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Abstract. In this paper we deal with discontinuous piecewise di�erential systems formed
by two di�erential systems separated by a straight line when one of these two di�erential
systems is a linear Hamiltonian saddle and the other is a quadratic isochronous center. It
is known that there are four families of quadratic isochronous centers.

We provide upper bounds for the maximum number of limit cycles that these four
classes of discontinuous piecewise di�erential systems can exhibit, so we have solved the
extension of the 16th Hilbert problem to such piecewise di�erential systems. Moreover at
least in two of the four classes of these discontinuous piecewise di�erential systems the
obtained upper bound for the maximum number of limit cycles is reached.

1. Introduction and main results

Consider discontinuous piecewise di�erential systems of the form

(1) (ẋ, ẏ) = F(x, y) =

{
F−(x, y) = (f−(x, y), g−(x, y)) if x ≤ 0,
F+(x, y) = (f+(x, y), g+(x, y)) if x ≥ 0,

being bivaluated on the separation line x = 0. Following [10] a point (0, y) is a crossing point
if f−(0, y)f+(0, y) > 0. A crossing periodic orbit is a periodic orbit of the discontinuous
di�erential system (1) that has two crossing points and no more, and a crossing limit cycle
is an isolated periodic orbit in the set of all crossing periodic orbits of system (1). In all the
paper we will say limit cycle instead of crossing limit cycle.

Planar continuous piecewise linear di�erential systems separated by one straight line
appear in several non-linear engineering devices or in mathematical biology, see [6, 7, 33,
35, 34] and the references therein. Their maximal number of limit cycles is one, and there are
systems with one limit cycle. So the extension of the 16th Hilbert's problem on the maximum
number of limit cycles (see for instance [16, 20, 21] for details) for such continuous piecewise
di�erential systems is solved.

For planar discontinuous piecewise linear di�erential systems separated by one straight
line the extension of the 16th Hilbert's problem is an open problem. This problem has been
studied by many authors in the past years and there exists a large bibliography trying to
determine how many limit cycles can appear in planar systems separated by one straight line,
see for instance [1, 2, 3, 4, 9, 11, 12, 13, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 31]
and the references therein. It seems that for this class of discontinuous piecewise linear
di�erential systems the upper bound for their maximal number of limit cycles will be three,
but this is an open problem.

An isochronous center p is a center (that is, a singularity such that all solutions of the
di�erential system except the singularity are periodic in a neighborhood U of it) such that
the period of its periodic orbits is constant for all points in the neighborhood U .
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In this paper we work with the following �ve types of systems having a linear Hamiltonian
saddle and one of the four families of quadratic polynomial di�erential systems having an
isochronous center. For a proof of the normal form of the linear Hamiltonian saddles see
[30] and for a proof of the quadratic systems having an isochronous center, see [32] and page
34 of [5].

(I) Any linear di�erential system having a linear Hamiltonian saddle can be written as

ẋ = −Ax− δy +B, ẏ = αx+Ay + C,

with α ∈ {0, 1}, A, δ,B,C ∈ R. Moreover, if α = 1 then δ = A2 − ω with ω > 0,
and if α = 0 then A = 1. A �rst integral of this system is

H(x, y) = −α
2
x2 −Axy − δ

2
y2 − Cx+By.

(II) The �rst whole family of isochronous di�erential systems of degree two can be ob-
tained after doing the general a�ne change of variables of the form

(2) (x, y)→ (ax+ by + c, αx+ βy + γ),

with bα− aβ 6= 0, to the di�erential system

ẋ = −y + x2 − y2, ẏ = x(1 + 2y),

with the �rst integral

H̃2(x, y) =
x2 + y2

1 + 2y
.

Thus we obtain the di�erential system

(3)

ẋ =
1

bα− aβ
(
βγ2 + 2bγc+ bc+ βγ − βc2 + (2abγ + 2αβγ + ab+ αβ

−2aβc+ 2αbc)x+ (2γ + 1)(b2 + β2)y + (−a2β + α2β + 2αab)x2

+2α(b2 + β2)xy + β(b2 + β2)y2
)
,

ẏ =
1

bα− aβ
(
−αγ2 − 2aγc− ac− αγ + αc2 − (2γ + 1)(a2 + α2)x

+(−2abγ − 2αβγ − ab− αβ − 2aβc+ 2αbc)y − α(a2 + α2)x2

−2β(a2 + α2)xy − (αβ2 + 2aβb− αb2)y2
)
,

with the �rst integral

H2(x, y) =
(c+ ax+ by)2 + (xα+ yβ + γ)2

1 + 2(xα+ yβ + γ)
.

(III) The second whole family of quadratic isochronous di�erential systems can be ob-
tained doing the a�ne change of variables (2) to the di�erential system

ẋ = −y + x2, ẏ = x(1 + y),

whith the �rst integral

H̃3(x, y) =
x2 + y2

(1 + y)2
,

obtaining the di�erential system

(4)

ẋ =
1

αb− aβ
(
−bγc− bc− βγ + βc2 + (−abγ − ab− αβ + 2aβc

−αbc)x− (b2γ + b2 + β2 + βbc)y + a(aβ − αb)x2
−b(αb− aβ)xy

)
,

ẏ =
1

αb− aβ
(
−aγc− ac− αγ + αc2 − (a2γ + a2 + α2 − αac)x

+(−abγ − ab− αβ − aβc+ 2αbc)y − a(aβ − αb)xy
+b(αb− aβ)y2

)
,
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with the �rst integral

H3(x, y) =
(ax+ by + c)2 + (γ + αx+ βy)2

(γ + αx+ βy + 1)2
.

(IV) The third whole family of quadratic isochronous di�erential systems can be obtained
doing the general a�ne transformation (2) to the system

ẋ = −y − 4

3
x2, ẏ = x

(
1− 16

3
y
)
,

with the �rst integral

H̃4(x, y) =
(9− 24y + 32x2)2

3− 16y
,

providing the di�erential system

(5)

ẋ =
1

3(αb− aβ)
(
−16bγc+ 3bc+ 3βγ + 4βc2 + (−16abγ + 3ab

+3αβ + 8aβc− 16αbc)x+ (−16b2γ + 3b2 + 3β2 − 8βbc)y
+4a(aβ − 4αb)x2 − 8b(aβ + 2αb)xy − 12b2βy2

)
,

ẏ =
1

3(αb− aβ)
(
16aγc− 3ac− 3αγ − 4αc2 + (16a2γ − 3a2

−3α2 + 8αac)x+ (16abγ − 3ab− 3αβ + 16aβc− 8αbc)y
+12a2αx2 + 8a(2aβ + αb)xy − 4b(αb− 4aβ)y2

)
,

with the �rst integral

H4(x, y) =
1

16(γ + αx+ βy)− 3

(
−24(ax+ by + c)2(γ + αx+ βy)

+9
(
(ax+ by + c)2 + (γ + αx+ βy)2

)
+ 16(ax+ by + c)4

)
.

(V) The fourth whole family of quadratic isochronous di�erential systems can be ob-
tained doing the general a�ne transformation (2) to the di�erential system

ẋ = −y + 16

3
x2 − 4

3
y2, ẏ = x

(
1 +

8

3
y
)
,

with the �rst integral

H̃5(x, y) =
9 + 96y − 256x2 + 128y2

(3 + 8y)4
,

ingobtain the di�erential system

(6)

ẋ =
1

3(αb− aβ)
(
4βγ2 + 8bγc+ 3bc+ 3βγ − 16βc2 + (8abγ + 8αβγ

+3ab+ 3αβ − 32aβc+ 8αbc)x+ (8b2γ + 8β2γ + 3b2 + 3β2

−24βbc)y + 4(α2β − 4a2β + 2αab)x2 + 8(αβ2 − 3aβb+ αb2)xy
−4βy2(2b2 − β2)y2

)
,

ẏ =
1

3(αb− aβ)
(
16αc2 − 4αγ2 − 8aγc− 3ac− 3αγ − (8a2γ + 8α2γ

+3a2 + 3α2 − 24αac)x− (8abγ + 8αβγ + 3ab+ 3αβ + 8aβc
−32αbc)y + 4α(2a2 − α2)x2 + 8(a2(−β)− α2β + 3αab)xy
−4(αβ2 + 2aβb− 4αb2)y2

)
,

with the �rst integral

H5(x, y) =
1

(8(γ + αx+ βy) + 3)4
(
9
(
(ax+ by + c)2 + (γ + αx+ βy)2

)

+16(γ + αx+ βy)4 + 24(γ + αx+ βy)3
)
.
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Our objective is to solve the extension of the 16th Hilbert problem for the four classes
of discontinuous piecewise di�erential systems separated by a straight line and formed by a
linear Hamiltonian saddle and an isochronous center of degree 2, i.e. we shall provide for all
these four classes an upper bound for the maximum number of limit cycles that each class
can exhibit. Moreover as we shall see at least two of these four classes the upper bound that
we shall provide is reached.

We recall that linear Hamiltonian di�erential systems are one of the easiest linear di�er-
ential systems and that the unique linear di�erential systems which are Hamiltonian are the
linear centers and the linear saddles. So it is natural to start with these systems. However
it was proved in [28, 30] that the classes of discontinuous piecewise di�erential systems sep-
arated by a straight line and formed by either two linear centeres, or two linear Hamiltonian
saddles, or a linear Hamiltonian saddle and a linear center do not have limit cycles. A
forward step is to look for classes of discontinuous piecewise di�erential systems separated
by a straight line and formed by a linear center and an isochronous center of degree 2, or
by a linear Hamiltonian saddle and an isochronous center of degree 2. The �rst of these two
classes was studied in [8] and the authors proved the following result.

Theorem 1. Consider discontinuous piecewise di�erential systems separated by the straight
line x = 0 and formed by a linear center in x < 0, and by a quadratic isochronous center of
type either (II), or (III), or (IV), or (V) after an a�ne change of variables in x > 0. The
maximum number of limit cycles of these discontinuous piecewise di�erential systems are

(a) at most one for systems of type linear center-(II), and there are systems of this type
with exactly one limit cycle;

(b) at most one for systems of type linear center-(III), and there are systems of this type
with exactly one limit cycle;

(c) at most two for systems of type linear center-(IV), and there are systems of this type
with exactly one limit cycle;

(d) at most two for systems of type linear center-(V), and there are systems of this type
with exactly two limit cycles.

Note that for all systems of type linear center-(k) with k ∈ {II, III, V } the upper bound on
the maximum number of limit cycles is reached.

In general it is very di�cult (many times for the moment impossible) to provide an upper
bound for the maximum number of limit cycles that a class of di�erential systems in the
plane can exhibit, and of course it is even more di�cult to provide the exact upper bound,
see for instance [16, 20, 21].

Our main result is to provide an upper bound for the the maximum number of limit cycles
that can exist for discontinuous piecewise di�erential systems of the form (1) when in x < 0
there is an arbitrary linear Hamiltonian saddle (I), and in x > 0 there is one of the four
quadratic isochronous di�erential systems (II), (III), (IV) or (V), after an arbitrary a�ne
change of variables.

Theorem 2. Consider discontinuous piecewise di�erential systems separated by the straight
line x = 0 and formed by a linear Hamiltonian saddle (I) in x > 0, and by a quadratic
isochronous system of type either (II), or (III), or (IV), or (V) after an a�ne change of
variables in x < 0. The maximum number of limit cycles of these discontinuous piecewise
di�erential systems are;

(a) at most one for systems of type (II)-(I), and there are systems of this type with
exactly one limit cycle, see Figure 1(a);

(b) at most one for systems of type (III)-(I), and there are systems of this type with
exactly one limit cycle, see Figure 1(b);
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(c) at most two for systems of type (IV)-(I), and there are systems of this type with
exactly one limit cycle, see Figure 1(c);

(d) at most two for systems of type (V)-(I), and there are systems of this type with
exactly two limit cycles, see Figure 1(d).

Note that at least for all systems of type (k)-(I) with k ∈ {II, III} the upper bound on the
maximum number of limit cycles is reached.

The proof of Theorem 2 is given in section 2.

(a) (b)

(c) (d)

Figure 1. (a) The unique limit cycle that exists for system (9)�(8) of class
(II)�(I). (b) The unique limit cycle that exists for system (11)�(8) of class
(III)�(I). (c) The unique limit cycle that exists for system (14)�(13) of class
(IV)�(I). (d) The unique limit cycle that exists for system (17)�(16) of class
(V)�(I). These four limit cycles are travelled in counterclocwise sense.

Remark. For the discontinuous piecewise di�erential systems of type (k)-(I) with k ∈
{IV, V } it is possible that the upper bound found for the maximum number of limit cycles
cannot be reached. This is due to the fact that the solutions (y, y), which appear in the proof
of the upper bound on the maximum number of limit cycles that these systems can exhibit,
do not need to correspond necessarily to periodic solutions of the discontinuous piecewise
di�erential systems. In fact there is numerical evidence that probably the upper bound on
the maximum number of limit cycles is one instead of two
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2. Proof of Theorem 2

2.1. Proof of Theorem 2 for system (II)�(I). We consider the planar linear di�erential
system (I) with �rst integral H1(x, y) in the half-plane x > 0 and the quadratic isochronous
center (3) with �rst integral H2(x, y) in the half-plane x < 0. If there exists a limit cycle of
the discontinuous piecewise di�erential systems (3)�(I) it must intersect the discontinuity
line x = 0 in two di�erent points (0, y) and (0, y). Clearly these two points must satisfy the
system

(7)

H1(0, y)−H1(0, y) = (y − y)P1(y, y),

H2(0, y)−H2(0, y) =
(y − y)Q2(y, y)

[1 + 2(βy + γ)][1 + 2(βy + γ)]
= 0,

where P1 and Q2 are polynomials of degrees one and two, respectively. Since the points
(0, y) and (0, y) must be di�erent, from P1(y, y) = 0, we get y as a function of y, that
is, y = f(y). Substituting this expression in equation Q2(y, y) = 0 we obtain a quadratic
equation in the variable y. Then the maximum number of solutions of system (7) is two,
namely (y1, y1) and (y2, y2), but in fact, these two solutions represent the same limit cycle
because y1 = y2 and y2 = y1. So for the discontinuous piecewise di�erential system (3)�(I),
there exists at most one limit cycle.

Now we give an example of a discontinuous piecewise di�erential system (3)�(I) having
one limit cycle. On x > 0 we consider the linear di�erential system

(8) ẋ = 8− 10y, ẏ = 2
√
151− 10x,

with the �rst integral

H1(x, y) = 22− 2
√
151x+ 8y + 5x2 − 5y2,

and on x < 0 we consider the quadratic isochronous di�erential system of type (3)

(9) ẋ = −4− 5x− 6y − x2 − 4xy − 2y2, ẏ = 1 + 3x+ y + x2 + 2xy,

with the �rst integral

H2(x, y) =
(x+ y + 1)2 + (y + 1)2

2(x+ y + 1) + 1
.

The solution (y, y) of (7) satisfying y < y, is (y, y) =

(
1

5
(4− 3

√
14),

1

5
(4 + 3

√
14)

)
. This

solution provides the limit cycle that exists for the discontinuous di�erential piecewise sys-
tem (9)�(8) shown in Figure ??.

2.2. Proof of Theorem 2 for system (III)�(I). We consider the linear di�erential system
(I) with �rst integral H1(x, y) on the half-plane x > 0, and on the half-plane x < 0, we
take the quadratic isochronous center (4) with its �rst integral H3(x, y). Then if there
exists some limit cycle for the discontinuous di�erential system (4)�(I), it must intersect the
discontinuity line x = 0 at two di�erent points (0, y) and (0, y), satisfying the equations

(10)

H1(0, y)−H1(0, y) = (y − y)P1(y, y) = 0,

H3(0, y)−H3(0, y) =
(y − y)Q2(y, y)

(1 + βy + γ)2(1 + βy + γ)2
= 0.

In (10) P1 and Q2 are polynomials of degrees one and two, respectively. By following the
same procedure as for the proof of system (II)�(I), we solve the equation P1(y, y) = 0
obtaining the variable y as a function of y, that is y = f(y). By replacing y in the equation
Q2(y, y) = 0, we obtain again a quadratic polynomial equation in the variable y, so that the
equation has at most two di�erent solutions. As in the proof for system (II)�(I), these two
solutions represent, if they exist, the same limit cycle. Therefore system (10) has only one
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solution with y < y, and then the discontinuous piecewise di�erential system (4)�(I) has at
most one limit cycle.

Next we provide a discontinuous piecewise di�erential system (4)�(I) having one limit
cycle. On the half-plane x > 0 we consider the linear di�erential system (8), and on the
half-plane x < 0 we consider the quadratic isochronous center of type (4)

(11) ẋ = −2− 2y + x2 − xy, ẏ = −2 + 2x− 3y + xy − y2,
with the �rst integral

H3(x, y) =
(1− x+ y)2 + (y + 1)2

2(y + 2)2
.

In this case the unique solution for system (10) with y < y is

(y, y) =

(
1

5
(4− 3

√
14),

1

5
(4 + 3

√
14)

)
,

and the corresponding limit cycle of the discontinuous piecewise di�erential system (11)�(8)
associated to this solution is shown in Figure ??.

2.3. Proof of Theorem 2 for system (IV)�(I). We consider again on the half-plane
x > 0 the linear di�erential system (I) with its �rst integral H1(x, y), and on x < 0 we take
the quadratic isochronous center (5) with its �rst integralH4(x, y). Then if the discontinuous
di�erential system (5)�(I) has a limit cycle, it must intersect the discontinuity line x = 0 at
two di�erent points (0, y) and (0, y). These points must satisfy the equations

(12)
H1(0, y)−H1(0, y) = (y − y)P1(y, y) = 0,

H4(0, y)−H4(0, y) =
(y − y)Q4(y, y)

(−3 + 16yβ + 16γ)(−3 + 16yβ + 16γ)
= 0,

where P1 andQ4 are polynomials of degrees one and four, respectively. We solve the equation
P1(y, y) = 0 obtaining the variable y as a function of y, that is y = f(y). If we substitute
y = f(y) in the equation Q4(y, y) = 0, we obtain a polynomial equation of degree four in
the variable y, and so system (12) has at most four real solutions. Taking into account the
symmetry between these solutions, as in the previous proofs there can be only two di�erent
solutions (y, y) of (12) satisfying y < y.

Now we give an example of a discontinuous piecewise di�erential system (5)�(I) having
one limit cycle. On x > 0 we consider the linear di�erential system

(13) ẋ = −2 + 2x− 8

3
y, ẏ = 6− 2y,

with the �rst integral

H1(x, y) = 6x+ 2y − 2xy +
4

3
y2,

and on x < 0 we consider the quadratic isochronous center of type (5)

ẋ = −19 + 55x− 16x2 − 34y + 32xy − 12y2,

ẏ = −48 + 129x− 48x2 − 79y + 80xy − 28y2,
(14)

with the �rst integral

H2(x, y) =
9 + 32(−1 + 2x− y)2 − 24(2− x+ y))2

3− 16(2− x+ y)
.

The solutions of (12) satisfying y < y are the two pairs of solutions

(y, y) =
1

8

(
− 6−

√
19−

√
209,−6 +

√
19−

√
209
)
,

(y, y) =
1

8

(
− 6 +

√
19−

√
209,−6 +

√
19 +

√
209
)
,
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but only the solution (y, y) =
(
− 6 −

√
19−

√
209,−6 +

√
19−

√
209
)
/8 provides a limit

cycle and it is the limit cycle that exists for the discontinuous di�erential piecewise system
(14)�(13) shown in Figure ??.

2.4. Proof of Theorem 2 for system (V)�(I). We take again the linear di�erential
system (I) with its �rst integral H1(x, y) on the half-plane x > 0, and on x < 0 we consider
the quadratic isochronous center (6) with its �rst integralH5(x, y). Thus if the discontinuous
di�erential system (6)�(I) has a limit cycle, it must intersect the discontinuity line x = 0 at
two di�erent points (0, y) and (0, y). These points must satisfy the equations

(15)
H1(0, y)−H1(0, y) = (y − y)P1(y, y) = 0,

H5(0, y)−H5(0, y) =
(y − y)Q5(y, y)

(3 + 8yβ + 8γ)4(3 + 8yβ + 8γ)4
= 0,

where P1 and Q5 are polynomials of degrees one and �ve, respectively. We solve again the
equation P1(y, y) = 0 obtaining the variable y as a function of y, that is y = f(y). If we
substitute y = f(y) in the equation Q5(y, y) = 0, we obtain a polynomial equation of degree
4 in the variable y, and so system (12) has at most four real solutions. Taking into account
the symmetry between these solutions, as in the previous proofs, there can be only two
di�erent solutions (y, y) of (15) satisfying y < y.

Now we give an example of a discontinuous piecewise di�erential system (6)�(I) having
one limit cycle. On x > 0 we consider the linear di�erential system

(16) ẋ = 2 + 2x− 2y, ẏ = 6− 2y,

whose �rst integral is

H1(x, y) = 6x− 2y − 2xy + y2,

and on x < 0 we consider the quadratic isochronous di�erential system of type (5)

ẋ = −9x+ 4x2 + 15y + 8xy − 28y2,

ẏ = −6x− 4x2 + 9y + 32xy − 44y2,
(17)

whose �rst integral is

H2(x, y) =
9 + 96(−x+ y) + 128(y − x)2 − 256(−x+ 2y)2

(3 + 8(y − x))4 .

The solutions of (15) satisfying y < y are the two pairs of solutions

(y, y) =
1

1616

(
1616−

√
2222(1013− 9

√
1257), 1616 +

√
2222(1013− 9

√
1257)

)
,

(y, y) =
1

1616

(
1616−

√
2222(1013 + 9

√
1257), 1616−

√
2222(1013 + 9

√
1257)

)
,

(18)

but only the �rst solution in (18) provides a limit cycle and it is the limit cycle that that
exists for the discontinuous di�erential piecewise system (17)�(16) shown in Figure ??.
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