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THE 16TH HILBERT PROBLEM FOR DISCONTINUOUS PIECEWISE
LINEAR HAMILTONIAN SADDLES AND ISOCHRONOUS CENTERS
OF DEGREE TWO SEPARATED BY A STRAIGHT LINE

JAUME LLIBRE' AND CLAUDIA VALLS?

ABSTRACT. In this paper we deal with discontinuous piecewise differential systems formed
by two differential systems separated by a straight line when one of these two differential
systems is a linear Hamiltonian saddle and the other is a quadratic isochronous center. It
is known that there are four families of quadratic isochronous centers.

We provide upper bounds for the maximum number of limit cycles that these four
classes of discontinuous piecewise differential systems can exhibit, so we have solved the
extension of the 16th Hilbert problem to such piecewise differential systems. Moreover at
least in two of the four classes of these discontinuous piecewise differential systems the
obtained upper bound for the maximum number of limit cycles is reached.

1. INTRODUCTION AND MAIN RESULTS

Consider discontinuous piecewise differential systems of the form

- o) _JF @y = (29),9 (z,9) if 2 <0,
W i) =P = { 5 2 (e e e S0
being bivaluated on the separation line z = 0. Following [10] a point (0, y) is a crossing point
if f7(0,y)f*(0,y) > 0. A crossing periodic orbit is a periodic orbit of the discontinuous
differential system (1) that has two crossing points and no more, and a crossing limit cycle
is an isolated periodic orbit in the set of all crossing periodic orbits of system (1). In all the
paper we will say limit cycle instead of crossing limit cycle.

Planar continuous piecewise linear differential systems separated by one straight line
appear in several non-linear engineering devices or in mathematical biology, see [6, 7, 33,
35, 34] and the references therein. Their maximal number of limit cycles is one, and there are
systems with one limit cycle. So the extension of the 16th Hilbert’s problem on the maximum
number of limit cycles (see for instance [16, 20, 21| for details) for such continuous piecewise
differential systems is solved.

For planar discontinuous piecewise linear differential systems separated by one straight
line the extension of the 16th Hilbert’s problem is an open problem. This problem has been
studied by many authors in the past years and there exists a large bibliography trying to
determine how many limit cycles can appear in planar systems separated by one straight line,
see for instance [1, 2, 3, 4, 9, 11, 12, 13, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 31|
and the references therein. It seems that for this class of discontinuous piecewise linear
differential systems the upper bound for their maximal number of limit cycles will be three,
but this is an open problem.

An isochronous center p is a center (that is, a singularity such that all solutions of the
differential system except the singularity are periodic in a neighborhood U of it) such that
the period of its periodic orbits is constant for all points in the neighborhood U.
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In this paper we work with the following five types of systems having a linear Hamiltonian
saddle and one of the four families of quadratic polynomial differential systems having an
isochronous center. For a proof of the normal form of the linear Hamiltonian saddles see
[30] and for a proof of the quadratic systems having an isochronous center, see [32] and page
34 of [5].

(I) Any linear differential system having a linear Hamiltonian saddle can be written as
t=—-Ax—90y+ B, y=ax+ Ay+C,
with a € {0,1}, A,6, B,C € R. Moreover, if @ = 1 then § = A? — w with w > 0,
and if @« =0 then A =1. A first integral of this system is
o
H(z,y) = —%xQ — Axy — §y2 — Cx + By.

(IT) The first whole family of isochronous differential systems of degree two can be ob-
tained after doing the general affine change of variables of the form
(2) (z,y) = (az + by + ¢, x + By +7),
with ba — af # 0, to the differential system
i=—y+a’ -y g=a(l+2y),
with the first integral
lff2(3«"7y) =

Thus we obtain the differential system

i = T (572 + 2bye + be + By — B + (2aby + 208y + ab + o3
—2afc+ 2abc)x + (2v + 1)(0? + )y + (—a?B + o?B + 2cab)x?
(3) +20‘(b2 + /82)5E3/ + /B(b2 + 52)92)7
1
Y= (—ay? = 2ayc — ac — ay + ac? — (27 + 1)(a® + o?)z

ba — af
+(—2aby — 2aBy — ab — a3 — 2aBc + 2abe)y — a(a? + a?)x?
—26(a” + a®)ay — (af® + 2apb — ab®)y?),
with the first integral
(c +az + by)* + (za + yB + 1)

1+ 2(za+yB+7)

(ITT) The second whole family of quadratic isochronous differential systems can be ob-
tained doing the affine change of variables (2) to the differential system

HQ(xa y) =

i=—y+a®, g=a(l+y),
whith the first integral

. 22 4 g2
H :B, Y
3( y) (1 + y)g
obtaining the differential system
1
= (—b’yc —be — By + B + (—aby — ab — aff + 2afc
ab—af

—abe)x — (b%y 4+ b? + 5% + Bbe)y + a(aB — ab)x?
(4) _b((f‘b - aﬁ)xy),

(—ayc —ac — ay + ac? — (a®y + a* 4+ o* — aac)x

y =
ab—af
+(—aby — ab — af — afc+ 2abc)y — a(af — ab)zy
+b(Oéb - a’ﬁ)yQ)a



with the first integral

(az + by + ¢)2 + (7 + az + By)?
(v + ax + By +1)2

(IV) The third whole family of quadratic isochronous differential systems can be obtained
doing the general affine transformation (2) to the system
4 5

b=y gt i=e(1- )

Hs(z,y) =

with the first integral
(9 — 24y + 322%)?

il =
4(:C> y) 3 _ 16y )
providing the differential system
1
i= —————(—16byc+ 3bc+ 387y + 4Bc* + (—16aby + 3ab

3(ab — ap)

+3af + 8afc — 16abe)x + (—16b%y + 3b* + 382 — 83bc)y

+4a(af — 4ab)z? — 8b(ap + 2ab)zy — 12b* By?),
g = m(l&wc — 3ac — 3ay — 4ac® + (16a%y — 3a?
—3a? + 8aac)z + (16aby — 3ab — 3a8 + 16afc — 8abe)y
+12a%az? + 8a(2a8 + ab)zy — 4b(ab — 4aB)y?),

with the first integral

+9 ((az + by + ¢)? + (v + oz + By)?) + 16(az + by + ¢)*).

H4(x,y) =

(V) The fourth whole family of quadratic isochronous differential systems can be ob-
tained doing the general affine transformation (2) to the differential system

. 16 , 4 45 . ( 8
= — _ —_ = s = 1 —_ )7
T Y+ 3 x 3y y=x(1l+ Sy
with the first integral
- 9 + 96y — 25622 4 128y>
H xZ, = )

ingobtain the differential system

1
—————— (487 + 8byc + 3bc + 3By — 163c* + (8aby + 8aBy
3(ab —ap)

+3ab + 3a8 — 32aBc + Sabe)x + (8b%y + 882y + 3b% + 352
—248bc)y + 4(a?B — 4a?B + 2aab)x® + 8(af? — 3aBb + ab®)zy
—48y*(20% — 5%)y?),

1

16ac?® — 4ay? — 8aryc — 3ac — 3ary — (8a%y + 8a?y

T =

v= 3(ab — ap) (
+3a? + 3a? — 24aac)z — (8aby + 8a By + 3ab + 3a + 8afc
—32abc)y + 4a(2a® — o?)2? + 8(a?(—B) — a?B + 3aab)zy
—4(af? + 2a8b — 4abz)y2),

with the first integral

(8(v+<ml+ﬁy) oy O am by +e®+ (r 4 oz + y)°)

+16(y + oz + By)* + 24(v + az + By)?).

Hs(x,y) =
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Our objective is to solve the extension of the 16th Hilbert problem for the four classes
of discontinuous piecewise differential systems separated by a straight line and formed by a
linear Hamiltonian saddle and an isochronous center of degree 2, i.e. we shall provide for all
these four classes an upper bound for the maximum number of limit cycles that each class
can exhibit. Moreover as we shall see at least two of these four classes the upper bound that
we shall provide is reached.

We recall that linear Hamiltonian differential systems are one of the easiest linear differ-
ential systems and that the unique linear differential systems which are Hamiltonian are the
linear centers and the linear saddles. So it is natural to start with these systems. However
it was proved in |28, 30| that the classes of discontinuous piecewise differential systems sep-
arated by a straight line and formed by either two linear centeres, or two linear Hamiltonian
saddles, or a linear Hamiltonian saddle and a linear center do not have limit cycles. A
forward step is to look for classes of discontinuous piecewise differential systems separated
by a straight line and formed by a linear center and an isochronous center of degree 2, or
by a linear Hamiltonian saddle and an isochronous center of degree 2. The first of these two
classes was studied in [8] and the authors proved the following result.

Theorem 1. Consider discontinuous piecewise differential systems separated by the straight
line x = 0 and formed by a linear center in x < 0, and by a quadratic isochronous center of
type either (1), or (III), or (IV), or (V) after an affine change of variables in x > 0. The
mazimum number of limit cycles of these discontinuous piecewise differential systems are

(a) at most one for systems of type linear center-(II), and there are systems of this type
with exactly one limit cycle;

(b) at most one for systems of type linear center-(111), and there are systems of this type
with exactly one limit cycle;

(c) at most two for systems of type linear center-(1V), and there are systems of this type
with exactly one limit cycle;

(d) at most two for systems of type linear center-(V), and there are systems of this type
with exactly two limit cycles.

Note that for all systems of type linear center-(k) with k € {1I,111,V} the upper bound on
the mazimum number of limit cycles is reached.

In general it is very difficult (many times for the moment impossible) to provide an upper
bound for the maximum number of limit cycles that a class of differential systems in the
plane can exhibit, and of course it is even more difficult to provide the exact upper bound,
see for instance [16, 20, 21].

Our main result is to provide an upper bound for the the maximum number of limit cycles
that can exist for discontinuous piecewise differential systems of the form (1) when in x < 0
there is an arbitrary linear Hamiltonian saddle (I), and in = > 0 there is one of the four
quadratic isochronous differential systems (II), (III), (IV) or (V), after an arbitrary affine
change of variables.

Theorem 2. Consider discontinuous piecewise differential systems separated by the straight
line x = 0 and formed by a linear Hamiltonian saddle (I) in © > 0, and by a quadratic
isochronous system of type either (I1), or (I1I), or (IV), or (V) after an affine change of
variables in x < 0. The mazimum number of limit cycles of these discontinuous piecewise
differential systems are;

(a) at most one for systems of type (1I)-(1), and there are systems of this type with
exactly one limit cycle, see Figure 1(a);

(b) at most one for systems of type (III)-(I), and there are systems of this type with
exactly one limit cycle, see Figure 1(b);
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(c) at most two for systems of type (IV)-(I), and there are systems of this type with
exactly one limit cycle, see Figure 1(c);

(d) at most two for systems of type (V)-(I), and there are systems of this type with
exactly two limit cycles, see Figure 1(d).

Note that at least for all systems of type (k)-(I) with k € {11,111} the upper bound on the
mazimum number of limit cycles is reached.

The proof of Theorem 2 is given in section 2.

-030 -025 -020 -015 -010 005 000 005 -05 -04 -03 -02 =01 00 01 02

FIGURE 1. (a) The unique limit cycle that exists for system (9)—(8) of class
(I1)—(T). (b) The unique limit cycle that exists for system (11)—(8) of class
(IIT)—(I). (c) The unique limit cycle that exists for system (14)—(13) of class
(IV)—(I). (d) The unique limit cycle that exists for system (17)—(16) of class
(V)—(I). These four limit cycles are travelled in counterclocwise sense.

Remark. For the discontinuous piecewise differential systems of type (k)-(I) with k €
{IV,V'} it is possible that the upper bound found for the mazimum number of limit cycles
cannot be reached. This is due to the fact that the solutions (y,y), which appear in the proof
of the upper bound on the mazimum number of limit cycles that these systems can exhibit,
do not need to correspond necessarily to periodic solutions of the discontinuous piecewise
differential systems. In fact there is numerical evidence that probably the upper bound on
the mazimum number of limit cycles is one instead of two
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2. PROOF OF THEOREM 2

2.1. Proof of Theorem 2 for system (II)-(I). We consider the planar linear differential
system (I) with first integral Hj(x,y) in the half-plane > 0 and the quadratic isochronous
center (3) with first integral Ha(x,y) in the half-plane = < 0. If there exists a limit cycle of
the discontinuous piecewise differential systems (3)—(I) it must intersect the discontinuity
line z = 0 in two different points (0,y) and (0,7). Clearly these two points must satisfy the
system

H1<07y) - Hl(ovy) - (y_ y>P1(y7y)a

(7) Ha0,) — Ha(0.7) = (¥ — y)Q2(y.7) _o

[1+2(8y + 7)][1 +2(6y + )]

where P; and ()2 are polynomials of degrees one and two, respectively. Since the points
(0,y) and (0,7) must be different, from P;(y,7y) = 0, we get 7 as a function of y, that
is, ¥ = f(y). Substituting this expression in equation Q2(y,y) = 0 we obtain a quadratic
equation in the variable y. Then the maximum number of solutions of system (7) is two,
namely (y1,7,) and (y2,75), but in fact, these two solutions represent the same limit cycle
because 7, = y2 and Y, = y1. So for the discontinuous piecewise differential system (3)—(I),
there exists at most one limit cycle.

Now we give an example of a discontinuous piecewise differential system (3)—(I) having
one limit cycle. On x > 0 we consider the linear differential system

(8) i =8—10y, y = 2v/151 — 10z,
with the first integral
Hi(z,y) = 22 — 2V/151z + 8y + 522 — 5y,
and on x < 0 we consider the quadratic isochronous differential system of type (3)
(9) &= —4— 5z — 6y — 2 — dzy — 2y, g =143z +y+ %+ 2y,

with the first integral
(x+y+1)2+ (y+1)2
2@ +y+1)+1

1 1
The solution (y,7) of (7) satisfying y < 7, is (y,y) = <5(4 —3V/14), 5(4 + 3@)) This

solution provides the limit cycle that exists for the discontinuous differential piecewise sys-
tem (9)—(8) shown in Figure ?7.

H2('T’y) =

2.2. Proof of Theorem 2 for system (III)—(I). We consider the linear differential system
(I) with first integral Hj(x,y) on the half-plane > 0, and on the half-plane z < 0, we
take the quadratic isochronous center (4) with its first integral Hs(x,y). Then if there
exists some limit cycle for the discontinuous differential system (4)—(I), it must intersect the
discontinuity line z = 0 at two different points (0,y) and (0,7), satisfying the equations

H1(0,y) = H1(0,5) = (¥ —-y)Pi(y,y) =0,

(10) o ¥ —y)Q2(y,7) _
H3(07y) - HS(Ovy) - (1 +By+7)2(1 +ﬁy+,y)2 -

In (10) P; and @2 are polynomials of degrees one and two, respectively. By following the
same procedure as for the proof of system (II)-(I), we solve the equation Pi(y,y) = 0
obtaining the variable ¥ as a function of y, that is ¥ = f(y). By replacing 7 in the equation
Q2(y,y) = 0, we obtain again a quadratic polynomial equation in the variable y, so that the
equation has at most two different solutions. As in the proof for system (IT)-(I), these two
solutions represent, if they exist, the same limit cycle. Therefore system (10) has only one
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solution with y < ¥, and then the discontinuous piecewise differential system (4)—(I) has at
most one limit cycle.

Next we provide a discontinuous piecewise differential system (4)—(I) having one limit
cycle. On the half-plane x > 0 we consider the linear differential system (8), and on the
half-plane = < 0 we consider the quadratic isochronous center of type (4)

(11) & =—-2—2y+2%—zy, g =—24 2z — 3y +zy — y>,

with the first integral
(1—z+y)*+ (y+1)?
Hs(z,y) =

In this case the unique solution for system (10) with y <7 is
1 1
(v,9) = <5(4 — 3V14), (4 3\/ﬂ)> :

and the corresponding limit cycle of the discontinuous piecewise differential system (11)-(8)
associated to this solution is shown in Figure ?7.

2.3. Proof of Theorem 2 for system (IV)-(I). We consider again on the half-plane
x > 0 the linear differential system (I) with its first integral Hi(z,y), and on x < 0 we take
the quadratic isochronous center (5) with its first integral Hy(x,y). Then if the discontinuous
differential system (5)—(I) has a limit cycle, it must intersect the discontinuity line z = 0 at
two different points (0,y) and (0,7). These points must satisfy the equations

Hl(()?y) - H1(07y) = @—y)ﬂ(y,?) =0,

—\ (y - y)Q4(yv@)
Hq(0,y) — H4(0,7) = (=3 + 16yB + 167)(—3 + 1678 + 167)

where Py and Q4 are polynomials of degrees one and four, respectively. We solve the equation
Py (y,7) = 0 obtaining the variable 7 as a function of y, that is 7 = f(y). If we substitute
7 = f(y) in the equation Q4(y,7) = 0, we obtain a polynomial equation of degree four in
the variable y, and so system (12) has at most four real solutions. Taking into account the
symmetry between these solutions, as in the previous proofs there can be only two different
solutions (y,7) of (12) satisfying y < 7.

(12)

=0,

Now we give an example of a discontinuous piecewise differential system (5)—(I) having
one limit cycle. On x > 0 we consider the linear differential system

8
(13) j3:—2—|—2x—§y, y=06—2y,

with the first integral
Hi(x,y) = 6x + 2y — 22y + %yQ,
and on x < 0 we consider the quadratic isochronous center of type (5)
(14 &= —19 + 55z — 1622 — 34y + 32zy — 1242,
§ = —48 + 129z — 4822 — 79y + 80zy — 28y2,

with the first integral

9+32(—1+2z—y)?—24(2 -z +y))*
Hy(og) - 252 b =242 =z +4))
3—16(2—x+vy)
The solutions of (12) satisfying y < 7 are the two pairs of solutions
1

(v,79) = 5 (= 6= /19 = V209, -6 + /19 — v209),

1
(1,9) = g (= 6+ V19— V209, =6+ /19 + v209),

:
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but only the solution (y,7) = ( —6—v19 —v209, -6 + /19 — v/ 209) /8 provides a limit

cycle and it is the limit cycle that exists for the discontinuous differential piecewise system
(14)—(13) shown in Figure ?77?.

2.4. Proof of Theorem 2 for system (V)-(I). We take again the linear differential
system (I) with its first integral Hy(z,y) on the half-plane = > 0, and on = < 0 we consider
the quadratic isochronous center (6) with its first integral Hs(z,y). Thus if the discontinuous
differential system (6)—(I) has a limit cycle, it must intersect the discontinuity line z = 0 at
two different points (0,y) and (0,7). These points must satisfy the equations

Hi(0,y) - H1(0,) = (T -y)P(y,9) =0,

_ ¥ —y)Q5(y,y)

B50.9) B0 = 555186+ 878 188

where P; and @5 are polynomials of degrees one and five, respectively. We solve again the
equation Pj(y,y) = 0 obtaining the variable 3 as a function of y, that is § = f(y). If we
substitute ¥ = f(y) in the equation Q5(y,y) = 0, we obtain a polynomial equation of degree
4 in the variable y, and so system (12) has at most four real solutions. Taking into account
the symmetry between these solutions, as in the previous proofs, there can be only two
different solutions (y,7) of (15) satistying y < 7.

(15)

Now we give an example of a discontinuous piecewise differential system (6)—(I) having
one limit cycle. On x > 0 we consider the linear differential system

(16) T =2+ 2x — 2y, y=06—2y,
whose first integral is
H(z,y) = 6z — 2y — 2y +y°,
and on x < 0 we consider the quadratic isochronous differential system of type (5)
a7 &= —9z + 4% + 15y + Szy — 28y,
§ = —6x — 42 + 9y + 32xy — 44y,
whose first integral is

_9+96(—x +y) + 128(y — x)? — 256(—x + 2y)?
Hs(z,y) = G182 .

The solutions of (15) satisfying y < 7 are the two pairs of solutions

1
(v.9) = 157 (1616 - \/2222(1013 — 9V/1257), 1616 + \/2222(1013 —9v1257)),
(18)
1
(v.7) = 157 (1616 - \/2222(1013 +9v/1257),1616 — \/2222(1013 +9v1257)),

but only the first solution in (18) provides a limit cycle and it is the limit cycle that that
exists for the discontinuous differential piecewise system (17)—(16) shown in Figure ?7.
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