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Improving Explicit Constructions of r-PD-Sets for
Zys-Linear Generalized Hadamard Codes

Josep Rifa™, Life Senior Member, IEEE, Adridn Torres-Martin™, and Merce Villanueva

Abstract—1It is known that Zps-linear codes, which are the
Gray map image of Zys-additive codes (linear codes over Z,s),
are systematic and a systematic encoding has been found.
This makes Z,s-linear codes suitable to apply the permutation
decoding method, based on the existence of r-PD-sets, which
are subsets of the permutation automorphism group of the code.
Some constructions of r-PD-sets of minimum size » + 1 for
Zps-linear generalized Hadamard codes of type (n;t1,...,ts)
are known. In this paper, for these codes, we present new
constructions of r-PD-sets of size » 4+ 1, which are suitable for all
parameters t1,...,ts. These allow us to obtain new r-PD-sets
for values of r closer to the theoretical upper bound, improving
previous known results.

Index Terms— Permutation decoding, PD-set, generalized
Hadamard code, Zys-linear code, generalized Gray map.

I. INTRODUCTION

ET Z,- be the ring of integers modulo p® with s > 1 and

p prime, and Z. be the set of n-tuples over Zy:. In this
paper, the elements of Z. are also called vectors over Zj- of
length n. A code over Z, of length n is a non-empty subset
of Zj), and it is linear if it is a subspace of Z;. A nonempty
subset of Zy. is a Zys-additive code if it is a subgroup of
ng. Note that, when p = 2 and s = 1, a Zs-additive code
is a binary linear code and, when p = 2 and s = 2, it is a
quaternary linear code or a linear code over Z4. The order of a
vector u over Zys, denoted by ord(u), is the smallest positive
integer m such that mu = 0.

Let S,, be the symmetric group of permutations on the set
{1,...,n}. Two codes over Z, of length n, Cy and C5, are
said to be equivalent if there is a vector a € Z; and a
permutation of coordinates m € S,, such that Cy = {a+7(c) :
¢ € C1}. Two Zys-additive codes of length n, C; and C,
are said to be permutation equivalent if they differ only by a
permutation of coordinates, that is, if there is a permutation
of coordinates w € S,, such that C; = {7(c) : c € C1 }.

The Hamming weight of a vector u € Zj, denoted by
wtg(u), is the number of non-zero coordinates of u. The
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Hamming distance of two vectors u,v € Z», denoted by
dp(u,v), is the number of coordinates in which they differ.
Note that dgy(u,v) = wtg(v—u). The minimum distance of a
code C over Zj is d(C) = min{dy(u,v) : u,v € C,u # v}.
For elements of Z,s, we consider the following metric, defined
in [14], and also used in [23] and [37]:

07 lf xTr = 07
Wt*(x) = ps—l’ if ¢ € ps_IZPS\{O}, (1)
(p—1)p*~2, otherwise.
The weight of a vector w = (uy,ug,...,un) € Zp. is

wt*(u) = 37, wt*(u;) € N; and the distance between two
vectors u,v € Zy. is d*(u,v) = wt*(u — v). The minimum
distance of a code C over Z,s is d*(C) = min{d*(u,v) :
u,veC,u+#vkh
In [24] and [31], a Gray map from Z4 to Z3 is defined
as $(0) = (0,0), (1) = (0,1), $(2) = (1,1) and (3) =
(1,0). There exist different generalizations of this Gray map,
which go from Zss to ng1 [12], [15], [26]. In this paper,
we consider a generalization of Carlet’s Gray map, denoted
by ¢ and defined as follows:
ds(u) = (us—1, - .

S us—1) + (uoy - us—2)Ye1, ()

where u € Zye, [ug,u1,...,us—1]p is the p-ary expansion
of u, that is, u = Z:;Ol plu; (u; € Zy), and Y,_1 is a matrix
of size (s — 1) x p*~! whose columns are all the distinct
elements from Z;fl. Note that the rows of Y,_; form a basis
for a first order Reed-Muller code after adding the all-one row.
This Gray map ¢, is an isometric embedding from (Z,:, d*)
into (28", dgr) [23], [37). If s = 1, then ¢, is the identity
map. In order to simplify the notation, we write ¢ instead
of ¢s, when s is clesar1 from the context. Then, we define
Q : Zp. — ZyP as the component-wise extension
of ¢.

Let C be a Zys-additive code of length n. We say that its
Gray map image, C = ®(C), is a Zys-linear code of length
p*~In. Since C is a subgroup of Zys, it is isomorphic to
an Abelian structure Z';,ls X 72 x oo x Zf;, and we say
that C, or equivalently C = ®(C), is of type (n;t1,...,ts).
Note that |C| = pstipls=Vtz2...pts. A 7,,.-additive code can
also be seen as a submodule of the Z,:-module Zj., which
is not necessarily free, that is, it may not have a basis such
that every element in the code is uniquely expressible as a
linear combination over Zys. The code C is free if and only if

ty = --- = t, = 0. Nonetheless, even when C is not free,
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there exists a generator matrix having minimum number of
rows, that is, t1 + - -+ + t, rows.

A generalized Hadamard (GH) matrix H(p, \) = (h;;) of
order N = p\ over Z, is a pA X pA matrix with entries in
Z,, with the property that, for every 4,7, 1 < ¢ < j < pA,
each of the multisets {h;x —hji : 1 < k < pA} contains every
element of Z, exactly A times [25]. Two G H matrices H; and
H, of order N are said to be equivalent if one can be obtained
from the other by a permutation of the rows and columns and
adding the same element of Z, to all the coordinates in a
row or in a column. We can always change the first row and
column of a GH matrix into zeros, obtaining an equivalent
GG H matrix, which is called normalized. From a GH matrix H,
the generalized Hadamard (GH) code is Cyp = ez, (Fu +
al), where Fg +al = {h+ ol : h € Fg}, Fg is the
code consisting of the rows of H, and 1 denotes the all-one
vector [16]. Note that a GH code over Z, of length N has
pN codewords and minimum distance (p — 1) N/p. Moreover,
it is not necessarily linear over Z,,.

A Zys-additive code C such that ®(C) is a GH code
is called a Zps-additive GH code and ®(C) is called a
ZLps-linear GH code. The Zjs-linear Hadamard codes of
length 2! have been studied and classified in [27] and [33],
and their automorphism groups have been characterized
in [28] and [32]. For s > 2, Zsgs-linear Hadamard codes were
first introduced in [26]. A full classification of Zg-linear
Hadamard codes is provided in [20].For s > 3, a partial
classification and bounds on the number of non-equivalent
Zgs-linear Hadamard codes of length 2¢ can be found in [18]
and [19]. More generally, for any s > 2 and p prime,
Zps-linear GH codes are studied and partially classified
in [5] and [6]. Moreover, it is proved that, for p > 3, the
Zps-linear GH codes of type (n;1,0,...,0,%s) are the only
ones that are linear [6]; and for p = 2, only the codes of type
(n;1,0,...,0,ts) or (n;1,0,...,0,1,ts) are linear [18].

Let C be a code over Z, of length n with p*¥ codewords.
For a vector u € Zj and a set [ C {1,...,n}, we denote
the projection of u to the coordinates of I by u|;. We say
that C' is a systematic code if there is a set I C {1,...,n}
of k coordinate positions such that |C;| = p*, where C; =
{u|; : u € C}. The set [ is called an information set for C
and {1,...,n}\I is called a redundancy set.

Permutation decoding is a technique, introduced by
Prange [34] and developed by MacWilliams [30] for linear
codes, that involves finding a subset of the permutation auto-
morphism group of a code in order to assist in decoding. In [4],
a new permutation decoding method for Z4-linear codes (not
necessarily linear), based on having a systematic encoding for
these codes, was introduced. Actually, it is also proved that this
method can be used for any nonlinear binary code, as long as
it has a systematic encoding. This can be generalized easily
to systematic nonlinear codes over Z, [38]. Then, since any
Zps-linear code is systematic, as shown in [38] by giving a
systematic encoding, the permutation decoding method can
also be used for these codes.

The idea behind the permutation decoding technique is to
move all errors in a received vector out of the information
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positions by using a permutation that preserves the code. Let C
be a t-error-correcting code over Z, and denote by PAut(C')
its permutation automorphism group. Then, it is necessary to
find a subset S C PAut(C'), with respect to an information set
for C, such that every r-set of coordinate positions is moved
out of the information coordinates by at least one element
in S, where 1 < r < t. The set S is called an r-PD-set and,
if r =t, it is called a PD-set.

The efficiency of the permutation decoding method depends
on the size of the r-PD-set S C PAut(C'), since it needs to
find a suitable permutation in .S, for each received vector.
In general, to determine the structure of PAut(C') can be
very complex, making the search for r-PD-sets a difficult task.
However, there are results that show how to find r-PD-sets of
small size for certain families of codes [2], [3], [13], [22], [39].
More specifically, in [2], it is shown how to find r-PD-sets of
size r + 1 for binary linear Hadamard codes and (nonlinear)
Zy-linear Hadamard codes. A generalization of these results
for (nonlinear) Zs-linear GH codes, with s > 2 and p prime,
is given in [39]. A similar result for Hadamard codes over the
field 4 is presented in [13]. In this paper, we improve the
results given in [39] for Z:-linear GH codes with s > 2 and
P prime.

The paper is organized as follows. In Section II, we recall
the construction of Zps-additive GH codes, the description
of an information set for the corresponding Z,s-linear GH
codes, some results related to the permutation automorphism
group for these codes, a criterion to find 7-PD-sets of size
r 4+ 1 for these codes, and some previous known results
given in [39]. In Section III, new explicit constructions of
r-PD-sets of size r + 1, for values of r closer to a known
upper bound, are described. In Section IV, we compare the
obtained values of r with the theoretical upper bound and
also with the computational results, given in [39]. Finally,
in Section V, some conclusions and further research on this
topic are included.

II. PRELIMINARIES

Let ¢, t2, ..., ts be non-negative integers with ¢; > 1.
Consider the matrix G*1+-%s whose columns are exactly all
the vectors of the form z”, z € {1} xZZKl X (pZps )2 x - x
(ps_lZps)ts.

Let 0,1,2,...,p%>—1 be the vectors having the same
element 0,1,2,...,p° — 1 from Zps in all its coordinates,
respectively. Any matrix G'»~! can also be obtained by
applying the following recursive construction. We start with
G100 = (1). Then, if we have a matrix G = G+t for

any i € {1,...,s}, we may construct the matrix
G G G
Qi:( i— i— s—1i i— ) 3
0-p1 1pt o o1y pt ) O

Finally, permuting the rows of G;, we obtain a matrix G,
where ¢ = t; for j # i and t; = t; + 1. Note that any
permutation of columns of G; gives also a matrix Qt/l“"’t/s.
In this paper, we assume that the matrices G'-ts are
constructed recursively starting from G109 in the following
way. First, we obtain G*'%~0 by adding t; — 1 rows of order
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p%; then G'1:t2:0:---0
p*~1; and so on, until Gt
of order p.

Example 1: For p = 3 and s = 3, we have the following

matrices over Zorz:

GLo1 111 GLL0 — 111111111
0918 03691215182124

is generated by adding ¢ rows of order
ts is reached by adding t, rows

G200 _ 11111111111 11111 1---11
012345678910111213141516---2526 /°
111---1 1 111---11 11 1---11

gl =1036---2124036---2124 0 3 6 ---2124
000---0 0 999---9 9 181818---1818

We denote by H-'s the Z,--additive code of type
(n;ty,...,ts) generated by Gt , where tq,...,t, are
non-negative integers with ¢; > 1. Note that n = p!=s*1,
where t = (30 (s—i+1)-¢) — 1. Let H'ute =
O (H!+t+) denote the corresponding Z,:-linear code, which
is a GH code of length p’ [6]. Thus, we say that H!t-ts is
a Z,--additive GH code, and H'*»~* a Z,:-linear GH code
of type (n;t1,...,ts).

Let GL(x,Zyps) denote the general linear group of degree
K over Zys, that is, the group of x X k invertible matrices over
Zyps together with the ordinary product, and let £ be the set
of all matrices over Z,s of the following form:

1 ax pas pPas - p*lag
0 A pAis p*Ais P A
0 Ayq Azs  pAss psf?Az,s
0 As; As 2 As 3 p 3 A5 . @
0 A1 Asiio A PAs_1s
0 As,l AS,Z -AS,3 As,s
where a1 € Z;lsil, Al,l S GL(tl — 1,Zps), a; € Z;is,

Aii € GL(t;,Zys), for i € {2,...,s}, and A, ; are matrices
over Zys, for 4,5 € {1,...,s}. The set L is a subgroup of
GL(t1 + -+ + ts,Zps) [39]. Let ¢; be the map from Z,s to
Zys defined as ¢;(a) = a (mod p'), i € {1,...,s — 1}. This
map can be extended to matrices over Z,s by applying (;
to each one of their entries. Let m be the map from £ to £
defined, for any matrix M € £ as in (4), by 7(M) =

1w paz o pTlag

0 A pAis - ptTrAL

0 (s—1(A21) Cs—l(A2,2) e Ce1(p®T 2A2,s>

: : : - > )

0 (o(As—1,1) CQ( s—1,2) - C?(pAsfl,s)

0 CI(AS,I) Cl( 5,2 ) CI(AS,S)
Let (L) = {n(M) : M € L} C GL(t1+- - -+t5, Zys). Since
L is a subgroup of GL(t1+- - - +1ts, Zps ), it is clear that 7(L)

is a group with the operation * defined as M x N = 7(MN)
for all M,N € =w(L£). Note that the group operation * is
well-defined, since w(£) C L. By generalizing the proof of
Theorem 2 in [28], it is possible to show that PAut (F!1ts)
is isomorphic to 7(L) [39].

Now, we give an additive information set for the
Zps-additive GH code H'»-'s, and an information set for
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the corresponding Z,:-linear GH code H'*'s. An ordered
set 7 = {7:1,...77;t1+...+ts} Q {1, .,Tl} of tl =+ e+ ts
coordinate positions is said to be an additive information set
for a Z,--additive code C of type (n;t1,...,ts) if |Cz| =
(p*)tr(ps=1)t2 ... pts. If the elements of Z are ordered in
such a way that, for any k € {1,...,s}, |C{i1,.‘.,it1+...+tk}| =
(p*)tr(p*~1)t2 - - (p*~**+1)t, then it can be seen that the set
®(Z), defined as

O(Z) =W ({ir, ..., it, }) URP ({ig, 1, . ity 41, U
U (I>(S)({it1+-"+tsf1+17 e ’it1+"'+ts})7
where
") = J{p* - 1) +1,
el
P — 1) +p 4,
psfl(i _ 1) +pk71+l + 17
ps_l(i _ 1) +pk—1+2 + 17

P — 1)+ p* T2+ 1Y,

is an information set for C = ®(C) [38]. Note that s — 2 —
(k—1)=s—Fk—1, hence ®*)(I) has s — k + 1 coordinate
positions for each element in I.

Example 2: It is easy to see, from the matrix G1'1'! given
in Example 1, that the set Z = {1,2, 10} is an additive infor-
mation set for the Zsr-additive GH code H 11, so (7)) =
oM ({1 ue@ ({2} U dB ({10}) = {1 2,4,10,13,82} is
an information set for 11t = @(HLLL),

In general, there is no unique way to obtain an additive
information set for H't~t. The following result provides a
recursive and simple form to obtain such a set.

Proposition 1 ([39]): Let Z be an additive information set
for the Z,--additive GH code H'*>' of type (n;t1,...,1ts).
Then Z U {n + 1} is an additive information set for each
of the codes Hirt1ltzts Jytitatl,... , Hivtzestst L
obtained from {12 ts by applying (3)

Let Z be an additive mformatlon set for Hts of type
(n;t1,...,ts). Let Hy = M2t ke {1,...,s}, where
th =1 for j# kand t, =t + 1. Although the additive
information set Z U {n + 1}, given by Proposition 1, is the
same for all Hj, the information sets for the corresponding
Zys-linear codes over Z,, Hy = ®(Hy,), differ for every k €
{1,...,s}. In particular,

d(T)u{p°"

is an information set for Hj,.

We can label the i-th coordinate position of a Z,s-additive
GH code H?!1»--ts, with the ith column of its generator matrix
G!i--ts Note that, by construction, all columns in G+t are
different and there are n = ps(ti—DH(s—Dtat+ts of them,
Thus, any additive information set Z for Hbots can also
be considered as a set of vectors representing the positions
in Z. Let e; be the vector with all coordinates equal to

™= n+1,p° Tn4+p" T 41, p intpt 241}
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0 except the one in the ¢-th position, which is equal to 1.
Then, by Proposition 1, we have that the set Z;, . ;. equal to
., €1 —|— etl }U

., €1 +p€t1+t2}U"'U

-1
N AT

{61761 +eq,..

{e1 +pet 41, -
s—1

{er + 0" et vtototta 11, - -

is a suitable additive information set for H!'»-s. Depending
on the context, Z;, .. is considered as a subset of {1,...,n}
or as a subset of {1} x ZEL™1 X (pZps )2 x -+ X (p¥~ 1 e ) te.

Example 3: Let Hz,oﬁ be the Zo7-additive GH code of
length 27 with generator matrix G2 given in Example 1.
The set Zy0,0 = {1,2}, or equivalently, the set of vectors
T50.0 = {e1, e1+e2}, is an additive information set for H>0:0.

By applying (3) over G%%9, we obtain matrices G309,
G%1.0 and G201 generating the Z,7-additive GH codes H39:0,
HZ1.0 and HZO01, of length 729, 243 and 81, respectively.
By Proposition 1, it follows that Zo oo U {28} = {1,2,28}
is an additive information set for H3:00, 1210 and H201,
Although this additive information set is the same for these
three codes, in terms of vectors representing these positions,
we have

Z-3,070 = {(1707 0)7 (17 170)7 (1707 1)}7
I2,1,O = {(]—7070)u (]-7 170)7 (17073)}7 and
12,071 - {(1707 O)a (17 170)a (1707 9)}

Finally, we have that

TN = ®(Ty0,0) U {244, 245,247}
={1,2,4,10,11,13,244, 245, 247},

I® = ®(Ty0,0) U {244, 247}
= {1,2,4,10,11, 13,244, 247}, and

I®) = &(Ty00) U {244} = {1,2,4,10,11,13, 244}

are information sets for the corresponding Zor-linear GH
codes H390, H21.0 and H20!, respectively.

Let C be a Z,--additive code of type (n;ti,...,ts), and
let C' = ®(C) be the corresponding Z,-linear code of length
ps’ln. Now, we define a new map, called also @, that sends
permutations on a set of n elements to permutations on a set
of p*~1n elements. This is a generalization of the map defined
in [2] for Z4. It can be deduced from the context wlllether P
refers to the generalized Gray map, from Z;. to Z;}pk , or this

new map @ : Sym(n) — Sym(p*~'n), defined as

o(r)(6) =7 (l ;X?)) —x(i), ©)
where x(i) = p*~! — (i mod p*~'), for all 7 € Sym(n)

and i € {1,...,p* !'n}. Given a subset S C Sym(n),
we define the set ®(S) = {®(7) : 7 € S} C Sym(p* 'n).
It is easy to see that if S C PAut(C) C Sym(n), then
®(S) C PAut(®(C)) € Sym(p*~'n). Moreover, the map
® : Sym(n) — Sym(p®~!n) is a group monomorphism [39].

Recall that we can identify PAut(H? ) with the group
m(L) [39]. Recall also that we can label the i-th coordinate
position of H!!s with the i-th column w; of the generator
matrix G'f constructed via (3), i € {1,...,n}. Any
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matrix M € PAut(H! ') sends columns of G'*!s to
other columns of G*!»~ts. Therefore, M can be seen as a
permutation of coordinate positions 7 € Sym(n), such that
foralli € {1,...,n}

(i) =j <= wiM=w;, je{l,...,n} 7)

For any M € PAut(H' ), we define (M) = &(7) €
Sym(p*~!n) and, for any P C PAut(H! ), we consider
®(P) = {®(M) : M € P} C Sym(p*~'n).

Definition 1: Let M € PAut(H" ') and let m; be the
i-th row of M, i € {1,...,t1+---+ts}. We define M* over
Zps as the matrix where the first row is m; and the i-th row is
my+m; fori € {2,...,t1}, mi+pm; fori € {t1+1,...,t1+
to}, my+p?m; fori € {t;+ta+1,... ¢t +ta+t3} and so on
until ml—i-ps_lmi fori € {t1+' ot 11, .t ~+ts}.

Theorem 1 ([39]): Let H''s be the Z,:-additive GH
code of type (n;t1,...,ts). Let P, = {M; : 0 < i < r}
be a set of r + 1 matrices in PAut(H! ). Then, ®(P,)
is an r-PD-set of size r 4+ 1 for H*»~'s with information
set ®(Z;,...+.) if and only if no two matrices (M;')* and

(M;l)* have a row in common, for ¢, € {0,...,r} and
1% 7.

Corollary 1 ([39]): Let P, be a set of r + 1 matrices in
PAut(H! ). If ®(P,) is an r-PD-set of size r + 1 for
H'i--ts | then any ordering of elements in ®(P,) provides
nested k-PD-sets for k € {1,...,7}.

Corollary 2 ([39]): Let P, be a set of r + 1 matrices in

PAut(H't). If ®(P,) is an r-PD-set of size 7 + 1 for

H'vots then r < flils, where
ftl"“’ts _ Lpst1+(81)t2+"'+tss —t —tp— - — tsJ 8)
» bttt o+, '

By using Theorem 1, in [39], some constructions of
r-PD-sets of minimum size » + 1 for some infinite families
of Zy--linear GH codes of type (n;t1,...,ts) are presented.
Specifically, first, an explicit construction of r-PD-sets of size
r + 1 is given for the Z,:-linear GH codes H'*%--0, with
ty > 2, for any r up to the upper bound given in (8), that
is, for any r < f;l’of'"o. Then, using a similar idea, it is
also given another explicit construction for the Z,s-linear GH
codes H; = HY0+0:4:0:-0 "with ¢, > 1 and i € {2,..., s},
for any r < fp},o,...,o,ti,o,...,o‘

In [39], it is also shown that, given an r-PD-set of size ¢ for
a Zps-linear GH code H t1,-ts we can easily obtain an r-PD-
set of size ¢ for the Z,:-linear GH code H™ Ti1:tatis | for
all 41,...,45 > 0. In particular, this is useful to obtain r-PD-
sets for any code H*t!s including those of type different to
(n;t1,0,...,0) or (n;1,0,...,0,¢;,0,...,0). Indeed, we can
use the explicit construction given in [39, Theorem 5.1] for
Hy = H*0--0 or the one given in [39, Corollary 5.1] for
H; = HVO0:8.0.0 "with § € {2,..., s}, and then extend
the obtained r-PD-set up to achieve an r-PD-set for H!tts
using the recursive construction given in [39, Corollary 6.1].
In order to maximize the value of r, we select the construction
that gives its maximum value r = f;l"“’“, where

f;hm?ts _ max{f;170;~~707 f;ﬂfzﬁwﬁ7 . f;,07-~,07ts}

< gt ©)

s
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We also define a parameter, h;lv“"t-*, to indicate which con-

struction is selected. If fftfs = fi1:00 then A1t = 1.
wise, oot — g ., 8h W i1 inimu

Otherwise, hl!* e{2,..., here 4 is the minimum

: Ft1,..,ts — £1,0,...,0,t;,0,...,0

index such that f =/ .

III. NEW r-PD-SETS FOR NON-FREE CODES

In this section, we present new constructions of r-PD-sets of
size r + 1, which are also suitable for any non-free Z,s-linear
GH code H''» s that is, with ty + - -- +t5 > 0. Recall that
for free Zys-linear GH codes, r-PD-sets of size r+1 up to the
upper bound were given in [39]. In Section IV, we show that
depending on the type of the code, these new constructions
allow us to improve the previous results, that is, to obtain r-
PD-sets for values of r larger than f;l"“vts and closer to the
theoretical upper bound f;lv“"tﬂ In order to present the new
constructions (Theorem 2 and Corollary 3), first we need to
introduce the elements of a specific Galois ring with a structure
that will be useful in the proof of Theorem 2.

Let R = GR(p**1~1) be the Galois extension of dimen-
sion t; — 1 over Zps, which is isomorphic to any ring
Zys[z]/(h(x)), where h(x) is a monic basic irreducible poly-
nomial over Z,s of degree {; — 1. A monic basic polynomial
h(x) over Z,s is called irreducible if h(z) is an irreducible
polynomial over Z,, where h(z) is the polynomial obtained
by taking the coefficients of h(x) modulo p. Moreover, if h(z)
is primitive, then h(x) is said to be a monic basic primitive
polynomial over Zys. If f(x) is an irreducible polynomial
dividing 2™ — 1 in Z,[x], then there is a unique polynomial
h(z) over Zps[z] such that h(z) | (2™ — 1) in Zps[z] and
h(z) = f(z). This unique polynomial h(zx) is called the
Hensel lift of f(z) to Z,-. Moreover, if a polynomial of degree
m is the Hensel lift of a monic primitive polynomial over Z,,
then it always has a root of order p™ —1 [40]. Let h(x) be such
a polynomial, with m = ¢; —1. Let « € R be a root of h(x) of
order £ = pt1=1—1. Then, the set 7 = {0,1,a,a?,...,a’ "1}
is called the Teichmiiller set.

The p-adic representation of an element y € R is given by

s—1

Y="yo+py1 +p°y2+ -+ 0" lys1,

where yo,...,ys—1 € 7. Consider the sequence of elements
T1,. .. Tpsts—1) € R lexicographically ordered. That is, ag +
pay+ - +p*lag_y < bg+pby+---+p by if a; < b;
for the last j where a; and b; differ. From now on, along the
paper, we refer to this order as lexicographical order.

We structure the ordered elements of R in s different tables:
A, Ay, ..., Aps—1. First, we divide all elements in blocks of
pt1~1 consecutive elements, and then we place each block
as a column of a table, denoted by A. Note that any two
elements 7;,7; from the same row of A satisfy that ¢ — j is
a multiple of p"*~!, which implies that r; — r; € (p) C R.
In order to use Lemma 1 in the construction of the r-PD-
sets, we take sequences of t; consecutive elements in K.
Let d, and h, be the quotient and the remainder of the
division of p*~! by t;, respectively. The last h, rows of
this table are discarded, resulting in a table of ¢;d, rows
and p(*~YE =1 columns, denoted by A,. Table Ay, for
k e€{2,...,s—1},is constructed by taking as the i-th column
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the vertical concatenation of consecutive columns in Apk,—l,
from the (pf*~1(i — 1) 4+ 1)-th column up to the (p*~17)-th.
This process results in a table A,x with t1d,x—1 ph~1 =
t1d,x rows and p( =R+ =1 pti=1 — p(s=k)(t1=1) columns,
where d,. = pt'~1d—1 = pk=Dt =Yg, Note that any two
elements r;,7; from the same row of A, satisfy that i — j is
a multiple of p*(' =1 which implies that r; —r; € (p*) C R.

Example 4: For t1 = 3, s = 3, and p = 2, we have that
|R| = 8171 =64, dy =1, and dy = 22 1dy = 4. Tables A,
As and Ay are of size 21~ x 411 = 4 x 16, t;dy x 41171 =
3x 16, and tydy x 2011 = 12 x 4, respectively. Below appears
a representation of Tables A, As, and A4, where instead of
the elements r; € R, only the corresponding index ¢ is shown:

1 17 33 49
1561 2 18 34 50
1561
26 - 62 3 19 35 51
A'37~-63’A2'§$:::g§’A4' 5 21 37 53°
48 ... 64

15 31 47 63

Lemma 1: Let t; > 2. Let 1y, ... s Ty, be a sequence of
elements in R. If they are consecutive in the lexicographical
order, then {r;, — 7i,...,7, — 7} is a set of linearly
independent vectors in their additive representation. Moreover,
any permutation of the indices 1,...,7;, preserves the linear
independence of the set of vectors.

Proof: Theorem 5.1 in [39] implies that any matrix

I
1 ryiqe
- 11+
N=| . .
1 Tt1(i41)

satisfies that ;! € PAut(H! %), where

1 Teritl
0 7Tit2 — Teitl

A/i:

0 74 (41) = Thitl

In particular, N is invertible.

Therefore, {7¢,i12 — Teyit1s- - Tey(i41) — Teyit1) 1S @ set
of linearly independent vectors. The same argument applies
for any sequence of ¢; consecutive elements in R.

Assume {rj, — 7iy,...,7, — 7i} is a set of linearly
independent vectors. Any permutation of the indices g, .. ., s,
preserves the set of vectors. We just need to consider the
transposition of one of these indices with ;. Without loss
of generality, we choose index i» and consider the set {r;, —
TiysTis = Tiy -« Ti,, —Ti, ). If these are not linearly indepen-
dent vectors, then

)\1(7"1‘1 _Tiz) ""_)‘3(”3 _riz) +'..+)\t1(’rit1 _Tiz) =0

for certain Ai, As,..., A\, € Zys, with some of them being
non-zero. This equation can be rewritten, as

_>‘1(ri2 - ,ril) + )‘3(ri3 - ril) +oee )\tl (ritl - ril)
- )‘3(”2 - Til) - )\tl(riZ - ri1) =0,
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and so,

(=A1 = Ag = = A )(riy = 7iy) + As(riy —7iy) + - F
At (ri,, —7iy) = 0, which contradicts the initial assumption
about the set {r;, —r;,,...,7;, —7; } being a set of linearly
independent vectors. O

Next theorem gives an explicit construction of r-PD-sets of
size 7 + 1 for any Z,:-linear GH code H'* ' with t; > 2,
which allows us to improve previous known results, as shown
in Tables II and III.

Theorem 2: Let H''»'s be a Zys-linear GH code of type
(n;ty,...,ts) with ¢ > 2 and ty + --- + ts > 0. There
exist r-PD-sets of size 7 + 1 for H® ! with respect to
the information set ®(Zy, . ), for every

t1,..ts p(Sfl)t2+(S*2)t3+“-+tsa -1

r<gh . (0)

where a = 7d,s-1 is the maximum value multiple of d,,s—1 =
ps=DW=1q, with d, = [22—], such that the following
1

condition is satisfied for each k € {1,...,s —1}:

(1)

(k=1)(t1—-1) (pt1—1 _
a < tydyes Lp w T)J

by kit + -+ L

when t5_py1 + -+ 15 > 0.

Proof: Let R = GR(p***=Y)) be the Galois ring of
degree t; — 1 over Z,s and consider the sequence of elements
T1,. ., Tpsi-1 Of R, following the lexicographical order.
In order to use the result given by Theorem 1, we need to
produce a set of matrices { Mg, ..., M}, such that M ' €
PAut(H!>+t), or equivalently M; € PAut(H! ), for
0 < 4 < 7, and such that no two different matrices
(M;l)*, (./\/lj_l)*, with 0 < 4,7 < r and 7 # 4, have a row
in common.

Consider the matrix M, given in (12), where
€ R.

Tigsen- ’Tit1+---+ts

Then M; is defined as in (13), where x(a) = pFa, for 1 <
k <s—1andevery a € Zys.

Tiq 0 0 0
1 Ti2
0 0 0
1 7"7;,[1
1 ritl-%—l
p—[t2 0 . 0
rit1+t2
*
M,L' == 1 Tit1+t2+1
. 0 |p*L, | ... 0
1 Tie, 4to4tq
1 Tit bty g 41
: 0| o L
1 Tty ot 4ts
(12)
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1 - 00 0
’/‘1'2 Tiq
0|0 0
0 Titl — Ty
0 Xl_l(rit1+1 - ril)
. . I,| 0 0
0 Xl_ll(ritl+t2 — ril)
Mi = 0 XQ_ (Tit,1+t,2+1 - Th)
. 0 It3 ...|10
—1
0 X2 (Tit1+t2+t3 — Til)
—1
0 Xs—l(rit1+»-»+ts,1+1 - Ti1)
. 0|0 Its
—1
0 Xs—l(rit1+~-~+ts_1+t5 - Ti1)
(13)

Thus, the construction of M; is only well-defined if
Tie sosey s —Ti € (PF) for 1 < j < gy 1. Moreover, in order
to ensure that M; € PAut(H'), the vectors r;, —
Tiys---,Ti,, —74 mustbe linearly independent. By Lemma 1,
this is fulfilled if r;,,...,r;, —are consecutive, following
the lexicographical order. Therefore, the proof is reduced to
determine the indices i1, ..., i, 4.4, € {1,...,p* "=V} for
each matrix M;, 0 < ¢ < r, such that the following conditions
are satisfied:

() the elements r;,,...,7;, ~must be consecutive in the
lexicographically ordered sequence 71, ..., 7,:¢;-1),
() Tipyyopr ;=T € (") for1 <j <tpyr,1 <h<s-1,
and
(iii) all indices 1, ..., %, +...4++, must be distinct.

We begin by constructing the first £; rows of matrices M,
for i € {0,...a—1}. Since « is a multiple of d,.-1, we have
a = 7d,s-1. First, we split the table A,.-1 in two subtables:
A;t,),l, containing the first 7 columns, and A;i),l, containing
the last pf*~! — 7 columns. Then, we take the sequence of
elements, beginning with the first element in the first column
of Az(i,),l and finishing with the last element in the column 7

of A(i)_l. We have a sequence of tldpsfl'r = t1« elements.
The first ¢; elements of this sequence are placed in the first
t; rows of matrix Mg, the next ¢; elements are placed in the
first ¢ rows of matrix M, and so on, until matrix M} _;.
This ensures that condition (i) is satisfied for every 0 < ¢ <
« — 1. The elements of A](fs),l will be used later to fill the last
to + - -+ +ts rows of matrices M7, for i € {0,...a — 1}.

Since o = 7dp = 1phld,.e =
rpPtibd,. s = coo = pb=Ati=lg - the index
1 €{0,...,a — 1} can be decomposed, in a unique way, as

iZbldps—l —‘y—bgdps—z + o 4 bs_1dp + b, (14)

where by € {0,...,7 — 1}, ba,...,bs_1 € {0,...,pr~ ! —
1}, and b, € {0,...,d, — 1}. Similarly, the index j €
{1,...,t1d,s—1} corresponding to the j-th row of A;ls),l can
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be decomposed in a unique way as

j:altldps-z +a2t1dps—3 +.. .+as_2t1dp+as_1t1 +as+1,

15)
where ay,...,as o € {0,...,plt 71— dp—
1}, and as € {0,...,t; — 1}.

Any of the ¢; elements r;,,...,r;, can act as the first row
of M, i€ {0,...,a—1}, by applying a permutation of rows,
by Lemma 1. We refer to the element selected to be in the first
row as the leader of M. The leader plays an important role
in each matrix, since it determines which elements r;; € R,
je{ti+1,...,t1+- - +ts}, satisfy condition (ii). We take
as leader of M, the element in the z-th position, 7; , where

1}, ag—1 € {O,...,

= [(bl —l—sz—l—bngtl_l—l—. . .—|—bSTp(S_2)(t1_l)) (mod tl)] +1

(16)
and ¢ is as in (14). Note that the leader r;, of M belongs to

the j-th row of A(S) 1, where j = [ztl (mod tydps- 1)l + .

Hence,
j= bgtldps—z + bgtldps—s + -4 bs_ﬂfldp + bet1+

|:(b1+b27'+b37'pt1_1+- . .+bSTp(S_2)(t1_1))<m0d t1)1|+1

a7
Consider two matrices M7 and M7, where
i = bidps—1 + badps—2 + - +bs_1d, +bs and
i = bydps—1 + bydps—2 + - - + b, _1d, + b,
and their respective leaders r;, sTil, where x* =

[(bl—i—bgr—l—bgrptl Ly 4berpls 2) (02~ 1))(rnod t)] + 1
and ' = [b} + bhyr + Dyrpht Tt 4 L+ WrplsDtTD)
(mod #;)H1. Clearly, by the uniqueness of the decompositions
given in (14) and (15), if by # b} for some k € {2,...,s},
then r;, and T, belong to drfferent rows of A.-1. However
if by, = b, forall k ¢ {2,...,s}, then 7;_ and ry  belong
to the same row of A,:— 1f and only if b = b} (rnod t1).
Since b; € {0,...,7 — 1}, then each row of A,.—1 contains
at most [ -] leaders

Denote by S(g 1, forjed{l,... ,tldpsfl}, the set contain-

ing the elements in the j-th row of A(z),l. For each matrix
M7, if its leader belongs to the j-th row of A,.-1, then a

subset of 4 distinct elements of S(Z , 1s taken to fill the last

ts rows of this matrix. Note that any s € S(js) . satisfies
that s’ — ' € (p*~1) C R, where 7/ is the leader of M},
so the above condition (ii) is satisfied for h = s — 1. In order
to satisfy condition (iii), the elements of S _, can only be
selected once. Thus, if more than one matrix have a leader in
the same row j of Aps—l, then disjoint subsets of ¢, elements
of Sg) . are selected, one for each matrix. Since each row j
of A,:—1 may have up to l—l leaders, then we must ensure
that

ltll ts
It is easy to see that this is guaranteed by condition (11) for
k=1.
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Up to this point, we have selected the elements
Ty, and ity gt 410 Ty g for every
., — 1}, satisfying conditions (i), (ii), and (iii).
In particular, in order to satisfy condition (ii) for h = s — 1,
we have used Table Apkr, since any two elements 7;,7; in
the same row of Ap.—: satisfy r; —7; € (p*~1). After this
step, the leaders are fixed for every matrix and the elements
that have already been selected cannot be selected again in
order to satisfy condition (iii).

In the next step, using the structure of the table Aps-,
we select the elements Tivy oty prrr 0 Tin g, - They
are chosen from the same row of A,.—» as r; , satisfying
condition (ii) for h = s — 2. In general, an itera-
tive process takes place, for kK € {2,...,s — 1}, where
Tigysste pq1re s Tigy popt oy, A€ selected from the same
row of A,«—x as the leader of the corresponding matrix, so that
condition (ii) is satisfied for h = s — k. The remaining
part of the proof ensures that this is possible, that is, it is
seen that there are enough elements to select all Tiss for
je{l,...;t1+---+ts} and i € {0,...,a — 1}, while
satisfying these conditions.

Now, recall that the table A s—2 has tld s—2 rows and

p?(t1=1) columns. Every element in the first - =ph~lr
columns of A,.-> has already been selected as one of the
elements r;,,...,7;, , for some i € {0,...,a — 1}. More-
over, some elements in the last p2(th—1 — ptl_lT columns
of A,:-—> may have been selected as one of the elements
Tivy gt 4100 Tingstes but some are still available in
order to fill the remaining ¢t + - - - +%5_1 rows in each matrix.

Let A(z),Q be the subtable of A,.—» consisting of the last

p?t—1) — ph=lr columns and, for ¢ € {1,...,t1dps—2},
let S(f,),Z be the set containing the elements in the /-th row
of Apz)_z.

By construction, the £-th row of A,:—2 and A(z),z contains

all elements from each j,, -th row of A,:-1 and A(%) 1, respec-
tively, where j,, = a1t1dp—2+£and a; € {0,...,p"~ 1_1}.

Thus,
U S(lshtlrd s— z+€)

P
0<ay<ptr—1-1
Note that ¢ can be decomposed in a unique way as { =

SI()i)—Q =

astidys—s + -+ + as_otid, + as_1t1 + as + 1, where
ag, ... as—2 € {0,...,p"~ 1 =1}, a5y € {0,...,d, — 1},
and as € {0,...,t; — 1}. Recall that for a matrix M},

where ¢ is as in (14), we selected as leader the element in
the z-th position, r;,, where x is as in (16), which belongs
to the j-th row of A,.—1, where j is as in (17). At the same
time, r;_ also belongs to the {-th row of A,.—2, where £ = j
(mod t1dps-2). That is,
Y4 :agtldps—ia —+ 4 as_gtldp + as_ltl + ag + 1=
bstidys—s + -+ + bs_1t1dy + bst1+
[(bl +boT + bgTpht T4 .—I—bsTp(s_Q)(tl_l)) (mod tl)}—i—l.
(13)
7, where i = bydys—1 +
~Fbs_1dp+bg and i’ = bidye—1+b5dy—2+ -+
and their respective leaders ri,,Ti . Clearly,

Consider two matrices M and M
bgd s—24 -
b_ydy + b,
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if by # 0), for a k € {3,...,s}, then r;, and r; belong
to different rows of Apsfl. However, if b, = bm’;C for all
k € {3,...,s}, then 7;, and r; belong to the same row
¢ of Ap,.—> if and only if b; + bor = (b} + byr) (mod ).
Since b; € {0,...,7 — 1} and by € {0,...,p"* "1 — 1}, then
each row of A,.—2 contains at most [”tltzlf] leaders.

For each matrix M, if its leader is in the ¢-th row of
Aps—2, then t,_; distinct elements of SZ()?,Z are taken to be
the elements 7, , ., . Note that any

EPTEERRR ’rit1+"'+t5_1
s’ e 51(7?‘2 satisfies that s’ — 7’ € (p*~2) C R, for any 7’ in
the /-th row of A,.—2, so the above condition (ii) is satisfied
for h = s — 2. To ensure condition (iii), the elements of S](ﬁ),z
can only be selected once, so ts_1 + t, different elements

from Spf),z must be selected for each leader in the /-th row
of Ap.—2. Since each row £ of A,:—2 may have up to f%}

leaders, then we must ensure that
tlfl,r

3]

14
16|

s

p
< .
[ —I o ts—l + ts
It is easy to see that this is guaranteed by condition (11) for
k=2
Similarly, with an increasing ordering in k € {3,...,s—1},
we select the elements Pivy sty a0t Ty e, iy using
the structure provided by A,.-x. Let AI()Q),A be the subtable
with the last p(* =Dt =D (pthi= — 7} columns of A,.—+, and
let S (Z)_ . be the set containing the elements in the /-th row of

Af), «- By construction, we have

. (ak_ltldps—k‘i’e)
S;,S),k = U Spamits

0<ap_1<pf1~'-1

_ U S(altldps—Q+"'+ak—1t1dps—k+€)
psfl .
0<ai,...,ap_1<pt1=1—1

19)

Using a similar argument to the one used for £ = 2, we see that
(k=1)(t1—1)
P T

¢ i
Moreover, any s’ € S(S)_k satisfies that s’ — ' € (p*~F) C R,
p

for any 7’ in the /-th row of A,.—x, so the above condition (ii)

each row of A,.—x contains at most [ 1 leaders.

is satisfied for h = s — k. Since S (f,),k satisfies all equalities
in (19), for each leader in the €-tﬁ row of Aps—k, we must

select ts_p+1+- - -+t different elements in S;f), «- Therefore,
we must ensure that

L
p(k_l)(tl_l)T |SZ(JS)_k|
tq - tsfk+1+"'+ts

[

which is guaranteed by condition (11).

By using this construction, we obtain a set of matrices
{MG, ..., M%_,} such that M} € PAut(H" ) for all
i € {0,...,a — 1}. Furthermore, for each matrix M},
we can obtain p(s~Vtz+Fte different matrices, M}, €
PAut(H!>t), such that all rows from all matrices in
Mp, : 0<i<a—1,0<k < plembietth 1}

)
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are different. Define M, ;. as

! o o] . [ ol
Tig Tiq
0 0 0
0 ritl — Ty
0 Xl_l(TmH _ Til)
: . Itz 0 0
71 ’
0 Xll (rit1+t2 - Til)
O XQ_ (Tit1+t2+1 - T’il) 9
. 0 1y, 0
0 X51<Titl+t2+t3 B ri1>
=T
O XS—l(Tit1+...+ts_l+1 - T'il)
. 0 0 Its
-1
0 Xs—l(rif1+'~-+ts,1+ts - ’I“il)
(20)

where ugk), 2 < j < s, is a vector with t; coordinates over
P ~1Z,s. Note that there are p(*~7+1% different vectors u;k).
Let P ={M;} : 0<i<a—1,0<k<plDiattts
1}. By Theorem 1, ®(P) is an 7-PD-set of size r + 1 for
H'-ts | with respect to the information set ®(Z,, . .), for
every r < pls—Diatttsg O

Example 5: Using the construction given by the proof of
Theorem 2, we can construct a 12287-PD-set of size 12288 for
the Zg-linear Hadamard code H*?2*. In this case, we have
doy = 2, hg = 0, and d4 = 16. First, tables A, and A, are
constructed. The elements of R = GR(8?), the Galois ring of
dimension 3 over Zg, are distributed in A, by columns, so that
for any two elements 7, 7; € R in the same row, r; —7; € (2).
Thus, table Ay has t;ds = 8 rows and 4*1~1 = 64 columns.
Since hy = 0, A5 contains all the elements of R. The elements
of A, are also distributed in a table A4, where each column
is formed by the elements in 2!1~1 = 8 consecutive columns
of A,, so that for any two elements r;,r; in the same row,
r; —7; € (4). Thus, table A4 has t;ds = 64 rows and 28171 =
8 columns. Figure 1 shows table A4 and the transpose of table
A, giving only the index i for each element r; € R.

The maximum value of « satisfying conditions (21) and (22)
is o = 48. From the first o = 48 blocks of t; = 4 consecutive
elements of R, which are placed in the first 7 = a/dy =
3 columns of A4, we construct the first ¢; rows of matrices
MG, ..., M},. The bordered elements in table A, of Figure 1
are selected as the leaders for the corresponding matrices,
and the ones with a light gray background are selected to
construct the last ¢35 = 4 rows of these matrices. The elements
with a dark gray background in table A, of Figure 1 are
selected to construct the remaining t5 = 2 rows, 5-th and
6-th rows, of these matrices. By construction, the leaders
1,66,131,12,73,138, ... are distributed cyclically among the
t, positions of the blocks. Moreover, they are also distributed
in a balanced way among the first ¢; rows of A,. This ensures
that there are enough elements of each class in order to fill
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the last ¢5 + 3 = 6 rows of these matrices. For example, the
first matrix Mg is constructed as follows:

—_

T1

-

w

[oe}

wt
e OO o OO0 ONOO OO
COoO0CO0COoOMNMNOOOO PLOLCONDODOOOO
Coo0cOoONOOOOO PR OOOO
CoohRhOoOO0OO0C OO PORDODOOODOOO
COoOROOOOCCOOO PHRODOOOOOOO
o OO0 O0CO0COO0OOD BRPOOOOODOOOO

= o b e e e e e e e e e e e e e e

O kR OoONO OO —-O
= s O O O~ OO
O O OO o oo oo

Then,

Mo =

O OO O OO OO
OO HOOO KO
— O R WWH~kOOOo
[eNeNell o NoNoNoNe)
O OO OO OO
_H O OO oo

== OoONOOoOFROO
OO DD OO+ OO OO
O OO OO OO oo
—H O OO OO oo oo

(=)
—
—
o
o
o

Finally, we can obtain 4°2* = 256 different matrices M,
0 < k < 255, for each one of the matrices M}, 0 < i < 47
which give us a 12287-PD-set of size 48 - 256 = 12288 for
the code H*24,

Remark 1: The s — 1 conditions (11) given by Theorem 2
for k € {1,...,s — 1} are independent and must be satisfied
in order to obtain a valid value for a. For example, consider
the case p = 2 and s = 3. From (11) we obtain the following
two conditions:

4t1—1 _ 2t1—1,7_
for k=2, a<tidy|— | whenty+1t3>0,
ta + 13
(21)
oti—1l _ 7
for k=1, a<tidy {J when t3 > 0. 22)
3

It is easy to see that condition (21) does not imply con-
dition (22), and vice versa. For instance, for the Zg-linear
Hadamard code H*?4, which is considered in Example 5, the
maximum multiple of ds = 16 that satisfies both conditions is
a = 48. Let us denote the right-hand side of both restrictions
by fi(a; t1,t2,t3) and fo(w; t1,to, t3), respectively. Then,

F1(48: 4,2,4) = 48, f1(64; 4,2,4) = 40 < o = 64,
£2(48; 4,2,4) = 64,  f(64; 4,2,4) = 64.
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Note that if o = 64, which is the next multiple of d4 = 16,
condition (22) is fulfilled, but condition (21) is not satisfied.
On the other hand, for the Zg-linear Hadamard code H*94,
the maximum feasible value for « is o = 64. For this value
and the next multiple of dy = 16, = 80, the following
restrictions are obtained:

f1(64; 4,0,2) =128,  £1(80; 4,0,2) = 96,
f2(64; 4,0,2) =128,  f5(80; 4,0,2) = 64 < o = 80.

Thus, if o = 80, condition (21) is fulfilled, but condition (22)
is not satisfied.

Note that Theorem 2 can only be applied when t1 > 2.
For the Zys-linear GH codes H!:!z:ts = H1.0- s
where j = min{i | ¢ € {2,...,s},¢; > 0}, it is poss1ble
to obtain r-PD-sets of size r + 1 by applying the recursive
constructions presented in [39] as follows. Let j' = min{i |
i€ {j,...,s},t; > 1}. First, we use Theorem 2 to obtain an
r-PD-set for H' s with r < g;j"""ts, and then,
we use [39, Corollary 6.1] to extend it to an r-PD-set for
HY00:t5,5t  Next proposition allows us to present a new
construction to obtain 7-PD-sets of size r+l for the Z,s-linear
GH codes HUlt2rots = HLO-.0¢ (see Corollary 3),
which gives an r-PD-set with r < gt +1 fi+1ots Note that
j<g andgtJrlt]“ ..... g>gt ts

Proposition 2: Let H = H- e be a Z,:-additive
GH code of type (n;ti,ta,...,ts) with ¢4 > 2, and let
H' = RO 0h=lenle be a 7, . -additive GH code of type
(n';1,0,...,0,t; — 1,¢a,...,ts) with s’ > s. If there exists
a set S C PAut(H) such that ®(S) is an r-PD-set of size
r + 1 for H = ®(H), then there exists a set P C PAut(H’)
such that ®(P) is an r-PD-set of size r + 1 for H' = ®(H’).

Proof: Let S = {M7',... . M;};} C PAut(H) such
that ®(S) is an r-PD-set for H = ®(H). Since M, is as
in (5), we can partition it as

1 a
we (30,

Then, we define the following matrix over Z,.:

M:<(1) X(a))’

L(A)

where x and ¢ are maps from Zy: to Z,. defined as x(a) =
p* ~*a and 1(a) = a, respectively. Clearly, if M; € PAut(H),
then \; € PAut(H').

Let mi; = (aj, mi,j) and Nij = (aj, ﬁi,j) be the j-th rows
of M; and \V;, respectively, where a; = 1and a; = 0if j > 1.
Note that 71,1 = pS/,SmM for any ¢ € {1,...,r + 1}, and
ﬁi,j =m,;; forany i€ {1,...,r+1} and j € {2,..., ¢ +

c+tsh

Consider also the j-th rows m; ;

= (1,m;;) and n;; =
(1,7n;

i.j
;) of M; and N, respectively. We have

m;y =mi1 = (1,m;1),

mi;=mix+mi; = (1,mi1 +mi;)

if je{2,... t1},

-1 —1

my; =mg1+p" m = (1,m1 +p"
i€ {ty+- -

m;,;)
+tp1+ 1, ot 4 k)
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Similarly,
niy =ni1 = (1,n;1),
n;=ni+pt tnig = (L +p° )
if j e {2,... t1},
n;'k,j =N +p metk 1” (]- nz 1 +P metk 177/2,])
if j € {t1+~~-+tk_1+1,...,t1+~~+tk}.
Therefore, 72" =p* ~*m;, foranyi € {1,...,r+1} and j €

{1,...,t1+-- +ts}. By Theorem 1, all rows m; ; =
are different over Zy:. Thus, all rows n}, = (1,p5/’5m;"j)
are different over Z,... Using again Theorem 1, we obtain
that ®(P) = ®({N7',...,N,3}) is an r-PD-set for H' =
O(H'). O

Corollary 3: Let H''2>!s be a Z,:-linear GH code of
type (n;1,ta,...,ts) and let j € {2,..., s} be the minimum
index such that t; > 0. If £;,9 +--- + s > 0, then there
exist r-PD-sets of size r + 1 for H?2ts with respect to
the information set ®(Zyy,,..1,), for every r < gpfzote =

gzt,jﬂ’t”l" , where g} it t”“ ' is defined as in (10).
Proof: By Theorem 2, there exist r-PD-sets of size
r 4+ 1 for Htthots  with respect to the information set
O(Z;41,....1, ), for every r < gt R 1 fact, in the proof
of Theorem 2, we see that these r-PD-sets, say .S, can be
obtained as S = ®(S), where & C PAut(HLtLl-ts).
Therefore, Proposition 2 guarantees the existence of a set
P C PAut(Hf2--%) such that ®(P) is an r-PD-set of
size r 4+ 1 for Hb?2t with respect to the information set
DTy 4,0, )- O
Example 6: By Corollary 3, from the r-PD-set of size
r + 1 given in Example 5, we can obtain a 12287-PD-set
of size 12288 for the Zs--linear Hadamard codes H!:3:24
H10:3.2,4 1 [11,0,0,3,2,4 with s = 4,5,6, ..., respectively.
Corollary 3 can be seen as a generalization of the con-
struction of r-PD-sets of size r + 1 for Zj.-linear GH codes
H; = HY0-0%.0.-0 with ¢; > 0 for all i € {2,...,s},
given by Corollary 5.1 in [39]. The combination of both results
implies that we can obtain an r-PD-set of size 4+ 1 for any
code I_]l,tg,...,tg

(la m;j)

IV. UPPER BOUND COMPARATIVE ANALYSIS

Using the construction proposed in Theorem 2 and Corol-
lary 3, 7-PD-sets of size r+1 with » < gi1-~*s can be obtained
for the Z,.-linear codes H' ' with t5 + --- + t; > 0.
By Corollary 2, we have that gzt,l’ b < f;l"'”“. In this
section, we find new values of p,t1,...,ts for which this
theoretical upper bound f/-* is tight. Moreover, even when
the upper bound is not reached gyt approaches fitote
considerably. Finally, computat1onal results given in [39] are
compared with the values of gfi-fs.

Table I shows the values of gtl’tz’t?’ and ftl’tz’t3 where t; €
{3,4,5} and t5,t3 € {0,1,2,3,4}. Gray colored cells indicate
that the upper bound is reached that is, gtl’t"”t3 = fél’t”S.
Note that gtl’O 0 is not defined for any t; > 1. We use the
symbol — to represent this undefined value. Moreover, note
that there are cases where gt“t""t3 is defined but it is equal
to -1, which means that the construction given by Theorem 2
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m 2 3 4)5)s 7 8

IT 65 129 193 257 321 385 449

2 | 66 1130 194 258 322 386 450 o 10 M|12]13 14 15 ?I
3 67 ﬂ]wgs 259 323 387 451 17 18] 19)20 |21 22]23]24
4 68 132 196 260 324 383 452 25 [26)27 2829 |30f31 32
133 197 261 325 389 453 33034 35 36| 37|38 39 40
70 |134 198 282 326 200 454 41 42 43 [44)45 45 a7 |48
7 71 |135]199 263 327 391 455 49 50 [51]52 |53 54 55] 56
8 72 136 200 264 328 392 456 s7|58|59 6o|s1]62]63 &4
o [72]137 201 285 320 303 457 65 [ 66|67 63|60 70|71 72
0 74 Emz 266 330 394 458 lﬂ 74 75 76| 77|78 79 80
11 75 139 203 267 331 395 459 81 g2 83|84|es a6 a7 Wl

2|76 140 204 268 332 396 460

13| 77 {141 205 269 333 397 461
14 2I]ﬁ 270 334 398 462
15 79 143 207 271 335 399 463
6] 80 144 208 272 336 400 464

89 90|91 ]o2]93 94[85]0s
97 | 86 | 98 +100|101]102}103 104
106 107 108 [109]110 111 112
113 114 115[118[117 118 119[720]
121 122[123]124]125 126[127[ 128
17 81 |145)200 273 337 401 465 120 130[131]132]133 134[135) 136
18 82 146 210 274 333 402 466 137 138[ 130 140]141]142] 143 144

83 147 211 275 339 403 467 1450145 147 148[149]150 151 152
2u| 34

142 212 276 340 404 463 153 154 155 [156] 157 158 150[760]

21 85 |149)213 277 341 405 460 161 162]163]164 166 | 167] 168
22 86 150 214 278 342 406 470 169170171 172 175 176
23| 87 151 215 270 343 407 471 178 179 180 183 184

24) 88 |152 216 280 344 408 472 185

25 89 153 217 281 345 409 473 193
26190 154 218 282 346 410 474 201
2791|155 219 283 347 411 475 209
28 92 156]22I] 284 348 412 476

29 93 157 221 285 349 413 477

94 158 222 286 350 414 478
31| 95 |150 223 287 351 415 470
32 96 |160]224 288 352 416 430

33]1 97 161 225 289 353 417 431
34| 93 | 162 226 290 354 418 482
35 99 |163}227 291 355 419 433
36 100 164 228 202 356 420 484

101 165 229 293 357 421 435
38| 102]166 230 204 358 422 436
39 103 231 205 359 423 457
40 104 168 232 206 360 424 488
4 169 233 207 361 425 489
42 hzu 208 362 426 490
43 107 171 235 299 363 427 491
[##] 105 172 236 200 364 428 402
45[109]173 237 301 365 429 493
46 110|174|238 302 366 430 494
47 111 175 239 303 367 431 495
48] 112 175 240 304 388 432 406
49 113[177]241 205 369 433 407
50 114 178 242 306 370 434 493
[E]1s. 179 [243 307 371 435 400
52| 116] 120 244 308 372 436 500
53 117|181]245 309 373 437 501
54 113 182 246 310 374 438 502
q 119 183 247 311 375 438 503
56120 184 248 312 376 440 504

57 121 185 249 313 377 441 505

31 312
319 320

482 483 484|485 487 488
490 491 492|493 494 495 496
498 499 500|501 502 503 504
506 507 508|509 510 511 512

510 48
511 49
64 128 192'255 320 384 448 512 50!

©

=9

=

Fig. 1. Table A4 (left) and the transpose of Ag (right), used for the
construction of an 12287-PD-set of size 12288 for H42:4 in Example 5.

is not able to produce an r-PD-set. As an illustration, see
Example 5, where we construct an r-PD-set of size r + 1 for
the code H*24, with r = g§ 24— 12287, which does not
reach the upper bound f = 13106, so there could be
r-PD-sets of size r 4 1 for H42% such that gy'>* = 12287 <
r< 13106 = f3

The results given in this paper, using Theorem 2 and
Corollary 3, allow us to achieve r-PD-sets of size r + 1 up
to r < gtlv These results are usually better than the
ones obtalned in [39], where the given r-PD-sets are of size
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TABLE I
COLUMNS g2 AND f2 CONTAIN THE VALUES OF gél’tz’t?’ AND f;l’t”g, FOR t1 € {3,4,5}, t2,t3 € {0,1,2,3,4}, RESPECTIVELY

t3 =0 t3 =1 t3 =2 t3 =3 t3 =4
ti|ta| g2 f2| g2 fa| g2  f2| g2 f2 | g2 f2
310 — 20| 23 31| 31 50| 3l 84| -1 145
3 01| 47 63| 63 101| 63 169| 127 291| -1 511
3 02| 127 203| 127 340| 255 584 511 1023 | -1 1819
3 03] 255 681 511 1169|1023 2047|2047 3639 | -1 6552
3 | 4 ]1023 2339|2047 4095|4095 7280| -1 13106 | -1 23830
ts =0 ts =1 ts =2 ts =3 ts =4
t1 | t2 g2 f2 g2 f2 g2 f2 g2 f2 g2 f2
VI ) — 127] 191 203| 255 340 511 584 | 1023 1023
4| 1| 38 408| 639 681| 1023 1169 | 2047 2047| 3071 3639
4 | 2| 1279 1364 | 2047 2339 | 4095 4095| 6143 7280 | 12287 13106
4 | 3| 4095 4680 | 8191 8191 | 12287 14562 | 24575 26213 | 32767 47661
4 | 4 | 16383 16383 | 24575 29126 | 49151 52427 | 65535 95324 | 131071 174761
ts =0 ts =1 ts =2 ts =3 ts =4
t1 | ta g2 fa g2 f2 g2 f2 g2 f2 g2 f2
50 = SI8| 1247 1364 | 1919 2339 | 3839 4095 6143 7280
5| 1| 2495 2729 | 4223 4680 | 7679 8191 | 12287 14562 | 21503 26213
5| 2| 8447 9361 | 15359 16383 | 24575 29126 | 43007 52427 | 86015 95324
5| 330719 32767 | 49151 58253 | 86015 104856 | 172031 190649 | 294911 349524
5 | 4 198303 116507 | 172031 209714 | 344063 381299 | 589823 699049 | 1179647 1290554
TABLE II
COLUMNS g2, f2, AND by CONTAIN THE VALUES OF g5'/2:%8 | f3:t2:%3 s\p p2:7283 poR ¢y, 15 € {0,1,2, 3,4}, RESPECTIVELY
t3 =0 t3 =1 t3 =2 t3 =3 t3 =4
ta 92 fa,he 92 fa,he 92 fa,ho 92 fahe | g2 fo,ho
0 — 20, 1 23 20, 1 31 20, 1 31 20, 1 -1 20, 1
1 47 20, 1 63 20, 1 63 20, 1 127 20, 1 -1 20, 1
2 127 20, 1 127 20, 1 255 20, 1 511 20, 1 -1 20, 1
3 255 20, 1 511 20, 1 1023 20, 1 2047 20, 1 -1 20, 1
4 1023 50,2 | 2047 50,2 | 4095 50, 2 -1 50, 2 -1 50, 2
TABLE III TABLE IV

3 2,to,t 72,to,t
COLUMNS gg,fgé ?NtD h3 CONTAIN THE VALUES OF g3*""3, f3"2:"3,
AND h3’*2’"3 FOR t2,t3 € {0,1, 2}, RESPECTIVELY

t3 =0 t3 =1 ty3 =2
ta g5 f3,hs 93 fa,hs | g5 fa,hs
0 — 12, 1 17 12, 1 26 12, 1
1 53 12,1 80 12, 1 80 12, 1
242 26,2 | 728 26,2 | -1 26, 2

r+1luptor < f;l’“"tS. However, there are some isolated

t1,ets Ft1,..00t t1,ets —
cases where g} < f! e such as vxfhen gpl = 1
There are some even more isolated cases in which g;“'“’ts is
not defined, such as when to = --- =t5, = 0 for any ¢;. In the

latter case, fgl,o,...,o = f;l’o’“"o, so the upper bound can be
achieved instead by using the explicit construction given in
[39, Theorem 5.1].

Table II shows the values of o>, fa'>' and h3'>"',
as defined in (9), where t¢o,t3 € {0,1,2,3,4}. This table
considers the same cases as the first subtable in Table I, where
t1 = 3. As mentioned above, 9;23,0,0 is not defined, but in this
case the code is free, so we can use the~explicit construction
given in [39, Theorem 5.1], obtaining f30:0 = f3.0.0 = 20.
Note that fo*% = f1*% = 50 for any ¢35 € {0,1,2,3,4}, that
is, h§’4’t3 = 2. However, if t5 < 4, then fg’t"”ts = fg,o,o =
20 for any t3 € {0,1,2,3,4}, that is, 3> = 1. Similarly,
Table III shows the values of g3'>'%, f2'>' and h3'>'s,

VALUES 7. FOR WHICH 7.-PD-SETS FOR Z4-LINEAR HADAMARD CODES
H'>t2 WiTH t1 € {3,4,5} AND t2 € {0,1,2,3,4,5} WERE FOUND
IN [39] USING A NON-DETERMINISTIC METHOD. THE
CORRESPONDING VALUES OF gél’ 2

AND f;l’tz ARE ALSO GIVEN
1 t2 re 9;”2 5“2
3 0 4 - 4

1 7 5 7
2 11 7 11
3 18 7 20
4 31 -1 35
5 50 -1 63
4 0 15 - 15
1 23 23 24
2 38 31 41
3 62 63 72
4 103 127 127
5 172 191 226
5 0 50 — 50
1 76 77 84
2 124 119 145
3 199 239 255
4 321 383 454
5 551 575 818

as defined in (9), where t3,t3 € {0, 1,2}. In both tables, the
maximum value between g;'-*>** and f;,lvt?*tf’ is shown in
bold type.

In [39], some computational results showed that r-PD-sets
can be obtained with f/1's < < fli-ots In fact, some of
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those computational results improve the values of glt)lv"“t-*. For
example, a 73-PD-set of size 74 was found computationally
for the Zs-linear code H3:3. Note that 93,0,3 =31<73<
84 = fg’ 03 Indeed, for all Zs-linear codes H32:'3 with t5 €
{0,1,2} and t3 € {0, 1,2, 3}, the computational results given
in [39, Table 2] are better than the values of gg”t"‘?ta. On the
other hand, for the Z,-linear codes H*% with t5 € {3,4,5}
and H>" with t, € {1,3,4,5}, the values of g*> and g5
are better than the computational results given in [39, Table 1],
which are denoted by r.. Table IV shows the values of r. and
the values of g5'** and f3''* for the Z,-linear Hadamard
codes H't2 with t; € {3,4,5} and t» € {0,1,2,3,4,5}.
The maximum between r. and gél’tQ is shown in bold type,
and the gray coloured cells indicate the case where the upper
bound is reached.

V. CONCLUSION

In [39], explicit constructions of r-PD-sets of minimum size
7+ 1 for Zys-linear GH codes Htv--ts | with values of r up
to fzﬁl""’tS, were given. These values of r are usually far from
the theoretical upper bound f£1*+. In this paper, new explicit
constructions of r-PD-sets of size » + 1 for these codes, for
values of r larger than f;1>""ts and closer to the upper bound
f;l*"”tﬂ, are given.

For some infinite families of codes, these constructions
allow us to construct r-PD-sets with r up to the upper bound,
that is, for all r < f;lv“"t-*. A natural direction of further
research on this topic is to achieve the theoretical upper bound
for all cases, or to prove that there are cases where it is
impossible, resulting in a lower upper bound which depends
on the type of the code.

As also mentioned in [39], another topic of further research
is the generalization of these results to other families of
Zps-linear codes [21], [35], [36] or t0 ZyZy2 - - - Zps-linear
GH codes, which are GH codes and can be obtained from
the generalized Gray map image of subgroups over mixed
alphabets Zg‘l X Z;‘f X -+ X Zg:‘. In particular, ZyZ,4-linear
codes have been studied extensively, see for example [9],
[10], and the permutation decoding method given in [4] is
also defined for these codes, since they are systematic. More
generally, ZpZy2 - - - Zps-linear codes have been studied, for
example in [1], [29], and [37]. The results given in [38§]
can be extended to Zp,Z,: - - - Zys-linear codes, in order to
obtain a systematic encoding for Z,Z,:> - - - Zps-linear codes,
which allow us to use the permutation decoding method for
these codes. This gives a motivation to construct r-PD-sets
for Z,Zy> - - - Zps-linear GH codes, which have been recently
studied in [5], [6], and [7], [8] showing that they are not
necessarily equivalent to the Z,:-linear GH codes considered
in this paper.

Finally, we would like to point out that some Magma func-
tions to construct the r-PD-sets of size r + 1, described in [39]
and in the current paper, have been developed by the authors.
They have been included in a new Magma package to deal
with linear codes over Zys [17]. This package also allows the
construction of Zs-linear GH codes, and includes functions
related to generalized Gray maps, information sets, the process
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of encoding and decoding using permutation decoding, among
others. This package generalizes some of the functions for
codes over Z,4, which are already included in the standard
Magma distribution [11]. It has been developed mainly by
the authors of this paper and with the collaboration of some
undergraduate students. The first version of this new package
and a manual describing all functions are available in a GitHub
repository (https://github.com/merce-github/ZpAdditiveCodes)
and in the CCSG website (https://ccsg.uab.cat).
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