ strain DCMF. *Front Microbiol* 13:1–16.

861 22. Holland SI, Edwards RJ, Ertan H, Wong YK, Russell TL, Deshpande NP, Manefield MJ, Lee M
862 2019. Whole genome sequencing of a novel, dichloromethane-fermenting Peptococcaceae from
863 an enrichment culture. *PeerJ*, 7:e7775.

864 23. Murdoch RW, Chen G, Murdoch FK, Mack EE, Villalobos Solis MI, Hettich RL, Löffler FE.
865 2022. Identification and widespread environmental distribution of a gene cassette implicated in
866 anaerobic dichloromethane degradation. *Glob Chang Biol* 28:2396–2412.

867 24. Trueba-Santiso A, Parladé E, Rosell M, Lliros M, Mortan SH, Martínez-Alonso M, Gaju N,
868 Martín-González L, Vicent T, Marco-Urrea E. 2017. Molecular and carbon isotopic
869 characterization of an anaerobic stable enrichment culture containing *Dehalobacterium* sp.
870 during dichloromethane fermentation. *Sci Total Environ*, 581–582:640–648.

871 25. Wasmund K, Santiso AT, Vicent T, Adrian L, Vuilleumier S, Marco-Urrea E. 2023.
872 Proteogenomics of the novel *Dehalobacterium formicoaceticum* strain EZ94 highlights a key
873 role of methyltransferases during anaerobic dichloromethane degradation. *Environ Sci Pollut
874 Res*, 30:80602–80612.

875 26. Brot N, Weissbach H. 1965. Enzymatic synthesis of methionine. *J Biol Chem* 240:3064–3070.

876 27. Hoeppner A, Thomas F, Rueppel A, Hensel R, Blankenfeldt W, Bayer P, Faust A. 2012. Structure
877 of the corrinoid:coenzyme M methyltransferase MtaA from *Methanosarcina mazei*. *Acta
878 Crystallogr D* 68:1549–1557.

879 28. Banerjee R, Ragsdale SW. 2003. The many faces of vitamin B₁₂: Catalysis by cobalamin-
880 dependent enzymes. *Annu Rev Biochem* 72:209–247.

881 29. Ludwig ML, Matthews RG. 1997. Structure-based perspectives on B₁₂-dependent enzymes.
882 *Annu Rev Biochem* 66:269–313.

883 30. Sauer K, Harms U, Thauer RK. 1997. Methanol: Coenzyme M methyltransferase from
884 *Methanosarcina barkeri* purification, properties and encoding genes of the corrinoid protein
885 MT1. *Eur J Biochem* 243:670–677.

886 31. Hagemeier CH, Krüer M, Thauer RK, Warkentin E, Ermler U. 2006. Insight into the mechanism
887 of biological methanol activation based on the crystal structure of the methanol-cobalamin
888 methyltransferase complex. *Proc Natl Acad Sci U S A* 103:18917–18922.

889 32. Tallant TC, Paul L, Krzycki JA. 2001. The MtsA subunit of the methylthiol:coenzyme M
890 methyltransferase of *Methanosarcina barkeri* catalyses both half-reactions of corrinoid-
891 dependent dimethylsulfide: coenzyme M methyl transfer. *J Biol Chem* 276:4485–4493.

892 33. Sauer K, Thauer RK. 2000. Methyl-coenzyme M formation in methanogenic archaea.
893 Involvement of zinc in coenzyme M activation. *Eur J Biochem* 267:2498–2504.

894 34. Ireland SM, Martin ACR. 2019. ZincBind - The database of zinc binding sites. *Database*
895 2019:baz006.

896 35. Alberts IL, Nadassy K, Wodak SJ. 1998. Analysis of zinc binding sites in protein crystal
897 structures. *Protein Sci* 7:1700–1716.

898 36. Coleman JE. 1992. Zinc proteins: enzymes, storage proteins, transcription factors, and replication
899 proteins. *Annu Rev Biochem* 61:897–946.

900 37. Shulcheva I, Shchannikova M, Melnik B, Fursova K, Semushina S, Zamyatina A, Oleinikov V,
901 Brovko F. 2022. The zinc ions stabilize the three-dimensional structure and are required for the
902 binding of staphylococcal enterotoxin-like protein P (SEIP) with MHC-II receptors. *Protein Expr*
903 *Purif* 197:106098.

904 38. Kublik A, Deobald D, Hartwig S, Schiffmann CL, Andrades A, von Bergen M, Sawers RG,
905 Adrian L. 2016. Identification of a multi-protein reductive dehalogenase complex in
906 *Dehalococcoides mccartyi* strain CBDB1 suggests a protein-dependent respiratory electron
907 transport chain obviating quinone involvement. *Environ Microbiol* 18:3044–3056.

908 39. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. ColabFold:
909 making protein folding accessible to all. *Nat Methods* 19:679–682.

910 40. Schrödinger LCC. 2020. *The PyMOL Molecular Graphics System* (Version 2.5.4).

911 41. Roy A, Yang J, Zhang Y. 2012. COFACTOR: An accurate comparative algorithm for structure-
912 based protein function annotation. *Nucleic Acids Res* 40:471–477.

913 42. Zhang C, Freddolino PL, Zhang Y. 2017. COFACTOR: Improved protein function prediction by
914 combining structure, sequence and protein-protein interaction information. *Nucleic Acids Res*
915 45:W291–W299.

916 43. Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: A unified platform for automated protein
917 structure and function prediction. *Nat Protoc* 5:725–738.

918 44. Roy A, Zhang Y. 2012. Recognizing protein-ligand binding sites by global structural alignment
919 and local geometry refinement. *Structure* 20:987–997.

920 45. Zhang Y. 2008. I-TASSER server for protein 3D structure prediction. *BMC Bioinform.*, 9, 1–8.

921 46. Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis
922 Version 11. *Mol Biol Evol* 38:3022–3027.

923 47. Lanz ND, Blaszczyk AJ, McCarthy EL, Wang B, Wang RX, Jones BS, Booker SJ. 2018.
924 Enhanced solubilization of class B radical *S*-adenosylmethionine methylases by improved
925 cobalamin uptake in *Escherichia coli*. *Biochemistry* 57:1475–1490.

926 48. Seidel K, Kühnert J, Adrian, L. 2018. The complexome of *Dehalococcoides mccartyi* reveals its
927 organohalide respiration-complex is modular. *Front Microbiol* 9:1–14.

928 49. Vallenet D, Calteau A, Dubois M, Amours P, Bazin A, Beuvin M, Burlot L, Bussell X, Fouteau
929 S, Gautreau G, Lajus A, Langlois J, Planel R, Roche D, Rollin J, Rouy Z, Sabatet V, Médigue C.
930 2020. MicroScope: An integrated platform for the annotation and exploration of microbial gene

931 functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Res
932 48:D579–D589.

933

934

935 **FIGURE LEGENDS**

936

937 **FIGURE 1. DCM transformation activity across blue native polyacrylamide gel electrophoresis (BNE)**
938 **slices containing soluble protein fractions from the *Dehalobacterium*-containing culture.** (A) Distribution
939 of DCM transformation activity across the gel lane cut into 12 slices. The activity is represented as the
940 percentage of DCM transformed after 24 h of incubation. Bar graphs display the mean of duplicate samples,
941 with individual data points plotted as dots. (B) The relative protein abundance distribution across the gel for
942 Mec proteins is shown as colored lines. For each protein, the relative protein abundance (%) was calculated
943 as the ratio of the protein's abundance in a specific gel slice to its total abundance across all slices. The relative
944 abundances for slices 1–12 sum up to 100%. Replicate results are provided in Supplementary Figure 4.

945 **FIGURE 2. *In vitro* activity assays with recombinant MecB, MecC and MecE proteins.** The assays
946 contained different combinations of Mec proteins (5 μ M each), which were incubated for 18 h with 50 μ M
947 DCM as methyl group donor. The assays were conducted with 100 mM acetate (Ac) in the reaction buffer. In
948 some of the tests, 100 μ M coenzyme M (CoM) was added as methyl group acceptor. (A) GC-FID
949 chromatograms showing the DCM peak (RT \approx 6 min) under various combinations of Mec proteins added.
950 DCM concentrations (μ M) for each condition were determined using the area under the elution peak (pA s).
951 NEC is the non-enzyme control. (B) Mass spectra in the m/z range 58–76 of the assay solution in the negative
952 control (NEC_{Ac}) after incubation (blue label), showing the masses for acetate (Ac, $[M-H]^-$ = 59.0134 m/z)
953 detected in negative ionization mode, and (C) of the assay solution in the MecEBC_{Ac} sample after incubation
954 (red label), showing the mass for methyl acetate (MeOAc, $[M+H]^+$ = 75.0443 m/z) detected in positive
955 ionization mode. (D) Mass spectra in the m/z range 138–160 of the assay solution in the negative control
956 without enzyme NEC_{CoM} after incubation (orange label), showing the masses for coenzyme M (CoM, $[M-H]^-$
957 = 140.9682 m/z) detected in negative ionization mode, and methyl-CoM (MeCoM, $[M+H]^+$ = 156.9907 m/z)
958 detected in positive ionization mode; as well as (E) of the assay solution in the MecEBC_{CoM} sample after
959 incubation (green label), showing the mass for coenzyme M (CoM, $[M-H]^-$ = 140.9684 m/z) detected in
960 negative ionization mode, and methyl-CoM (MeCoM, $[M+H]^+$ = 156.9908 m/z) detected in positive ionization
961 mode.

962 **FIGURE 3. Abiotic assays reveal the interaction between reduced cob(I)alamin and dichloromethane**
963 **(DCM).** **(A)** Spectrophotometric analysis of reduced cob(I)alamin and oxidized cyanocob(III)alamin after 10
964 min of incubation with and without DCM. **(B)** Overlay of mass spectrometric spectra obtained after HPLC,
965 showing the results of oxidized cyanocob(III)alamin without DCM (in black) and reduced cob(I)alamin
966 incubated with DCM (in orange). All reaction steps were conducted under anaerobic conditions, and all
967 masses were detected in positive ionization mode. Mass spectra in the *m/z* range 650–725 (left graph) show
968 the masses for doubly-charged cyanocob(III)alamin (CNCbl, $[M+2H]^{2+} = 678.2959\ m/z$), detected in the
969 oxidized and reduced sample lacking DCM (data not shown), as well as for chloromethyl-cob(III)alamin
970 (MeClCbl, $[M+2H]^{2+} = 689.7819\ m/z$) and methyl cob(III)alamin (MeCbl, $[M+2H]^{2+} = 672.8055\ m/z$),
971 detected in the reduced sample with DCM. Mass spectra in the *m/z* range 1320–1400 (right graph) show the
972 masses for singly-charged CNCbl ($[M+H]^+ = 1355.5723\ m/z$), detected in the oxidized and reduced sample
973 without DCM (data not shown), as well as for MeClCbl ($[M+H]^+ = 1378.5598\ m/z$) and MeCbl ($[M+H]^+ =$
974 $1344.6003\ m/z$).

975 **FIGURE 4. Blue native electrophoresis on purified MecB, MecC, and MecE proteins obtained through**
976 **heterologous expression in *E. coli*.** **(A)** The conformational analysis of individual MecB, MecC, and MecE
977 proteins, each carrying a polyhistidine-tag (His-Tag), after immobilized metal affinity chromatography
978 (IMAC) purification. Protein bands, numbered for identification, were sliced and subjected to protein mass
979 spectrometry. A NativeMark (20–1,236 kDa, Invitrogen) served as the protein ladder. **(B)** Protein bands
980 excised in (A) were identified using protein mass spectrometry. The absolute abundances of MS1 precursor
981 peptides of MecB, MecC, and MecE, obtained via nLC-MS/MS Orbitrap Fusion, are presented along with the
982 relative protein abundances (%) of the respective proteins within each gel band, calculated using MS1
983 intensities of the major proteins.

984 **FIGURE 5. MecC and MecE *in silico* tertiary structures from *D. fomicoaceticum* strain EZ94 calculated**
985 **using AlphaFold2.** **(A)** Side view of superimposed MecC (pink cartoon) and MtaA from *Methanosa*
986 *rcina mazei* (PDB: 4AY7, grey cartoon) and the zinc atom of MtaA, located in the center of the TIM-barrel structure
987 (dark grey sphere). The root-mean-square deviation (RMSD) between the two protein structures was 2.2 Å.
988 The funnel is indicated with an arrow **(B)** Top view of MecC (pink cartoon) highlighting the amino acid

989 residues (yellow sticks) predicted to bind three zinc atoms (Zn1–Zn3) in the periphery. The putative zinc
990 atoms (red spheres) are positioned close to the predicted amino acids, with distances mostly <3 Å. (C) Side
991 view of MecE (green cartoon) aligned with MtaA from *M. mazei* (grey cartoon), with the zinc atom of MtaA
992 in the middle of the TIM-barrel (dark grey sphere). The RMSD calculated between the two proteins was 1.6
993 Å. The funnel is indicated with an arrow (D) Top view of MecE (green cartoon) with the highly conserved
994 amino acid residues (Cys193, His225, Cys227, and Cys312) (yellow sticks), predicted to coordinate zinc (red
995 spheres), with the distance <3 Å, in the middle of the protein structure.

996 **FIGURE 6. *In silico* tertiary structure of MecBE heterodimer calculated with AlphaFold2.** A side view
997 of MecB (cyan) and MecE (green) forming a heterodimer. In the Rossmannoid fold domain of MecB, the
998 histidine residue His103 (blue stick representation) coordinates cobalamin (purple stick representation). The
999 predicted and conserved zinc binding site is located in the funnel of the TIM-barrel-like structure of MecE.
1000 The zinc ion in MecE (red sphere) is most probably coordinated by highly conserved amino acid residues
1001 Cys193, His225, Cys227 and Cys312, with distances <3 Å.

1002 **FIGURE 7. Proposed proteins involved in the initial steps of dichloromethane transformation in the**
1003 **metabolism of *Dehalobacterium formicoaceticum* strain EZ94 based on the results of our study.**