
This is the **accepted version** of the journal article:

Kessler Borges, Flavia; Guerra-Farfán, Ernesto; Bhandari, Mohit; [et al.]. «Myocardial Injury in Patients with Hip Fracture : A HIP ATTACK Randomized Trial Substudy». *Journal of bone and joint surgery. American volume*, 2024.
DOI 10.2106/JBJS.23.01459

This version is available at <https://ddd.uab.cat/record/302768>

under the terms of the IN COPYRIGHT license

1 **Title: Myocardial injury in hip fractures: a HIP ATTACK-1 randomized trial substudy.**
2 **Running title: Myocardial injury in hip fractures**
3 **Authors: Flavia K. Borges, MD, PhD^{1,2,3}, Ernesto Guerra-Farfán, MD⁴, Mohit Bhandari,**
4 **MD, PhD⁵, Ameen Patel, MD², Gerard Slobogean, MD⁶, Robert J. Feibel, MD⁷, Parag K**
5 **Sancheti, FRCS, MS, DNB, MCh, Ph.D⁸, Maria E Tiboni, MD², Mariano Balaguer-Castro,**
6 **MD^{9, 10}, Vikas Tandon, MD², Jordi Tomas-Hernandez, MD¹¹, Alben Sigamani, MD¹², Alen**
7 **Sigamani, MD¹³, Wojciech Szczechlik, MD, PhD¹⁴, Stephen J McMahon, MD¹⁵, Paweł**
8 **Ślęczka, MD, PhD¹⁶, Mmampapatla T Ramokgopa, MBChB, MSc, FCS (SA)¹⁷, S**
9 **Adinaryanan, MD¹⁸, Masood Umer, MBBS, FCPS¹⁹, Richard J Jenkinson, MD²⁰, Abdel**
10 **Lawendy, MD, PhD^{21, 22}, Ekaterine Popova, MD^{23,24}, Aamer Nabi Nur, MD²⁵, Chew Yin**
11 **Wang, MBChB²⁶, Marcela Vizcaychipi, MD, PhD, FRCA, EDICM, FFICM²⁷, Bruce M**
12 **Biccard, MBChB, FCA(SA), FFARCSI, MMedSci, PhD²⁸, Sandra Ofori, MBBS, MSc²,**
13 **Jessica Spence, MD, PhD²⁹, Emmanuelle Duceppe MD PhD^{1,30}, Maura Marcucci, MD,**
14 **MSc^{1, 2, 3}, Valerie Harvey, BSc¹, Kumar Balasubramanian, MsC³¹, Jessica Vincent, MSc³²,**
15 **Ana Claudia Tonelli, MD, PhD^{1,33, 34} and P.J. Devereaux, MD, PhD^{1, 2, 3}. On behalf of HIP**
16 **ATTACK Investigators.**

17
18 **1. Population Health Research Institute, Hamilton, Canada;**
19 **2. Department of Medicine, McMaster University, Hamilton, Canada;**
20 **3. Department of Health Research Methods, Evidence, and Impact, McMaster University,**
21 **Hamilton, Canada;**
22 **4. Department of Orthopaedic Surgery and Traumatology, Hospital Universitario Vall**
23 **d'Hebron, Barcelona, Spain;**

24 **5. Department of Surgery, Division of Orthopaedic Surgery, McMaster University,**
25 **Hamilton, Canada;**

26 **6. Department of Orthopaedics, University of Maryland School of Medicine, Baltimore,**
27 **United States of America;**

28 **7. Division of Orthopaedic Surgery, Department of Surgery, University of Ottawa, The**
29 **Ottawa Hospital - General Campus, Ottawa, Canada;**

30 **8. Sancheti Institute For Orthopaedics & Rehabilitation & PG College. Pune, India;**

31 **9. Department of Orthopaedic Surgery and Traumatology, Parc Taulí Hospital**
32 **Universitario, Sabadell, Barcelona, Spain;**

33 **10. Department of Orthopaedic Surgery and Traumatology, Hospital Clinic Barcelona,**
34 **Barcelona, Spain;**

35 **11. Orthopaedic and Traumatology Department, Vall d'Hebron Hospital, Barcelona,**
36 **Spain;**

37 **12. Numen Health Bangalore, Bangalore Karnataka, India;**

38 **13. Department of orthopedics Government TD medical college Vandananam Alappuzha,**
39 **India;**

40 **14. Center for Intensive Care and Perioperative Medicine, Jagiellonian University Medical**
41 **College, Krakow, Poland;**

42 **15. Department of Surgery, Oak Valley Health, Markham, Canada;**

43 **16. Independent Public Health Care Center, SPZOZ Myślenice, Myślenice, Poland;**

44 **17. Division of Orthopaedic Surgery, University of the Witwatersrand, Johannesburg,**
45 **South Africa;**

46 **18. Department of Anaesthesiology and Critical Care, Jawaharlal Institute of Postgraduate**
47 **Medical Education and Research (JIPMER), Pondicherry, India;**
48 **19. Department of Surgery, Aga Khan University, Karachi City, Pakistan;**
49 **20. Department of Surgery and Institute of Health Policy Management and Evaluation.**
50 **Sunnybrook Health Sciences Center, Toronto, Canada;**
51 **21. Department of Surgery University of Western Ontario, London, Canada;**
52 **22. Lawson Health Research Institute, London, Canada;**
53 **23. IIB SANT PAU, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain;**
54 **24. Centro Cochrane Iberoamericano, Barcelona, Spain;**
55 **25. Department of Orthopaedic Surgery, Shifa International Hospital, Islamabad,**
56 **Pakistan;**
57 **26. Department of Anaesthesiology, Faculty of Medicine, University Malaya, Kuala**
58 **Lumpur, Malaysia;**
59 **27. Section of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and**
60 **Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United**
61 **Kingdom;**
62 **28. Department of Anaesthesia and Perioperative Medicine, Groote Schuur Hospital and**
63 **the University of Cape Town, Western Cape, South Africa;**
64 **29. Department of Anesthesia and Critical Care, McMaster University;**
65 **30. Department of Medicine, University of Montreal, Montreal, Canada;**
66 **31. Department of statistics, Population Health Research Institute, David Braley Cardiac,**
67 **Vascular and Stroke Research Institute, Hamilton, Canada;**

68 **32. Perioperative Medicine and Surgical Research Unit, Population Health Research**
69 **Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton,**
70 **Canada;**
71 **33. Department of Medicine, Unisinos University, São Leopoldo, Brazil;**
72 **34. Internal Medicine Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil.**

73

74 **Corresponding Author: Dr. Flavia Kessler Borges**
75 **Address: Population Health Research Institute, Hamilton General Hospital Campus,**
76 **DBCVSRI. 237 Barton Street East. Room C1-109. Hamilton, Ontario, Canada L8L 2X2**
77 **Email: Flavia.borges@phri.ca. Tel: (+1) 905-527-4322 Ext 40455; (+1) 289-253-7686**
78 **Fax: (+1) 905-297-3778**
79 **Word count: 3041**

80

81 **Title:** Myocardial injury in hip fractures: a HIP ATTACK-1 randomized trial substudy.

82 Running title: Myocardial injury in hip fractures

83

84 **Abstract**

85 Background: Myocardial injury after a hip fracture is common and has a poor prognosis. Patients
86 with hip fracture and myocardial injury may benefit from accelerated surgery to remove the
87 physiological stress associated with the hip fracture. This study aimed to determine if accelerated
88 surgery is superior to standard-care on the 90-day risk of death in hip fractured patients who
89 presented with an elevated cardiac biomarker/enzyme at hospital arrival.

90 Methods: The HIP ATTACK-1 trial was a randomized controlled trial designed to determine
91 whether accelerated surgery for hip fracture was superior to standard-care in reducing death or
92 major complications. This substudy is a post-hoc analysis of 1392/2970 patients with a cardiac
93 biomarker/enzyme measurement (>99.9% had a troponin measurement) at hospital arrival. The
94 primary outcome was all-cause mortality. The secondary composite outcome included all-cause
95 mortality, myocardial infarction, stroke, and congestive heart failure 90 days after
96 randomization.

97 Results: 322/1392 (23%) patients had troponin elevation at hospital arrival. Among patients with
98 troponin elevation, median time from hip fracture diagnosis to surgery was 6 h (IQR 5–13) in the
99 accelerated-care group and 29 h (IQR 19–52) in the standard-care group. Patients with increased
100 troponin had lower risk of mortality with accelerated surgery compared to standard-care (17/163
101 [10%] versus 36/159 [23%]; HR 0.43 [95% CI 0.24–0.77]); and lower risk of the composite
102 outcome (23/163 [14%] versus 47/159 [30%]; HR 0.43 [CI 95% 0.26–0.72]).

103 Conclusion: One in 5 patients with hip fracture presented myocardial injury. Accelerated surgery
104 demonstrated lower mortality risk than standard-care, however, these findings need to be
105 confirmed. Level of Evidence: Level I
106

107 **Introduction**

108 Hip fractures are common and associated with high mortality.(1, 2) The fracture initiates
109 inflammatory, hypercoagulable, and stress states, increasing the risk of delirium, infections,
110 bleeding, and vascular events.(3, 4)

111 The most common perioperative complication associated with hip fracture is myocardial
112 injury, happening in at least 20% of patients at hospital presentation.(5, 6) Myocardial injury is
113 frequently unrecognized, as patients usually do not have typical cardiac ischemic symptoms and
114 routine perioperative troponin screening is not established as standard of care. Myocardial injury
115 in patients with a hip fracture is important because it is associated with poor prognosis and risk
116 for premature death.(5, 6) Due to the complexity of these patients, medical specialists are
117 frequently consulted for preoperative medical assessment/clearance for surgery. Surgical timing
118 is a common dilemma if evidence of myocardial injury. Physicians often perceive medical
119 management and testing as a priority; however, the resulting surgical delay may worsen their
120 prognosis.(5, 7, 8)

121 The impetus for the HIP fracture Accelerated surgical TreAtment And Care track-1 (HIP
122 ATTACK-1) trial arose from a patient who presented with a hip fracture and troponin elevation.
123 The HIP ATTACK-1 trial randomized 2,970 patients with hip fracture to accelerated surgery
124 (median of 6 hours from orthopedic diagnosis) or standard-care (median of 24 hours from
125 orthopedic diagnosis). The HIP ATTACK-1 trial demonstrated that accelerated surgery was
126 feasible and safe, even in the subgroup of patients with acute medical conditions.

127 During the HIP ATTACK-1 trial, we recognized that several patients presented with an
128 elevated cardiac biomarker/enzyme at hospital arrival before randomization. Therefore, we
129 designed this substudy to determine the impact of accelerated surgery versus standard-care on

130 the 90-day risk of death and vascular outcomes in patients who presented with a hip fracture and
131 with a myocardial injury at hospital arrival.

132 **Methods**

133 The HIP ATTACK-1 trial was an international randomized controlled trial (RCT) of
134 2970 patients aged 45 years or older, with a low energy mechanism hip fracture presenting
135 during working hours who required a surgical intervention. The main exclusion criteria were
136 patients on therapeutic anticoagulants with no reversing drug available, peri-prosthetic and high-
137 energy fracture. The primary objective was to determine the effect of accelerated surgery
138 compared to standard-care on the 90-day risk of all-cause mortality and major perioperative
139 complications. The HIP ATTACK-1 protocol and the main trial results (NCT02027896) were
140 published previously.(6, 9) We followed CONSORT recommendations, patient flow diagram is
141 shown in Figure 1.

142 In brief, eligible patients were randomized stratified by planned surgery type (open
143 reduction and internal fixation or arthroplasty) in a 1:1 fashion through a central computerized
144 randomization system with randomly varying block sizes to accelerated surgery (goal of
145 surgery in 6 hours from orthopedic diagnosis) or standard-care. We recruited patients in 69
146 centres, from 17 countries. All sites obtained local Research Ethics Board approval. All patients
147 provided consent before randomization. Patients, health-care providers, and research staff were
148 aware of the treatment assignment; however, outcome adjudicators were blinded to treatment
149 allocation.

150 All patients had the same structured follow-up for outcome assessment and troponin
151 measurements post-randomization days 1 to 7 using the assay available at each site were
152 performed. Research personnel followed all patients throughout their index hospitalization and
153 contacted patients at 30 and 90 days after randomization noting any outcomes. Baseline cardiac

154 biomarker/enzymes, from hip fracture to randomization, were measured at the discretion of the
155 physicians involved in the patient's care. Myocardial injury at hospital presentation was defined
156 as a baseline troponin elevation before randomization that was above the upper limit of normal
157 (ULN) for the site specific assay, except for the high sensitivity troponin T assay (hsTnT) where
158 the threshold was defined as ≥ 20 ng/L, and for the non-high sensitivity troponin T (TnT) where
159 the threshold was defined as ≥ 0.03 ng/mL, based on perioperative troponin thresholds associated
160 with short term mortality in noncardiac surgery.(10-12)

161 A committee of independent experts in perioperative medicine, masked to participants'
162 allocation, adjudicated the following events: myocardial infarction, myocardial injury after
163 randomization not meeting the universal definition of myocardial infarction(13), nonfatal cardiac
164 arrest, stroke, pulmonary embolism, proximal deep venous thrombosis, congestive heart failure,
165 infection, sepsis, life-threatening bleeding, and major bleeding. For adjudicated events we used
166 the decision of the adjudicators for all statistical analyses.

167 For this substudy, we determined a priori that the primary outcome was all-cause
168 mortality 90 days after randomization. Secondary outcomes included a composite of major
169 perioperative vascular complications (i.e., all-cause mortality and non-fatal myocardial
170 infarction, heart failure, and stroke). The individual secondary outcomes were: vascular
171 mortality, non-vascular mortality, myocardial infarction, myocardial injury after randomization
172 not meeting the universal definition of myocardial infarction(13), congestive heart failure, new
173 clinically important atrial fibrillation, and stroke. Duration of hospital stay after index admission
174 for hip fracture, delirium, and moderate to severe pain, and time to first mobilization, standing,
175 and weight bearing after randomization were also analyzed as secondary outcomes. Tertiary
176 outcomes, and outcomes' definitions are described in the supplemental material.

177 **Statistical Analyses**

178 All randomized participants with baseline cardiac biomarker/enzyme measurement before
179 randomization in the HIP ATTACK-1 trial were included in this analysis. As baseline troponins
180 were measured at the discretion of the attending physicians involved in patient's care, there was
181 no specific sample size calculation for this substudy. Patients were analyzed according to the
182 treatment groups to which they were randomized, according to the intention-to-treat principle.

183 For the primary and secondary binary outcomes with an event date, we performed a Cox
184 proportional hazard model with treatment group as the covariate and adjusted for stratification
185 variable. We assessed for subgroup effects using tests of interaction, designated as significant if
186 p value for interaction was <0.05 . The interaction p value informs if the treatment effect across
187 different subgroups is not attributable to chance. For the primary outcome, we performed a
188 sensitivity analysis including centre as a random effect (frailty model). We hypothesized a priori
189 that patients with baseline cardiac biomarker/enzyme elevation would benefit from accelerated
190 surgery compared to standardcare than patients with no baseline cardiac biomarker/enzyme
191 elevation.

192 We undertook a post-hoc Cox regression analysis to determine the relationship between
193 baseline cardiac biomarker/enzyme measurements and 90-day mortality. Cox proportionality
194 assumption was met (details in the supplemental material). The dependent variable was 90-day
195 mortality, and independent variables were age, sex, Revised Cardiac Risk Index score which
196 includes history of coronary artery disease, congestive heart failure, cerebrovascular disease,
197 diabetes on insulin, creatinine > 177 umol/L and high-risk surgery (reference 0, 1, 2, or ≥ 3);
198 baseline cardiac biomarker/enzyme elevation (no, yes), history of peripheral vascular disease,
199 history of chronic obstructive pulmonary disease (COPD), and active cancer. For all Cox models,

200 we determined the hazard ratio (HR) of each predictor and its associated 95% confidence interval
201 (CI). We repeated this analysis including baseline cardiac biomarker/enzyme as an independent
202 variable assessed by terciles (reference being no elevation). Only observed values were used for
203 analysis and no attempt was made to impute missing values. In cases of patients lost to follow-
204 up, the participants were censored on their last day of available contact during the study or the
205 date of death. All outcomes were tested using two-sided tests at the 0.05 significance level. The
206 fragility index was estimated to assess the fragility of our results for the primary outcome. The
207 fragility index indicates how many patients would be required to convert a trial from being
208 statistically significant to not significant: the larger the index the more robust is the data. All
209 analyses were performed in SAS® using version 9.4.

210 **Results**

211 This substudy included 1392 patients (47%) out of the 2970 patients recruited in the HIP
212 ATTACK-1 trial, from 61 sites, that had a cardiac biomarker/enzyme measurement (>99.9% of
213 those had a troponin measurement) at hospital arrival. Appendix Table 1 reports details of
214 baseline characteristics of all the HIP ATTACK-1 trial participants. Among patients with
215 baseline cardiac biomarker/enzyme measurements, 322/1392 patients (23%) had a cardiac
216 biomarker/enzyme elevation at hospital arrival. Patients with a baseline cardiac
217 biomarker/enzyme elevation compared with patients with no baseline cardiac biomarker/enzyme
218 elevation had higher baseline risk of complications. They were more likely to be male [36.0%
219 versus 29.1%], have a history of hypertension [64.6% versus 57.8%], had higher median
220 creatinine [88.4 umol/L versus 74.3 umol/L] and lower median hemoglobin levels [117 g/L
221 versus 122 g/L], respectively. Patients with and without a baseline cardiac biomarker/enzyme
222 elevation had similar history of myocardial infarction (8.7% versus 8.0%), stable angina (2.8%

223 versus 2.7%), coronary artery revascularization (5.0% versus 5.3%) and aortic valve stenosis
224 (1.6% versus 2.0%). These baseline characteristics were also similar to the overall HIP
225 ATTACK-1 trial population (Appendix Table 1).

226 Table 1 presents details of baseline characteristics in the subgroup of patients according
227 to cardiac biomarker/enzyme and treatment allocation. Among patients with an elevated cardiac
228 biomarker/enzyme, the median time from hip fracture diagnosis to surgery was 6 hours
229 (interquartile range [IQR] 5–13) in the accelerated surgery group, and 29 hours (IQR 19–52) in
230 the standard-care group (median absolute difference 23 hours). Among patients without an
231 elevated cardiac biomarker/enzyme, the median time from hip fracture diagnosis to surgery was
232 6 hours (IQR 4–8) in the accelerated surgery group, and 29 hours (IQR 9–36) in the standard-
233 care group (median absolute difference 23 hours).

234 Patients with an increased baseline cardiac biomarker/enzyme had a lower risk of
235 mortality with accelerated surgery compared to standard-care (17/163 [10%] in accelerated
236 surgery patients compared to 36/159 [23%] in standard-care patients; hazard ratio [HR] 0.43,
237 95% confidence interval [CI] 0.24–0.77), whereas the patients with no elevated cardiac
238 biomarker/enzyme demonstrated no mortality reduction with accelerated surgery, p value for
239 interaction = 0.048) – Table 2. The fragility index for the primary outcome was 6.

240 Table 3 presents the cardiovascular secondary composite outcome and its components.
241 Among patients with a baseline elevated cardiac biomarker/enzyme, there was a lower risk of the
242 secondary composite outcome of major perioperative vascular complications in accelerated
243 surgery patients (23/163 patients [14%]) compared to standard-care patients (47/159 [30%]) with
244 a HR of 0.43, CI 95% 0.26-0.72), whereas the patients with no elevated cardiac
245 biomarker/enzyme demonstrated no reduction in vascular complications with accelerated

246 surgery, p value for interaction = 0.025. Additional secondary and tertiary outcomes are
247 presented in the Supplemental material (Appendix Tables 2, 3, 4 and 5). Patients with cardiac
248 biomarker/enzyme elevation >2.1 times the ULN had lower mortality risk following accelerated
249 surgery compared with standard-care (3/53 [6%] versus 17/56 [30%]; HR 0.17, CI 95% 0.05-
250 0.58) when compared to patients with lower levels of cardiac biomarker elevation, p value for
251 interaction=0.034 (Table 4).

252 Table 5 presents the Cox model with predictors of 90-day all-cause mortality including
253 all 1392 patients with cardiac biomarker/enzymes measurements available. Elevated baseline
254 cardiac biomarker/enzyme was independently associated with 90-day mortality (adjusted HR
255 1.80 [95% CI 1.27-2.56], p=0.001) when adjusted for cardiovascular risk factors, other clinically
256 important comorbidities, and for treatment effect. In multivariable analysis, accelerated surgery
257 was associated with lower all-cause mortality as compared to standard of care (adjusted HR 0.66
258 [95% CI 0.47-0.92]; p= 0.0152).

259 **Discussion**

260 We found that 1 in 5 patients with hip fracture had evidence of a myocardial injury
261 identified by an elevated cardiac biomarker/enzyme measurement when they present to the
262 hospital. In patients with a hip fracture, the presence of myocardial injury before surgery was
263 associated with 3 times higher mortality at 90 days.(6) In a multivariable analyses, a baseline
264 cardiac biomarker/enzyme elevation was an independent predictor of 90-day all-cause mortality
265 (adjusted HR 1.80 [95% CI 1.27-2.56], p=0.001), offering additional information on top of
266 clinical predictors including the RCRI score. Accelerated surgery lowered the risk of mortality
267 compared with standard-care in patients with a baseline elevated cardiac biomarker/enzyme (HR

268 0.43; 95% CI, 0.24 - 0.77) compared to patients without a baseline elevated cardiac
269 biomarker/enzyme (HR 0.88; 95% CI, 0.58-1.34), p-value for interaction 0.048.

270 Our results are similar to previous cohort studies demonstrating that preoperative
271 myocardial injury is common in hip fracture patients (15-30%) and carries a poor prognosis.(5,
272 7, 14, 15) Currently, there are no clinical guidelines on how to manage those patients.

273 Conventional treatment focuses on medically managing the myocardial injury. Usually,
274 physicians only proceed to hip surgery when it is believed that the myocardial injury is
275 stabilized.(7, 16) This typically prevents hip surgery from occurring for at least 24 hours after the
276 hip fracture diagnosis. However, with the current approach, 23% of patients presenting with a
277 hip fracture and myocardial injury die within 90 days.(6) This short-term mortality rate is much
278 worse than outcomes for hip fracture patients without an elevated troponin (9%).(6)

279 Most likely the myocardial injury is a consequence of the physiologic stress induced by
280 hip fracture and is a marker of patients with poor cardiac reserve. Although troponins are specific
281 for myocardial injury (17), multiple different etiologies, play a role in the perioperative setting.
282 These include dehydration, hypoperfusion, bleeding, inflammation, or ischemia. These are also
283 common causes of type 2 supply-demand mismatch myocardial infarction.(18) Patients are
284 commonly managed accordingly to ACS guidelines (16), despite hip fracture patients being
285 frequently excluded from ACS trials. Indeed, coronary artery thrombosis is uncommon in the
286 perioperative context, and physicians' judgement of thrombosis etiology is frequently
287 inaccurate.(19, 20)

288 Our results suggest the possibility of a beneficial paradigm shift in perioperative
289 medicine, proposing expedited surgery among patients with a hip fracture and myocardial injury
290 at hospital presentation, as an alternative approach based on a strong biologic rationale and

291 encouraging preliminary data. Similar to other causes of myocardial injury, where the standard
292 of care is to control the trigger (i.e., upper gastrointestinal bleeding), earlier surgical repair of the
293 hip fracture seems to reduce the risk of further medical complications and all-cause mortality.
294 Hip fractures result in pain, bleeding, inflammation, and hypercoagulation which can precipitate
295 myocardial injury.(21-27) Patients undergoing hip fracture surgery have higher risk-adjusted
296 mortality and major complications than patients undergoing elective hip surgery.(28) This
297 suggests that the hip fracture, independent of surgery, increases patient risk. Typical medical
298 treatments for myocardial injury such as antithrombotics and beta-blockers, may worsen
299 physiological factors resulting from the hip fracture by way of increased bleeding and
300 hypotension.(29, 30) . Additionally, performing multiple preoperative cardiac tests delays
301 surgical access, prolongs the aforementioned stress state, and frequently does not change
302 perioperative clinical management.(31) Thus, accelerated hip surgery has the potential to quickly
303 restore a patient's overall physiologic health, and reduce the risk of death compared to standard-
304 care.

305 Overall, our results suggest that patients presenting with a myocardial injury are not
306 tolerating the additional cardiac stress associated with hip fracture and could benefit from
307 expedited surgical care. These patients are frequently asymptomatic from a cardiac perspective
308 and will not be identified without routine preoperative troponin screening. Additionally, if only
309 postoperative troponin is monitored, the myocardial injury could be attributed to the surgical
310 stress rather than the hip fracture. A common concern when identifying an elevated troponin is
311 surgical delays and cancellations. It is clear these patients are very high-risk, and they are not
312 being identified. Instead of ignoring this problem, we should identify these patients and propose
313 new strategies to improve their prognosis. HIP ATTACK-1 is the first trial that provides insights

314 on this topic, suggesting accelerated surgery may be the best approach. Despite the fact that the
315 first participants in HIP ATTACK-1 were enrolled a decade ago, current practice has not
316 changed.(7)

317 Our study has some limitations. Reasons for cardiac biomarker/enzymes elevation before
318 randomization were not recorded. However, only 19/322 (6%) patients presented with an acute
319 myocardial infarction as per site report (13 in the accelerated-care group and 6 in the standard-
320 care group). These low numbers did not allow any solid comparisons, however, they go in the
321 conservative direction for the accelerated-care group. Indeed, regardless of the etiology of the
322 myocardial injury, its presence identifies the potential benefit of accelerated surgery. Sites used
323 multiple different troponin assays. Therefore, it was not possible to establish specific troponin
324 thresholds independently associated with mortality. We thus performed analysis by terciles. The
325 data presented is based on a post-hoc analysis, being underpowered to be a definitive practice
326 changing trial, to access additional strategies to improve outcomes such as type of anesthesia, or
327 to make positive statements on secondary exploratory outcomes. The ongoing HIP ATTACK-2
328 trial will include 1100 participants, and is powered to answer this question. (NCT04743765).

329 In conclusion, 1 in 5 patients with hip fracture present with acute myocardial injury.
330 Mortality is three-fold higher in this population. Accelerated surgery has the potential to improve
331 mortality and major cardiovascular outcomes compared with standard-care. These findings must
332 be confirmed in additional trials.

333 **Funding**

334 This substudy: McMaster General Internal Medicine Research Grant. HIP ATTACK-1 trial
335 funders are described elsewhere (6) and had no role in the study, design, conduct, analyses or

336 manuscript preparation. Flavia Kessler Borges is a recipient of a Research Career award from
337 Hamilton Health Sciences.

338 **Acknowledgments**

339 Supplement material, pg 2-4.

340

341 **References**

342 1. Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bulletin of the World
343 Health Organization. 2003;81(9):646-56.

344 2. Leslie WD, O'Donnell S, Jean S, Lagacé C, Walsh P, Bancej C, Morin S, Hanley DA,
345 Papaioannou A, Osteoporosis Surveillance Expert Working G. Trends in hip fracture rates in
346 Canada. JAMA. 2009;302(8):883-9.

347 3. LeBlanc ES, Hillier TA, Pedula KL, Rizzo JH, Cawthon PM, Fink HA, Cauley JA, Bauer
348 DC, Black DM, Cummings SR, Browner WS. Hip fracture and increased short-term but not
349 long-term mortality in healthy older women. Archives of internal medicine. 2011;171(20):1831-
350 7.

351 4. Prevention of pulmonary embolism and deep vein thrombosis with low dose aspirin:
352 Pulmonary Embolism Prevention (PEP) trial. Lancet (London, England). 2000;355(9212):1295-
353 302.

354 5. Hietala P, Strandberg M, Kiviniemi T, Strandberg N, Airaksinen KEJ. Usefulness of
355 troponin T to predict short-term and long-term mortality in patients after hip fracture. The
356 American journal of cardiology. 2014;114(2):193-7.

357 6. Borges FK, Bhandari M, Guerra-Farfan E, Patel A, Sigamani A, Umer M, Tiboni ME,
358 Villar-Casares MdM, Tandon V, Tomas-Hernandez J, Teixidor-Serra J, Avram VRA,
359 Winemaker M, Ramokgopa MT, Szczechlik W, Landoni G, Wang CY, Begum D, Neary JD,
360 Adili A, Sancheti PK, Lawendy A-R, Balaguer-Castro M, Ślęczka P, Jenkinson RJ, Nur AN,
361 Wood GCA, Feibel RJ, McMahon SJ, Sigamani A, et al. Wright J. Accelerated surgery versus
362 standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial. The
363 Lancet. 2020;395(10225):698-708.

364 7. O'Hara NN, Wu J, Rolle N, Sprague S, Devereaux PJ, Borges FK, Slobogean GP. Hip
365 Fracture with Elevated Troponin: Harbinger of Mortality or Need for Accelerated Surgery?
366 Journal of Orthopaedic Trauma. 2022.

367 8. Griffiths R, Babu S, Dixon P, Freeman N, Hurford D, Kelleher E, Moppett I, Ray D,
368 Sahota O, Shields M, White S. Guideline for the management of hip fractures 2020: Guideline
369 by the Association of Anaesthetists. *Anaesthesia*. 2021;76(2):225-37.

370 9. Borges FK, Devereaux PJ, Cuerden M, Bhandari M, Guerra-Farfán E, Patel A, Sigamani
371 A, Umer M, Neary J, Tiboni M, Tandon V, Ramokgopa MT, Sancheti P, John B, Lawendy A,
372 Balaguer-Castro M, Jenkinson R, Ślęczka P, Nabi Nur A, Wood GCA, Feibel R, McMahon JS,
373 Sigamani A, Biccard BM, Landoni G, Szczechlik W, Wang CY, Tomas-Hernandez J, Abraham
374 V, Vincent J, et al. Investigators HA. Effects of accelerated versus standard care surgery on the
375 risk of acute kidney injury in patients with a hip fracture: a substudy protocol of the hip fracture
376 Accelerated surgical TreAment And Care tracK (HIP ATTACK) international randomised
377 controlled trial. *BMJ open*. 2019;9(9):e033150-e.

378 10. Botto F, Alonso-Coello P, Chan MTV, Villar JC, Xavier D, Srinathan S, Guyatt G, Cruz
379 P, Graham M, Wang CY, Berwanger O, Pearse RM, Biccard BM, Abraham V, Malaga G, Hillis
380 GS, Rodseth RN, Cook D, Polanczyk CA, Szczechlik W, Sessler DI, Sheth T, Ackland GL,
381 Leuwer M, Garg AX, Lemanach Y, Pettit S, Heels-Ansdell D, Luratibuse G, Walsh M, et
382 al. Vascular events In noncardiac Surgery patients cOhort evaluatio NVSI. Myocardial injury
383 after noncardiac surgery: a large, international, prospective cohort study establishing diagnostic
384 criteria, characteristics, predictors, and 30-day outcomes. *Anesthesiology*. 2014;120(3):564-78.

385 11. Writing Committee for the VSI, Devereaux PJ, Biccard BM, Sigamani A, Xavier D,
386 Chan MTV, Srinathan SK, Walsh M, Abraham V, Pearse R, Wang CY, Sessler DI, Kurz A,
387 Szczechlik W, Berwanger O, Villar JC, Malaga G, Garg AX, Chow CK, Ackland G, Patel A,
388 Borges FK, Belley-Cote EP, Duceppe E, Spence J, Tandon V, Williams C, Sapsford RJ,
389 Polanczyk CA, Tiboni M, et al. Guyatt GH. Association of Postoperative High-Sensitivity
390 Troponin Levels With Myocardial Injury and 30-Day Mortality Among Patients Undergoing
391 Noncardiac Surgery. *JAMA*. 2017;317(16):1642-51.

392 12. Ruetzler K, Smilowitz NR, Berger JS, Devereaux PJ, Maron BA, Newby LK, De Jesus
393 Perez V, Sessler DI, Wijeyesundera DN. Diagnosis and Management of Patients With Myocardial

394 Injury After Noncardiac Surgery: A Scientific Statement From the American Heart Association.
395 Circulation. 2021;144(19).

396 13. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Joint
397 ESCAAHAWHFTfUDoMI, Authors/Task Force Members C, Thygesen K, Alpert JS, White
398 HD, Biomarker S, Jaffe AS, Katus HA, Apple FS, Lindahl B, Morrow DA, Subcommittee ECG,
399 Chaitman BR, Clemmensen PM, Johanson P, Hod H, Imaging S, Underwood R, Bax JJ, Bonow
400 JJ, Pinto F, Gibbons RJ, Classification S, Fox KA, et al. Wagner DR. Third universal definition
401 of myocardial infarction. Journal of the American College of Cardiology. 2012;60(16):1581-98.

402 14. Kim BS, Kim T-H, Oh J-H, Kwon CH, Kim SH, Kim H-J, Hwang HK, Chung S-M.
403 Association between preoperative high sensitive troponin I levels and cardiovascular events after
404 hip fracture surgery in the elderly. Journal of geriatric cardiology : JGC. 2018;15(3):215-21.

405 15. Araguas MA, Herrera A, Garrido I, Mateo J, Mayoral AP, Muñoz M. Risk factors for
406 major adverse cardiovascular events after osteoporotic hip fracture repair surgery. Injury.
407 2020;51 Suppl 1:S30-S6.

408 16. Fleisher LA, Fleischmann KE, Auerbach AD, Barnason SA, Beckman JA, Bozkurt B,
409 Davila-Roman VG, Gerhard-Herman MD, Holly TA, Kane GC, Marine JE, Nelson MT, Spencer
410 CC, Thompson A, Ting HH, Uretsky BF, Wijeyesundara DN. 2014 ACC/AHA Guideline on
411 Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac
412 Surgery: A Report of the American College of Cardiology/American Heart Association Task
413 Force on Practice Guidelines. Journal of the American College of Cardiology. 2014;64(22):e77-
414 e137.

415 17. Neumann JT, Twerenbold R, Ojeda F, Sørensen NA, Chapman AR, Shah ASV, Anand
416 A, Boeddinghaus J, Nestelberger T, Badertscher P, Mokhtari A, Pickering JW, Troughton RW,
417 Greenslade J, Parsonage W, Mueller-Hennessen M, Gori T, Jernberg T, Morris N, Liebetrau C,
418 Hamm C, Katus HA, Münzel T, Landmesser U, Salomaa V, Iacoviello L, Ferrario MM,
419 Giampaoli S, Kee F, Thorand B, et al. Blankenberg S. Application of High-Sensitivity Troponin

420 in Suspected Myocardial Infarction. *The New England journal of medicine*. 2019;380(26):2529-
421 40.

422 18. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD,
423 Executive Group on behalf of the Joint European Society of Cardiology /American College of
424 Cardiology /American Heart Association /World Heart Federation Task Force for the Universal
425 Definition of Myocardial I. Fourth Universal Definition of Myocardial Infarction (2018). *Journal*
426 of the American College of Cardiology. 2018;72(18):2231-64.

427 19. Sheth T, Natarajan MK, Hsieh V, Valettes N, Rokoss M, Mehta S, Jolly S, Tandon V,
428 Bezerra H, Devereaux PJ. Incidence of thrombosis in perioperative and non-operative
429 myocardial infarction. *British Journal of Anaesthesia*. 2018;120(4):725-33.

430 20. Borges FK, Sheth T, Patel A, Marcucci M, Yung T, Langer T, Alboim C, Polanczyk CA,
431 Germini F, Azeredo-da-Silva AF, Sloan E, Kaila K, Ree R, Bertolotti A, Vedovati MC,
432 Galzerano A, Spence J, Devereaux PJ. Accuracy of Physicians in Differentiating Type 1 and
433 Type 2 Myocardial Infarction Based on Clinical Information. *CJC open*. 2020;2(6):577-84.

434 21. Beloosesky Y, Hendel D, Weiss A, Hershkovitz A, Grinblat J, Pirotsky A, Barak V.
435 Cytokines and C-reactive protein production in hip-fracture-operated elderly patients. *The*
436 *journals of gerontology Series A, Biological sciences and medical sciences*. 2007;62(4):420-6.

437 22. Chuang D, Power SE, Dunbar PR, Hill AG. Central nervous system interleukin-8
438 production following neck of femur fracture. *ANZ journal of surgery*. 2005;75(9):813-6.

439 23. Miller RR, Shardell MD, Hicks GE, Cappola AR, Hawkes WG, Yu-Yahiro JA,
440 Magaziner J. Association between interleukin-6 and lower extremity function after hip fracture--
441 the role of muscle mass and strength. *Journal of the American Geriatrics Society*.
442 2008;56(6):1050-6.

443 24. Tsangari H, Findlay DM, Kuliwaba JS, Atkins GJ, Fazzalari NL. Increased expression of
444 IL-6 and RANK mRNA in human trabecular bone from fragility fracture of the femoral neck.
445 Bone. 2004;35(1):334-42.

446 25. Onuoha GN, Alpar EK. Elevation of plasma CGRP and SP levels in orthopedic patients
447 with fracture neck of femur. Neuropeptides. 2000;34(2):116-20.

448 26. Svensén CH. Vascular endothelial growth factor (VEGF) in plasma increases after hip
449 surgery. Journal of clinical anesthesia. 2004;16(6):435-9.

450 27. Desborough JP. The stress response to trauma and surgery. British journal of anaesthesia.
451 2000;85(1):109-17.

452 28. Le Manach Y, Collins G, Bhandari M, Bessissow A, Boddaert J, Khiami F, Chaudhry H,
453 De Beer J, Riou B, Landais P, Winemaker M, Boudemaghe T, Devereaux PJ. Outcomes After
454 Hip Fracture Surgery Compared With Elective Total Hip Replacement. JAMA.
455 2015;314(11):1159-66.

456 29. Devereaux PJ, Mrkobrada M, Sessler DI, Leslie K, Alonso-Coello P, Kurz A, Villar JC,
457 Sigamani A, Biccard BM, Meyhoff CS, Parlow JL, Guyatt G, Robinson A, Garg AX, Rodseth
458 RN, Botto F, Lurati Buse G, Xavier D, Chan MTV, Tiboni M, Cook D, Kumar PA, Forget P,
459 Malaga G, Fleischmann E, Amir M, Eikelboom J, Mizera R, Torres D, Wang CY, et
460 al. Investigators P-. Aspirin in patients undergoing noncardiac surgery. The New England journal
461 of medicine. 2014;370(16):1494-503.

462 30. Group PS, Devereaux PJ, Yang H, Yusuf S, Guyatt G, Leslie K, Villar JC, Xavier D,
463 Chrolavicius S, Greenspan L, Pogue J, Pais P, Liu L, Xu S, Málaga G, Avezum A, Chan M,
464 Montori VM, Jacka M, Choi P. Effects of extended-release metoprolol succinate in patients
465 undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet (London,
466 England). 2008;371(9627):1839-47.

467 31. Chang JS, Ravi BA-O, Jenkinson RJ, Paterson JM, Huang A, Pincus DA-O. Impact of
468 preoperative echocardiography on surgical delays and outcomes among adults with hip fracture.
469 (2049-4408 (Electronic)).

470

471

472 **Legends**

473 **Figure 1. Patient Flow diagram**

474

Table 1. Characteristics of participants in the cardiac biomarker/enzyme substudy

	Participants with NO cardiac biomarker/enzyme elevation		Participants WITH cardiac biomarker/enzyme elevation	
	Accelerated		Standard	
	N (%)	N (%)	N (%)	N (%)
Randomized	516	554	163	159
Age - Mean (SD)	77.7 (11.5)	78.6 (11.1)	81.8 (11.1)	81.5 (11.5)
Male	152 (29.5%)	159 (28.7%)	64 (39.3%)	52 (32.7%)
History before hip fracture				
Assistance with activities of daily living	145 (28.1%)	190 (34.3%)	59 (36.2%)	60 (37.7%)
Current Nursing home residence	107 (20.7%)	131 (23.6%)	29 (17.8%)	32 (20.1%)
Tobacco use	142 (27.5%)	138 (24.9%)	31 (19.0%)	23 (14.5%)
Total Pack Years - Mean (SD)	34.7 (31.0)	33.2 (27.9)	36.6 (30.4)	27.9 (24.1)
Stroke	52 (10.1%)	33 (6.0%)	11 (6.7%)	19 (11.9%)
Subarachnoid hemorrhage	4 (0.8%)	3 (0.5%)	5 (3.1%)	1 (0.6%)
Transient ischemic attack	22 (4.3%)	29 (5.2%)	7 (4.3%)	7 (4.4%)
Myocardial infarction	46 (8.9%)	40 (7.2%)	12 (7.4%)	16 (10.1%)
Unstable Angina	11 (2.1%)	6 (1.1%)	2 (1.2%)	2 (1.3%)
Stable Angina	14 (2.7%)	15 (2.7%)	4 (2.5%)	5 (3.1%)
Pulmonary Embolism	3 (0.6%)	4 (0.7%)	3 (1.8%)	4 (2.5%)
Deep Vein Thrombosis	8 (1.6%)	16 (2.9%)	4 (2.5%)	5 (3.1%)
CABG	17 (3.3%)	14 (2.5%)	4 (2.5%)	2 (1.3%)
PCI	16 (3.1%)	17 (3.1%)	6 (3.7%)	6 (3.8%)
CABG or PCI	29 (5.6%)	28 (5.1%)	9 (5.5%)	7 (4.4%)
Peripheral Vascular Disease	14 (2.7%)	15 (2.7%)	6 (3.7%)	7 (4.4%)
Aortic Stenosis	10 (1.9%)	11 (2.0%)	3 (1.8%)	2 (1.3%)
Paroxysmal Atrial Fibrillation	17 (3.3%)	16 (2.9%)	6 (3.7%)	6 (3.8%)
Chronic Atrial Fibrillation	27 (5.2%)	32 (5.8%)	10 (6.1%)	9 (5.7%)
Congestive Heart Failure	33 (6.4%)	21 (3.8%)	12 (7.4%)	12 (7.5%)
Hypertension	284 (55.0%)	334 (60.3%)	98 (60.1%)	110 (69.2%)
Diabetes	113 (21.9%)	104 (18.8%)	33 (20.2%)	37 (23.3%)
COPD	44 (8.5%)	55 (9.9%)	16 (9.8%)	6 (3.8%)
Active Cancer	24 (4.7%)	24 (4.3%)	5 (3.1%)	7 (4.4%)
Renal Failure requiring Dialysis	1 (0.2%)	2 (0.4%)	3 (1.8%)	2 (1.3%)
Dementia	71 (13.8%)	107 (19.3%)	33 (20.2%)	31 (19.5%)

	Participants with NO cardiac biomarker/enzyme elevation		Participants WITH cardiac biomarker/enzyme elevation	
	Accelerated	Standard	Accelerated	Standard
	N (%)	N (%)	N (%)	N (%)
Osteoporosis prior to Fracture	69 (13.4%)	88 (15.9%)	20 (12.3%)	17 (10.7%)
Previous Hip Fracture	31 (6.0%)	41 (7.4%)	9 (5.5%)	11 (6.9%)
Physiological measurements before randomization				
Systolic Blood Pressure (mmHg)- mean (SD)	142.4 (24.5)	142.5 (26.1)	140.0 (126.0-159.0)	140.0 (126.0-157.0)
Diastolic Blood Pressure (mmHg)- mean (SD)	76.9 (13.0)	76.8 (13.0)	80.0 (70.0- 87.0)	77.0 (70.0- 82.0)
Heart Rate (bpm)	81.0 (13.5)	80.8 (13.6)	80.0 (70.0- 87.0)	81.0 (72.0- 90.0)
Baseline Laboratory Assessments				
Creatinine (umol/L)	82.2 (38.8)	83.5 (40.8)	88.4 (70.7-122.0)	90.5 (69.8-124.6)
Hemoglobin (g/L)	120.9 (18.3)	121.1 (18.4)	118.5 (103.0-131.5)	115.5 (101.0-125.5)

Abbreviations: CABG: cardiac artery by pass; COPD: chronic obstructive pulmonary disease; PCI: percutaneous coronary intervention

477
478
479

480 **Table 2. Subgroup analyses for 90-day all-cause mortality based on whether patients had a**
 481 **baseline elevated cardiac biomarker/enzyme measurement after hip fracture and before**
 482 **randomization**

483

	Accelerated care	Standard care	P Value for Interaction*	
All-cause Mortality	Events/ Patients (%)	Events/ Patients (%)	HR (95% CI)	
Overall	140 / 1487 (9.4)	154 / 1483 (10.4)	0.91 (0.72 – 1.14)	.
Non-elevated cardiac biomarker/enzy me	39 / 516 (7.6)	48 / 554 (8.7)	0.88 (0.58 – 1.34)	0.048
Elevated cardiac biomarker/enzy me	17 / 163 (10.4)	36 / 159 (22.6)	0.43 0.24 – 0.77)	

484

485 *P value for interaction for the subgroup analysis comparing the treatment effect on
 486 patients with non-elevated cardiac biomarker/enzyme versus treatment effect on patients
 487 presenting with elevated cardiac biomarker/enzyme

488

489

Table 3. Secondary outcomes at 90 days according to allocation groups

Outcome	Baseline Troponin elevation	Accelerated care	Standard care	HR (95% CI)	P Value	P Value for Interaction
		Events/ Patients (%)	Events/ Patients (%)			
Secondary composite outcome*	No	65/516 (12.6)	81/554 (14.6)	0.86 (0.62-1.19)	.3602	.0256
	Yes	23/163 (14.1)	47/159 (29.6)	0.43 (0.26-0.72)	.0011	
Vascular Mortality	No	21/516 (4.1)	32/554 (5.8)	0.71 (0.41-1.23)	.2219	.2509
	Yes	10/163 (6.1)	22/159 (13.8)	0.41 (0.19-0.87)	.0196	
Non-vascular Mortality	No	18/516 (3.5)	16/554 (2.9)	1.22 (0.62-2.39)	.5647	.0844
	Yes	7/163 (4.3)	14/159 (8.8)	0.46 (0.19-1.15)	.0967	
Myocardial Infarction	No	29/516 (5.6)	35/554 (6.3)	0.89 (0.54-1.45)	.6305	.2903
	Yes	9/163 (5.5)	16/159 (10.1)	0.52 (0.23-1.18)	.1189	
Stroke	No	3/516 (0.6)	5/554 (0.9)	0.64 (0.15-2.70)	.5479	.0725
	Yes	0/163 (0)	4/159 (2.5)	-	.9949	
Congestive Heart Failure	No	5/516 (1.0)	8/554 (1.4)	0.67 (0.22-2.05)	.4809	.2647
	Yes	1/163 (0.6)	5/159 (3.1)	0.18 (0.02-1.55)	.1183	
New Clinically important Atrial Fibrillation	No	8/516 (1.6)	9/554 (1.6)	0.96 (0.37-2.49)	.9308	.2488
	Yes	0/163 (0)	1/159 (0.6)	-	.9975	
Recurrent myocardial injury after randomization	No	110/516 (21.3)	146/554 (26.4)	0.80 (0.63-1.03)	.0851	.6033
	Yes	37/163 (22.7)	50/159 (31.4)	0.68 (0.44-1.04)	.0775	

490

*All-cause mortality, Non fatal myocardial infarction, Non fatal stroke, Non fatal congestive heart failure.

491

492 **Table 4. 90-day all-cause mortality by troponin terciles at hospital presentation according**
 493 **to the accelerated care group and standard care group**

Troponin levels	Accelerated Events/Patients (%)	Standard Events/Patients (%)	HR (95% CI)	p Value	p Value for Interaction
Not elevated	39/516 (8)	48/554 (9)	0.88 (0.58-1.34)	.552	.0340
Elevated times* (1 - 1.32)	4/54 (7)	7/53 (13)	0.54 (0.16-1.88)	.335	
Elevated times* (1.33 - 2.1)	10/56 (18)	12/50 (24)	0.71 (0.31-1.66)	.431	
Elevated times* (> 2.1)	3/53 (6)	17/56 (30)	0.17 (0.05-0.58)	.054	

494 *Elevated times of the upper reference limit of the troponin assay at each site. Abbreviations: CI: confidence interval; HR: hazard
 495 ratio.

496

497

Table 5. Cox model with predictors of 90-day all-cause mortality

Variables	HR (95% CI)	P value
Elevated troponin versus not elevated	1.80 (1.27-2.56)	.0010
RCRI score 1 vs 0	1.39 (0.93-2.07)	.1098
RCRI score 2 vs 0	1.95 (1.15-3.33)	.0140
RCRI score ≥ 3 vs 0	2.56 (1.20-5.48)	.0151
Age	1.04 (1.02-1.06)	<0.0001
Sex - Male vs Female	1.62 (1.14-2.30)	.0067
History of peripheral vascular disease	1.11 (0.52-2.38)	.7791
History of COPD	1.63 (0.99-2.66)	.0526
Active cancer	1.57 (0.81-3.03)	.1823
Accelerated versus Standard care	0.66 (0.47-0.92)	.0152

498

Abbreviations: CI: confidence interval; COPD: chronic obstructive pulmonary disease; HR: hazard ratio; RCRI: Revised Cardiac Index Risk.

499

500

501