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IMPORTANCE Phosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer disease
(AD) pathology, with p-tau217 considered to have the most utility. However, availability of
p-tau217 tests for research and clinical use has been limited. Expanding access to this highly
accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests.

OBJECTIVE To determine the utility of a novel and commercially available immunoassay for
plasma p-tau217 to detect AD pathology and evaluate reference ranges for abnormal amyloid
β (Aβ) and longitudinal change across 3 selected cohorts.

DESIGN, SETTING, AND PARTICIPANTS This cohort study examined data from 3 single-center
observational cohorts: cross-sectional and longitudinal data from the Translational
Biomarkers in Aging and Dementia (TRIAD) cohort (visits October 2017–August 2021) and
Wisconsin Registry for Alzheimer’s Prevention (WRAP) cohort (visits February
2007–November 2020) and cross-sectional data from the Sant Pau Initiative on
Neurodegeneration (SPIN) cohort (baseline visits March 2009–November 2021). Participants
included individuals with and without cognitive impairment grouped by amyloid and tau (AT)
status using PET or CSF biomarkers. Data were analyzed from February to June 2023.

EXPOSURES Magnetic resonance imaging, Aβ positron emission tomography (PET), tau PET,
cerebrospinal fluid (CSF) biomarkers (Aβ42/40 and p-tau immunoassays), and plasma
p-tau217 (ALZpath pTau217 assay).

MAIN OUTCOMES AND MEASURES Accuracy of plasma p-tau217 in detecting abnormal amyloid
and tau pathology, longitudinal p-tau217 change according to baseline pathology status.

RESULTS The study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females
[64.1%] and 282 males [35.9%]). High accuracy was observed in identifying elevated Aβ (area
under the curve [AUC], 0.92-0.96; 95% CI, 0.89-0.99) and tau pathology (AUC, 0.93-0.97;
95% CI, 0.84-0.99) across all cohorts. These accuracies were comparable with CSF
biomarkers in determining abnormal PET signal. The detection of abnormal Aβ pathology
using a 3-range reference yielded reproducible results and reduced confirmatory testing by
approximately 80%. Longitudinally, plasma p-tau217 values showed an annual increase only
in Aβ-positive individuals, with the highest increase observed in those with tau positivity.

CONCLUSIONS AND RELEVANCE This study found that a commercially available plasma
p-tau217 immunoassay accurately identified biological AD, comparable with results using CSF
biomarkers, with reproducible cut-offs across cohorts. It detected longitudinal changes,
including at the preclinical stage.
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I n Alzheimer disease (AD), blood biomarkers have emerged
as scalable tools for clinical evaluation, trial recruitment,
and disease monitoring.1 Their anticipated implementa-

tion aims to substantially reduce the reliance on cerebrospi-
nal fluid (CSF) or positron emission tomography (PET) scans
in specialized centers.2 Moreover, a robust and accurate blood-
based biomarker would enable a more comprehensive assess-
ment of cognitive impairment in settings where advanced test-
ing is limited. Therefore, use of a blood biomarker is intended
to enhance an early and precise AD diagnosis, leading to im-
proved patient management and, ultimately, timely access to
disease-modifying therapies.

Phosphorylated tau (p-tau) is the leading blood biomarker
candidate, demonstrating superior diagnostic accuracy and dis-
ease specificity compared with other candidates.3,4 The amy-
loid β 42/40 (Aβ42/40) ratio, a validated CSF biomarker,5 has
limitations in blood6,7 and lacks the robustness required for rou-
tine clinical testing.8,9 In contrast, high-performing p-tau blood
test results exhibit a substantial increase in patients with AD,10

occurring concurrently with extracellular Aβ plaque deposi-
tion, an AD hallmark feature. This relationship is observed across
the AD continuum, including the asymptomatic phase in spo-
radic and genetic forms of AD.11-14 Yet certain p-tau species, but
not all, are also associated with neurofibrillary tangle pathol-
ogy, the secondary AD pathological hallmark.15-17 Thus, p-tau
is regarded as the primary blood biomarker for AD pathology
throughout all stages of the disease.

Among proposed blood tau biomarkers,18-21 phosphory-
lated tau at threonine 217 (p-tau217) has consistently shown
high performance in differentiating AD from other neurode-
generative disorders10,22 and in detecting AD pathology in
patients with mild cognitive impairment (MCI).22 Notably,
p-tau217 exhibits larger-fold changes compared with p-tau181
and p-tau231,10 often achieving high discrimination, with areas
under the curve (AUC) exceeding 90%.19,23 Additionally,
p-tau217 demonstrates a unique longitudinal trajectory, show-
ing increases associated with worsening brain atrophy and
declining cognitive performance in individuals with elevated
Aβ pathology.24,25

With the imminent implementation of anti-Aβ therapies
in dementia management, validated blood biomarkers are ur-
gently needed to guide timely treatment decisions. While
plasma p-tau217 has shown promise as a diagnostic tool for AD,
its widespread evaluation has been hindered by limited avail-
ability of commercial assays. This study aims to address this
gap by assessing the utility of ALZpath pTau217, a commer-
cially available immunoassay, to highlight the presence of AD
pathology. In addition, we aim to report reference ranges of
the plasma p-tau217 that correspond to abnormal amyloid PET
and CSF measures.

Methods
This study included participants from 3 observational co-
horts: the Translational Biomarkers in Aging and Dementia
(TRIAD), Wisconsin Registry for Alzheimer’s Prevention
(WRAP), and Sant Pau Initiative on Neurodegeneration (SPIN).

Participants gave written or verbal informed consent, and the
studies were approved by the relevant ethics boards (eMethods
in Supplement 1). The present study followed the Strengthen-
ing the Reporting of Observational Studies in Epidemiology
(STROBE) reporting guidelines.

TRIAD included 268 participants who had no cognitive im-
pairment (134 individuals [50%]), MCI (63 [23.5%]), AD de-
mentia (46 [17.2%]), and non-AD dementia (24 [9.0%]). The
WRAP study26 included data on 323 participants, predomi-
nantly without cognitive impairment at the first plasma sample
collection (no impairment, 309 [95.6%]; MCI, 12 [3.7%]; AD de-
mentia, 2 [0.6%]). The SPIN cohort27 included 195 partici-
pants: controls without cognitive impairment (82 [42.1%]), in-
dividuals with MCI due to AD (72 [36.7%]), and individuals with
AD dementia (41 [21.0%]). Diagnosis was based on interna-
tionally recognized clinical criteria, and control participants
had normal cognitive scores on standard neuropsychological
evaluations. A subset of patients with longitudinal follow-up
consisted of 392 participants from TRIAD and WRAP defined
by PET biomarkers (eTable 1 in Supplement 1). These in-
cluded participants classified into 3 groups: amyloid- and tau-
negative (A−T−; n = 297), amyloid-positive and tau-negative
(A+T−; n = 66), and amyloid-positive and tau-positive (A+T+;
n = 29). In WRAP, the median number of samples collected per
patient was 3 over a mean (SD) of 5.22 (1.41) years. In TRIAD,
median samples per patient was 2, collected over a mean of
1.90 (0.61) years.

Imaging, CSF, and Plasma Biomarkers
Detailed imaging methods for TRIAD, WRAP, and SPIN are found
in the eMethods in Supplement 1. In TRIAD, Aβ and tau PET were
determined by [18F]-AZD469428 and [18F]-MK6240,29 respec-
tively. In WRAP, PET measures were determined by [11C]-PiB30

and [18F]-MK6240.31,32 In SPIN, Aβ PET was determined by
[18F]-florbetapir or [18F]-flutemetamol in a smaller subset of
participants, with CSF Aβ42/40 used to define A status for
most participants as described below. Tau PET was not avail-
able for the SPIN cohort, and T was defined by CSF p-tau181. Aβ-
PET positivity was standardized across cohorts as a centiloid
value greater than 24 (standardized uptake value ratio [SUVR]
>1.55 for [18F]-AZD469433 or distribution volume ratio >1.2 for
[11C]-PiB). Tau positivity with [18F]-MK6240 was defined as

Key Points
Question What are the capabilities of a commercially available
plasma phosphorylated tau 217 (p-tau217) immunoassay to
identify Alzheimer disease pathophysiology?

Findings This cohort study found that the p-tau217 immunoassay
showed similar accuracies to cerebrospinal fluid biomarkers
in identifying abnormal amyloid β (Aβ) and tau pathologies.
A 3-range reference for detecting abnormal Aβ pathology was
consistent across 3 cohorts; over 8 years, the largest change of
p-tau217 was in individuals positive for both Aβ and tau.

Meaning The wider availability of high-performing assays may
expedite the use of blood biomarkers in clinical settings and
benefit the research community.
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meta-temporal region of interest SUVR greater than 1.24 for
TRIAD34 and SUVR greater than 1.3 in WRAP.

CSF sample collection procedures were similar across co-
horts and are described in the eMethods in Supplement 1. In
TRIAD and SPIN, Lumipulse G1200 or G600II was used to
quantify CSF Aβ42, Aβ40, and p-tau181.35,36 Additionally, CSF
p-tau217 was quantified by an in-house single-molecule ar-
ray (Simoa) developed at the University of Gothenburg.33 A
novel Simoa for CSF p-tau205 was measured in TRIAD only.
For WRAP, CSF Aβ42, Aβ40, and p-tau181 were measured using
the Roche NeuroToolKit.37

Plasma samples from TRIAD, WRAP, and SPIN were ana-
lyzed at the Department of Psychiatry and Neurochemistry,
University of Gothenburg. Plasma Aβ42/40, glial fibrillary acidic
protein (GFAP), and neurofilament light chain (NfL) were quan-
tified using the commercial Neurology 4-plex E kit (103670;
Quanterix). Plasma p-tau231 and p-tau181 were analyzed using
in-house Simoa assays developed at the University of
Gothenburg,18,38 except in WRAP where plasma p-tau181 was
quantified by the commercial Advantage kit version 2.1 (104111;
Quanterix).24

Novel p-Tau217 Assay
The commercial ALZpath pTau217 assay for p-tau217 uses a pro-
prietary monoclonal p-tau217 specific capture antibody, an
N-terminal detector antibody, and a peptide calibrator. It has
been validated as a fit-for-purpose assay38 with a limit of de-
tection of 0.0052 to 0.0074 pg/mL, a functional lower limit
of quantification of 0.06 pg/mL, and a dynamic range of 0.007
to 30 pg/mL. The spike recovery for the endogenous analyte
was 80%, and intrarun and interrun precision was 0.5% to 13%
and 9.2% to 15.7%, respectively. Here, the assay demon-
strated good repeatability (4%-8.7%) and intermediate preci-
sion (3.5%-10.7%) as shown in eTable 2 in Supplement 1.

Statistical Analysis
Between-group comparisons were conducted using linear mod-
els, adjusting for age and sex. Determining Aβ-PET and tau-
PET positivity and other outcomes was done using receiver op-
erating characteristics AUC and compared with those of other
established biomarkers with the DeLong test. Correlations were
always evaluated using Spearman ρ. A binary reference point
for Aβ-PET positivity was derived based on the Youden index.

Alternatively, a 3-range strategy comprised a lower refer-
ence point to rule out AD (95% sensitivity) and a higher refer-
ence point to rule in AD (95% specificity). In both strategies,
we evaluated the concordance of a negative p-tau217 result with
Aβ-PET negativity (negative percent agreement), and the con-
cordance of a positive plasma p-tau217 with Aβ-PET positiv-
ity (positive percent agreement), as well as the overall per-
cent agreement. In the latter strategy, individuals with p-tau217
levels between the reference point were classified as interme-
diate risk and would constitute the population referred to
confirmatory testing.39

We evaluated the longitudinal trajectories of plasma
p-tau217 in participants with no cognitive impairment and
those with MCI according to their amyloid (A) and tau (T)
status. We used linear mixed-effects models with plasma

p-tau217 as the response variable, including as predictors time
(since first plasma collection), AT status, age at first plasma col-
lection, years of education, sex, and cognitive status at first
visit, as well as an interaction between AT status and time. The
model contained random intercepts and random slopes for
each participant, and time was modeled as a continuous vari-
able. Post hoc pairwise contrasts were conducted to compare
the slopes for group × time interactions.

All analyses were performed using R version 4.2.2 (R
Project for Statistical Computing), with a 2-sided α of .05. No
adjustments for multiple comparisons were performed.40

Reported results include 95% confidence intervals when
applicable.

Results
Participant Characteristics
A total of 786 participants (mean [SD] age, 66.3 [9.7] years; 504
females [64.1%], 282 males [35.9%]) were included in the study.
The TRIAD subsample included 268 participants (69.4 [7.8]
years; 167 females [62.3%], 101 males [37.7%]). The WRAP co-
hort included 323 participants (65.3 [6.9] years; 217 females
[67.2%], 106 males [32.8%]), predominantly without cogni-
tive impairment. The SPIN cohort included 195 participants
(63.5 [13.8] years; 120 females [61.5%], 75 males [38.5%]). All
participants had confirmatory amyloid status (TRIAD and
WRAP: Aβ PET; SPIN: CSF Aβ42/Aβ40), and the majority (716
[91.1%]) also had information on tau status (TRIAD and WRAP:
tau PET; SPIN: CSF p-tau181), as described in Table 1 along-
side demographic and clinical information for all cross-
sectional analyses. eTable 2 in Supplement 1 describes the
TRIAD and WRAP longitudinal subsets.

p-Tau217 Levels by Amyloid and Tau Status
When stratified by AT status, regardless of clinical diagnosis,
plasma p-tau217 significantly increased in a stepwise manner
in all cohorts (Figure 1), with highest levels in the A+T+ group.
Mean p-tau217 concentrations for A−T− (mean [SD] TRIAD, 0.26
[0.13] pg/mL; WRAP, 0.35 [0.15] pg/mL; SPIN, 0.32 [0.11] pg/
mL), A+T− (TRIAD, 0.75 [0.63] pg/mL; WRAP, 0.72 [0.30] pg/
mL; SPIN, 0.91 [0.47] pg/mL), and A+T+ (TRIAD, 1.48 [0.65]
pg/mL; WRAP, 1.41 [0.70] pg/mL; SPIN, 1.50 [0.70] pg/mL) were
remarkably similar across all 3 cohorts. This was also ob-
served when stratifying by amyloid status alone (A−, TRIAD,
0.28 [0.21] pg/mL; WRAP, 0.35 [0.14] pg/mL; SPIN, 0.38 [0.29]
pg/mL; and A+, TRIAD, 1.08 [0.72] pg/mL, WRAP, 0.94 [0.54]
pg/mL, SPIN, 1.43 [0.70] pg/mL) (eFigure 1 in Supplement 1).

Accuracy in Discriminating
Abnormal Aβ and Tau Pathologies
Plasma p-tau217 demonstrated high accuracy in predicting
abnormal Aβ-PET signal (centiloid >24) in TRIAD (AUC, 0.92;
95% CI, 0.92-0.96) and WRAP (AUC, 0.93; 95% CI, 0.90-0.97)
(Figure 2A). In SPIN, p-tau217 also had high accuracy in pre-
dicting abnormal CSF Aβ42/40 (AUC, 0.96; 95% CI, 0.92-
0.99) (Figure 2A). There was equally high accuracy when Aβ-
PET status was determined by visual read (eFigure 2 in
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Supplement 1). Further, p-tau217 sustained high accuracy when
Aβ-PET status was defined by differing centiloid values (eg,
centiloid >12 and centiloid >37) in TRIAD and WRAP partici-
pants (eFigure 3 in Supplement 1).

Plasma p-tau217 also exhibited high accuracy for predict-
ing abnormal tau in TRIAD (AUC, 0.95; 95% CI, 0.92-0.97) and
WRAP (AUC, 0.93; 95% CI, 0.84-0.98) (Figure 2B). In SPIN,
p-tau217 had high accuracy for abnormal CSF p-tau181 (AUC,
0.97; 95% CI, 0.94-0.99). Promisingly, p-tau217 could iden-
tify abnormal tau PET signal among amyloid-positive partici-
pants (A+T− vs A+T+) in TRIAD (AUC, 0.87; 95% CI, 0.81-0.93)
and WRAP (AUC, 0.90; 95% CI, 0.85-0.95) (Figure 2C). More-
over, we observed a gradual increase of plasma p-tau217 across
tau-PET–defined Braak stages in TRIAD (eFigure 4 and eTable 3
in Supplement 1).

Comparing p-Tau217 With Imaging and CSF Biomarkers
in Identifying AD Pathology
Next, we compared the performance of plasma p-tau217 to CSF
and imaging modalities for predicting abnormal Aβ PET and
tau PET. This analysis included the maximum number of

participants within each biomarker modality. In WRAP, in de-
termining abnormal Aβ PET, plasma p-tau217 outperformed
hippocampal atrophy (AUC, 0.52; 95% CI, 0.44-0.60; P < .001),
tau PET (AUC, 0.72; 95% CI, 0.64-0.80; P < .001), and CSF
p-tau181 (AUC, 0.75; 95% CI, 0.66-0.84; P < .001) but did not
differ significantly from CSF Aβ42/40 or CSF p-tau181/Aβ42
(eFigure 5A in Supplement 1). Similar findings were observed
in TRIAD, where plasma p-tau217 outperformed hippocam-
pal atrophy (AUC, 0.70; 95% CI, 0.63-0.76; P < .001) and tau
PET (AUC, 0.86; 95% CI, 0.82-0.91; P = .05) for detecting
abnormal Aβ pathology but did not significantly differ from
various CSF biomarkers (eFigure 5B in Supplement 1). In SPIN,
plasma p-tau217 outperformed hippocampal volume (AUC,
0.89; 95% CI, 0.83-0.95; P = .04) and was comparable with CSF
biomarkers (eFigure 5C in Supplement 1).

In predicting abnormal tau-PET burden (eFigure 5D-E in
Supplement 1), plasma p-tau217 significantly outperformed
hippocampal volume (WRAP AUC, 0.65; 95% CI, 0.50-0.81;
P = .01; TRIAD AUC, 0.83; 95% CI, 0.76-0.89; P = .01; SPIN AUC,
0.91; 95% CI, 0.86-0.96, P = .049). Plasma p-tau217 signifi-
cantly outperformed CSF p-tau181 in WRAP (AUC, 0.69; 95%
CI, 0.66-0.84; P = .02) but not TRIAD. Plasma p-tau217 out-
performed Aβ PET in TRIAD (AUC, 0.90; 95% CI, 0.86-0.95;
P = .04), while in WRAP they were comparable (AUC, 0.96;
95% CI, 0.93-0.99; P = .35). Plasma p-tau217 showed compa-
rable performance with other measures, except for CSF
p-tau217 in SPIN.

Additionally, we conducted comparisons in subsets only
including participants with all modalities (WRAP: n = 131;
TRIAD: n = 106; SPIN: n = 41), finding no marked differences
(eFigure 6 in Supplement 1). Plasma p-tau217 also discrimi-
nated A+T+ from A+T− individuals comparably with CSF and
imaging biomarkers (eFigure 7 in Supplement 1).

Comparing p-Tau217 With Other Plasma Biomarkers
Plasma p-tau217 alone or p-tau217 plus demographic vari-
ables (age, sex, and APOE status) outperformed all other plasma
biomarkers (p-tau181, p-tau231, Aβ42/40, GFAP, and NfL), and
their optimal combinations, for predicting both amyloid and
tau status in all cohorts (eTables 4 and 5 and eFigure 7 in
Supplement 1). A minimal improvement in model metrics of
goodness-of-fit (Akaike information criterion) was observed
in p-tau217 plus demographic data but not in discriminatory
performance. The correlations of plasma p-tau217 with Aβ PET,
tau PET, and CSF p-tau217 are shown in eFigures 9 and 10 in
Supplement 1.

Reference Ranges for Plasma p-Tau217
With Abnormal Aβ and Tau Pathologies
We first derived a binary reference point for Aβ positivity using
the Youden index, derived in WRAP (>0.42 pg/mL) (Table 2 and
eFigure 11 in Supplement 1). This reference point was cross-
validated in TRIAD (Aβ positivity based on PET) and SPIN (Aβ
positivity based on CSF Aβ42/40). We next applied a 3-range
approach,41 creating lower (95% sensitivity, <0.4 pg/mL) and
upper (95% specificity, >0.63 pg/mL) reference points in WRAP
(Table 2 and eFigure 11 in Supplement 1). This approach im-
proved the positive percent agreement (TRIAD: 97.7%; SPIN:

Table 1. Cross-Sectional Demographic Data for the WRAP, TRIAD,
and SPIN Cohorts

Characteristic

Mean (SD)
WRAP
(n = 323)

TRIAD
(n = 268)

SPIN
(n = 195)

Age, y 65.3 (6.91) 69.4 (7.90) 63.5 (13.8)

Sex, No. (%)

Female 217 (67.2) 167 (62.3) 120 (61.5)

Male 106 (32.8) 101 (37.7) 75 (38.5)

APOE ε4 carriers, No. (%) 121 (37.5) 96 (35.8) 81 (41.5)

MMSE score 29.2 (1.23) 27.0 (4.72) 26.4 (4.19)

Baseline clinical diagnosis,
No. (%)

No cognitive impairment 309 (95.7) 134 (50.0) 82 (42.1)

Cognitive impairment 14 (4.3) 134 (50.0) 113 (57.9)

Years of education 16.1 (2.62) 15.0 (3.57) 13.4 (5.12)

AT status, No. (%)

A−T− 209 (78.9) 146 (55.3) 75 (41.2)

A+T− 38 (14.3) 65 (24.6) 6 (3.3)

A+T+ 18 (6.8) 53 (20.1) 101 (55.5)

A−T+ 1 (0.3) 2 (0.7) 2 (1.0)

Missing dataa 57 (17.6) 2 (0.7) 11 (5.6)

Plasma p-tau217, pg/mL 0.466
(0.362)

0.636
(0.648)

0.977
(0.766)

Abbreviations: Aβ, amyloid β; A+, amyloid-positive; A−, amyloid-negative;
CSF, cerebrospinal fluid; MMSE, Mini-Mental State Examination; PET, positron
emission tomography; p-tau, phosphorylated tau; SPIN, Sant Pau Initiative on
Neurodegeneration; T+, tau-positive; T−, tau-negative; TRIAD, Translational
Biomarkers in Aging and Dementia; WRAP, Wisconsin Registry for Alzheimer’s
Prevention.
a In the WRAP and TRIAD cohorts, AT status was defined with amyloid and tau

PET. In WRAP, all participants had available Aβ-PET data (100%), while tau
PET was not available for 57 participants (17.6%). In TRIAD, all participants had
available Aβ-PET data (100%), and tau PET was not available for 2 participants
(0.7%). In SPIN, all participants had data for amyloid status, which was
determined with CSF Aβ42/Aβ40 in 159 (71.5%) participants or with Aβ PET in
36 (18.5%) participants. In SPIN, tau status was defined with CSF p-tau181 and
was not available for 11 participants (5.6%).
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95.3%) while maintaining a similar negative percent agree-
ment. The “intermediate” zone (p-tau217 levels 0.4-0.63 pg/
mL), which could in practice be referred to confirmatory test-
ing with CSF or PET, was largest in WRAP (22.9%), as expected
because of lower Aβ-positivity prevalence, and smaller in
TRIAD (15.8%) and SPIN (13.0%). A binary reference point for
tau positivity is demonstrated in eTable 6 in Supplement 1.

Longitudinal Changes in Plasma p-Tau217 Levels
In up to 8 years of longitudinal sampling in WRAP (mean
[SD], 5.22 [1.41] years), the A+T+ group demonstrated a

significantly higher annual increase rate in plasma p-tau217
levels compared with the A−T− group (β estimate, 0.12; 95%
CI, 0.10-0.13; P < .001). The A+T− group also demonstrated
a significantly higher annual rate of change in plasma
p-tau217 compared with A−T− (β estimate, 0.04; 95% CI,
0.02-0.05; P < .001). Slope comparisons showed the A+T+
group to have a significantly higher rate compared with the
A+T− group (β estimate, 0.08; 95% CI, 0.06-0.09; P < .001)
(Figure 3A). In TRIAD, similar results were observed, even
with a shorter follow-up (mean [SD], 1.90 [0.61] years)
(Figure 3B).

Figure 1. Plasma Phosphorylated Tau 217 (p-Tau217) Levels According to Amyloid β (A) and Tau (T) Profiles
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Boxplots show the distribution of p-tau217 concentrations by AT profile for the
Wisconsin Registry for Alzheimer’s Prevention (WRAP), Translational
Biomarkers in Aging and Dementia (TRIAD), and Sant Pau Initiative on
Neurodegeneration (SPIN) cohorts. For WRAP and TRIAD, Aβ and tau were
indexed by positron emission tomography. In SPIN, A was indexed by
cerebrospinal fluid (CSF) Aβ42/40 and T by CSF p-tau181. All comparison
P values obtained from pairwise contrasts from linear models adjusted for age
and sex were less than .001, whereas in the SPIN cohort, 2 comparisons showed
P < .05. The horizontal line inside each box indicates the median, the outer

bounds of boxes represent lower and upper quartiles, and whiskers extend to
the 5th and 95th IQRs; circles indicate observed data points.
a P = .001.
b P < .001.
c A+T− vs A+T+: P = .03.
d A−T− vs A+T−: P = .02.

Figure 2. Accuracy of the Phosphorylated Tau 217 (p-Tau217) Immunoassay in Detecting Amyloid β (Aβ) Positivity and Tau (T) Positivity
and Discriminating A+T− From A+T+ Individuals
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individuals (A+T+) from Aβ-positive and tau-negative (A+T−). For each ROC

curve, the area under the curve is reported alongside 95% CI. For WRAP and
TRIAD, Aβ and tau were indexed by positron emission tomography. In SPIN,
A was indexed by cerebrospinal fluid (CSF) Aβ42/40 and T by CSF p-tau181.
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Discussion

In 3 independent cohorts, this study presents the perfor-
mance of a commercially available plasma assay targeting
p-tau217. Our findings demonstrate high accuracy in identi-
fying abnormal Aβ and tau pathologies, comparable with CSF
measures and superior to brain atrophy assessments. A 3-range
approach demonstrated high negative and positive concor-
dance with Aβ status, with approximately 20% of individuals
in an intermediate zone that would require confirmatory CSF
or PET, as previously proposed.41 Longitudinally, this assay ex-
hibited increases solely in individuals with Aβ pathology at

baseline, and those with both elevated Aβ and tau patholo-
gies demonstrated a greater rate of annual increase.

Plasma biomarkers have emerged as important tools for AD
evaluation. Their specificity to underlying pathology offers great
potential for rapid screening, reducing the dependence on ad-
vanced confirmatory tests. A clinical AD diagnosis often lacks
sensitivity and specificity, resulting in many individuals with
MCI (40%-60%) or dementia (20%-30%) who exhibit typical AD
symptoms lacking Aβ pathology.1 In primary care, it is esti-
mated that more than 50% of patients with cognitive impair-
ment remain undiagnosed or incorrectly diagnosed because of
the lack of accessible and cost-effective tools.1 Thus, blood bio-
markers are set to revolutionize clinical care by providing

Table 2. Binary Reference and Three-Range Reference for Aβ Positivitya

Characteristic

Binary reference for Aβ positivity:
plasma p-tau217 >0.42 pg/mL

Characteristic

Three-range reference for Aβ positivity:
plasma p-tau217 positive >0.63 pg/mL,
plasma p-tau217 negative <0.40 pg/mL

WRAP TRIAD SPIN WRAP TRIAD SPIN
No. of participants 323 268 195 No. of participants 323 268 195

Aβ-positive, No. (%) 64 (19.8) 120 (44.8) 110 (56.4) Aβ-positive, No. (%) 64 (19.8) 120 (44.8) 110 (56.4)

Plasma p-tau217 status
positive, No. (%)

127 (39.3) 124 (46.3) 127 (65.1) Plasma p-tau217 positive, No. (%) 58 (18.0) 86 (32.1) 106 (54.4)

Plasma p-tau217 intermediate, No. (%) 74 (22.9) 43 (16.0) 24 (12.3)

Plasma p-tau217 negative, No. (%) 191 (59.1) 139 (51.9) 65 (33.3)

Sensitivity, % 95.3 85.0 98.2 Sensitivity of lower reference point, % 95.3 86.7 98.2

Specificity, % 74.5 85.1 77.6 Specificity of upper reference point, % 94.9 98.6 94.1

PPA, % 48.0 82.3 85.0 PPA, upper reference point, % 77.6 97.7 95.3

NPA, % 98.5 87.5 97.1 NPA, lower reference point, % 98.4 88.5 96.9

OPA, % 78.6 85.1 89.2 OPA for p-tau217 positive and negative, % 93.6 92.0 95.9

Abbreviations: Aβ, amyloid β; NPA, negative percent agreement; OPA, overall
percent agreement; PPA, positive percent agreement; p-tau217, phosphorylated
tau 217; SPIN, Sant Pau Initiative on Neurodegeneration; TRIAD, Translational
Biomarkers in Aging and Dementia; WRAP, Wisconsin Registry for Alzheimer’s
Prevention.
a The table shows key metrics for the evaluation of a binary and 3-range

reference point for Aβ positivity. The binary reference point was based in the
Youden index derived in the WRAP cohort and cross-validated in the TRIAD

and SPIN cohorts. Three-range reference points for Aβ positivity were derived
in WRAP based on 95% sensitivity (lower reference point) and 95% specificity
(upper reference point) and cross-validated in TRIAD and SPIN. The OPA for
p-tau217 negative and positive indicates the combined NPA of those below the
lower reference point and the PPA for those above the upper reference point,
not accounting for the intermediate zone. In WRAP and TRIAD, Aβ positivity
was determined with Aβ positron emission tomography, whereas in SPIN, Aβ
positivity was determined with cerebrospinal fluid Aβ42/Aβ40.

Figure 3. Longitudinal Trajectories of Plasma Phosphorylated Tau 217 (p-Tau217) Values According to Amyloid β (A) and Tau (T) Status
by Positron Emission Tomography (PET)
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a P < .001.
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objective biomarker-based information. As anti-Aβ trials move
toward targeting a preclinical population with lower preva-
lence of Aβ abnormalities,42 a cost-effective screening strat-
egy becomes paramount. In previous studies, targeting p-tau217
in blood has yielded the best results as a diagnostic and prog-
nostic tool that tracks longitudinal change.

There has been limited access to immunoassays target-
ing p-tau217 for broader evaluation. This study evaluates a com-
mercially available assay for p-tau217 that exhibits similar ad-
vantageous features to those previously reported. Consistent
with Palmqvist et al,19 this assay outperformed magnetic reso-
nance imaging and showed comparable performance with
CSF biomarkers in detecting Aβ PET positivity and tau PET
positivity.43 Further, significant superiority to other plasma
p-tau epitopes, Aβ42/40, NfL, and GFAP and their optimal com-
binations was shown. When combined with APOE status and
age, only modest improvements in diagnostic accuracy were
observed, whereas other plasma biomarkers relied more heav-
ily on these variables for their performance. Notably, the as-
say demonstrated high accuracy in identifying tau pathology
within Aβ-positive individuals. This is particularly important
as antiamyloid therapies may be less effective in patients with
advanced tau pathology.44,45 Our findings suggest that p-tau217
has the potential to identify elevated tau-PET uptake and
promising utility in early AD trials. Our study did not define
elevated tau in the same manner as the TRAILBLAZER trials
but warrants further studies applying p-tau217 to intermediate-
tau trial inclusion designs.45

Integrating blood biomarkers into diagnostic workflows re-
mains challenging despite their promise. Therefore, this study
also aimed to establish reference points based on abnormal Aβ
pathology. The study evaluated a 3-range approach as recom-
mended by Alzheimer’s Association guidelines39 and re-
cently proposed by Brum et al,41 which suggests confirma-
tory testing for patients with uncertain plasma p-tau217 results.
Evaluating this approach using a commercial immunoassay
showed high negative and positive predictive accuracy at
screening, indicating only 12% to 23% of individuals warranted

advanced testing, depending on the clinical stage. However,
we acknowledge that the cohorts used in this study may not
fully represent real-world clinical settings. Importantly, the re-
ported negative and positive predictive accuracy of these ref-
erence ranges can vary based on the prevalence of the out-
come in the target population. Lower positive percent
agreements are expected in settings with lower prevalence,46

as observed in the preclinical WRAP cohort compared with the
higher prevalence seen in TRIAD and SPIN cohorts. There-
fore, future studies should prospectively evaluate plasma
p-tau217 reference points in memory clinic populations with
wider diversity to ensure optimized implementation, account-
ing for higher rates of important comorbidities.47

Limitations
This study is not without limitations. First, one-third of our
participants were classified as cognitively impaired, and this
may limit our generalizability to the symptomatic stages of the
disease but highlights promise for future preclinical recruit-
ment. In addition, our results cannot be generalized to all
individuals without detailed examination in cohorts with a
larger representation of diverse ethnic populations. We
acknowledge that CSF p-tau181, utilized as a T marker in SPIN,
is not interchangeable with other methods that more accu-
rately reflect neurofibrillary tangle pathology.48

Conclusions
This study highlights the effectiveness of a commercially avail-
able plasma p-tau217 assay in identifying AD pathology. Our
findings demonstrate the substantial reduction of confirma-
tory testing, by approximately 80%, by implementing a 3-range
approach for Aβ positivity based on plasma p-tau217. These
results emphasize the important role of plasma p-tau217 as an
initial screening tool in the management of cognitive impair-
ment by underlining those who may benefit from antiamy-
loid immunotherapies.
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