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Improving Explicit Constructions of r-PD-Sets for
Zps-Linear Generalized Hadamard Codes
Josep Rifà , Life Senior Member, IEEE, Adrián Torres-Martín , and Mercè Villanueva

Abstract— It is known that Zps -linear codes, which are the
Gray map image of Zps -additive codes (linear codes over Zps ),
are systematic and a systematic encoding has been found.
This makes Zps -linear codes suitable to apply the permutation
decoding method, based on the existence of r-PD-sets, which
are subsets of the permutation automorphism group of the code.
Some constructions of r-PD-sets of minimum size r + 1 for
Zps -linear generalized Hadamard codes of type (n; t1, . . . , ts)
are known. In this paper, for these codes, we present new
constructions of r-PD-sets of size r+1, which are suitable for all
parameters t1, . . . , ts. These allow us to obtain new r-PD-sets
for values of r closer to the theoretical upper bound, improving
previous known results.

Index Terms— Permutation decoding, PD-set, generalized
Hadamard code, Zps -linear code, generalized Gray map.

I. INTRODUCTION

LET Zps be the ring of integers modulo ps with s ≥ 1 and
p prime, and Zn

ps be the set of n-tuples over Zps . In this
paper, the elements of Zn

ps are also called vectors over Zps of
length n. A code over Zp of length n is a non-empty subset
of Zn

p , and it is linear if it is a subspace of Zn
p . A nonempty

subset of Zn
ps is a Zps -additive code if it is a subgroup of

Zn
ps . Note that, when p = 2 and s = 1, a Zps -additive code

is a binary linear code and, when p = 2 and s = 2, it is a
quaternary linear code or a linear code over Z4. The order of a
vector u over Zps , denoted by ord(u), is the smallest positive
integer m such that mu = 0.

Let Sn be the symmetric group of permutations on the set
{1, . . . , n}. Two codes over Zp of length n, C1 and C2, are
said to be equivalent if there is a vector a ∈ Zn

p and a
permutation of coordinates π ∈ Sn such that C2 = {a+π(c) :
c ∈ C1}. Two Zps -additive codes of length n, C1 and C2,
are said to be permutation equivalent if they differ only by a
permutation of coordinates, that is, if there is a permutation
of coordinates π ∈ Sn such that C2 = {π(c) : c ∈ C1}.

The Hamming weight of a vector u ∈ Zn
p , denoted by

wtH(u), is the number of non-zero coordinates of u. The
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Hamming distance of two vectors u, v ∈ Zn
p , denoted by

dH(u, v), is the number of coordinates in which they differ.
Note that dH(u, v) = wtH(v−u). The minimum distance of a
code C over Zp is d(C) = min{dH(u, v) : u, v ∈ C, u ̸= v}.
For elements of Zps , we consider the following metric, defined
in [14], and also used in [23] and [37]:

wt∗(x) =


0, if x = 0,

ps−1, if x ∈ ps−1Zps\{0},
(p− 1)ps−2, otherwise.

(1)

The weight of a vector u = (u1, u2, . . . , un) ∈ Zn
ps is

wt∗(u) =
∑n

j=1 wt∗(uj) ∈ N; and the distance between two
vectors u, v ∈ Zn

ps is d∗(u, v) = wt∗(u − v). The minimum
distance of a code C over Zps is d∗(C) = min{d∗(u, v) :
u, v ∈ C, u ̸= v}.

In [24] and [31], a Gray map from Z4 to Z2
2 is defined

as ϕ(0) = (0, 0), ϕ(1) = (0, 1), ϕ(2) = (1, 1) and ϕ(3) =
(1, 0). There exist different generalizations of this Gray map,
which go from Z2s to Z2s−1

2 [12], [15], [26]. In this paper,
we consider a generalization of Carlet’s Gray map, denoted
by ϕs and defined as follows:

ϕs(u) = (us−1, . . . , us−1) + (u0, . . . , us−2)Ys−1, (2)

where u ∈ Zps , [u0, u1, . . . , us−1]p is the p-ary expansion
of u, that is, u =

∑s−1
i=0 piui (ui ∈ Zp), and Ys−1 is a matrix

of size (s − 1) × ps−1 whose columns are all the distinct
elements from Zs−1

p . Note that the rows of Ys−1 form a basis
for a first order Reed-Muller code after adding the all-one row.
This Gray map ϕs is an isometric embedding from (Zps , d∗)
into (Zps−1

p , dH) [23], [37]. If s = 1, then ϕs is the identity
map. In order to simplify the notation, we write ϕ instead
of ϕs, when s is clear from the context. Then, we define
Φ : Zn

ps −→ Znps−1

p as the component-wise extension
of ϕ.

Let C be a Zps -additive code of length n. We say that its
Gray map image, C = Φ(C), is a Zps -linear code of length
ps−1n. Since C is a subgroup of Zn

ps , it is isomorphic to
an Abelian structure Zt1

ps × Zt2
ps−1 × · · · × Zts

p , and we say
that C, or equivalently C = Φ(C), is of type (n; t1, . . . , ts).
Note that |C| = pst1p(s−1)t2 · · · pts . A Zps -additive code can
also be seen as a submodule of the Zps -module Zn

ps , which
is not necessarily free, that is, it may not have a basis such
that every element in the code is uniquely expressible as a
linear combination over Zps . The code C is free if and only if
t2 = · · · = ts = 0. Nonetheless, even when C is not free,
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there exists a generator matrix having minimum number of
rows, that is, t1 + · · ·+ ts rows.

A generalized Hadamard (GH) matrix H(p, λ) = (hij) of
order N = pλ over Zp is a pλ × pλ matrix with entries in
Zp with the property that, for every i, j, 1 ≤ i < j ≤ pλ,
each of the multisets {hik−hjk : 1 ≤ k ≤ pλ} contains every
element of Zp exactly λ times [25]. Two GH matrices H1 and
H2 of order N are said to be equivalent if one can be obtained
from the other by a permutation of the rows and columns and
adding the same element of Zp to all the coordinates in a
row or in a column. We can always change the first row and
column of a GH matrix into zeros, obtaining an equivalent
GH matrix, which is called normalized. From a GH matrix H ,
the generalized Hadamard (GH) code is CH =

⋃
α∈Zp

(FH +
α1), where FH + α1 = {h + α1 : h ∈ FH}, FH is the
code consisting of the rows of H , and 1 denotes the all-one
vector [16]. Note that a GH code over Zp of length N has
pN codewords and minimum distance (p−1)N/p. Moreover,
it is not necessarily linear over Zp.

A Zps -additive code C such that Φ(C) is a GH code
is called a Zps -additive GH code and Φ(C) is called a
Zps -linear GH code. The Z4-linear Hadamard codes of
length 2t have been studied and classified in [27] and [33],
and their automorphism groups have been characterized
in [28] and [32]. For s > 2, Z2s -linear Hadamard codes were
first introduced in [26]. A full classification of Z8-linear
Hadamard codes is provided in [20].For s > 3, a partial
classification and bounds on the number of non-equivalent
Z2s -linear Hadamard codes of length 2t can be found in [18]
and [19]. More generally, for any s ≥ 2 and p prime,
Zps -linear GH codes are studied and partially classified
in [5] and [6]. Moreover, it is proved that, for p ≥ 3, the
Zps -linear GH codes of type (n; 1, 0, . . . , 0, ts) are the only
ones that are linear [6]; and for p = 2, only the codes of type
(n; 1, 0, . . . , 0, ts) or (n; 1, 0, . . . , 0, 1, ts) are linear [18].

Let C be a code over Zp of length n with pk codewords.
For a vector u ∈ Zn

p and a set I ⊆ {1, . . . , n}, we denote
the projection of u to the coordinates of I by u|I . We say
that C is a systematic code if there is a set I ⊆ {1, . . . , n}
of k coordinate positions such that |CI | = pk, where CI =
{u|I : u ∈ C}. The set I is called an information set for C
and {1, . . . , n}\I is called a redundancy set.

Permutation decoding is a technique, introduced by
Prange [34] and developed by MacWilliams [30] for linear
codes, that involves finding a subset of the permutation auto-
morphism group of a code in order to assist in decoding. In [4],
a new permutation decoding method for Z4-linear codes (not
necessarily linear), based on having a systematic encoding for
these codes, was introduced. Actually, it is also proved that this
method can be used for any nonlinear binary code, as long as
it has a systematic encoding. This can be generalized easily
to systematic nonlinear codes over Zp [38]. Then, since any
Zps -linear code is systematic, as shown in [38] by giving a
systematic encoding, the permutation decoding method can
also be used for these codes.

The idea behind the permutation decoding technique is to
move all errors in a received vector out of the information

positions by using a permutation that preserves the code. Let C
be a t-error-correcting code over Zp and denote by PAut(C)
its permutation automorphism group. Then, it is necessary to
find a subset S ⊆ PAut(C), with respect to an information set
for C, such that every r-set of coordinate positions is moved
out of the information coordinates by at least one element
in S, where 1 ≤ r ≤ t. The set S is called an r-PD-set and,
if r = t, it is called a PD-set.

The efficiency of the permutation decoding method depends
on the size of the r-PD-set S ⊆ PAut(C), since it needs to
find a suitable permutation in S, for each received vector.
In general, to determine the structure of PAut(C) can be
very complex, making the search for r-PD-sets a difficult task.
However, there are results that show how to find r-PD-sets of
small size for certain families of codes [2], [3], [13], [22], [39].
More specifically, in [2], it is shown how to find r-PD-sets of
size r + 1 for binary linear Hadamard codes and (nonlinear)
Z4-linear Hadamard codes. A generalization of these results
for (nonlinear) Zps -linear GH codes, with s ≥ 2 and p prime,
is given in [39]. A similar result for Hadamard codes over the
field F4 is presented in [13]. In this paper, we improve the
results given in [39] for Zps -linear GH codes with s ≥ 2 and
p prime.

The paper is organized as follows. In Section II, we recall
the construction of Zps -additive GH codes, the description
of an information set for the corresponding Zps -linear GH
codes, some results related to the permutation automorphism
group for these codes, a criterion to find r-PD-sets of size
r + 1 for these codes, and some previous known results
given in [39]. In Section III, new explicit constructions of
r-PD-sets of size r + 1, for values of r closer to a known
upper bound, are described. In Section IV, we compare the
obtained values of r with the theoretical upper bound and
also with the computational results, given in [39]. Finally,
in Section V, some conclusions and further research on this
topic are included.

II. PRELIMINARIES

Let t1, t2, . . . , ts be non-negative integers with t1 ≥ 1.
Consider the matrix Gt1,...,ts whose columns are exactly all
the vectors of the form zT , z ∈ {1}×Zt1−1

ps ×(pZps)t2× · · ·×(
ps−1Zps

)ts .
Let 0,1,2, . . . ,ps − 1 be the vectors having the same

element 0, 1, 2, . . . , ps − 1 from Zps in all its coordinates,
respectively. Any matrix Gt1,...,ts can also be obtained by
applying the following recursive construction. We start with
G1,0,...,0 = (1). Then, if we have a matrix G = Gt1,...,ts , for
any i ∈ {1, . . . , s}, we may construct the matrix

Gi =
(

G G · · · G
0 · pi−1 1 · pi−1 · · · (ps−i+1 − 1) · pi−1

)
. (3)

Finally, permuting the rows of Gi, we obtain a matrix Gt′1,...,t′s ,
where t′j = tj for j ̸= i and t′i = ti + 1. Note that any
permutation of columns of Gi gives also a matrix Gt′1,...,t′s .

In this paper, we assume that the matrices Gt1,...,ts are
constructed recursively starting from G1,0,...,0 in the following
way. First, we obtain Gt1,0,...,0 by adding t1−1 rows of order
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ps; then Gt1,t2,0,...,0 is generated by adding t2 rows of order
ps−1; and so on, until Gt1,...,ts is reached by adding ts rows
of order p.

Example 1: For p = 3 and s = 3, we have the following
matrices over Z27:

G1,0,1 =
(

1 1 1
0 9 18

)
, G1,1,0 =

(
1 1 1 1 1 1 1 1 1
0 3 6 9 12 15 18 21 24

)
,

G2,0,0 =
(

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · · 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · · 25 26

)
,

G1,1,1 =

1 1 1 · · · 1 1 1 1 1 · · · 1 1 1 1 1 · · · 1 1
0 3 6 · · · 21 24 0 3 6 · · · 21 24 0 3 6 · · · 21 24
0 0 0 · · · 0 0 9 9 9 · · · 9 9 18 18 18 · · · 18 18

 .

We denote by Ht1,...,ts the Zps -additive code of type
(n; t1, . . . , ts) generated by Gt1,...,ts , where t1, . . . , ts are
non-negative integers with t1 ≥ 1. Note that n = pt−s+1,
where t = (

∑s
i=1(s− i + 1) · ti) − 1. Let Ht1,...,ts =

Φ(Ht1,...,ts) denote the corresponding Zps -linear code, which
is a GH code of length pt [6]. Thus, we say that Ht1,...,ts is
a Zps -additive GH code, and Ht1,...,ts a Zps -linear GH code
of type (n; t1, . . . , ts).

Let GL(κ, Zps) denote the general linear group of degree
κ over Zps , that is, the group of κ×κ invertible matrices over
Zps together with the ordinary product, and let L be the set
of all matrices over Zps of the following form:

1 a1 pa2 p2a3 · · · ps−1as

0 A1,1 pA1,2 p2A1,3 · · · ps−1A1,s

0 A2,1 A2,2 pA2,3 · · · ps−2A2,s

0 A3,1 A3,2 A3,3 · · · ps−3A3,s

...
...

...
...

. . .
...

0 As−1,1 As−1,2 As−1,3 · · · pAs−1,s

0 As,1 As,2 As,3 · · · As,s


, (4)

where a1 ∈ Zt1−1
ps , A1,1 ∈ GL(t1 − 1, Zps), ai ∈ Zti

ps ,
Ai,i ∈ GL(ti, Zps), for i ∈ {2, . . . , s}, and Ai,j are matrices
over Zps , for i, j ∈ {1, . . . , s}. The set L is a subgroup of
GL(t1 + · · · + ts, Zps) [39]. Let ζi be the map from Zps to
Zps defined as ζi(a) = a (mod pi), i ∈ {1, . . . , s− 1}. This
map can be extended to matrices over Zps by applying ζi

to each one of their entries. Let π be the map from L to L
defined, for any matrix M∈ L as in (4), by π(M) =

1 a1 pa2 · · · ps−1as

0 A1,1 pA1,2 · · · ps−1A1,s

0 ζs−1(A2,1) ζs−1(A2,2) · · · ζs−1(ps−2A2,s)
...

...
...

. . .
...

0 ζ2(As−1,1) ζ2(As−1,2) · · · ζ2(pAs−1,s)
0 ζ1(As,1) ζ1(As,2) · · · ζ1(As,s)


, (5)

Let π(L) = {π(M) : M∈ L} ⊆ GL(t1+· · ·+ts, Zps). Since
L is a subgroup of GL(t1 + · · ·+ ts, Zps), it is clear that π(L)
is a group with the operation ∗ defined as M∗N = π(MN )
for all M,N ∈ π(L). Note that the group operation ∗ is
well-defined, since π(L) ⊆ L. By generalizing the proof of
Theorem 2 in [28], it is possible to show that PAut(Ht1,...,ts)
is isomorphic to π(L) [39].

Now, we give an additive information set for the
Zps -additive GH code Ht1,...,ts , and an information set for

the corresponding Zps -linear GH code Ht1,...,ts . An ordered
set I = {i1, . . . , it1+···+ts

} ⊆ {1, . . . , n} of t1 + · · · + ts
coordinate positions is said to be an additive information set
for a Zps -additive code C of type (n; t1, . . . , ts) if |CI | =
(ps)t1(ps−1)t2 · · · pts . If the elements of I are ordered in
such a way that, for any k ∈ {1, . . . , s}, |C{i1,...,it1+···+tk

}| =
(ps)t1(ps−1)t2 · · · (ps−k+1)tk , then it can be seen that the set
Φ(I), defined as

Φ(I) =Φ(1)({i1, . . . , it1}) ∪ Φ(2)({it1+1, . . . , it1+t2})∪
· · · ∪ Φ(s)({it1+···+ts−1+1, . . . , it1+···+ts

}),

where

Φ(k)(I) =
⋃
i∈I

{ps−1(i− 1) + 1,

ps−1(i− 1) + pk−1 + 1,

ps−1(i− 1) + pk−1+1 + 1,

ps−1(i− 1) + pk−1+2 + 1,

. . . ,

ps−1(i− 1) + ps−2 + 1},

is an information set for C = Φ(C) [38]. Note that s − 2 −
(k − 1) = s− k − 1, hence Φ(k)(I) has s− k + 1 coordinate
positions for each element in I .

Example 2: It is easy to see, from the matrix G1,1,1 given
in Example 1, that the set I = {1, 2, 10} is an additive infor-
mation set for the Z27-additive GH code H1,1,1, so Φ(I) =
Φ(1)({1}) ∪ Φ(2)({2}) ∪ Φ(3)({10}) = {1, 2, 4, 10, 13, 82} is
an information set for H1,1,1 = Φ(H1,1,1).

In general, there is no unique way to obtain an additive
information set for Ht1,...,ts . The following result provides a
recursive and simple form to obtain such a set.

Proposition 1 ([39]): Let I be an additive information set
for the Zps -additive GH code Ht1,...,ts of type (n; t1, . . . , ts).
Then I ∪ {n + 1} is an additive information set for each
of the codes Ht1+1,t2,...,ts , Ht1,t2+1,...,ts , . . . , Ht1,t2,...,ts+1,
obtained from Ht1,t2,...,ts by applying (3).

Let I be an additive information set for Ht1,...,ts of type
(n; t1, . . . , ts). Let Hk = Ht′1,t′2,...,t′s , k ∈ {1, . . . , s}, where
t′j = tj for j ̸= k and t′k = tk + 1. Although the additive
information set I ∪ {n + 1}, given by Proposition 1, is the
same for all Hk, the information sets for the corresponding
Zps -linear codes over Zp, Hk = Φ(Hk), differ for every k ∈
{1, . . . , s}. In particular,

I(k) =Φ(I)∪{ps−1n+1, ps−1n+pk−1+1, . . . , ps−1n+ps−2+1}

is an information set for Hk.
We can label the i-th coordinate position of a Zps -additive

GH code Ht1,...,ts , with the ith column of its generator matrix
Gt1,...,ts . Note that, by construction, all columns in Gt1,...,ts are
different and there are n = ps(t1−1)+(s−1)t2+···+ts of them.
Thus, any additive information set I for Ht1,...,ts can also
be considered as a set of vectors representing the positions
in I. Let ei be the vector with all coordinates equal to
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0 except the one in the i-th position, which is equal to 1.
Then, by Proposition 1, we have that the set It1,...,ts equal to

{e1, e1 + e2, . . . , e1 + et1}∪
{e1 + pet1+1, . . . , e1 + pet1+t2} ∪ · · · ∪
{e1 + ps−1et1+t2+···+ts−1+1, . . . , e1 + ps−1et1+t2+···+ts

}

is a suitable additive information set for Ht1,...,ts . Depending
on the context, It1,...,ts is considered as a subset of {1, . . . , n}
or as a subset of {1}×Zt1−1

ps × (pZps)t2 ×· · ·× (ps−1Zps)ts .
Example 3: Let H2,0,0 be the Z27-additive GH code of

length 27 with generator matrix G2,0,0 given in Example 1.
The set I2,0,0 = {1, 2}, or equivalently, the set of vectors
I2,0,0 = {e1, e1+e2}, is an additive information set for H2,0,0.

By applying (3) over G2,0,0, we obtain matrices G3,0,0,
G2,1,0 and G2,0,1 generating the Z27-additive GH codes H3,0,0,
H2,1,0 and H2,0,1, of length 729, 243 and 81, respectively.
By Proposition 1, it follows that I2,0,0 ∪ {28} = {1, 2, 28}
is an additive information set for H3,0,0, H2,1,0 and H2,0,1.
Although this additive information set is the same for these
three codes, in terms of vectors representing these positions,
we have

I3,0,0 = {(1, 0, 0), (1, 1, 0), (1, 0, 1)},
I2,1,0 = {(1, 0, 0), (1, 1, 0), (1, 0, 3)}, and
I2,0,1 = {(1, 0, 0), (1, 1, 0), (1, 0, 9)}.

Finally, we have that

I(1) = Φ(I2,0,0) ∪ {244, 245, 247}
= {1, 2, 4, 10, 11, 13, 244, 245, 247},

I(2) = Φ(I2,0,0) ∪ {244, 247}
= {1, 2, 4, 10, 11, 13, 244, 247}, and

I(3) = Φ(I2,0,0) ∪ {244} = {1, 2, 4, 10, 11, 13, 244}

are information sets for the corresponding Z27-linear GH
codes H3,0,0, H2,1,0 and H2,0,1, respectively.

Let C be a Zps -additive code of type (n; t1, . . . , ts), and
let C = Φ(C) be the corresponding Zps -linear code of length
ps−1n. Now, we define a new map, called also Φ, that sends
permutations on a set of n elements to permutations on a set
of ps−1n elements. This is a generalization of the map defined
in [2] for Z4. It can be deduced from the context whether Φ
refers to the generalized Gray map, from Zn

ps to Znps−1

p , or this
new map Φ : Sym(n) −→ Sym(ps−1n), defined as

Φ(τ)(i) = ps−1τ

(
i + χ(i)

ps−1

)
− χ(i), (6)

where χ(i) = ps−1 − (i mod ps−1), for all τ ∈ Sym(n)
and i ∈ {1, . . . , ps−1n}. Given a subset S ⊆ Sym(n),
we define the set Φ(S) = {Φ(τ) : τ ∈ S} ⊆ Sym(ps−1n).
It is easy to see that if S ⊆ PAut(C) ⊆ Sym(n), then
Φ(S) ⊆ PAut(Φ(C)) ⊆ Sym(ps−1n). Moreover, the map
Φ : Sym(n) −→ Sym(ps−1n) is a group monomorphism [39].

Recall that we can identify PAut(Ht1,...,ts) with the group
π(L) [39]. Recall also that we can label the i-th coordinate
position of Ht1,...,ts with the i-th column wi of the generator
matrix Gt1,...,ts constructed via (3), i ∈ {1, . . . , n}. Any

matrix M ∈ PAut(Ht1,...,ts) sends columns of Gt1,...,ts to
other columns of Gt1,...,ts . Therefore, M can be seen as a
permutation of coordinate positions τ ∈ Sym(n), such that
for all i ∈ {1, . . . , n}

τ(i) = j ⇐⇒ wiM = wj , j ∈ {1, . . . , n}. (7)

For any M ∈ PAut(Ht1,...,ts), we define Φ(M) = Φ(τ) ∈
Sym(ps−1n) and, for any P ⊆ PAut(Ht1,...,ts), we consider
Φ(P) = {Φ(M) : M∈ P} ⊆ Sym(ps−1n).

Definition 1: Let M ∈ PAut(Ht1,...,ts) and let mi be the
i-th row of M, i ∈ {1, . . . , t1 + · · ·+ ts}. We define M∗ over
Zps as the matrix where the first row is m1 and the i-th row is
m1+mi for i ∈ {2, . . . , t1}, m1+pmi for i ∈ {t1+1, . . . , t1+
t2}, m1+p2mi for i ∈ {t1+t2+1, . . . , t1+t2+t3} and so on
until m1+ps−1mi for i ∈ {t1+· · ·+ts−1+1, . . . , t1+· · ·+ts}.

Theorem 1 ([39]): Let Ht1,...,ts be the Zps -additive GH
code of type (n; t1, . . . , ts). Let Pr = {Mi : 0 ≤ i ≤ r}
be a set of r + 1 matrices in PAut(Ht1,...,ts). Then, Φ(Pr)
is an r-PD-set of size r + 1 for Ht1,...,ts with information
set Φ(It1,...,ts) if and only if no two matrices (M−1

i )∗ and
(M−1

j )∗ have a row in common, for i, j ∈ {0, . . . , r} and
i ̸= j.

Corollary 1 ([39]): Let Pr be a set of r + 1 matrices in
PAut(Ht1,...,ts). If Φ(Pr) is an r-PD-set of size r + 1 for
Ht1,...,ts , then any ordering of elements in Φ(Pr) provides
nested k-PD-sets for k ∈ {1, . . . , r}.

Corollary 2 ([39]): Let Pr be a set of r + 1 matrices in
PAut(Ht1,...,ts). If Φ(Pr) is an r-PD-set of size r + 1 for
Ht1,...,ts , then r ≤ f t1,...,ts

p , where

f t1,...,ts
p =

⌊
pst1+(s−1)t2+···+ts−s − t1 − t2 − · · · − ts

t1 + t2 + · · ·+ ts

⌋
. (8)

By using Theorem 1, in [39], some constructions of
r-PD-sets of minimum size r + 1 for some infinite families
of Zps -linear GH codes of type (n; t1, . . . , ts) are presented.
Specifically, first, an explicit construction of r-PD-sets of size
r + 1 is given for the Zps -linear GH codes Ht1,0,...,0, with
t1 ≥ 2, for any r up to the upper bound given in (8), that
is, for any r ≤ f t1,0,...,0

p . Then, using a similar idea, it is
also given another explicit construction for the Zps -linear GH
codes Hi = H1,0,...,0,ti,0,...,0, with ti ≥ 1 and i ∈ {2, . . . , s},
for any r ≤ f1,0,...,0,ti,0,...,0

p .
In [39], it is also shown that, given an r-PD-set of size ℓ for

a Zps -linear GH code Ht1,...,ts , we can easily obtain an r-PD-
set of size ℓ for the Zps -linear GH code Ht1+i1,...,ts+is , for
all i1, . . . , is ≥ 0. In particular, this is useful to obtain r-PD-
sets for any code Ht1,...,ts , including those of type different to
(n; t1, 0, . . . , 0) or (n; 1, 0, . . . , 0, ti, 0, . . . , 0). Indeed, we can
use the explicit construction given in [39, Theorem 5.1] for
H1 = Ht1,0,...,0, or the one given in [39, Corollary 5.1] for
Hi = H1,0,...,0,ti,0,...,0, with i ∈ {2, . . . , s}, and then extend
the obtained r-PD-set up to achieve an r-PD-set for Ht1,...,ts

using the recursive construction given in [39, Corollary 6.1].
In order to maximize the value of r, we select the construction
that gives its maximum value r = f̃ t1,...,ts

p , where

f̃ t1,...,ts
p = max{f t1,0,...,0

p , f1,t2,0,...,0
p , . . . , f1,0,...,0,ts

p }
≤ f t1,...,ts

p . (9)
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We also define a parameter, ht1,...,ts
p , to indicate which con-

struction is selected. If f̃ t1,...,ts
p = f t1,0,...,0

p , then ht1,...,ts
p = 1.

Otherwise, ht1,...,ts
p = i ∈ {2, . . . , s}, where i is the minimum

index such that f̃ t1,...,ts
p = f1,0,...,0,ti,0,...,0

p .

III. NEW r-PD-SETS FOR NON-FREE CODES

In this section, we present new constructions of r-PD-sets of
size r +1, which are also suitable for any non-free Zps -linear
GH code Ht1,...,ts , that is, with t2 + · · ·+ ts > 0. Recall that
for free Zps -linear GH codes, r-PD-sets of size r+1 up to the
upper bound were given in [39]. In Section IV, we show that
depending on the type of the code, these new constructions
allow us to improve the previous results, that is, to obtain r-
PD-sets for values of r larger than f̃ t1,...,ts

p and closer to the
theoretical upper bound f t1,...,ts

p . In order to present the new
constructions (Theorem 2 and Corollary 3), first we need to
introduce the elements of a specific Galois ring with a structure
that will be useful in the proof of Theorem 2.

Let R = GR(ps(t1−1)) be the Galois extension of dimen-
sion t1 − 1 over Zps , which is isomorphic to any ring
Zps [x]/(h(x)), where h(x) is a monic basic irreducible poly-
nomial over Zps of degree t1 − 1. A monic basic polynomial
h(x) over Zps is called irreducible if h̄(x) is an irreducible
polynomial over Zp, where h̄(x) is the polynomial obtained
by taking the coefficients of h(x) modulo p. Moreover, if h̄(x)
is primitive, then h(x) is said to be a monic basic primitive
polynomial over Zps . If f(x) is an irreducible polynomial
dividing xn − 1 in Zp[x], then there is a unique polynomial
h(x) over Zps [x] such that h(x) | (xn − 1) in Zps [x] and
h̄(x) = f(x). This unique polynomial h(x) is called the
Hensel lift of f(x) to Zps . Moreover, if a polynomial of degree
m is the Hensel lift of a monic primitive polynomial over Zp,
then it always has a root of order pm−1 [40]. Let h(x) be such
a polynomial, with m = t1−1. Let α ∈ R be a root of h(x) of
order ℓ = pt1−1−1. Then, the set T = {0, 1, α, α2, . . . , αℓ−1}
is called the Teichmüller set.

The p-adic representation of an element y ∈ R is given by

y = y0 + py1 + p2y2 + · · ·+ ps−1ys−1,

where y0, . . . , ys−1 ∈ T . Consider the sequence of elements
r1, . . . , rps(t1−1) ∈ R lexicographically ordered. That is, a0 +
pa1 + · · ·+ ps−1as−1 < b0 + pb1 + · · ·+ ps−1bs−1 if aj < bj

for the last j where aj and bj differ. From now on, along the
paper, we refer to this order as lexicographical order.

We structure the ordered elements of R in s different tables:
A, Ap, . . . , Aps−1 . First, we divide all elements in blocks of
pt1−1 consecutive elements, and then we place each block
as a column of a table, denoted by A. Note that any two
elements ri, rj from the same row of A satisfy that i − j is
a multiple of pt1−1, which implies that ri − rj ∈ (p) ⊂ R.
In order to use Lemma 1 in the construction of the r-PD-
sets, we take sequences of t1 consecutive elements in R.
Let dp and hp be the quotient and the remainder of the
division of pt1−1 by t1, respectively. The last hp rows of
this table are discarded, resulting in a table of t1dp rows
and p(s−1)(t1−1) columns, denoted by Ap. Table Apk , for
k ∈ {2, . . . , s−1}, is constructed by taking as the i-th column

the vertical concatenation of consecutive columns in Apk−1 ,
from the (pt1−1(i− 1) + 1)-th column up to the (pt1−1i)-th.
This process results in a table Apk with t1dpk−1pt1−1 =
t1dpk rows and p(s−k+1)(t1−1)/pt1−1 = p(s−k)(t1−1) columns,
where dpk = pt1−1dpk−1 = p(k−1)(t1−1)dp. Note that any two
elements ri, rj from the same row of Apk satisfy that i− j is
a multiple of pk(t1−1), which implies that ri−rj ∈ (pk) ⊂ R.

Example 4: For t1 = 3, s = 3, and p = 2, we have that
|R| = 8t1−1 = 64, d2 = 1, and d4 = 2t1−1d2 = 4. Tables A,
A2 and A4 are of size 2t1−1×4t1−1 = 4×16, t1d2×4t1−1 =
3×16, and t1d4×2t1−1 = 12×4, respectively. Below appears
a representation of Tables A, A2, and A4, where instead of
the elements ri ∈ R, only the corresponding index i is shown:

A :

1 5 · · · 61
2 6 · · · 62
3 7 · · · 63
4 8 · · · 64

, A2 :
1 5 · · · 61
2 6 · · · 62
3 7 · · · 63

, A4 :

1 17 33 49
2 18 34 50
3 19 35 51
5 21 37 53
· · · · · · · · · · · ·
15 31 47 63

.

Lemma 1: Let t1 ≥ 2. Let ri1 , . . . , rit1
be a sequence of

elements in R. If they are consecutive in the lexicographical
order, then {ri2 − ri1 , . . . , rit1

− ri1} is a set of linearly
independent vectors in their additive representation. Moreover,
any permutation of the indices i1, . . . , it1 preserves the linear
independence of the set of vectors.

Proof: Theorem 5.1 in [39] implies that any matrix

N ∗
i =


1 rt1i+1

1 rt1i+2

...
...

1 rt1(i+1)


satisfies that N−1

i ∈ PAut(Ht1,...,ts), where

Ni =


1 rt1i+1

0 rt1i+2 − rt1i+1

...
...

0 rt1(i+1) − rt1i+1

 .

In particular, Ni is invertible.
Therefore, {rt1i+2 − rt1i+1, . . . , rt1(i+1) − rt1i+1} is a set

of linearly independent vectors. The same argument applies
for any sequence of t1 consecutive elements in R.

Assume {ri2 − ri1 , . . . , rit1
− ri1} is a set of linearly

independent vectors. Any permutation of the indices i2, . . . , it1
preserves the set of vectors. We just need to consider the
transposition of one of these indices with i1. Without loss
of generality, we choose index i2 and consider the set {ri1 −
ri2 , ri3 − ri2 . . . , rit1

− ri2}. If these are not linearly indepen-
dent vectors, then

λ1(ri1 − ri2) + λ3(ri3 − ri2) + · · ·+ λt1(rit1
− ri2) = 0

for certain λ1, λ3, . . . , λt1 ∈ Zps , with some of them being
non-zero. This equation can be rewritten, as

−λ1(ri2 − ri1) + λ3(ri3 − ri1) + · · ·+ λt1(rit1
− ri1)

− λ3(ri2 − ri1)− · · · − λt1(ri2 − ri1) = 0,
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and so,
(−λ1 − λ3 − · · · − λt1)(ri2 − ri1) + λ3(ri3 − ri1) + · · ·+

λt1(rit1
− ri1) = 0, which contradicts the initial assumption

about the set {ri2 − ri1 , . . . , rit1
− ri1} being a set of linearly

independent vectors. □
Next theorem gives an explicit construction of r-PD-sets of

size r + 1 for any Zps -linear GH code Ht1,...,ts with t1 ≥ 2,
which allows us to improve previous known results, as shown
in Tables II and III.

Theorem 2: Let Ht1,...,ts be a Zps -linear GH code of type
(n; t1, . . . , ts) with t1 ≥ 2 and t2 + · · · + ts > 0. There
exist r-PD-sets of size r + 1 for Ht1,...,ts , with respect to
the information set Φ(It1,...,ts), for every

r ≤ gt1,...,ts
p = p(s−1)t2+(s−2)t3+···+tsα− 1, (10)

where α = τdps−1 is the maximum value multiple of dps−1 =
p(s−2)(t1−1)dp, with dp = ⌊pt1−1

t1
⌋, such that the following

condition is satisfied for each k ∈ {1, . . . , s− 1}:

α ≤ t1dps−k

⌊
p(k−1)(t1−1)(pt1−1 − τ)

ts−k+1 + · · ·+ ts

⌋
(11)

when ts−k+1 + · · ·+ ts > 0.
Proof: Let R = GR(ps(t1−1)) be the Galois ring of

degree t1−1 over Zps and consider the sequence of elements
r1, . . . , rps(t1−1) of R, following the lexicographical order.
In order to use the result given by Theorem 1, we need to
produce a set of matrices {M∗

0, . . . ,M∗
r}, such that M−1

i ∈
PAut(Ht1,...,ts), or equivalently Mi ∈ PAut(Ht1,...,ts), for
0 ≤ i ≤ r, and such that no two different matrices
(M−1

i )∗, (M−1
j )∗, with 0 ≤ i, j ≤ r and i ̸= j, have a row

in common.
Consider the matrix M∗

i , given in (12), where

ri1 , . . . , rit1+···+ts
∈ R.

Then Mi is defined as in (13), where χk(a) = pka, for 1 ≤
k ≤ s− 1 and every a ∈ Zps .

M∗
i =



1 ri1 0 0 . . . 0
1 ri2

0 0 . . . 0...
...

1 rit1

1 rit1+1

pIt2 0 . . . 0...
...

1 rit1+t2

1 rit1+t2+1

0 p2It3 . . . 0...
...

1 rit1+t2+t3
...

...
...

...
. . .

...
1 rit1+···+ts−1+1

0 0 . . . ps−1Its
...

...
1 rit1+···+ts−1+ts


(12)

Mi =



1 ri1 0 0 . . . 0
0 ri2 − ri1

0 0 . . . 0...
...

0 rit1
− ri1

0 χ−1
1 (rit1+1 − ri1)

It2 0 . . . 0...
...

0 χ−1
1 (rit1+t2

− ri1)
0 χ−1

2 (rit1+t2+1 − ri1)
0 It3 . . . 0...

...
0 χ−1

2 (rit1+t2+t3
− ri1)

...
...

...
...

. . .
...

0 χ−1
s−1(rit1+···+ts−1+1 − ri1)

0 0 . . . Its
...

...
0 χ−1

s−1(rit1+···+ts−1+ts
− ri1)


(13)

Thus, the construction of Mi is only well-defined if
rit1+···+tk+j

−ri1 ∈ (pk) for 1 ≤ j ≤ tk+1. Moreover, in order
to ensure that Mi ∈ PAut(Ht1,...,ts), the vectors ri2 −
ri1 , . . . , rit1

−ri1 must be linearly independent. By Lemma 1,
this is fulfilled if ri1 , . . . , rit1

are consecutive, following
the lexicographical order. Therefore, the proof is reduced to
determine the indices i1, . . . , it1+···+ts

∈ {1, . . . , ps(t1−1)} for
each matrix Mi, 0 ≤ i ≤ r, such that the following conditions
are satisfied:

(i) the elements ri1 , . . . , rit1
must be consecutive in the

lexicographically ordered sequence r1, . . . , rps(t1−1) ,
(ii) rit1+···+th+j

−ri1 ∈ (ph) for 1 ≤ j ≤ th+1, 1 ≤ h ≤ s−1,
and

(iii) all indices i1, . . . , it1+···+ts
must be distinct.

We begin by constructing the first t1 rows of matrices M∗
i ,

for i ∈ {0, . . . α−1}. Since α is a multiple of dps−1 , we have
α = τdps−1 . First, we split the table Aps−1 in two subtables:
A

(1)
ps−1 , containing the first τ columns, and A

(2)
ps−1 , containing

the last pt1−1 − τ columns. Then, we take the sequence of
elements, beginning with the first element in the first column
of A

(1)
ps−1 and finishing with the last element in the column τ

of A
(1)
ps−1 . We have a sequence of t1dps−1τ = t1α elements.

The first t1 elements of this sequence are placed in the first
t1 rows of matrix M∗

0, the next t1 elements are placed in the
first t1 rows of matrix M∗

1, and so on, until matrix M∗
α−1.

This ensures that condition (i) is satisfied for every 0 ≤ i ≤
α−1. The elements of A

(2)
ps−1 will be used later to fill the last

t2 + · · ·+ ts rows of matrices M∗
i , for i ∈ {0, . . . α− 1}.

Since α = τdps−1 = τpt1−1dps−2 =
τp2(t1−1)dps−3 = · · · = p(s−2)(t1−1)dp, the index
i ∈ {0, . . . , α− 1} can be decomposed, in a unique way, as

i = b1dps−1 + b2dps−2 + · · ·+ bs−1dp + bs, (14)

where b1 ∈ {0, . . . , τ − 1}, b2, . . . , bs−1 ∈ {0, . . . , pt1−1 −
1}, and bs ∈ {0, . . . , dp − 1}. Similarly, the index j ∈
{1, . . . , t1dps−1} corresponding to the j-th row of A

(1)
ps−1 can
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be decomposed in a unique way as

j =a1t1dps−2 +a2t1dps−3 +. . .+as−2t1dp+as−1t1+as+1,

(15)

where a1, . . . , as−2 ∈ {0, . . . , pt1−1−1}, as−1 ∈ {0, . . . , dp−
1}, and as ∈ {0, . . . , t1 − 1}.

Any of the t1 elements ri1 , . . . , rit1
can act as the first row

of M∗
i , i ∈ {0, . . . , α−1}, by applying a permutation of rows,

by Lemma 1. We refer to the element selected to be in the first
row as the leader of M∗

i . The leader plays an important role
in each matrix, since it determines which elements rij ∈ R,
j ∈ {t1 + 1, . . . , t1 + · · ·+ ts}, satisfy condition (ii). We take
as leader of M∗

i , the element in the x-th position, rix , where

x=
[
(b1+b2τ +b3τpt1−1+. . .+bsτp(s−2)(t1−1)) (mod t1)

]
+1

(16)

and i is as in (14). Note that the leader rix
of M∗

i belongs to
the j-th row of A

(1)
ps−1 , where j =

[
it1 (mod t1dps−1)

]
+ x.

Hence,

j = b2t1dps−2 + b3t1dps−3 + · · ·+ bs−1t1dp + bst1+[
(b1+b2τ +b3τpt1−1+. . .+bsτp(s−2)(t1−1))(mod t1)

]
+1.

(17)

Consider two matrices M∗
i and M∗

i′ , where

i = b1dps−1 + b2dps−2 + · · ·+ bs−1dp + bs and
i′ = b′1dps−1 + b′2dps−2 + · · ·+ b′s−1dp + b′s,

and their respective leaders rix , ri′
x′

, where x =[
(b1+b2τ + b3τpt1−1+. . .+bsτp(s−2)(t1−1))(mod t1)

]
+ 1

and x′ = [(b′1 + b′2τ + b′3τpt1−1 + . . . + b′sτp(s−2)(t1−1))
(mod t1)]+1. Clearly, by the uniqueness of the decompositions
given in (14) and (15), if bk ̸= b′k for some k ∈ {2, . . . , s},
then rix and ri′

x′
belong to different rows of Aps−1 . However,

if bk = b′k for all k ∈ {2, . . . , s}, then rix
and ri′

x′
belong

to the same row of Aps−1 if and only if b1 = b′1 (mod t1).
Since b1 ∈ {0, . . . , τ − 1}, then each row of Aps−1 contains
at most ⌈ τ

t1
⌉ leaders.

Denote by S
(j)
ps−1 , for j ∈ {1, . . . , t1dps−1}, the set contain-

ing the elements in the j-th row of A
(2)
ps−1 . For each matrix

M∗
i , if its leader belongs to the j-th row of Aps−1 , then a

subset of ts distinct elements of S
(j)
ps−1 is taken to fill the last

ts rows of this matrix. Note that any s′ ∈ S
(j)
ps−1 satisfies

that s′ − r′ ∈ (ps−1) ⊆ R, where r′ is the leader of M∗
i ,

so the above condition (ii) is satisfied for h = s− 1. In order
to satisfy condition (iii), the elements of S

(j)
ps−1 can only be

selected once. Thus, if more than one matrix have a leader in
the same row j of Aps−1 , then disjoint subsets of ts elements
of S

(j)
ps−1 are selected, one for each matrix. Since each row j

of Aps−1 may have up to ⌈ τ
t1
⌉ leaders, then we must ensure

that

⌈ τ

t1
⌉ ≤

|S(j)
ps−1 |
ts

.

It is easy to see that this is guaranteed by condition (11) for
k = 1.

Up to this point, we have selected the elements
ri1 , . . . , rit1

and rit1+···+ts−1+1 , . . . , rit1+···+ts
, for every

i ∈ {0, . . . , α − 1}, satisfying conditions (i), (ii), and (iii).
In particular, in order to satisfy condition (ii) for h = s − 1,
we have used Table Aps−1 , since any two elements ri, rj in
the same row of Aps−1 satisfy ri − rj ∈ (ps−1). After this
step, the leaders are fixed for every matrix and the elements
that have already been selected cannot be selected again in
order to satisfy condition (iii).

In the next step, using the structure of the table Aps−2 ,
we select the elements rit1+···+ts−2+1 , . . . , rit1+···+ts−1

. They
are chosen from the same row of Aps−2 as rix

, satisfying
condition (ii) for h = s − 2. In general, an itera-
tive process takes place, for k ∈ {2, . . . , s − 1}, where
rit1+···+ts−k+1 , . . . , rit1+···+ts−k+1

are selected from the same
row of Aps−k as the leader of the corresponding matrix, so that
condition (ii) is satisfied for h = s − k. The remaining
part of the proof ensures that this is possible, that is, it is
seen that there are enough elements to select all rij

, for
j ∈ {1, . . . , t1 + · · · + ts} and i ∈ {0, . . . , α − 1}, while
satisfying these conditions.

Now, recall that the table Aps−2 has t1dps−2 rows and
p2(t1−1) columns. Every element in the first α

dps−2
= pt1−1τ

columns of Aps−2 has already been selected as one of the
elements ri1 , . . . , rit1

, for some i ∈ {0, . . . , α − 1}. More-
over, some elements in the last p2(t1−1) − pt1−1τ columns
of Aps−2 may have been selected as one of the elements
rit1+···+ts−1+1 , . . . , rit1+···+ts

, but some are still available in
order to fill the remaining t2 + · · ·+ ts−1 rows in each matrix.

Let A
(2)
ps−2 be the subtable of Aps−2 consisting of the last

p2(t1−1) − pt1−1τ columns and, for ℓ ∈ {1, . . . , t1dps−2},
let S

(ℓ)
ps−2 be the set containing the elements in the ℓ-th row

of A
(2)
ps−2 .

By construction, the ℓ-th row of Aps−2 and A
(2)
ps−2 contains

all elements from each ja1 -th row of Aps−1 and A
(2)
ps−1 , respec-

tively, where ja1 = a1t1dps−2 +ℓ and a1 ∈ {0, . . . , pt1−1−1}.
Thus,

S
(ℓ)
ps−2 =

⋃
0≤a1≤pt1−1−1

S
(a1t1dps−2+ℓ)

ps−1 .

Note that ℓ can be decomposed in a unique way as ℓ =
a2t1dps−3 + · · · + as−2t1dp + as−1t1 + as + 1, where
a2, . . . , as−2 ∈ {0, . . . , pt1−1 − 1}, as−1 ∈ {0, . . . , dp − 1},
and as ∈ {0, . . . , t1 − 1}. Recall that for a matrix M∗

i ,
where i is as in (14), we selected as leader the element in
the x-th position, rix , where x is as in (16), which belongs
to the j-th row of Aps−1 , where j is as in (17). At the same
time, rix

also belongs to the ℓ-th row of Aps−2 , where ℓ = j
(mod t1dps−2). That is,
ℓ =a2t1dps−3 + · · ·+ as−2t1dp + as−1t1 + as + 1 =

b3t1dps−3 + · · ·+ bs−1t1dp + bst1+[
(b1+b2τ + b3τpt1−1+. . .+bsτp(s−2)(t1−1)) (mod t1)

]
+1.

(18)

Consider two matrices M∗
i and M∗

i′ , where i = b1dps−1 +
b2dps−2+ · · ·+bs−1dp+bs and i′ = b′1dps−1+b′2dps−2+ · · ·+
b′s−1dp + b′s, and their respective leaders rix

, ri′
x′

. Clearly,
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if bk ̸= b′k for a k ∈ {3, . . . , s}, then rix
and ri′

x′
belong

to different rows of Aps−1 . However, if bk = b′k for all
k ∈ {3, . . . , s}, then rix

and ri′
x′

belong to the same row
ℓ of Aps−2 if and only if b1 + b2τ = (b′1 + b′2τ) (mod t1).
Since b1 ∈ {0, . . . , τ − 1} and b2 ∈ {0, . . . , pt1−1 − 1}, then
each row of Aps−2 contains at most ⌈pt1−1τ

t1
⌉ leaders.

For each matrix M∗
i , if its leader is in the ℓ-th row of

Aps−2 , then ts−1 distinct elements of S
(ℓ)
ps−2 are taken to be

the elements rit1+···+ts−2+1 , . . . , rit1+···+ts−1
. Note that any

s′ ∈ S
(ℓ)
ps−2 satisfies that s′ − r′ ∈ (ps−2) ⊆ R, for any r′ in

the ℓ-th row of Aps−2 , so the above condition (ii) is satisfied
for h = s−2. To ensure condition (iii), the elements of S

(ℓ)
ps−2

can only be selected once, so ts−1 + ts different elements
from S

(ℓ)
ps−2 must be selected for each leader in the ℓ-th row

of Aps−2 . Since each row ℓ of Aps−2 may have up to ⌈pt1−1τ
t1

⌉
leaders, then we must ensure that

⌈p
t1−1τ

t1
⌉ ≤

|S(ℓ)
ps−2 |

ts−1 + ts
.

It is easy to see that this is guaranteed by condition (11) for
k = 2.

Similarly, with an increasing ordering in k ∈ {3, . . . , s−1},
we select the elements rit1+···+ts−k+1 , . . . , rit1+···+ts−k+1

using

the structure provided by Aps−k . Let A
(2)

ps−k be the subtable
with the last p(k−1)(t1−1)(pt1−1 − τ) columns of Aps−k , and
let S

(ℓ)

ps−k be the set containing the elements in the ℓ-th row of

A
(2)

ps−k . By construction, we have

S
(ℓ)

ps−k =
⋃

0≤ak−1≤pt1−1−1

S
(ak−1t1d

ps−k+ℓ)

ps−k+1

...

=
⋃

0≤a1,...,ak−1≤pt1−1−1

S
(a1t1dps−2+···+ak−1t1d

ps−k+ℓ)

ps−1 .

(19)

Using a similar argument to the one used for k = 2, we see that
each row of Aps−k contains at most ⌈p(k−1)(t1−1)τ

t1
⌉ leaders.

Moreover, any s′ ∈ S
(ℓ)

ps−k satisfies that s′− r′ ∈ (ps−k) ⊆ R,
for any r′ in the ℓ-th row of Aps−k , so the above condition (ii)
is satisfied for h = s − k. Since S

(ℓ)

ps−k satisfies all equalities
in (19), for each leader in the ℓ-th row of Aps−k , we must
select ts−k+1+· · ·+ts different elements in S

(ℓ)

ps−k . Therefore,
we must ensure that

⌈p
(k−1)(t1−1)τ

t1
⌉ ≤

|S(ℓ)

ps−k |
ts−k+1 + · · ·+ ts

,

which is guaranteed by condition (11).
By using this construction, we obtain a set of matrices

{M∗
0, . . . ,M∗

α−1} such that M∗
i ∈ PAut(Ht1,...,ts) for all

i ∈ {0, . . . , α − 1}. Furthermore, for each matrix M∗
i ,

we can obtain p(s−1)t2+···+ts different matrices, M∗
i,k ∈

PAut(Ht1,...,ts), such that all rows from all matrices in
{M∗

i,k : 0 ≤ i ≤ α − 1, 0 ≤ k ≤ p(s−1)t2+···+ts − 1}

are different. Define Mi,k as

1 ri1 u(k)
2 u(k)

3 . . . u(k)
s

0 ri2 − ri1

0 0 . . . 0...
...

0 rit1
− ri1

0 χ−1
1 (rit1+1 − ri1)

It2 0 . . . 0...
...

0 χ−1
1 (rit1+t2

− ri1)
0 χ−1

2 (rit1+t2+1 − ri1)
0 It3 . . . 0...

...
0 χ−1

2 (rit1+t2+t3
− ri1)

...
...

...
...

. . .
...

0 χ−1
s−1(rit1+···+ts−1+1 − ri1)

0 0 . . . Its
...

...
0 χ−1

s−1(rit1+···+ts−1+ts
− ri1)



,

(20)

where u(k)
j , 2 ≤ j ≤ s, is a vector with tj coordinates over

pj−1Zps . Note that there are p(s−j+1)tj different vectors u(k)
j .

Let P = {M−1
i,k : 0 ≤ i ≤ α − 1, 0 ≤ k ≤ p(s−1)t2+···+ts −

1}. By Theorem 1, Φ(P) is an r-PD-set of size r + 1 for
Ht1,...,ts , with respect to the information set Φ(It1,...,ts

), for
every r ≤ p(s−1)t2+···+tsα− 1. □

Example 5: Using the construction given by the proof of
Theorem 2, we can construct a 12287-PD-set of size 12288 for
the Z8-linear Hadamard code H4,2,4. In this case, we have
d2 = 2, h2 = 0, and d4 = 16. First, tables A2 and A4 are
constructed. The elements of R = GR(83), the Galois ring of
dimension 3 over Z8, are distributed in A2, by columns, so that
for any two elements ri, rj ∈ R in the same row, ri−rj ∈ (2).
Thus, table A2 has t1d2 = 8 rows and 4t1−1 = 64 columns.
Since h2 = 0, A2 contains all the elements of R. The elements
of A2 are also distributed in a table A4, where each column
is formed by the elements in 2t1−1 = 8 consecutive columns
of A2, so that for any two elements ri, rj in the same row,
ri−rj ∈ (4). Thus, table A4 has t1d4 = 64 rows and 2t1−1 =
8 columns. Figure 1 shows table A4 and the transpose of table
A2, giving only the index i for each element ri ∈ R.

The maximum value of α satisfying conditions (21) and (22)
is α = 48. From the first α = 48 blocks of t1 = 4 consecutive
elements of R, which are placed in the first τ = α/d4 =
3 columns of A4, we construct the first t1 rows of matrices
M∗

0, . . . ,M∗
47. The bordered elements in table A4 of Figure 1

are selected as the leaders for the corresponding matrices,
and the ones with a light gray background are selected to
construct the last t3 = 4 rows of these matrices. The elements
with a dark gray background in table A2 of Figure 1 are
selected to construct the remaining t2 = 2 rows, 5-th and
6-th rows, of these matrices. By construction, the leaders
1, 66, 131, 12, 73, 138, . . . are distributed cyclically among the
t1 positions of the blocks. Moreover, they are also distributed
in a balanced way among the first t1 rows of A2. This ensures
that there are enough elements of each class in order to fill
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the last t2 + t3 = 6 rows of these matrices. For example, the
first matrix M∗

0 is constructed as follows:

M∗
0 =



1 r1 0 0 0 0 0 0
1 r2 0 0 0 0 0 0
1 r3 0 0 0 0 0 0
1 r4 0 0 0 0 0 0
1 r217 2 0 0 0 0 0
1 r249 0 2 0 0 0 0
1 r193 0 0 4 0 0 0
1 r257 0 0 0 4 0 0
1 r321 0 0 0 0 4 0
1 r385 0 0 0 0 0 4



=



1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 6 2 0 0 0 0 0
1 2 4 6 0 2 0 0 0 0
1 0 0 4 0 0 4 0 0 0
1 4 4 0 0 0 0 4 0 0
1 0 4 4 0 0 0 0 4 0
1 4 4 4 0 0 0 0 0 4


.

Then,

M0 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 3 1 0 0 0 0 0
0 1 2 3 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 1 1 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 1 0
0 1 1 1 0 0 0 0 0 1


.

Finally, we can obtain 4224 = 256 different matrices M∗
i,k,

0 ≤ k ≤ 255, for each one of the matrices M∗
i , 0 ≤ i ≤ 47,

which give us a 12287-PD-set of size 48 · 256 = 12288 for
the code H4,2,4.

Remark 1: The s− 1 conditions (11) given by Theorem 2
for k ∈ {1, . . . , s− 1} are independent and must be satisfied
in order to obtain a valid value for α. For example, consider
the case p = 2 and s = 3. From (11) we obtain the following
two conditions:

for k = 2, α ≤ t1d2

⌊
4t1−1 − 2t1−1τ

t2 + t3

⌋
when t2 + t3 > 0,

(21)

for k = 1, α ≤ t1d4

⌊
2t1−1 − τ

t3

⌋
when t3 > 0. (22)

It is easy to see that condition (21) does not imply con-
dition (22), and vice versa. For instance, for the Z8-linear
Hadamard code H4,2,4, which is considered in Example 5, the
maximum multiple of d4 = 16 that satisfies both conditions is
α = 48. Let us denote the right-hand side of both restrictions
by f1(α; t1, t2, t3) and f2(α; t1, t2, t3), respectively. Then,

f1(48; 4, 2, 4) = 48, f1(64; 4, 2, 4) = 40 < α = 64,

f2(48; 4, 2, 4) = 64, f2(64; 4, 2, 4) = 64.

Note that if α = 64, which is the next multiple of d4 = 16,
condition (22) is fulfilled, but condition (21) is not satisfied.
On the other hand, for the Z8-linear Hadamard code H4,0,4,
the maximum feasible value for α is α = 64. For this value
and the next multiple of d4 = 16, α = 80, the following
restrictions are obtained:

f1(64; 4, 0, 2) = 128, f1(80; 4, 0, 2) = 96,

f2(64; 4, 0, 2) = 128, f2(80; 4, 0, 2) = 64 < α = 80.

Thus, if α = 80, condition (21) is fulfilled, but condition (22)
is not satisfied.

Note that Theorem 2 can only be applied when t1 ≥ 2.
For the Zps -linear GH codes H1,t2,...,ts = H1,0,...,0,tj ,...,ts ,
where j = min{i | i ∈ {2, . . . , s}, ti > 0}, it is possible
to obtain r-PD-sets of size r + 1 by applying the recursive
constructions presented in [39] as follows. Let j′ = min{i |
i ∈ {j, . . . , s}, ti > 1}. First, we use Theorem 2 to obtain an
r-PD-set for Htj′ ,...,ts with r ≤ g

tj′ ,...,ts

p , and then,
we use [39, Corollary 6.1] to extend it to an r-PD-set for
H1,0,...,0,tj ,...,ts . Next proposition allows us to present a new
construction to obtain r-PD-sets of size r+1 for the Zps -linear
GH codes H1,t2,...,ts = H1,0,...,0,tj ,...,ts (see Corollary 3),
which gives an r-PD-set with r ≤ g

tj+1,tj+1,...,ts
p . Note that

j ≤ j′ and g
tj+1,tj+1,...,ts
p ≥ g

tj′ ,...,ts

p .
Proposition 2: Let H = Ht1,...,ts be a Zps -additive

GH code of type (n; t1, t2, . . . , ts) with t1 ≥ 2, and let
H′ = H1,0,...,0,t1−1,...,ts be a Zps′ -additive GH code of type
(n′; 1, 0, . . . , 0, t1 − 1, t2, . . . , ts) with s′ > s. If there exists
a set S ⊆ PAut(H) such that Φ(S) is an r-PD-set of size
r + 1 for H = Φ(H), then there exists a set P ⊆ PAut(H′)
such that Φ(P) is an r-PD-set of size r + 1 for H ′ = Φ(H′).

Proof: Let S = {M−1
1 , . . . ,M−1

r+1} ⊆ PAut(H) such
that Φ(S) is an r-PD-set for H = Φ(H). Since Mi is as
in (5), we can partition it as

Mi =
(

1 a
0 A

)
.

Then, we define the following matrix over Zps′ :

Ni =
(

1 χ(a)
0 ι(A)

)
,

where χ and ι are maps from Zps to Zps′ defined as χ(a) =
ps′−sa and ι(a) = a, respectively. Clearly, if Mi ∈ PAut(H),
then Ni ∈ PAut(H′).

Let mi,j = (aj , m̄i,j) and ni,j = (aj , n̄i,j) be the j-th rows
ofMi andNi, respectively, where a1 = 1 and aj = 0 if j > 1.
Note that n̄i,1 = ps′−sm̄i,1 for any i ∈ {1, . . . , r + 1}, and
n̄i,j = m̄i,j for any i ∈ {1, . . . , r + 1} and j ∈ {2, . . . , t1 +
· · ·+ ts}.

Consider also the j-th rows m∗
i,j = (1, m̄∗

i,j) and n∗i,j =
(1, n̄∗i,j) of M∗

i and N ∗
i , respectively. We have

m∗
i,1 = mi,1 = (1, m̄i,1),

m∗
i,j = mi,1 + mi,j = (1, m̄i,1 + m̄i,j)

if j ∈ {2, . . . , t1},
m∗

i,j = mi,1 + pk−1mi,j = (1, m̄i,1 + pk−1m̄i,j)
if j ∈ {t1 + · · ·+ tk−1 + 1, . . . , t1 + · · ·+ tk}.
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Similarly,

n∗i,1 = ni,1 = (1, n̄i,1),

n∗i,j = ni,1 + ps′−sni,j = (1, n̄i,1 + ps′−sn̄i,j)
if j ∈ {2, . . . , t1},

n∗i,j = ni,1 + ps′−s+k−1ni,j = (1, n̄i,1 + ps′−s+k−1n̄i,j)
if j ∈ {t1 + · · ·+ tk−1 + 1, . . . , t1 + · · ·+ tk}.

Therefore, n̄∗i,j = ps′−sm̄∗
i,j for any i ∈ {1, . . . , r+1} and j ∈

{1, . . . , t1+· · ·+ts}. By Theorem 1, all rows m∗
i,j = (1, m̄∗

i,j)
are different over Zps . Thus, all rows n∗i,j = (1, ps′−sm̄∗

i,j)
are different over Zps′ . Using again Theorem 1, we obtain
that Φ(P) = Φ({N−1

1 , . . . ,N−1
r+1}) is an r-PD-set for H ′ =

Φ(H′). □
Corollary 3: Let H1,t2,...,ts be a Zps -linear GH code of

type (n; 1, t2, . . . , ts) and let j ∈ {2, . . . , s} be the minimum
index such that tj > 0. If tj+1 + · · · + ts > 0, then there
exist r-PD-sets of size r + 1 for H1,t2,...,ts , with respect to
the information set Φ(I1,t2,...,ts

), for every r ≤ g1,t2,...,ts
p =

g
tj+1,tj+1,...,ts
p , where g

tj+1,tj+1,...,ts
p is defined as in (10).

Proof: By Theorem 2, there exist r-PD-sets of size
r + 1 for Htj+1,...,ts , with respect to the information set
Φ(Itj+1,...,ts), for every r ≤ g

tj+1,...,ts
p . In fact, in the proof

of Theorem 2, we see that these r-PD-sets, say S, can be
obtained as S = Φ(S), where S ⊆ PAut(Htj+1,...,ts).
Therefore, Proposition 2 guarantees the existence of a set
P ⊆ PAut(H1,t2,...,ts) such that Φ(P) is an r-PD-set of
size r + 1 for H1,t2,...,ts with respect to the information set
Φ(I1,t2,...,ts). □

Example 6: By Corollary 3, from the r-PD-set of size
r + 1 given in Example 5, we can obtain a 12287-PD-set
of size 12288 for the Z2s -linear Hadamard codes H1,3,2,4,
H1,0,3,2,4, H1,0,0,3,2,4, . . . with s = 4, 5, 6, . . . , respectively.

Corollary 3 can be seen as a generalization of the con-
struction of r-PD-sets of size r + 1 for Zps -linear GH codes
Hi = H1,0,...,0,ti,0,...,0 with ti > 0 for all i ∈ {2, . . . , s},
given by Corollary 5.1 in [39]. The combination of both results
implies that we can obtain an r-PD-set of size r + 1 for any
code H1,t2,...,ts .

IV. UPPER BOUND COMPARATIVE ANALYSIS

Using the construction proposed in Theorem 2 and Corol-
lary 3, r-PD-sets of size r+1 with r ≤ gt1,...,ts

p can be obtained
for the Zps -linear codes Ht1,...,ts with t2 + · · · + ts > 0.
By Corollary 2, we have that gt1,...,ts

p ≤ f t1,...,ts
p . In this

section, we find new values of p, t1, . . . , ts for which this
theoretical upper bound f t1,...,ts

p is tight. Moreover, even when
the upper bound is not reached, gt1,...,ts

p approaches f t1,...,ts
p

considerably. Finally, computational results given in [39] are
compared with the values of gt1,...,ts

p .
Table I shows the values of gt1,t2,t3

2 and f t1,t2,t3
2 , where t1 ∈

{3, 4, 5} and t2, t3 ∈ {0, 1, 2, 3, 4}. Gray colored cells indicate
that the upper bound is reached, that is, gt1,t2,t3

2 = f t1,t2,t3
2 .

Note that gt1,0,0
2 is not defined for any t1 ≥ 1. We use the

symbol − to represent this undefined value. Moreover, note
that there are cases where gt1,t2,t3

2 is defined but it is equal
to -1, which means that the construction given by Theorem 2

Fig. 1. Table A4 (left) and the transpose of A2 (right), used for the
construction of an 12287-PD-set of size 12288 for H4,2,4 in Example 5.

is not able to produce an r-PD-set. As an illustration, see
Example 5, where we construct an r-PD-set of size r + 1 for
the code H4,2,4, with r = g4,2,4

2 = 12287, which does not
reach the upper bound f4,2,4

2 = 13106, so there could be
r-PD-sets of size r +1 for H4,2,4 such that g4,2,4

2 = 12287 <
r ≤ 13106 = f4,2,4

2 .
The results given in this paper, using Theorem 2 and

Corollary 3, allow us to achieve r-PD-sets of size r + 1 up
to r ≤ gt1,...,ts

p . These results are usually better than the
ones obtained in [39], where the given r-PD-sets are of size
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TABLE I

COLUMNS g2 AND f2 CONTAIN THE VALUES OF gt1,t2,t3
2 AND f t1,t2,t3

2 , FOR t1 ∈ {3, 4, 5}, t2, t3 ∈ {0, 1, 2, 3, 4}, RESPECTIVELY

TABLE II

COLUMNS g2, f̃2, AND h2 CONTAIN THE VALUES OF g3,t2,t3
2 , f̃3,t2,t3

2 , AND h3,t2,t3
2 , FOR t2, t3 ∈ {0, 1, 2, 3, 4}, RESPECTIVELY

TABLE III

COLUMNS g3, f̃3, AND h3 CONTAIN THE VALUES OF g2,t2,t3
3 , f̃2,t2,t3

3 ,
AND h2,t2,t3

3 , FOR t2, t3 ∈ {0, 1, 2}, RESPECTIVELY

r + 1 up to r ≤ f̃ t1,...,ts
p . However, there are some isolated

cases where gt1,...,ts
p < f̃ t1,...,ts

p , such as when gt1,...,ts
p = −1.

There are some even more isolated cases in which gt1,...,ts
p is

not defined, such as when t2 = · · · = ts = 0 for any t1. In the
latter case, f̃ t1,0,...,0

p = f t1,0,...,0
p , so the upper bound can be

achieved instead by using the explicit construction given in
[39, Theorem 5.1].

Table II shows the values of g3,t2,t3
2 , f̃3,t2,t3

2 and h3,t2,t3
2 ,

as defined in (9), where t2, t3 ∈ {0, 1, 2, 3, 4}. This table
considers the same cases as the first subtable in Table I, where
t1 = 3. As mentioned above, g3,0,0

2 is not defined, but in this
case the code is free, so we can use the explicit construction
given in [39, Theorem 5.1], obtaining f̃3,0,0

p = f3,0,0
p = 20.

Note that f̃3,4,t3
2 = f1,4,0

2 = 50 for any t3 ∈ {0, 1, 2, 3, 4}, that
is, h3,4,t3

2 = 2. However, if t2 < 4, then f̃3,t2,t3
2 = f3,0,0

2 =
20 for any t3 ∈ {0, 1, 2, 3, 4}, that is, h3,t2,t3

2 = 1. Similarly,
Table III shows the values of g2,t2,t3

3 , f̃2,t2,t3
3 and h2,t2,t3

3 ,

TABLE IV
VALUES rc FOR WHICH rc-PD-SETS FOR Z4-LINEAR HADAMARD CODES

Ht1,t2 WITH t1 ∈ {3, 4, 5} AND t2 ∈ {0, 1, 2, 3, 4, 5} WERE FOUND
IN [39] USING A NON-DETERMINISTIC METHOD. THE

CORRESPONDING VALUES OF gt1,t2
2

AND f t1,t2
2 ARE ALSO GIVEN

as defined in (9), where t2, t3 ∈ {0, 1, 2}. In both tables, the
maximum value between gt1,t2,t3

p and f̃ t1,t2,t3
p is shown in

bold type.
In [39], some computational results showed that r-PD-sets

can be obtained with f̃ t1,...,ts
p ≤ r ≤ f t1,...,ts

p . In fact, some of
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those computational results improve the values of gt1,...,ts
p . For

example, a 73-PD-set of size 74 was found computationally
for the Z8-linear code H3,0,3. Note that g3,0,3

2 = 31 < 73 <
84 = f3,0,3

2 . Indeed, for all Z8-linear codes H3,t2,t3 with t2 ∈
{0, 1, 2} and t3 ∈ {0, 1, 2, 3}, the computational results given
in [39, Table 2] are better than the values of g3,t2,t3

2 . On the
other hand, for the Z4-linear codes H4,t2 with t2 ∈ {3, 4, 5}
and H5,t2 with t2 ∈ {1, 3, 4, 5}, the values of g4,t2

p and g5,t2
p

are better than the computational results given in [39, Table 1],
which are denoted by rc. Table IV shows the values of rc and
the values of gt1,t2

2 and f t1,t2
2 for the Z4-linear Hadamard

codes Ht1,t2 with t1 ∈ {3, 4, 5} and t2 ∈ {0, 1, 2, 3, 4, 5}.
The maximum between rc and gt1,t2

2 is shown in bold type,
and the gray coloured cells indicate the case where the upper
bound is reached.

V. CONCLUSION

In [39], explicit constructions of r-PD-sets of minimum size
r + 1 for Zps -linear GH codes Ht1,...,ts , with values of r up
to f̃ t1,...,ts

p , were given. These values of r are usually far from
the theoretical upper bound f t1,...,ts

p . In this paper, new explicit
constructions of r-PD-sets of size r + 1 for these codes, for
values of r larger than f̃ t1,...,ts

p and closer to the upper bound
f t1,...,ts

p , are given.
For some infinite families of codes, these constructions

allow us to construct r-PD-sets with r up to the upper bound,
that is, for all r ≤ f t1,...,ts

p . A natural direction of further
research on this topic is to achieve the theoretical upper bound
for all cases, or to prove that there are cases where it is
impossible, resulting in a lower upper bound which depends
on the type of the code.

As also mentioned in [39], another topic of further research
is the generalization of these results to other families of
Zps -linear codes [21], [35], [36] or to ZpZp2 · · ·Zps -linear
GH codes, which are GH codes and can be obtained from
the generalized Gray map image of subgroups over mixed
alphabets Zα1

p × Zα2
p2 × · · · × Zαs

ps . In particular, Z2Z4-linear
codes have been studied extensively, see for example [9],
[10], and the permutation decoding method given in [4] is
also defined for these codes, since they are systematic. More
generally, ZpZp2 · · ·Zps -linear codes have been studied, for
example in [1], [29], and [37]. The results given in [38]
can be extended to ZpZp2 · · ·Zps -linear codes, in order to
obtain a systematic encoding for ZpZp2 · · ·Zps -linear codes,
which allow us to use the permutation decoding method for
these codes. This gives a motivation to construct r-PD-sets
for ZpZp2 · · ·Zps -linear GH codes, which have been recently
studied in [5], [6], and [7], [8] showing that they are not
necessarily equivalent to the Zps -linear GH codes considered
in this paper.

Finally, we would like to point out that some Magma func-
tions to construct the r-PD-sets of size r+1, described in [39]
and in the current paper, have been developed by the authors.
They have been included in a new Magma package to deal
with linear codes over Zps [17]. This package also allows the
construction of Zps -linear GH codes, and includes functions
related to generalized Gray maps, information sets, the process

of encoding and decoding using permutation decoding, among
others. This package generalizes some of the functions for
codes over Z4, which are already included in the standard
Magma distribution [11]. It has been developed mainly by
the authors of this paper and with the collaboration of some
undergraduate students. The first version of this new package
and a manual describing all functions are available in a GitHub
repository (https://github.com/merce-github/ZpAdditiveCodes)
and in the CCSG website (https://ccsg.uab.cat).
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