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Abstract

Observatories are producing astronomical image data at quickly increasing rates. As a result, the efficiency of the
compression methods employed is critical to meet the storage and distribution requirements of both observatories
and scientists. This paper presents a novel lossy compression technique that is able to preserve the results of
photometry analysis with high fidelity while improving upon the state of the art in terms of compression
performance. The proposed compression pipeline combines a flexible bi-region quantization scheme with the
lossless, dictionary-based, LPAQ9M encoder. The quantization process allows compression performance and
photometric fidelity to be precisely tailored to different scientific requirements. A representative data set of 16-bit
integer astronomical images produced by telescopes from all around the world has been employed to empirically
assess its compression-fidelity trade-offs, and compare them to those of the de facto standard Fpack compressor. In
these experiments, the widespread SExtractor software is employed as the ground truth for photometric analysis.
Results indicate that after lossy compression with our proposed method, the decompressed data allows consistent
detection of over 99% of all astronomical objects for all tested telescopes, maintaining the highest photometric
fidelity (as compared to state of the art lossy techniques). When compared to the best configuration of Fpack
(Hcompress lossy using 1 quantization parameter) at similar compression rates, our proposed method provides
better photometry precision: 7.15% more objects are detected with magnitude errors below 0.01, and 9.13% more
objects with magnitudes below SExtractor’s estimated measurement error. Compared to the best lossless
compression results, the proposed pipeline allows us to reduce the compressed data set volume by up to 38.75%
and 27.94% while maintaining 90% and 95%, respectively, of the detected objects with magnitude differences
lower than 0.01 mag; and up to 18.93% while maintaining 90% of the detected objects with magnitude differences
lower than the photometric measure error.

Unified Astronomy Thesaurus concepts: Astronomy data reduction (1861); Astronomy data analysis (1858);
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Astronomy software (1855)

1. Introduction

Photometry (Henden & Kaitchuck 1982; Romanishin 2006;
Budding & Demircan 2007; Evans 2010) is the measurement of
electromagnetic radiation, in the form of photons, emitted by
astronomical objects. Through the photoelectric effect, the
photons received by the telescope detector, i.e., the CCD, are
converted into an electrical signal for each pixel of the CCD,
resulting in the number of counts for each pixel in the image.
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The number of counts can be converted into a term called
magnitude, which quantifies the brightness of the object. The
first to classify stars by magnitude was Hipparchus in 130 BC,
with magnitude 1 stars being the brightest observed in the night
sky and magnitude 6 stars being the faintest he could
distinguish. This scale is maintained to this day and was
refined by Pogson in 1856, defining a magnitude 1 star as
100 times brighter than a magnitude 6 star:
m — mp = 2.5 10g10 Q (1)
F
where m; is the magnitudes of the stars and F; is the received
photon fluxes. If m; = 1 and m, = 6, F; is 100 times larger than
F,. By measuring the magnitude of an astronomical object for
different wavelengths, information about the size, distance, and
temperature of the star is obtained.
Observatories around the world are generating image data at an
ever-increasing pace (Kremer et al. 2017; Grange et al. 2022;
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Poudel et al. 2022). Gathered data needs to be stored for years and
even decades to sustain current and future scientific studies, given
that nowadays more publications are based on archive data than
on newly acquired data (S. T. S. Institute 2024). To control and
reduce storage and transmission costs, efficient data compression
methods need to be applied. Lossless compression offers perfect
photometric data integrity, at the cost of limited compression
performance (Maireles-Gonzélez et al. 2023). When data needs to
be compressed further to meet more stringent requirements or
reduce overall cost, lossless compression is not sufficient, and
lossy compression is required (Kremer et al. 2017; Grange et al.
2022; Poudel et al. (2022). In this case, it is paramount to select
compression configurations that maintain sufficient image quality
when photometry is the main focus of the observatory. Multiple
authors have considered errors below 0.01 mag to be small
enough for several scientific applications such as searching for
transits of extra-solar planets, asteroseismology, Sun-like stars,
and variability of faint galactic and extra-galactic objects over
large fields of view (Borucki & Lasher 2001; Lopez-Morales
2006; Blake et al. 2008; McGraw et al. 2009; Bono et al. 2010;
Di Cecco et al. 2010; Loh et al. 2012; Crawford 2017; Ivanescu
et al. 2021).

In 2011, NASA led the development of Fpack Pence et al.
(2021), a suite of lossless and lossy compression tools for
astronomical images. Fpack has been deployed in a large
majority of observatories (European Southern Observatory
2024; Las Cumbres Observatory 2024; Isaac Newton Group
Archive 2024), typically in combination with the Flexible
Image Transport System (FITS; Hanisch et al. 2001) data
format. Fpack supports several compression modes: Rice (Rice
et al. 1993), Hcompress (White et al. 1992), Gzip (Gailly &
Adler 1992), and PLIO (IRAF Tody 1993). Of these,
Hcompress tends to produce the best lossless compression
performance, while Rice achieves comparable results with three
times lower computational complexity (Maireles-Gonzilez
et al. 2023). Therefore, these two modes are hereafter considered
representative of this de facto standard for performance
comparisons. Although Fpack is able to apply lossy compres-
sion, parameters controlling the introduced errors are not directly
related to the photometric analysis process and have no explicit
scientific meaning. The introduced loss does not distinguish
between background and foreground values, nor does it adjust to
object profiles. This is also true about lossy compression
methods not designed for astronomical imagery.

The main contribution of this paper is a novel lossy
compression method designed to improve upon the state of
the art compression performance while being able to adapt to
the photometry fidelity requirements of any observatory
and telescope. The proposed pipeline consists of a flexible,
bi-region quantization scheme followed by an adaptive entropy
coder. The quantization scheme takes a threshold ¢ parameter
that determines the classification of each pixel as background
or foreground. These regions are quantized using independent
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quantization steps, respectively, controlled with the g, and g,
parameters. The resulting quantization indices and side
information are compressed using the LPAQ9M entropy coder
(Mahoney 2024), a dictionary-based technique. By adjusting
these parameters, compression performance can be traded for
photometric fidelity.

Exhaustive experiments have been performed to support
and validate the proposed pipeline. In these experiments,
representative corpora of astronomical images from different
telescopes are considered, and a recent version of the
SExtractor (Bertin & Arnouts 1996) software is used as the
ground truth for all photometric results. In these experiments,
the selection of optimal ¢, g, and g parameter values is
discussed, and their performance is compared to the best
configurations of Fpack.

Section 2 provides a concise review of work related to the
area of lossy compression of astronomical image data.
Section 3 introduces our novel lossy compression pipeline.
The experiments performed to evaluate and compare this
pipeline are provided in Section 4. Finally, Section 5 adds some
concluding remarks and describes future work.

2. Related Work

Lossy compression methods specific for astronomical image
data have been described in the literature (Press 1992; Shamir
& Nemiroff 2005; Pence et al. 2010; Pulido et al. 2020). In
most cases, information loss is introduced in a quantization
stage, whose coarseness determines the final compressed data
bit rate and the accuracy of successive photometric analysis.

Several of the most popular lossy compression algorithms
for astronomical images have been developed to comply with
the FITS data format, which can store simultaneously images
and tables in a single file with multiple extensions, along with
header information for each one (Hanisch et al. 2001).
FITSPRESS (Press 1992) was an early, if not the earliest,
lossy compressor supported in this format. Based on a user-
defined loss level, the locations of pixels above a threshold are
compressed using run-length encoding and Huffman Coding.
The remaining pixels undergo a two-dimensional wavelet
transform, followed by a uniform scalar quantization stage and
arun-length encoder. The PHOTZIP (Shamir & Nemiroff 2005)
codec was designed to reduce the impact of compression on
photometry analysis by losing only background information.
First, pixel values above a threshold are preserved without loss,
while a uniform quantizer is applied to all other pixels. This
threshold is computed based on the value of a window of
neighboring pixels and a user-defined parameter. Finally,
entropy coding is performed using the well-known gzip or
bzip2 codecs.

More recently, a pipeline similar to Press (1992) based
on spatial CDF wavelets and quantization has also been
proposed by Pulido et al. (2020). Alternatively to Press (1992),
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Pulido et al. (2020)uses a highly efficient floating-point-to-
integer quantization method that shifts the decimal of the
floating-point representation to the right, to preserve the integer
portion and truncate the fractional half. This method is
available in HDF5 Folk et al. (2011).

Fpack, also compliant with the FITS data format, is used by
virtually many major observatories such as the Isaac Newton
Group Archive (2024), Las Cumbres Observatory (2024) or the
European Southern Observatory (2024). The Hcompress
(White et al. 1992) and Rice modes (Pence et al. 2010) are
the de facto standard for compressing astronomical image
data. Lossy compression can be performed by applying
an integer-to-float conversion stage in the encoder.
Float-to-integer conversion is automatically applied by the
software when using the Rice technique on floating-point data.
The resulting image samples after applying these conversions

are defined as
I',, — 6
I,y = round| ———|. 2
' S(q)

Here, I’ , is the floating-point value, S(g) is the quantization
step size that controls the distortion introduced, and ¢ is an
optional zero-point offset. A user-defined parameter ¢ is used
to control the quantization step size S(g) either directly or
relative to the rms noise o, where

o/x ifx>0
Sx) =1{lx] ifx<O0. 3)
1 ifx=0

When the Hcompress mode is enabled in Fpack, the 2 x 2
H-transform is applied before entropy coding as follows:

Ix+l,y+l + Ix+l,y + Ix,y+l + Ix,y

h . =

Y S(s)

h _ 1x+1,y+1 + Ix+1,y - Ix,y+1 - Ix,y
x+1,y S(S) (4)
o Ix+l,y+l - Ix+l,y + Ix,y+l - Ix,y ’

ot = S(s)
Ix+l,y+1 - Ax+Lly — Ix,y+1 + Ix,y

thrl,yfl = S(s)

where s is a user-defined parameter that determines the
quantization step size, and § is defined in Equation (3).

Note that the lossy processes described in Equation (2) and
Equation (4) can be applied sequentially. In this case, the user
must choose the value of both ¢ and s.

3. Proposed Technique

This paper proposes a novel lossy compression pipeline
consisting of a flexible bi-region quantization stage followed by
the LPAQOM algorithm of the PAQ family. A diagram of the
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Figure 1. Proposed compression pipeline comprising coding and decoding
stages. Posterior photometry and scientific analysis stage is also included.

proposed compression pipeline is presented in Figure 1 and its
main stages are described next in Sections 3.1 and 3.2.

3.1. Bi-region Quantizer

The proposed quantization stage employs three user-defined
parameters: the threshold ¢, the foreground quantization step
size gy, and the background quantization step size ¢g,,. This pixel
classification follows a strategy similar to Press (1992) and
Shamir & Nemiroff (2005) to control the errors obtained in the
posterior photometric analysis. In contrast to Press (1992) and
Shamir & Nemiroff (2005), the proposed method quantizes not
only the background pixels but also the foreground ones. Given
that foreground values are typically 3 or 4 orders of magnitude
higher than the quantization steps, foreground quantization can
enhance compression performance while introducing arbitrarily
small errors in the photometry analysis. The threshold ¢ is used
to classify pixels as foreground or background, while g, and ¢,
are used to adjust the quantization coarseness for pixels likely
to contain astronomical objects (i.e., the foreground) or not
(i.e., the background). By -carefully selecting these three
parameters, it is possible to achieve the photometry fidelity
requirements of the task at hand, while maximizing compres-
sion performance.

The classification of each pixel I, is stored in a binary
mask, mask, ,, with dimensions identical to those of the image.
For each (x, y) position, mask, , = 0 indicates that the pixel is
part of the background, and mask, , = 1 indicates that it is part
of the foreground.

The quantization indices IZ, produced by the proposed

X,y
flexible bi-region quantizer are defined using the classification
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Figure 2. Main stages of the LPAQ9M entropy coder.

mask and the g, and gy parameters as

Ix,y . .
—| if mask,, =0

qp
19, = . s)
| L.,
=21 if mask, y=1
qr

Finally, the encoder compresses the quantization indices
without loss using LPAQ9M as described in Section 3.2. The
classification mask is also losslessly compressed and trans-
mitted as side information, which is typically 2-3 orders of size
smaller than the rest of the compressed data.

On the decoder side, the quantization indices I;{V and
classification mask, mask,,, are reconstructed using the
LPAQOM decoder. A lossy reconstruction of the original
image pixels is then computed as

. clip(f{, + 0.5) - q,) if mask,, =0 6
O elip(Uf, 4 0.5) - g) if mask,, = 1’ ©®

clip(-) is a function that rounds the argument to the closest
integer value and truncates the result to the original pixel range,
e.g., [0, 2'® — 1] for an unsigned 16-bit image. Note that the
constant addition of 0.5 in (6) results in the mid-point
reconstruction of the samples, i.e., original samples that fall
within a given quantization interval are reconstructed as the
central value of the said interval.

3.2. LPAQ

In the proposed pipeline, lossless compression with
LPAQO9M is applied to the quantization indices and the
classification mask produced in the previous stage. LPAQOM is
a member of the PAQ family of lossless compressors, designed
to have comparatively lower computational complexity than
other members Mahoney (2002), Blaszczyk et al. (2012), Tang
et al. (2022), Mahoney (2024). Its pipeline uses prediction and
arithmetic coding, and combines multiple context models into a
single probability distribution, which is used to drive an
adaptive binary arithmetic encoder. The main stages of this
algorithm are shown in Figure 2.

LPAQ9M uses seven context models to estimate the
probability of each bit: five order-n models, n € {1, 2, 3, 4,
6}, plus a word model and a match model. In the order-n
models, the value of n input bytes and between 0 and 7 bits of
the current sample are used to make probability estimations.
Other members of the PAQ family use 16 order-n models plus
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several other types, which results in compression times 2 orders
of magnitude longer than LPAQO9M. For astronomical images,
other PAQ algorithms provide no significant compression
performance advantage (Maireles-Gonzélez et al. 2023), so
they were not included in the proposed pipeline. Probabilities
from different contexts are combined using an artificial neural
network into a single probability estimation, which is used
by the arithmetic encoder. After processing each bit, the
probability distributions of all seven context models are
updated, and so are the weights of the artificial neural network.
These weights are updated considering that the prediction
errors are the cost function to minimize.

The memory usage of the LPAQ9M encoder can be adjusted
to approximately 2N MB, where N e {1, 2,...,9} is a user-
defined parameter. Smaller values of N result in lower
computational complexity and faster execution times. On the
other hand, larger values of N tend to produce better
compression performance. For astronomical images, N=9 is
2 orders of magnitude slower than N =2, improving compres-
sion bit rates by less than 1%. Based on these observations,
N =2 offers the best trade-off for the task at hand, and is
exclusively considered hereafter.

4. Experimental Results

The performance of the proposed compression pipeline is
thoroughly analyzed in this section using a comprehensive set
of five corpora comprising real astronomical image data from
different telescopes. This analysis takes into account both the
achieved compressed data volume reduction and the impact on
the results of the photometric analysis. The test corpus and its
properties are addressed in Section 4.1. A description of the
compression and distortion metrics used in this study is
provided in Section 4.2. The performance impact of the
proposed pipeline’s user-defined parameters is analyzed in
Section 4.3, along with the problem with optimal parameter
selection. Finally, a comparison of the proposed pipeline with
the best-performing methods in the state of the art is available
in Section 4.4.

4.1. Test Corpora

Experiments for this work have been performed on images
from a representative selection of observatories around the
world. Images have been gathered from telescopes of different
diameters, preferable for different observation scenarios such as
stars (isolated, open clusters, and globular clusters), galaxies
(elliptical, spiral, irregular, face-on, edge-on, isolated, and
interacting), and nebulae. The selected telescopes are the Isaac
Newton Telescope (INT), the Jacobus Katpeyn Telescope
(JKT), the Las Cumbres Observatory (LCO)—which
groups the McDonald, Haleakala, Cerro Tololo, and Siding
Springs observatories—, the Joan Ord Telescope (TJO), and
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Table 1
Diameters of the Telescopes Sourcing Data for the Test Corpora

Telescope Acronym Diameter
(m)

Isaac Newton Telescope INT 2.5

Jacobus Katpeyn Telescope JKT 1.0

Las Cumbres Observatory LCO 0.4 and 2

Joan Oro Telescope TJO 0.8

William Herschel Telescope WHT 4.2

the William Herschel Telescope (WHT). The diameters of
these telescopes are provided in Table 1.

A total of 206 astronomical images, 2.9 GB of uncompressed
data, have been grouped into the five aforementioned corpora.
Some basic properties of these images are summarized in
Table 2, and additional information about the test corpora can
be found in Maireles-Gonzdlez et al. (2023). All data are
publicly available for download (Maireles Gonzalez et al.
2024).

4.2. Compression and Distortion Metrics

In this work, lossy compression methods are assessed by
jointly considering the compressed data bit rate and the
distortion introduced in photometric analysis. All photometric
results are obtained with version 2.19.5 of SExtractor (Bertin &
Arnouts 1996) configured to use a minimum threshold of
80 mag - arcsec?, a saturation level of 60,000 Analogical to
Digital Units, and a minimum pixel count of 9 above the
threshold for object detection.

The compressed data bit rate indicates how many com-
pressed bits are produced on average for each input sample,
i.e., for each input pixel, as

Compressed data length (bits)

compressed data rate = - -
Input image size (samples)
It is expressed in bits per sample (bps), and lower values
indicate more compression.

We study two aspects to assess the impact on photometry
after lossy compression: the detection or not of each
astronomical object, and the errors in the magnitude values
assigned to each detected object. The ground truth of
astronomical objects present in an image and their magnitude
values is obtained by applying the SExtractor photometry
software to the original images. The same software is applied to
each image reconstructed after lossy compression and decom-
pression, and the results are compared to those of the original.
The following metrics are employed to compare these results:

1. % recovered. the percentage of recovered objects. It is
calculated as the fraction of objects correctly detected
from those detected in the original images. The criterion
for a correct detection (a true positive) is for the two
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Figure 3. Average compressed data rate and Peak Signal-to-Noise Ratio
(PSNR) rate-distortion over all test images.

Table 2
Properties of the Test Corpora

Telescope Images Dimensions Average Entropy
(bits)

INT 39 4200 x 2154 5.78

JKT 36 2100 x 2088 7.32

LCO 79 2112 x 3136 5.84

TIO 17 4096 x 4096 5.92

WHT 35 2501 x 2148 7.68

Note. Entropy results correspond to zero-order entropy.

objects to have the same reported x and y position values
with a maximum error of 0.5 pixels in each one.

2. % recovered <0.01 mag. the percentage of recovered objects
with magnitude differences smaller than 0.01 mag. The
0.01 magnitude threshold has been described as the max-
imum that can be introduced without causing a significant
disturbance in the scientific value of the data (Borucki &
Lasher 2001; Lépez-Morales 2006; Blake et al. 2008;
McGraw et al. 2009; Bono et al. 2010; Di Cecco et al. 2010;
Loh et al. 2012; Crawford 2017; Ivanescu et al. 2021).

3. % recovered < measure error: the percentage of recovered
objects with magnitude differences smaller than the
measurement error. This measurement error is provided by
the photometry analysis software for each detected object.
Magnitude differences smaller than this error indicate that
the measurements in the reconstructed data are within the
margin of error of the measurements in the original data.

Figure 3 shows the performance of the proposed tested
techniques by measuring the distortion in the Peak Signal-to-
Noise Ratio (PSNR). PSNR is a metric derived from the mean
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square error (MSE) between the original and recovered image,
calculated as:

2B 1

JMSE(,,. I.,,)

where B is the bit-depth of the images, for the current case
B =16. As can be seen, the proposed technique outperforms all
fpack and JPEG-LS techniques for all bit rates, and JPEG 2000
for bit rates larger than 4 bps.

PSNR = 20 log,, 8)

4.3. Optimal t, qy,, and q¢ Value Selection

The values of the threshold 7, background quantization step
qp, and foreground quantization step gy of the proposed
compression pipeline need to be adjusted to maximize
performance according to the metrics defined in Section 4.2.
An exploration of the parameter space has been conducted for
each of the corpora described in Section 4.1, with the goal of
finding the best configuration in each case.

The heuristic used to select the best combination of
parameters ¢, q,, and gy for each corpus is as follows. The
fixed requirement to maintain fidelity is to recover more than
99% of the original objects. Once this condition is satisfied, the
optimal values are those having the lowest bps values, as
shown in Figure 4. The results were tested for g;, and gyranging
from 1 to 20, using parameter steps of 1. For the case of ¢, the
parameter range was from the minimum pixel value found in
each data set to a value 2000 counts higher, with steps of 100.
Figure 4 shows different combinations of #, g;, and g, for each
data set, to exemplify the compression and fidelity results
behavior. The results are in pairs as one is for bps metric results
and the other one is for % recovered metric results. As can be
seen in Figure 4, usually g, > 6 and g,> 6 retrieve less than
99% of recovered objects and do not fulfill fidelity criteria.
Usually g, =3, 4, 5 and/or gy=4, 5, 7 are the values typically
selected as the best overall results, since they improve
compression performance compared to lower quantization
values and also fidelity. After an exhaustive search, the ¢
values reported in Figure 4 are the ones with the minimum bps
value for each g, and g, combination. The optimal compression
values for each telescope are summarized in Table 3.

Figure 5 shows a visual comparison of a zoomed part of an
image from the JKT data set. The pixel values of a small region
of the original image are compared to the same pixel values
obtained after lossy compression. The image is compressed at a
rate of 3.5 bits per sample using the proposed technique,
JPEG2000 and Hcompress, and the pixel differences are
displayed. As can be observed, the differences in the proposed
technique are smaller and smoother. The bi-region quantization
is more suitable to adapt to the bi-modal nature of astronomical
images (background and foreground), thus decreasing the pixel
differences both near the sources (bottom left part of the
difference matrix) and in the background regions (top right part
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of the difference matrix). The designed quantization scheme
reduces the image entropy, improving compression while
maintaining high photometric fidelity.

4.4. Comparison to the State of the Art

The performance of the proposed compression pipeline using
the optimal parameters derived in Section 4.3 is compared to
the state of the art in this section. As in the previous section, the
figure of merit jointly considers the compressed data rate and
the distortion introduced in the photometry. The representative
selection of lossy compressors considered for comparison are
described first. The results obtained are presented and discussed
later.

4.4.1. Compared Algorithms

The de facto standard Fpack is evaluated in the two modes
described in Section 2, Rice and Hcompress. Versions 1.7.0
and 3.470 of Fpack and CFITSIO are employed exclusively for
this experiment. The values of the g and s parameters for
Hcompress are selected for each data set as the ones that
maximize compression performance while maintaining a
percentage of recovered objects above 99%, as explained in
the previous section. Fpack results have been tested for s and ¢
ranging from 1 to 10, with parameter steps of 1. Hcompress is
executed in a one-parameter mode using only s, henceforth
called Hcompress-s, and also in a two-parameter mode using
the same s value plus ¢, henceforth called Hcompress-s&q.
Hcompress-s&q enhances the results of Hcompress-s, as will
be seen next, and it has never been tested before in the
literature. Unfortunately, the techniques described in Press
(1992), Shamir & Nemiroff (2005), Pulido et al. (2020) could
not be included in this comparison due to either the lack of
source code, binaries or data sets available for public down-
load, or the lack of a sufficiently detailed algorithm description
to allow a full own implementation. Two more lossy
compression techniques are included for completeness:
JPEG 2000 (Taubman & Marcellin 2012), which uses a
discrete wavelet transform, a bit-plane encoder and the MQ
arithmetic coding (Baarir & Medouakh 2011); and JPEG-LS
(Weinberger et al. 2000), which uses prediction, context
modeling, and a Golomb entropy coding. These techniques
have previously been tested in the lossless mode in Maireles-
Gonzalez et al. (2023) for this data set. JPEG 2000 Kakadu
software (Taubman 2024) includes a lossy mode by adding a
rate parameter, which indicates the bps value the compression
performance reaches. In turn, JPEG-LS’ near-lossless mode
guarantees a maximum pixel (peak absolute) error m, only
allowing integer values. The selected parameter values for each
corpus and coding technique are shown in Table 4.
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Figure 4. Heatmaps for each data set for the optimal 7 values. Red color indicating the best results. Left-side heatmaps representing the bps values and right-side
heatmaps represent % recovered values. Best combination of parameters highlighted by a black box.
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(a) original

(b) original

(c) original

(d) Proposed

(e) JPEG 2000

(f) Hcompress

Figure 5. Visual comparison of the loss introduced by the main lossy techniques tested. The upper part shows a zoom of an M51 image included in the JKT data set.
The lower part shows the zoomed region (c) after lossy compression performed by (d) the proposed technique, (¢) JPEG2000 and (f) Hcompress. The pixel differences

compared to the original image are shown above the pixels of the latter images.

Table 3
Optimal Parameters for the Proposed Method
Telescope t qr qp
INT 1800 4 2
JKT 1200 10 4
LCO 1000 5 4
TIO 1200 16 5
WHT 1200 5 5

4.4.2. Comparison Results

The compressed data rate and the percentage of detected
objects are analyzed jointly. Figure 6 shows the average results
for all data sets for our proposed pipeline and the algorithms in
the state of the art. The 99% object detection level, i.e., the
minimum acceptable fidelity, is highlighted in the figure for
ease of reference. Tables 3 and 4 configurations are shown as
the lowest bps points for each compression technique above the
99% fidelity level in Figure 6. Some additional points are also
included to represent more and also less aggressive compres-
sion configurations and to better compare the state of the art

Table 4
Optimal Parameters for Rice, Hcompress, JPEG 2000 and JPEG-LS used in the
Comparison

Telescope Rice _Hcompress JPEG2000 JPEG-LS

q K q Rate m
INT -7 -8 8 4 1
JKT 3 -8 4 4 1
LCO —4 -8 4 4 1
TJO -6 -8 4 4 1
WHT —10 -8 4 4 1

techniques with the proposed one. As will be seen below, high
bps results are of particular interest for satisfying restrictive
photometric requirements. As can be observed, only the
proposed pipeline and Hcompress-s&q offer the best compres-
sion when conservative quality levels are imposed. For the best
compression scenario within the detection threshold of 99%,
the results of the proposed pipeline indicate average improve-
ments in the compressed data rate of 0.95bps (24.05%),
1.09 bps (26.10%), and 1.72 bps (36.40%) over JPEG 2000,
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Figure 6. Average compressed data rate and percentage of detected objects
over all test images.

JPEG-LS and Rice, respectively. Hcompress-s&q best config-
uration has average improvements of 0.333 bps (11.10%) over
the proposed pipeline. Conversely, at similar compressed data
rates within the detection threshold of 99%, the proposed
pipeline is able to preserve more relevant information for
analysis in the images. The proposed pipeline recovers 0.59%,
0.30%, and 0.30% more objects compared to Rice, JPEG 2000,
and JPEG-LS, respectively. Hcompress-s retrieves a similar
recovery percentage, but, as shown next, the magnitude
differences are notably higher. Hcompress-s&q has an
improvement of 0.38% over the proposed method.

Even though the percentage of detected objects in the
reconstructed images is informative, it is not enough to fully
assess the fidelity of the photometry analysis: errors in the
magnitude (intensity) of the detected objects are also critical. In
Figure 7, the percentage of recovered objects with absolute
magnitude differences lower than 0.01 mag (Borucki &
Lasher 2001; Lépez-Morales 2006; Blake et al. 2008; McGraw
et al. 2009; Bono et al. 2010; Di Cecco et al. 2010; Loh et al.
2012; Crawford 2017; Ivanescu et al. 2021) are shown as a
function of the compressed data rate. The 95% and 90% rates
of objects with magnitude differences under 0.01 mag are
highlighted in blue and red, respectively, in the figure for ease
of reference. As can be observed, Hcompress results do not
reach 90% at any bit rate. The proposed method reaches 90%
value at 3.40 bps and 95% at 4.00 bps. Results indicate that, at
a similar fidelity within the detection threshold of 99%, the
proposed pipeline performs better compression than the state of
the art methods. The results of the proposed pipeline indicate
average improvements in the compressed data rate of 0.35 bps
(8.86%), 0.63bps (14.85%), and 0.77bps (17.56%) over
JPEG 2000, JEPG-LS, and Rice, respectively.
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Figure 7. Average compressed data rate and percentage of detected objects
with magnitude differences under 0.01 mag over all test images.
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Figure 8. Average compressed data rate and percentage of detected objects
with magnitude differences under measurement error.

It is also interesting to consider the estimated measurement
error when performing photometry analysis. In addition to the
position and magnitude of the detected objects, each magnitude
measurement includes an absolute magnitude error margin.
Results within this margin indicate that magnitude values
produced using the compressed values after lossy compression
are consistent with those obtained using the original,
uncompressed data. In Figure 8, the percentage of recovered
objects with absolute magnitude differences lower than the
measure error is shown as a function of the compressed data
rate. The 90% and 80% rate of objects with magnitude
differences under 0.01 mag are highlighted in blue and red,
respectively, in the figure for ease of reference. The proposed
method reaches 80% value at 3.90 bps and 90% at 4.50 bps. In
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Table 5
Average Lossless Compressed Data Rates in Bits Per Sample
Telescope LPAQYM JPEG2000 Hcompress Rice
INT 5.17 5.42 5.78 5.95
JKT 5.70 5.85 6.19 6.34
LCO 5.48 5.76 6.03 6.18
TIO 5.49 5.71 5.93 6.14
WHT 597 6.08 6.51 6.62
All 5.55 5.763 6.10 6.25

this bit range, its performance is similar to JPEG 2000, while it
improves compression over JPEG-LS and Rice by 0.33 bps
(7.73%) and 0.47bps (10.67%), respectively, at a similar
fidelity. Hcompress does not reach 80% value or higher at any
bit rate.

Results indicate that the proposed pipeline is able to preserve
high photometric fidelity in the reconstructed images, while
significantly improving upon the compression performance of
other lossy compression methods in the state of the art. It is
important to stress that improvements over purely lossless
compression methods are much larger, in spite of the
comparable fidelity levels. Table 5 provides the best lossless
compression data rates for astronomical images described in the
literature (Maireles-Gonzalez et al. 2023). Comparing these
results to the ones obtained for our lossy proposed method, the
compressed data set volume can be reduced up to 1.55bps
(38.75%) and 2.15 bps (27.94%) while maintaining 95% and
90%, respectively, of the detected objects with magnitude
differences lower than 0.01 mag. For major photometric
fidelity, data can be compressed up to 1 bps (18.93%) while
maintaining 90% of the detected objects with magnitude
differences lower than the photometric measure error. These
improvements can be directly transferred to observatories’
storage and transmission costs by adapting the proposed
pipeline to the desired fidelity.

5. Conclusions

A new method to perform lossy compression that preserves
the photometric properties and the number of sources of the
original image is proposed. The technique is a combination of
lossy bi-region quantization plus the LPAQOM lossless
compression technique with a specific parameter configuration.
The bi-region quantization process parameters allow the
pipeline to be adapted to the image characteristics, i.e.,
separating the natural bi-modal nature of the images (fore-
ground and background) and achieving the desired compres-
sion or photometric fidelity requirements with high precision.
A large and representative astronomical data set has been
gathered to evaluate the lossy coding performance of relevant

Maireles-Gonzalez et al.

compression algorithms based on different coding paradigms.
Compared to the results of the current compressor used in
observatories, Fpack (Hcompress), the proposed method
recovers 7.15% more sources with magnitude differences
lower than 0.01 mag, and 9.13% more sources with magnitude
differences lower than the photometric measure error, at a
similar compression rate. Compared with the best lossless
results, the proposed method can detect more than 99% of the
objects in the original images, while the size of the compressed
images is between 2.15 and 1.00 bps smaller than using lossless
compression. For the first compression case, more than 90% of
the recovered objects show magnitude differences of less than
0.01 mag; for the second one, more than 90% of them show
magnitude differences equal to or lower than the magnitude
measurement error of the photometry. This ensures the
resulting recovered images are reliable in terms of photometric
analysis. The proposed lossy compression pipeline allows the
scientific community to significantly reduce data volumes
without compromising the aforementioned analysis, which will
help reduce storage and transmission costs for a rapidly
growing volume of data archives.
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