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Using Cuntz semigroup techniques, we characterize when limit 
traces are dense in the space of all traces on a free ultrapower 
of a C*-algebra. More generally, we consider density of limit 
quasitraces on ultraproducts of C*-algebras.
Quite unexpectedly, we obtain as an application that every 
simple C*-algebra that is (m, n)-pure in the sense of Winter 
is already pure. As another application, we provide a partial 
verification of the first Blackadar–Handelman conjecture on 
dimension functions.
Crucial ingredients in our proof are new Hahn–Banach type 
separation theorems for noncancellative cones, which in 
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Traces
Cuntz semigroups
C∗-algebras

particular apply to the cone of extended-valued traces on 
a C*-algebra.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

Ultraproducts have a well-established presence in the field of operator algebras, begin-
ning with McDuff’s pioneering work [35] on the tensorial absorption of the hyperfinite II1
factor, and later, Connes [19] classification of injective factors. Ultraproducts have also 
been studied in Banach space theory ([31,32,10]), and play a crucial role in the model 
theory of C*-algebras ([26,25,24]).

In recent years, work on the stably finite case of Elliott’s classification program and on 
the Toms–Winter conjecture has drawn attention to the trace space of the free ultrapower 
of a C*-algebra (see, for example, [34], [58], and [15]). A natural question arises in this 
context: To what extent is the trace space of a free ultrapower of a C*-algebra determined 
by the trace space of the C*-algebra? The same question can be asked more generally 
for trace spaces of products and ultraproducts of C*-algebras.

Since there are various notions of trace associated to a C*-algebra, to make the above 
question more precise we must fix what is meant by trace space. Given a unital C*-algebra 
A, let us consider first the set T1(A) of tracial states on A regarded as a compact convex 
set (embedded in A∗ and endowed with the weak* topology). Let U be a free ultrafilter 
on N, and let AU denote the free ultrapower of A with respect to U . The category of 
compact convex sets admits ultracoproducts, and there is a naturally defined continuous 
affine map

∐
U

T1(A) → T1(AU ). (1.1)

The question of calculating T1(AU ) can be made explicit by asking whether this map 
is an isomorphism. The map (1.1) is always injective, but may fail in general to be 
surjective. For instance, it is possible for T1(A) to be a singleton set while T1(AU ) is 
not. For the ultraproduct of an arbitrary collection of unital C*-algebras (Aj)j∈J , a 
similar map 

∐
U T1(Aj) → T1(

∏
U Aj) can be defined. Again, this map is guaranteed to 

be injective (Lemma 2.6), while its surjectivity may fail even more dramatically: we can 
have T1(Aj) empty for all j while T(

∏
U Aj) is nonempty; see Examples 2.11 and 2.12

below and [11, Corollary 2.2], and also the recent paper by Milhøj and Rørdam [36].
The range of the map (1.1) can be described as the closure of the set LimT1(AU ) of 

limit tracial states in T1(AU ), where a limit tracial state is an element in T1(AU ) that is 
the limit along U of a sequence of tracial states in T1(A). Surjectivity in (1.1) can thus 
be alternately stated as the density of LimT1(AU ) in T1(AU ).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Stated in this form, surjectivity of the map in (1.1) has been obtained in the literature 
under different kinds of “regularity properties” for the C*-algebras. For ultrapowers 
of an exact C*-algebra that tensorially absorbs the Jiang–Su algebra, the density of 
LimT1(AU ) was proved by Ozawa in [39, Theorem 8]. This was extended by Ng and 
the third named author to ultraproducts of unital C*-algebras with the property of 
strict comparison of full positive elements by bounded traces ([37, Theorem 1.2]). In 
the context of products of unital C*-algebras, Archbold, Tikuisis, and the third named 
author showed in [9, Theorem 3.19] that the map 

∐
j T1(Aj) → T1(

∏
j Aj) is surjective 

if the involved C*-algebras have uniformly bounded radius of comparison by traces. Very 
recently, analogous questions have also been considered in the context of ultraproducts 
of W ∗-bundles by Vaccaro [59].

In order to investigate exactly which regularity properties on A guarantee an isomor-
phism in (1.1), we use the theory of the Cuntz semigroup. For this reason, our results are 
more naturally phrased in terms of spaces of 2-quasitraces, since 2-quasitracial states are 
in bijection with functionals on the Cuntz semigroup normalized at the class of the unit 
([23, Theorem 4.4]). To pass from 2-quasitraces to traces, one can add the assumption 
of exactness to the C*-algebras, and invoke Haagerup’s theorem asserting that for exact 
C*-algebras “2-quasitraces are traces” ([30]), or simply assume that 2-quasitraces are 
traces for the C*-algebras in the collection.

Let us introduce some notation. Let A be a C*-algebra. Let Cu(A) denote its Cuntz 
semigroup, that is, the set of Cuntz classes of positive elements in A ⊗K (the stabilization 
of A) endowed with a suitable order and addition operation. We denote the Cuntz class 
of a positive element a ∈ A ⊗K by [a]; see Paragraph 3.2.

Given N ∈ N, we define the relation ≤N on Cu(A) by setting x ≤N y if nx ≤ ny for 
all n ≥ N ; see Notation 5.2. Suppose now that A is unital. Let QT1(A) denote the set of 
2-quasitracial states of A. The rank of a Cuntz class [a] ∈ Cu(A) is defined as the function 
[̂a] : QT1(A) → [0, ∞] given by [̂a](τ) = limn τ(a 1

n ), where τ is canonically extended to 
A ⊗K to be evaluated at a 1

n . Finally, for an ultrapower AU of A, let LimQT1(AU ) denote 
the set of limit 2-quasitracial states on AU , defined similarly as for traces.

Theorem A (8.3). Let A be a unital C*-algebra and let U be a free ultrafilter on N. The 
following are equivalent:

(i) The set LimQT1(AU ) of limit 2-quasitracial states is dense in QT1(AU ).
(ii) For every γ ∈ (0, 1) and d ∈ N there exists N ∈ N such that

x̂ ≤ γŷ implies x ≤N y,

for all x, y ∈ Cu(A) such that x, y ≤ d[1] and [1] ≤ dy.
(iii) There exists M ∈ N such that for every d ∈ N there exists N ∈ N such that

x̂ ≤ ŷ implies Nx ≤ NMy,
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for all x, y ∈ Cu(A) such that x, y ≤ d[1] and [1] ≤ dy.

If we additionally assume that QT1(A) = T1(A) (for example, if A is exact), then these 
equivalent conditions imply that QT1(AU ) = T1(AU ) and that the natural map∐

U
T1(A) → T1(AU )

is an isomorphism.

Let us now consider the ideal

I = {a ∈ AU : τ(a∗a) = 0 for all τ ∈ LimT1(A)},

of AU (sometimes called the trace-kernel ideal). Clearly, every limit tracial state vanishes 
on I. We can thus weaken the question addressed in Theorem A by seeking conditions 
that guarantee the density of LimT1(A) in the set TI

1(AU ) of tracial states on AU than 
vanish on I (in bijection with the tracial states on AU/I). We investigate this question 
in the setting of abstract Cu-semigroups, using similar techniques as those used to prove 
Theorem A. As an application, we obtain the following theorem:

Theorem B (9.3). Let A be a separable, unital C*-algebra and U a free ultrafilter on N. 
Suppose that A has stable rank one, no finite dimensional representations, and QT1(A) =
T1(A). Then the natural map 

∐
U T1(A) → TI

1(AU ) is an isomorphism.

Let us discuss now a different trace space associated to a C*-algebra A (possibly 
nonunital). Let T(A) denote the set of [0, ∞]-valued, lower semicontinuous traces on A; 
see Paragraph 3.1. We regard T(A) as a cone endowed with pointwise addition and 
pointwise scalar multiplication by positive real numbers. The cone T(A) is always non-
cancellative, so it does not embed into a vector space. There is, however, a compact 
Hausdorff topology on T(A) compatible with the cone operations; see [23].

Consider an ultrapower AU of A. A sequence of traces in T(A) naturally defines a limit 
trace in T(AU ). We denote the set of limit traces on AU arising this way by LimT(AU ). 
The central question that we address in the context of the trace space T(AU ) is that of 
characterizing, through comparability properties on the Cuntz semigroup, the density of 
LimT(AU ) in T(AU ). We also investigate this density question for the cones of traces 
of products and ultraproducts of arbitrary collections of C*-algebras. Although these 
density questions can be reformulated in terms of the surjectivity of maps with domain 
a coproduct or ultracoproduct of cones, we shall refrain from formulating them in this 
way. This point of view will be pursued in a separate work.

As in the case of tracial states, our results are more naturally formulated in terms of 
the cone QT(A) of [0, ∞]-valued, lower semicontinuous 2-quasitraces. By the homeomor-
phism between QT(A) and the cone F(Cu(A)) of functionals on Cu(A), the problem of 
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density of LimQT(AU ) in QT(AU ) is translated into the density of a set of limit function-
als in F(Cu(AU )). Moreover, in this setting the problem admits a formulation working 
purely in the category Cu of abstract Cuntz semigroups, usually called Cu-semigroups; 
see Problem 4.12.

The category Cu was introduced in [20] and was extensively studied in [5,2,6–8,4] as 
well as [53,51,52]. The cones of functionals on Cu-semigroups have also been thoroughly 
studied; see, for example, [23,43,3]. This allows us to use functional analytic techniques 
developed for the category Cu together with the computation of Cuntz semigroups of 
ultraproducts, as carried out in [8]. We thus show that the density of limit 2-quasitraces 
on an ultrapower of a C*-algebra is equivalent to a certain comparability property on 
the Cuntz semigroup of the algebra. These results are obtained as corollaries of their 
counterparts on functionals on abstract Cuntz semigroups, and solve the original problem 
under the not uncommon assumption that 2-quasitraces are traces, and in particular if 
the algebra is exact.

We now explicitly state the results. Let A be a C*-algebra, and let τ ∈ QT(A), which 
we regard as a 2-quasitrace defined on (A ⊗K)+. For a ∈ (A ⊗K)+, we define the rank
of a as the function [̂a] : QT(A) → [0, ∞] given by [̂a](τ) = limn τ(a 1

n ), as we did in the 
case of quasitracial states. Given a free ultrafilter U on N, as before we have that every 
sequence in QT(A) naturally induces a limit 2-quasitrace in QT(AU ) and we denote the 
set of limit 2-quasitraces by LimQT(AU ). Our main result characterizing the density of 
limit 2-quasitraces of an ultrapower is the following:

Theorem C (7.5). Let A be a C*-algebra and let U be a free ultrafilter on N. The following 
are equivalent:

(i) The set of limit 2-quasitraces LimQT(AU ) is dense in QT(AU ).
(ii) For every γ ∈ (0, 1) and d ∈ N there exists N ∈ N such that

[̂a] ≤ γ [̂b] implies [a] ≤N [b], for all a, b ∈ Md(A)+.

(iii) There exists M ∈ N such that for every d ∈ N there exists N ∈ N such that

[̂a] ≤ [̂b] implies N [a] ≤ MN [b], for all a, b ∈ Md(A)+.

A rather unexpected corollary of our results is the equivalence of different kinds of 
comparability properties in the Cuntz semigroup of a C*-algebra as is evidenced, for ex-
ample, from (ii) and (iii) in Theorem C. We do not know a direct proof of this equivalence 
that avoids the use of ultrapowers.

In [60], Winter defines a C*-algebra to be (m, n)-pure provided it satisfies certain 
comparability and divisibility properties, called m-comparison and n-divisibility; see 
Paragraphs 7.8 and 10.1. A C*-algebra is said to be pure if it is (0, 0)-pure, which by 
definition means that its Cuntz semigroup is almost unperforated and almost divisible. 
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The relevance of purity resides in Winter’s theorem [60] showing that (m, n)-pure, uni-
tal, simple, separable C*-algebras with locally finite nuclear dimension are Z-stable (an 
important regularity property) and thus pure by [47]. We generalize this consequence of 
Winter’s theorem to general simple C*-algebras:

Theorem D (10.5). A simple (m, n)-pure C*-algebra is pure.

In the course of our investigations we obtain a partial confirmation of a conjecture 
by Blackadar and Handelman ([12]), which we proceed to recall. The classical Cuntz 
semigroup W (A) of a C*-algebra A is the subsemigroup of Cu(A) consisting of the Cuntz 
classes of positive elements in A ⊗Mn(C) ⊆ A ⊗K, for n ∈ N. A dimension function on 
a unital C*-algebra A is a normalized state on W (A), and the set of dimension functions 
is denoted by DF(A). The subset LDF(A) of lower semicontinuous dimension functions 
is of special importance, as by results from [12] these are in natural bijection with the set 
QT1(A) of normalized quasitraces. Blackadar and Handelman conjectured that LDF(A)
is always dense in DF(A), and confirmed this in the commutative case. The simple, exact 
Z-stable case was established in [17], and the case of C*-algebras with finite radius of 
comparison in [49]. We show here that LDF(A) is dense in DF(A) whenever A is a unital 
C*-algebra such that LimQT1(AU ) is dense in QT1(AU ) (see Theorem 8.6). This result 
suggests that the Blackadar–Handelman conjecture might be false in general, but an 
example seems difficult to come by.

The central results obtained on cones of functionals, which may well be of independent 
interest, are separation results à la Hahn–Banach that allow us to characterize when a 
subcone of functionals is dense; see Appendix A. Moreover, in this context, and under 
mild additional assumptions (that are satisfied by the Cuntz semigroups of any C*-al-
gebra, [3]), we are able to obtain even stronger separation results; see Appendix B. We 
discuss these results in the appendix in order not to disturb the flow of the presentation.

Here is a brief outline of the paper. Throughout, we will largely focus on ultrapowers 
and ultraproducts. When similar results hold for products we make some brief remarks 
on how the methods can be adapted to that case. In Section 2 we review the main 
ideas relating coproducts of compact convex sets, limit tracial states, and commutators, 
and we present some motivating examples. In Section 3 we go over some necessary pre-
liminaries on the Cuntz semigroup, its functionals, and (quasi)traces on C*-algebras. 
In Section 4 we review the construction of ultraproducts of abstract Cuntz semigroups 
as well as their relation to ultraproducts of C*-algebras. In Section 5, we use the new 
Hahn–Banach theorems from the appendices to give a characterization of density of limit 
functionals in an ultrapower of an abstract Cuntz semigroup in terms of comparability 
conditions. In Section 6 we introduce the notion of Locally Bounded Comparison Ampli-
tude (LBCA) and discuss its connection with the density results of the previous section. 
In Section 7, we revisit the question on the density of limit functionals under stronger 
axioms on the Cu-semigroups (satisfied by the Cuntz semigroups of all C*-algebras). We 
then translate our results to the setting of C*-algebras to prove Theorem C. In Section 8
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we prove Theorem A and study the Blackadar–Handelman conjecture. In Section 9 we 
prove Theorem B. In Section 10 we prove Theorem D.

2. Tracial states on products and ultraproducts

The main result of this section, Theorem 2.9, characterizes in multiple ways the den-
sity of limit tracial states on an ultraproduct of unital C*-algebras. Parts of this result 
are well known to experts in the area, although it has not been previously stated in the 
form given below (see [11, Section 2], [39, Theorem 8], [37, Proposition 2.3], [24, Sec-
tion 3.5]). At the end of the section we give two examples of ultraproducts of C*-algebras 
where the density of limit tracial states fails to hold.

Throughout this section we assume that A is a unital C*-algebra. We denote by Asa
the set of selfadjoint elements of A. Let T1(A) denote the set of tracial states of A

endowed with the weak* topology. Given a ∈ Asa, define â : T1(A) → R by â(τ) = τ(a)
for all τ ∈ T1(A). Let Aff(T1(A)) denote the Banach space of R-valued, continuous, affine 
functions on T1(A), equipped with the supremum norm. Observe that â ∈ Aff(T1(A)), 
for a ∈ Asa.

Let [A, A] denote the linear span of the set of commutators {[x, y] : x, y ∈ A}, where 
[x, y] := xy − yx in A. We form the quotient Asa/(Asa ∩ [A,A]), which we regard as a 
real Banach space under the quotient norm.

The following lemma is well known.

Lemma 2.1. The real Banach spaces Asa/(Asa ∩ [A,A]) and Aff(T1(A)) are isomorphic 
via the map a + [A,A] 
→ â.

Proof. Surjectivity is a well-known consequence of Kadison’s function representation 
theorem; see [1, Theorem II.1.8] and [40, Section 3.10]. That the map a + [A,A] 
→ â is 
isometric is proven in the proof of [56, Lemma 3.1], and also in [39, Theorem 5]. The 
case of a positive a is also obtained in [22, Theorem 2.9]. (Note that the subspace A0
considered in [22] and in [56, Lemma 3.1] agrees with Asa ∩ [A,A].) �

We will use below the following lemma.

Lemma 2.2. Let N ∈ N and let A be a C*-algebra with the property that for all a ∈ [A,A]
there exist bk, ck ∈ A with ‖bk‖, ‖ck‖ ≤ ‖a‖ 1

2 for k = 1, . . . , N such that

∥∥∥∥∥a−
N∑

k=1

[bk, ck]

∥∥∥∥∥ ≤ 1
2‖a‖.

Then for all m ∈ N and all a ∈ [A,A] there exist bk, ck ∈ A with ‖bk‖, ‖ck‖ ≤ ‖a‖ 1
2

for k = 1, . . . , mN such that
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∥∥∥∥∥a−
mN∑
k=1

[bk, ck]

∥∥∥∥∥ ≤ 1
2m ‖a‖.

Proof. Given a ∈ [A,A], the element a1 = a −
∑N

k=1[bk, ck] is again in [A,A], and has 
norm ‖a1‖ ≤ 1

2‖a‖. A straightforward induction yields the desired result. �
2.3 (Compact convex sets and complete order unit vector spaces). Let us recall briefly the 
duality between compact convex sets and complete order unit vector spaces. We refer 
the reader to [1] for further details. Given a compact, convex set K, let Aff(K) denote 
the vector space of R-valued, continuous, affine functions on K. We regard Aff(K) as an 
ordered vector space endowed with the pointwise order and with order unit the constant 
function 1. The norm induced by the order unit is the supremum norm, and thus Aff(K)
is a complete order unit vector space.

Given a complete order unit vector space (V, V+, e), let S1(V ) ⊆ V ∗ denote the set 
of states on V , that is, λ ∈ V ∗ such that λ(e) = ‖λ‖ = 1. Then S1(V ) is convex 
and compact when endowed with the weak* topology. The constructions of Aff(·) and 
S1(·) extend to morphisms thus yielding functors Aff and S1 between the categories of 
complete order unit vector spaces and of compact convex sets. The natural isomorphisms 
K → S1(Aff(K)) and V → Aff(S1(V )) establish a contravariant duality between these 
two categories.

2.4 (Ultraproducts of C*-algebras). Let (Aj)j∈J be a family of C*-algebras and let U be 
a free ultrafilter on the set J . Consider the product C*-algebra 

∏
j Aj . Set

cU
(
(Aj)j

)
:=
{

(aj)j ∈
∏
j

Aj : lim
U

‖aj‖ = 0
}
,

which is a (closed, two-sided) ideal in 
∏

j Aj . The ultraproduct of the family (Aj)j∈J

(along U) is 
∏

U Aj :=
∏

j Aj/cU ((Aj)j). In case Aj = A for all j, we speak of the 
ultrapower

∏
U A. We denote by πU :

∏
j Aj →

∏
U Aj the quotient map.

2.5. The category of complete order unit vector spaces admits products and ultraprod-
ucts: given (Vj , (Vj)+, ej) for j ∈ J , we form V =

∏
j Vj , composed of norm bounded 

collections (vj)j∈J , and endow it with the coordinatewise order and with order unit 
(ej)j . If U is an ultrafilter on the set J , then passing to the quotient by the subspace 
cU ((Vj)j) = {(vj)j : limU ‖vj‖ = 0} we obtain the ultraproduct

∏
U Vj .

Since the category of complete order unit vector spaces admits products and ultra-
products, the category of compact convex sets admits coproducts and ultra-coproducts. 
Given compact convex sets (Kj)j∈J and an ultrafilter U on the index set J , we denote by ∐

j Kj and 
∐

U Kj their coproduct and ultracoproduct, respectively. We can concretely 
think of these compact convex sets as follows:∐

Kj = S1
(∏

Aff(Kj)
)
,

j j
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∐
U

Kj = S1
(∏

U
Aff(Kj)

)
.

Now consider a family of unital C*-algebras (Aj)j∈J . For each k ∈ J , the projec-
tion map πk :

∏
j Aj → Ak induces Aff T1(πk) : Aff T1(

∏
j Aj) → Aff T1(Ak). By the 

universal property of the product, we get a map

Aff T1
(∏

j

Aj

)
→
∏
j

Aff T1(Aj). (2.1)

It is easy to calculate that given a selfadjoint a = (aj)j ∈
∏

Aj , the function â ∈
Aff T1(

∏
j Aj) is mapped by the above map to (âj)j ∈

∏
j Aff T1(Aj).

Let U be an ultrafilter on J . If a ∈ cU ((Aj)j), then limU ‖âj‖ = 0. Thus, again we 
have a map

Aff T1
(∏

U
Aj

)
→
∏
U

Aff T1(Aj). (2.2)

Applying the functor S1(·) in (2.1) and (2.2) we obtain continuous affine maps

∐
j

T1(Aj) → T1
(∏

j

Aj

)
, (2.3)

∐
U

T1(Aj) → T1
(∏

U
Aj

)
. (2.4)

Lemma 2.6. Let (Aj)j∈J be a family of unital C*-algebras and let U be a free ultrafilter 
on the index set J . The following are true:

(i) The maps in (2.1) and (2.2) are surjective.
(ii) The maps in (2.3) and (2.4) are injective.

Proof. (i) Let (fj)j be an element of 
∏

j Aff T1(Aj). By the isometric isomorphism of 
Aff T1(Aj) with (Aj)sa/((Aj)sa ∩ [Aj , Aj ]) (Lemma 2.1), we can choose for each j an 
element aj ∈ (Aj)sa such that fj = âj and ‖aj‖ ≤ 3/2‖fj‖. Let a = (aj)j ∈

∏
j Aj . Then 

â ∈ Aff T1(
∏

j Aj) is mapped to (fj)j by (2.1). This proves surjectivity of this mapping.
Let f ∈

∏
U Aff T1(Aj). Let (fj)j be a lift of f in 

∏
j Aff T1(Aj) having norm at most 

3/2‖f‖. By the arguments from the previous paragraph, we can choose a selfadjoint 
a ∈

∏
j Aj such that â is mapped to (fj)j by (2.1) and ‖a‖ ≤ 9/4‖f‖. Let b ∈

∏
U Aj

be the image of a in the ultraproduct. Then b̂ is mapped to f by (2.2). This proves 
surjectivity of (2.2).

(ii) Injectivity of (2.3) and (2.4) follows at once from the surjectivity of (2.1) and (2.2)
and the definition of the former maps as the functor S1(·) applied to the latter. �
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2.7 (Limit tracial states). Let us recall the construction of limit tracial states on an 
ultraproduct of unital C*-algebras. Let (Aj)j∈J be a family of unital C*-algebras and 
let U be a free ultrafilter on the index set J . Let (τj)j∈J be such that τj ∈ T1(Aj) for 
all j. For each k ∈ J , let τ̄k denote the tracial state on 

∏
j∈J Aj induced by τk via the 

projection πk :
∏

j∈J Aj → Ak. The limit

τ̄U = lim
U

τ̄k

exists by the compactness of T1(
∏

j∈J Aj). Moreover, τ̄U is easily seen to vanish on the 
ideal cU ((Aj)j). It thus induces a tracial state τU ∈ T1(

∏
U Aj). The tracial states on ∏

U Aj obtained in this way are called limit tracial states. We denote by LimT1(
∏

U Aj)
the subset of T1(

∏
U Aj) of limit tracial states.

We use co(M) to denote the convex hull of a subset M of a convex space.

Lemma 2.8. Let (Aj)j∈J be a family of unital C*-algebras and let U be a free ultrafilter 
on the index set J . The following are true:

(i) The range of the map (2.3) is equal to co(
⋃

j T1(Aj)) (closure in the weak* topol-
ogy).

(ii) The range of the map (2.4) is equal to LimT1(
∏

U Aj) (closure in the weak* topol-
ogy).

Proof. (i) For each k ∈ J , we have a commutative diagram

T1(Ak)

∐
j T1(Aj) T1(

∏
j Aj)

where the horizontal arrow is the map from (2.3), the vertical arrow maps a trace τ ∈
T1(Ak) to the functional λτ ∈

∐
j T1(Aj) given by λτ ((fj)j) = fk(τ), and the diagonal 

one maps τ to τ̄ ∈ T1(
∏

Aj) given by τ̄((aj)j) = τ(ak). Since the range of (2.3) is closed, 
as it is the image of a compact set under a continuous map, to complete the proof it will 
suffice to show that the convex hull of the images of {T1(Ak) : k ∈ J} in 

∐
j T1(Aj) is 

a dense set in 
∐

j T1(Aj).
Suppose that this is not the case. Then by Hahn–Banach’s separation theorem, there 

exists f = (fj)j ∈
∏

j Aff T1(Aj) such that λτ (f) ≤ 1 for all τ ∈ T1(Ak) and all k, 
but μ(f) > 1 for some μ ∈

∐
j T1(Aj). Shifting f by a scalar multiple of the unit and 

renormalizing (that is, replacing f by f+t
1+t for sufficiently large t ∈ R), we may assume 

that f ≥ 0. Then 0 ≤ λτ (f) ≤ 1 for all τ ∈ T1(Ak) readily implies that ‖fj‖ ≤ 1 for 
all j. Hence ‖f‖ ≤ 1, which contradicts that μ(f) ≥ 1.
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(ii) A collection of tracial states (τj)j , with τj ∈ T1(Aj), induces an element λU of 
the coproduct as follows: Given f ∈

∏
U Aff T1(Aj), choose a lift (fj)j ∈

∏
j Aff T1(Aj), 

and define

λU (f) = lim
U

fj(τj).

Let us call such a λU a limit state on 
∏

U Aff T1(Aj). Limit states are mapped to limit 
tracial states in T1(

∏
U Aj) by the map (2.4), with λU as defined above being mapped to 

the limit tracial state τU associated to (τj)j . Since the range of (2.4) is closed, to complete 
the proof it will suffice to show that the limit states are dense in S1(

∏
U Aff T1(Aj)).

Supposing that this is not case, we use Hahn–Banach as in (i) to obtain an element 
f ∈

∏
U Aff T1(Aj), with lift (fj)j , such that λU (f) ≤ 1 for every limit state, while 

μ(f) > 1 for some μ ∈
∐

U T1(Aj). As before, we may assume that f ≥ 0. Let (fj)j
be a positive lift of f in 

∏
j Aff T1(Aj). For each j, let τj be a tracial state such that 

fj(τj) = ‖fj‖ (which exists by the compactness of T1(Aj)). Let λU be the associated 
limit state. Then

lim
U

‖fj‖ = lim
U

fj(τj) = λU (f) ≤ 1.

Thus, ‖f‖ ≤ 1, in contradiction with μ(f) > 1. �
An ultrafilter U is said to be countably incomplete if there exists a sequence (En)n

in U with 
⋂

n En = ∅. We note that every free ultrafilter on a countable set is countably 
incomplete.

Theorem 2.9. Let (Aj)j∈J be a family of unital C*-algebras and let U be a countably 
incomplete ultrafilter on the index set J . The following are equivalent:

(i) The natural map 
∐

U T1(Aj) → T1(
∏

U Aj) from (2.4) is an isomorphism.
(ii) The set LimT1(

∏
U Aj) is dense in T1(

∏
U Aj), in the weak* topology.

(iii) There exist N ∈ N and E ∈ U such that for all j ∈ E and all a ∈ [Aj , Aj ] there 
exist bk, ck ∈ Aj with ‖bk‖, ‖ck‖ ≤ ‖a‖ 1

2 for k = 1, . . . , N such that∥∥∥∥∥a−
N∑

k=1

[bk, ck]

∥∥∥∥∥ ≤ 1
2‖a‖.

(iv) We have [∏
U

Aj ,
∏
U

Aj

]
=
∏
U

[Aj , Aj ].

(Here 
∏

U [Aj , Aj ] denotes the image of 
∏

j∈J [Aj , Aj ], regarded as a subset of ∏
j∈J Aj, under the quotient map 

∏
j∈J Aj →

∏
U Aj.)
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Proof. The equivalence of (i) and (ii) follows from previous lemmas. Indeed, the map 
(2.4) is always injective, by Lemma 2.6. Thus, it is an isomorphism if and only if it is 
surjective. Since its range is the closure of the set of limit tracial states, by Lemma 2.8
its surjectivity amounts to the density of the limit tracial states.

We show that (ii) implies (iii). For n ∈ N and j ∈ J , set

Γn,j =
{

n∑
k=1

[xk, yk] : xk, yk ∈ Aj , ‖xk‖, ‖yk‖ ≤ 1 for all k
}
.

It will suffice to show that there exists N such that the set of indices j ∈ J for which 
dist(a, ΓN,j) < 1

4 for all a ∈ (Aj)sa ∩ [Aj , Aj ], with ‖a‖ = 1, belongs to U . The result for 
a general nonselfadjoint element a is then easily obtained decomposing it as a = a1 +ia2, 
with a1, a2 selfadjoint, and normalizing a1 and a2.

Suppose for the sake of contradiction that for every n = 1, 2, . . ., the sets

En :=
{
j ∈ J : dist(a,Γn,j) ≥

1
4 for some a ∈ [Aj , Aj ] with ‖a‖ ≤ 1

}
belong to U . Using that U is countably incomplete, let us choose a decreasing sequence 
(E′

n)n∈N in U such that 
⋂

n E
′
n = ∅ and E′

n ⊆ En for all n.
Let us choose (aj)j∈J as follows: If j ∈ J\E′

1, set aj = 0. If j ∈ E′
n\E′

n+1, choose 
aj ∈ [Aj , Aj ] ∩ (Aj)sa of norm 1 whose distance to the set Γn,j is ≥ 1/4. Since the 
family (Γn,j)n is increasing, this construction has the property that if j ∈ E′

n, then the 
distance from aj to Γn,j is ≥ 1/4.

Let a = (aj)j∈J . Observe that the tracial states in T1(Aj), regarded as a subset of 
T1(
∏

j Aj), vanish on a for all j. The same is thus true for the limits limU τj , with 
τj ∈ T1(Aj) for all j. Thus, πU(a) is in the kernel of every limit tracial state. It follows 
by hypothesis that πU (a) is in the kernel of every tracial state of 

∏
U Aj . By Lemma 2.1, 

we have ∥∥∥∥∥πU (a) −
N∑

k=1

[bk, ck]

∥∥∥∥∥ < 1
4

for some N ∈ N and bk, ck ∈
∏

U Aj . Enlarging N if necessary, let us assume that 
‖bk‖, ‖ck‖ ≤ 1 for all k. Choose lifts b̃k, ̃ck ∈

∏
j Aj of bk, ck such that ‖b̃k‖, ‖c̃k‖ ≤ 1 for 

all k. Then the set

E :=
{
j ∈ J : ‖aj −

N∑
k=1

[(b̃k)j , (c̃k)j ]‖ <
1
4

}

belongs to U . Now choose j ∈ E ∩ E′
N . On one hand, ‖aj −

∑N
k=1[(b̃k)j , (c̃k)j ]‖ < 1/4. 

On the other hand, since j ∈ E′
N , the distance from aj to ΓN,j is ≥ 1/4. This is the 

desired contradiction.



R. Antoine et al. / Journal of Functional Analysis 286 (2024) 110341 13
We show that (iii) implies (iv). Let us first prove the inclusion of the left-hand side 
in the right-hand side. Let a ∈ [

∏
U Aj ,

∏
U Aj ]. By [9, Theorem 1.6], a can be lifted to 

ã ∈ [
∏

j Aj ,
∏

j Aj ]. The latter element clearly belongs to 
∏

j [Aj , Aj ]. Thus, a belongs 
to the image of 

∏
j [Aj , Aj ] under πU .

Suppose now that a ∈
∏

U [Aj , Aj ]. Let ã ∈
∏

j [Aj , Aj ] be a lift of a. Let ε > 0. Using 
(ii) and Lemma 2.2, choose N ∈ N and E ∈ U such that∥∥∥∥∥ãj −

N∑
k=1

[bk,j , ck,j ]

∥∥∥∥∥ ≤ ε‖ãj‖,

for all j ∈ E, where bk,j , ck,j ∈ Aj are such that ‖bk,j‖, ‖ck,j‖ ≤ ‖ãj‖
1
2 . Set bk,j = ck,j = 0

for all j /∈ E and all k. Define bk = πU ((bk,j)j) and ck = πU ((ck,j)j). Then∥∥∥∥∥a−
N∑

k=1

[bk, ck]

∥∥∥∥∥ ≤ ε‖ã‖.

Since this argument can be applied to every ε > 0, we get a ∈ [
∏

U Aj ,
∏

U Aj ].
We show that (iv) implies (ii). Assume (iv). Suppose for the sake of contradiction 

that there exists μ ∈ T1(
∏

U Aj) that is not in the weak* closure of LimT1(
∏

U Aj). 
Observe that the set of limit tracial states is convex. Thus, by Hahn–Banach, there 
exists b ∈

∏
U Aj separating μ from LimT1(

∏
U Aj), that is, such that Re(τ(b)) ≤ 1

for all τ ∈ LimT1(
∏

U Aj) and Re(μ(b)) ≥ 1 + δ, for some δ > 0. Replacing b by its 
selfadjoint part, we may assume that it is selfadjoint. Translating b by a scalar multiple 
of 1 and renormalizing (as in the proof of Lemma 2.8), we may further assume that b is 
positive (this step may change δ).

Let (bj)j ∈
∏

j Aj be a positive lift of b. For each j ∈ J , let τ̄j ∈ T1(Aj) be a 
tracial state at which the mapping T1(Aj) � τ 
→ τ(bj) attains its maximum. Since 
limU τ̄j(bj) ≤ 1, we have that

E :=
{
j ∈ J : τ̄j(bj) < 1 + δ

4
}
∈ U .

Thus, τ(bj) < 1 + δ
4 for all τ ∈ T1(Aj) and j ∈ E. By Lemma 2.1, the distance from bj

to [Aj , Aj ] is at most 1 + δ
4 . Hence, for each j ∈ E there exist cj ∈ Aj and dj ∈ [Aj , Aj ]

such that

bj = cj + dj ,

and ‖cj‖ ≤ 1 + δ
2 . Set cj = dj = 0 for all j /∈ E. Observe that (dj)j is bounded, since 

(bj)j and (aj)j are bounded. By hypothesis, πU ((dj)j) ∈ [
∏

U Aj ,
∏

U Aj ]. Then

b = πU ((bj)j) = πU ((cj)j) + πU ((dj)j).
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The term πU((cj)j) has norm at most 1 + δ
2 , while the term πU((dj)j) vanishes on every 

tracial state of 
∏

U Aj . Evaluating both sides on μ we get a contradiction. �
We remark that, for a compact Hausdorff space X, Thomsen proved in [55, Proposi-

tion 1.3] that selfadjoint elements a ∈ Mn(C(X)) with zero trace can be written as the 
sum of two commutators.

We state below a similar density theorem for tracial states on the product 
∏∞

j=1 Aj . 
We omit the proof as the arguments run along the same lines (with some simplifications).

Theorem 2.10. Let (Aj)j∈J be a collection of unital C*-algebras indexed by an infinite 
set J . The following are equivalent:

(i) The natural map 
∐

j T1(Aj) → T1(
∏

j Aj) from (2.3) is an isomorphism.
(ii) The set co(

⋃
j∈J T1(Aj)) is dense in T1(

∏
j∈J Aj), in the weak* topology.

(iii) There exists N ∈ N such that for all j ∈ J and a ∈ [Aj , Aj ] there exist bk, ck ∈ Aj

with ‖bk‖, ‖bk‖ ≤ ‖a‖ 1
2 for k = 1, . . . , N such that∥∥∥∥∥a−

N∑
k=1

[bk, ck]

∥∥∥∥∥ ≤ 1
2‖a‖.

(iv) We have [
∏

j Aj ,
∏

j Aj ] =
∏

j [Aj , Aj ].

Example 2.11. In [44, Theorem 1.4] (see also [28, Example 4.7]) an example is given of a 
simple, unital C*-algebra A with a unique tracial state such that for each m ∈ N there 
exists a contraction am ∈ [A,A] whose distance to the set

{ m∑
i=1

[xi, yi] : xi, yi ∈ A
}

is 1. Let U be a free ultrafilter on N. Observe that, since T1(A) is a singleton set, 
so is LimT1(

∏
U Aj) (and it is thus closed). On the other hand, since the property in 

Theorem 2.9(iii) does not hold, T1(AU ) is not a singleton in this case.

Example 2.12. Consider the nc-polynomial in four variables

g = [x1, x2][x3, x4].

Given a C*-algebra A, denote by g(A) the range of g on A. Given n ∈ N, denote by ∑n
g(A) the set of sums 

∑n
j=1 aj , with aj ∈ g(A) for all j.

Let n ∈ N. By [45, Example 3.11], there exists a unital C*-algebra Bn without 
bounded traces and a projection bn ∈ Bn, such that the distance from bn to the set ∑n

g(Bn) is 1. Fix a free ultrafilter U on N, and set B =
∏

U Bn. Observe that there 
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are no limit traces in T1(B), since T1(Bn) = ∅ for all n ∈ N. Let us argue that B has 
a non-zero one-dimensional representation (and in particular T1(B) is non-empty).

Suppose for a contradiction that B has no one-dimensional representations. Then, by 
[28, Theorem A], there exists N ∈ N such that B =

∑N
g(B). In particular, πU((bn)n)

belongs to 
∑N

g(B). We thus get a set of indices E ∈ U such that the distance from 
bn to the set 

∑N
g(Bn) is < 1/2 for all n ∈ E. This, however, contradicts our choice of 

bn for any n ∈ E such that n ≥ N . (Note that 
∑N

g(Bn) is contained in 
∑n

g(Bn) for 
n ≥ N , as 0 belongs to the range of g.)

3. Quasitraces and the Cuntz semigroup

In this section we describe the main objects that appear in coming sections of the 
paper: quasitraces on C*-algebras, abstract Cuntz semigroups, and functionals on Cuntz 
semigroups; see, among others, [20,5,23,43].

3.1 (Traces and quasitraces). Let A be a C*-algebra. We call a map τ : A+ → [0, ∞] a 
trace (on A) if it is additive, linear, and maps 0 to 0. We denote the set of all lower 
semicontinuous traces on A by T(A). This is a cone when endowed with the operations 
of pointwise addition and pointwise multiplication by positive scalars. (In this paper, by 
a cone we understand a commutative monoid endowed with a scalar multiplication by 
(0, ∞). Note that we do not define multiplication by 0. We call the zero element of a 
cone its origin. We refer to [3, Section 3.1] for details.)

By a quasitrace on A we understand a map τ : A+ → [0, ∞] whose restriction to 
the positive part of any commutative sub-C*-algebra of A is a trace. A 2-quasitrace
is a quasitrace that admits an extension to a quasitrace on M2(A)+. We denote by 
QT(A) the cone of [0, ∞]-valued, lower semicontinuous 2-quasitraces on A. Every lower 
semicontinuous 2-quasitrace admits a unique extension to a lower semicontinuous 2-
quasitrace on A ⊗K, where K denotes the compact operators on �2(N). We thus regard 
(A ⊗K)+ as the common domain of the elements of QT(A).

The cone QT(A) can be endowed with a compact Hausdorff topology in which a 
net (τj)j converges to τ in QT(A) if and only if for all a ∈ A+ and ε > 0 we have

lim sup
j

τj
(
(a− ε)+

)
≤ τ(a) ≤ lim inf

j
τj(a),

where (a −ε)+ is the ε-cut-down of a, which is defined by applying continuous functional 
calculus to a with the function R → R, t 
→ max{0, t − ε}; see [23, Section 4].

A very convenient technical tool to deal with quasitraces on a C*-algebra is the Cuntz 
semigroup. We give below the axioms used to define the objects of the category Cu that 
they belong to. For further details, we refer to the recent survey [27].
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3.2 (Cuntz semigroups). A partially ordered monoid S is positively ordered provided that 
x ≥ 0 for every element x ∈ S. A commutative, positively ordered monoid S is called a 
Cu-semigroup if it satisfies the following axioms:

(O1) If (xn)n is an increasing sequence in S, then supn xn exists.
(O2) For any x ∈ S there exists a sequence (xn)n such that xn 
 xn+1 for all n and 

x = supn xn. (We say that (xn)n is a 
-increasing sequence.)
(O3) If x1 
 x2 and y1 
 y2, then x1 + y1 
 x2 + y2.
(O4) If (xn)n and (yn)n are increasing sequences in S, then supn(xn+yn) = supn xn+

supn yn.

The relation 
 in these axioms is defined as follows: x 
 y if for every increasing 
sequence (yn)n satisfying y ≤ supn yn there exists n0 ∈ N such that x ≤ yn0 . The 
relation 
 is called the way-below relation, or compact containment relation, and one 
says that ‘x is way-below y’ if x 
 y. An element u ∈ S such that u 
 u is termed 
compact.

There are additional axioms that we often impose on a Cu-semigroup:

(O5) For all x′, x, y with x′ 
 x ≤ y there exists z such that x′ + z ≤ y ≤ x + z. 
Moreover, if x +w ≤ y for some w, and w′ 
 w, then z may be chosen such that 
w′ 
 z.

(O6) For all x′, x, y, z ∈ S such that x ≤ y + z and x′ 
 x there exist y′, z′ such that 
x′ ≤ y′ + z′, such that y′ ≤ y, x, and z′ ≤ z, x.

Given positive elements a, b in a C*-algebra A, one says that a is Cuntz subequivalent
to b, denoted a � b, if there is a sequence (rn)n in A such that limn→∞ ‖a − rnbr

∗
n‖ = 0. 

Further, a and b are Cuntz equivalent, denoted a ∼ b, if a � b and b � a. These relations 
were introduced by Cuntz in [21].

The Cuntz semigroup of A is defined as Cu(A) = (A ⊗ K)+/∼, equipped with the 
partial order induced by �, and equipped with addition induced by addition of orthogonal 
positive elements. It is known that Cu(A) satisfies (O1)–(O6); see [20], [48], [5, Section 4], 
[43, Proposition 5.1.1]. Further properties (O7) and (O8) for Cu(A) have been obtained 
in [3, Section 2.2] and [52, Section 7].

Classes of projections in A are natural examples of compact elements in Cu(A), and 
often the only ones; see [16].

As defined above, Cu-semigroups are the objects of a category, termed Cu. The mor-
phisms in this category are called Cu-morphisms. By definition, a Cu-morphism between 
Cu-semigroups is an order-preserving monoid homomorphism that preserves the relation 

 and suprema of increasing sequences. The assignment A 
→ Cu(A) is functorial; see 
[20].



R. Antoine et al. / Journal of Functional Analysis 286 (2024) 110341 17
3.3 (Functionals on Cuntz semigroups). Let S be a Cu-semigroup. We call a map λ : S →
[0, ∞] a functional on S if λ is an order-preserving monoid homomorphism that preserves 
the suprema of increasing sequences. The set of functionals on S is denoted by F(S). This 
set is a cone under pointwise addition of functionals and pointwise scalar multiplication 
by positive real numbers. Its origin is the zero functional. The properties of F(S) have 
been studied in [43] under the additional assumption that S satisfies (O5). The question 
of whether (O5) is necessary for a proper theory of F(S) is an interesting one, but we 
do not take it up here.

The cone F(S) has a natural compact Hausdorff topology such that a net (λj)j con-
verges to λ in F(S) if and only if

lim sup
j

λj(x′) ≤ λ(x) ≤ lim inf
j

λj(x),

for all x′ 
 x in S; see [23, Theorem 4.8], [43], and [33, Theorem 3.17].
Given x ∈ S, we denote by x̂ : F(S) → [0, ∞] the function such that x̂(λ) = λ(x)

for all λ ∈ F(S), which is lower semicontinuous, zero-preserving, additive and (0, ∞)-
homogeneous (see Paragraph A.2 for further details). Given u ∈ S, we denote by Fu(S)
the set of functionals λ ∈ F(S) that are normalized at u, that is, λ(u) = 1. If û is 
continuous (for example, if u is a compact element of S), then Fu(S) is a closed, convex 
subset of F(S), and hence a compact convex set.

Below, we will work with limits along ultrafilters. We will thus find it convenient to 
formulate convergence of functionals in those terms:

Lemma 3.4. Let S be a Cu-semigroup satisfying (O5), let (λj)j∈J be a collection of 
functionals in F(S), and let U be an ultrafilter on the set J . Then there is a unique 
λ ∈ F(S) such that (λj)j converges to λ along U in the compact Hausdorff topology 
of F(S). This λ is given by

λ(x) = sup
x′�x

lim
U

λj(x′), for all x ∈ S.

Proof. Since F(S) is compact and Hausdorff, the limit λ exists and is unique. Let U �
E 
→ jE ∈ E be an arbitrary selection. Let x′ 
 x in S. Since the net (λjE )E∈U converges 
to λ, we have

lim
U

λj(x′) = lim sup
E

λjE (x′) ≤ λ(x),

and

λ(x′) ≤ lim inf
E

λjE (x′) = lim
U

λj(x′).

Thus, λ(x′) ≤ limU λj(x′) ≤ λ(x). This, combined with the fact that λ(x) =
supx′�x λ(x′), yields the desired result. �
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3.5. The link between quasitraces and functionals on Cuntz semigroups is as follows: For 
every τ ∈ QT(A), define dτ : Cu(A) → [0, ∞] by

dτ ([a]) = lim
n

τ(a 1
n )

for all positive elements a ∈ A ⊗ K. Then dτ is a functional on Cu(A). Moreover, the 
assignment

τ 
→ dτ ,

from QT(A) to F(Cu(A)), is an isomorphism of topological cones; see [23, Theorem 4.4].

4. Ultraproducts, limit quasitraces, and limit functionals

In this section we define limit quasitraces and state the density of limit quasitraces 
problem; see Problem 4.2. We then rephrase this problem in the language of abstract 
Cuntz semigroups; see Problem 4.12.

4.1 (Limit quasitraces). Let (Aj)j∈J be a family of C*-algebras. Let U be a free ultrafilter 
on J , and let 

∏
U Aj denote the ultraproduct of the family (Aj)j along U . Given a 

selection of 2-quasitraces τj ∈ QT(Aj) for all j ∈ J , let τ̄j = τjπj , where πj :
∏

j Aj → Aj

is the quotient map. Observe that τ̄j ∈ QT(
∏

j Aj) for all j. Define τ̄U ∈ QT(
∏

j Aj) as 
the limit of (τ̄j)j along U , which exists by compactness of QT(

∏
j Aj). More explicitly, 

it is not difficult to calculate that τ̄U is given by

τ̄U (a) = sup
t>0

lim
U

τj
(
(aj − t)+

)
,

for a = (aj)j in (
∏

j Aj)+; see Lemma 3.4. Observe that τ̄U vanishes on the ideal 
cU ((Aj)j), and thus induces a lower semicontinuous 2-quasitrace τU on the ultraproduct ∏

U Aj such that τ̄U = τUπU . We call τU a limit 2-quasitrace on 
∏

U Aj . We denote by 
LimQT(

∏
U Aj) the set of all limit 2-quasitraces.

If each τj is a trace, then so is τU and we call it a limit trace. We denote by 
LimT(

∏
U Aj) the set of all limit traces on 

∏
U Aj .

Finally, if each Aj is unital, and each τj is a tracial state, then τU is again a tracial 
state. In this case the set of limit tracial states agrees with the set LimT1(

∏
U Aj) that 

we have already introduced in Paragraph 2.7.

As mentioned in the introduction, one of the main problems that we address in this 
paper is the following:

Problem 4.2. Retaining the notation from the previous paragraph, under what conditions 
is the set of limit 2-quasitraces LimQT(

∏
U Aj) dense in QT(

∏
U Aj)?
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To tackle this problem, we use the correspondence between 2-quasitraces and func-
tionals on the Cuntz semigroup described in Paragraph 3.5. This translates the above 
problem into a question on the density of limit functionals in the cone of functionals of 
an ultraproduct of Cuntz semigroups. In the coming paragraphs we formulate a version 
of said problem in this setting and, as we shall see, the techniques developed in [8] play 
a key role in the solution of Problem 4.2.

4.3. For completeness, we give a brief account of the construction of the quotient semi-
group by an ideal, which will be used in the sequel. For more details see, for example, 
[5, 5.1.1]. Given a Cu-semigroup S, an ideal I of S is a downward-hereditary subset that 
is closed under addition and under suprema of increasing sequences. Given elements 
x, y ∈ S, we define x ≤I y if there is z ∈ I such that x ≤ y + z. We also set x ∼I y

if both x ≤I y and y ≤I x occur. Define S/I = S/∼I , which is a Cu-semigroup with 
the naturally induced addition and order. The quotient map πI : S → S/I is a surjective 
Cu-morphism. In the case of a C*-algebra A and a closed, two-sided ideal J of A, the 
inclusion of J in A induces an order embedding of Cu(J) as an ideal of Cu(A), and the 
quotient map A → A/J induces a Cu-isomorphism Cu(A)/ Cu(J) ∼= Cu(A/J); see [18, 
Proposition 1].

4.4 (Products and ultraproducts of Cu-semigroups). Let us review the construction of 
products and ultraproducts of Cu-semigroups developed in [8]. Let (Sj)i∈J be a collection 
of Cu-semigroups. We denote by PoM-

∏
j Sj their product in the category of positively 

ordered monoids. This is simply the cartesian product endowed with the entrywise order 
and entrywise addition. We denote by 
pw the relation in PoM-

∏
j Sj of entrywise 


-comparison.
By a path in PoM-

∏
j Sj we understand a map v : (−∞, 0] → PoM-

∏
j Sj , t 
→ vt, 

that satisfies:

(1) vs 
pw vt for all s, t ≤ 0 with s < t,
(2) vt = supt′<t vt′ for all t ∈ (−∞, 0].

In the sequel, given a path v = (vt)t≤0 we shall write vt = (vt,j)j with vt,j ∈ Sj for 
each t ≤ 0 and j ∈ J . We define on the set of paths in PoM-

∏
j Sj a preorder relation 

as follows: (vt)t≤0 � (wt)t≤0 if for every s < 0 there exists t < 0 such that vs 
pw wt, 
that is, vs,j 
 wt,j for all j ∈ J . We define (vt)t≤0 ∼ (wt)t≤0 if (vt)t≤0 � (wt)t≤0 and 
(wt)t≤0 � (vt)t≤0. We denote by [(vt)t≤0] the equivalence class of the path (vt)t≤0.

The product 
∏

j Sj in the category of Cu-semigroups is defined as the set of equivalence 
classes [(vt)t≤0], where v : (−∞, 0] → PoM-

∏
j Sj is a path. Addition and order on ∏

j Sj are defined by [(vt)t≤0] + [(wt)t≤0] = [(vt + wt)t≤0] and [(vt)t≤0] ≤ [(wt)t≤0]
if (vt)t≤0 � (wt)t≤0, respectively. Here vt + wt = (vt,j + wt,j)j . The projection maps 
πj :

∏
j Sj → Sj are defined as
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πj

(
[(vt)t≤0]

)
= v0,j ∈ Sj , with vt = (vt,j)j .

It is shown in [8, Corollary 3.9] that 
∏

j Sj is a Cu-semigroup satisfying the universal 
property for products in the category of Cu-semigroups. (See also [6, Section 3] for a full 
account of this construction.)

Let U be an ultrafilter on the set J . Define cU((Sj)j) as the subset of 
∏

j Sj of [(vt)t≤0], 
with vt = (vt,j)j for all t ≤ 0, such that

{
j ∈ J : vt,j = 0

}
∈ U for all t < 0.

Then cU ((Sj)j) is an ideal of 
∏

j Sj . Following [8], we define the ultraproduct of (Sj)j
along U as follows: ∏

U
Sj =

(∏
j

Sj

)
/cU
(
(Sj)j

)
.

The natural quotient map 
∏

j Sj →
∏

U Sj will be denoted by πU .
By [8, Lemma 7.8], the order in the ultraproduct is characterized as follows: For 

[(vt)t≤0], [(wt)t≤0] ∈
∏

j Sj with vt = (vt,j) and wt = (wt,j), we have πU ([(vt)t≤0]) ≤
πU ([(wt)t≤0]) if, and only if, for every s < 0, there are t < 0 and E ∈ U such that 
vs,j 
 wt,j for each j ∈ E.

We are also interested in products and ultraproducts of scaled Cu-semigroups, as these 
arise naturally from products and ultraproducts of C*-algebras.

4.5 (Scales). A scale on a Cu-semigroup S is a downward hereditary subset Σ ⊆ S that is 
closed under suprema of increasing sequences and that generates S as an ideal, that is, for 
every x′, x ∈ S with x′ 
 x, there are elements x1, . . . , xn ∈ Σ such that x′ ≤

∑n
i=1 xi; 

see [8, Definition 4.1]. The pair (S, Σ) is referred to as a scaled Cu-semigroup. Given scaled 
Cu-semigroups (S, Σ) and (T, Θ), a scaled Cu-morphism is a Cu-morphism ϕ : S → T

such that ϕ(Σ) ⊆ Θ. We denote by Cusc the category of scaled Cu-semigroups with 
scaled Cu-morphisms.

We shall also consider pairs (S, u) of a Cu-semigroup together with a compact full 
element u ∈ S, that is, u is such that u 
 u and ∞ · u is the largest element of S. The 
element u gives rise to a scale on S, namely, Σu = {x ∈ S : x ≤ u}. In the sequel, we 
regard a pair (S, u) as a scaled Cu-semigroup precisely in this fashion.

For a C*-algebra A, the set

ΣA :=
{
x ∈ Cu(A) : for every x′ ∈ Cu(A) with x′ 
 x there exists 

a ∈ A+ with x ≤ [a]

}
is a scale for Cu(A). The scaled Cuntz semigroup of A is Cusc(A) = (Cu(A), ΣA); see [8, 
4.2]. By parts (1) and (2) of [54, Lemma 3.3], the scale ΣA can also be described as
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ΣA =
{
x ∈ Cu(A) : there exists a �-increasing sequence (an)n

in A+ such that x = supn[an]

}
=
{
x ∈ Cu(A) : there exists a ∈ A+ with x ≤ [a]

}
.

If ϕ : A → B is a ∗-homomorphism, then Cu(ϕ) maps ΣA into ΣB , and thus is a 
scaled Cu-morphism. One has therefore a functor from the category of C*-algebras to 
the category Cusc. For a unital C*-algebra A, we obtain a pair (Cu(A), [1]) of a Cu-sem-
igroup with a compact full element [1] ∈ Cu(A).

4.6 (Scaled products and ultraproducts). Let ((Sj, Σj))j∈J be a collection of scaled Cu-
semigroups. Define Σ ⊆

∏
j Sj as

Σ =
{
[(vt)t≤0] ∈

∏
j

Sj : vt,j ∈ Σj for all j ∈ J and all t < 0
}
.

The set Σ is downward hereditary and closed under passing to suprema of increasing 
sequences, though possibly not full in 

∏
j Sj . The scaled product of 

∏
j(Sj , Σj) is defined 

as the pair (S, Σ), where S is the ideal generated by Σ in 
∏

j Sj .
Let U be an ultrafilter on J . The scaled ultraproduct (T, Θ) =

∏
U (Sj , Σj) is defined 

as the images of S and Σ under the quotient by cU((Sj)j). In the case Sj = S for all 
j, we shall denote the ultrapower 

∏
U (S, Σ) by (S, Σ)U . The reader is referred to [8, 

Paragraph 4.5] for further details on this construction.
Consider now a collection (Sj , uj)j∈J of Cu-semigroups together with a full compact 

element uj ∈ Sj for each j. Let vt = (uj)j , for t ≤ 0, denote the constant path equal 
to (uj)j in the cartesian product PoM-

∏
j∈J Sj . Let v̄ = [(vt)t≤0] be the corresponding 

equivalence class in 
∏

j∈J Sj . Then it is readily verified that v̄ is a compact full element 
of the scaled product (S, Σ) =

∏
j∈J (Sj , Σuj

). We define (S, ̄v) =
∏

j∈J (Sj , uj). If U
is an ultrafilter on J , then passing to the quotient by cU

(
(Sj)j

)
we obtain v = πU (v̄), 

a compact full element in the ultraproduct (T, Θ) =
∏

U (Sj , Σuj
). Again, in this case 

we write (T, v) =
∏

U (Sj , uj). For ultrapowers, we denote by (S, u)U the ultraproduct ∏
U (S, u).
It is proved in [8, Theorem 5.13] that the scaled Cuntz semigroup functor pre-

serves products. More concretely, given a family (Aj)j∈J of C*-algebras, let (S, Σ)
be the scaled product of (Cu(Aj), ΣAj

) as described in the paragraph above. Then 
(S, Σ) ∼= Cusc(

∏
j Aj) as scaled Cu-semigroups. It is also shown in [8, Theorem 7.5]

that the scaled Cuntz semigroup preserves ultraproducts. In other words, given an ul-
trafilter U on a set J and a family of C*-algebras (Aj)j∈J , there is an isomorphism 
Cusc(

∏
U Aj) ∼=

∏
U (Cu(Aj), ΣAj

). In fact, we have the following commutative diagram:
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Cusc(
∏

j Aj)

Cusc(πU )

∼= ∏
j Cusc(Aj)

πU

Cusc(
∏

U Aj)
∼= ∏

U Cusc(Aj).

In the case Aj = A for all j, we shall use (Cu(A), ΣA)U to denote the scaled ultrapower 
which, as observed, is isomorphic to Cusc(AU ).

We now introduce the limit functionals on an ultraproduct of Cu-semigroups.

4.7. Let us continue to denote by (Sj)j∈J a collection of Cu-semigroups and by U an 
ultrafilter on J . Let S =

∏
j Sj be their product. Observe that for each k ∈ J the 

projection map πk : S → Sk induces a cone morphism F(πk) : F(Sk) → F(S).
Consider now a selection of functionals λj ∈ F(Sj) for all j. Set λ̄j = F(πj)(λj) for 

all j. Let λ̄U be the limit of (λ̄j)j in F(S) along U , which exists and is unique, since F(S)
is compact and Hausdorff. Using Lemma 3.4, it is readily established that

λ̄U
(
[(vt)t≤0]

)
= sup

t<0
lim
U

λj(vt,j), (4.1)

for any path (vt)t≤0 in PoM-
∏

j Sj .

Lemma 4.8. The functional λ̄U vanishes on cU ((Sj)j).

Proof. Let v = (vt)t≤0 be a path in PoM-
∏

j Sj with vt = (vt,j)j , and assume that [v] ∈
cU ((Sj)j). Then {j ∈ J : vt,j = 0} ∈ U for every t < 0. It follows that limU λj(vt,j) = 0
for every t < 0, and therefore λ̄U([v]) = 0 by (4.1). �

Since λ̄U vanishes on cU ((Sj)j), it induces a functional λU on the ultraproduct
∏

U Sj , 
which is simply given by

λU (πU
(
[v])
)

= λ̄U ([v]) for all [v] ∈
∏
j

Sj .

4.9 (Limit functionals). Retain the notation of Paragraph 4.7. Let T =
∏

U Sj . We call 
the functional λU on T defined above the limit functional associated to the family (λj)j . 
We use LimF(T ) to denote the subset of F(T ) of limit functionals.

Note: Our notation for the set of limit functionals introduces ambiguity, as LimF(T )
depends on a specific representation of the Cu-semigroup T as an ultraproduct. A no-
tation like LimFU ((Sj)j) would be more suitable. We have, however, opted for a more 
concise notation, since the ultraproduct structure is always evident within the context.

We also call the functional λ̄U on 
∏

j Sj defined in Paragraph 4.7 a limit functional, 
and we denote by LimFU (

∏
j Sj) the subset of F(

∏
j Sj) consisting of such limit func-

tionals.
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Given a scaled Cu-semigroup (S, Σ), we set F((S, Σ)) = F(S). That is, when we speak 
of functionals on a scaled Cu-semigroup (S, Σ) we simply mean functionals on S.

Let Σj be a scale on Sj for each j. Let (T, Θ) now denote their scaled ultraproduct ∏
U (Sj , Σj). Recall that T is an ideal in 

∏
U Sj . Thus, functionals on 

∏
U Sj induce 

functionals on the scaled ultraproduct by restriction. We denote by LimF((T, Θ)), or 
simply LimF(T ), the subset of F(T ) induced by the limit functionals.

Suppose now that (Sj , uj)j∈J is a collection of Cu-semigroups endowed with full 
compact elements uj ∈ Sj for each j ∈ J . Let (T, v) =

∏
U (Sj , uj) be their scaled 

ultraproduct. We denote by LimFv(T ) the set of limit functionals associated to families 
(λj)j with λj ∈ Fuj

(Sj), that is, normalized at uj for each j in some E ∈ U . Notice that 
every limit functional in LimFv(T ) is normalized at v. In fact, it is easily established 
that

LimFv(T ) = {λ ∈ LimF(T ) : λ(v) = 1}. (4.2)

That is, a limit functional normalized at v can always be obtained as the functional 
associated to a collection (λj)j of normalized functionals. To see that the right-hand 
side is contained in the left-hand side, let λ̄U = limU λ̄j , with λj ∈ F(Sj) for all j, be 
such that λ̄U(v) = 1. We get at once that limU λj(uj) = 1, and after normalizing each 
λj (along an index set where 0 < λj(uj) < ∞), we obtain that λ̄U = limU λ̄′

j where 
λ′
j ∈ Fuj

(Sj) for all j.

4.10. Let (Aj)j∈J be a family of C*-algebras. Let U be a free ultrafilter on the set J . 
As mentioned at the end of Paragraph 4.5, Cusc(

∏
U Aj) is isomorphic to the scaled 

ultraproduct 
∏

U Cusc(Aj) =
∏

U (Cu(Aj), ΣAj
). We thus obtain an isomorphism be-

tween F(Cusc(
∏

U Aj)) and F(
∏

U Cusc(Aj)). Recall that, for a scaled Cu-semigroup 
(S, Σ), we have defined F(S, Σ) = F (S). Therefore we may identify F(Cu(

∏
U Aj)) with 

F(
∏

U Cusc(Aj)).
Fix k ∈ J . A 2-quasitrace τ ∈ QT(Ak) induces a functional F(Cu(Ak)) under the 

correspondence τ 
→ dτ described in Paragraph 3.5. On the other hand, τ gives rise to 
τ̄ = τπk in QT(

∏
j Aj) via the projection map. We have the commutative diagram

QT(Ak)
τ 
→dτ

F (Cu(Ak))

QT(
∏

j Aj)
τ 
→dτ F(

∏
j Cusc(Aj)),

where the vertical arrows are induced by the projection maps πk :
∏

Aj → Ak and 
Cu(πk) :

∏
j Cu(Aj) → Cu(Ak). Since τ 
→ dτ is a homeomorphism, the limit τ̄U =

limU τ̄j associated to a collection (τj)j is mapped to the limit λ̄U = limU dτj associated 
to the functionals (dτj )j . After factoring both τ̄U and λ̄U by suitable ideals, the limit 
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2-quasitrace τU associated to (τj)j is mapped to the limit functional λU associated to 
(dτj )j . Notice finally that, if all the C*-algebras Aj are unital and τj(1) = 1 for all j, then 
both τ̄j(1) = 1 and dτj ([1]) = 1. Further, τU(1) = 1 and λU ([(1)j ]) = 1. In summary, we 
have the following theorem:

Theorem 4.11. The isomorphism between QT(
∏

j Aj) and F(
∏

j Cusc(Aj)), given by τ 
→
dτ , restricts to a natural bijection between the set LimQT(

∏
j Aj) of limit 2-quasitraces 

and the set LimF(
∏

j Cusc(Aj)) of limit functionals.
Similarly, for ultraproducts, τ 
→ dτ yields a natural bijection from the set

LimQT(
∏

U Aj) to the set LimF(
∏

U Cusc(Aj)).
Furthermore, if all the C*-algebras Aj are unital, then τ 
→ dτ also gives a bijec-

tion between the set LimQT1(
∏

U Aj) of limits of normalized 2-quasitraces and the set 
LimF[1](

∏
U (Cu(Aj), [1])) of normalized limit functionals.

In view of the previous theorem, Problem 4.2 is subsumed in the following more 
general problem:

Problem 4.12. Retaining the setting from Paragraph 4.9, characterize when the set 
LimF(

∏
U Sj) is dense in F(

∏
U Sj).

We address this problem in Section 5, together with similar questions for scaled ul-
trapowers and ultraproducts.

5. Density of limit functionals

In this section we solve Problem 4.12 by characterizing the density of limit functionals 
in terms of a comparability condition; see Theorem 5.4. We study this condition more 
closely in Section 6.

We start by characterizing when elements in an ultraproduct compare on all function-
als in the closure of limit functionals.

Proposition 5.1. Let (Sj , Σj)j∈J be a collection of scaled Cu-semigroups that satisfy (O5). 
Let U be a free ultrafilter on J and let (T, Θ) =

∏
U (Sj , Σj). Let γ ∈ R+ and x, y ∈ T . 

Suppose that x = πU (x̃) and y = πU (ỹ), where

x̃ = [((xt,j)j)t≤0], and ỹ = [((yt,j)j)t≤0]

are elements of the product 
∏

j(Sj , Σj). The following are equivalent:

(i) We have x̂(λ) ≤ γŷ(λ) for every λ ∈ LimF(T ).
(ii) For every s < 0 and γ′ > γ, there exists t < 0 such that{

j ∈ J : x̂s,j ≤ γ′ŷt,j
}
∈ U .
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Proof. Let (S, Σ) =
∏

j(Sj , Σj). Recall that we denote by LimFU (S) the limit functionals 
(for the fixed ultrafilter U) on S. In terms of the lifts x̃, ỹ ∈ S of x and y respectively, 
condition (i) can be restated as follows:

(i’) We have x̃(λ) ≤ γỹ(λ) for every λ ∈ LimFU (S).

Given s < 0, we let x̃s denote the ‘cut-down’ x̃s = [((xs+t,j)j)t≤0], and similarly 
denote by ỹt the cut-downs of ỹ. Applying Proposition A.15, and using that LimFU (S)
is a subcone of F(S), we see that (i’) is equivalent to:

(ii’) For every s < 0 and γ′ > γ, there exists t < 0 such that λ(x̃s) ≤ γ′λ(ỹt) for every 
λ ∈ LimFU (S).

It remains to verify that (ii) and (ii’) are equivalent.
We show that (ii’) implies (ii). To verify (ii), let s < 0 and γ′ > γ. Pick s′ ∈ (s, 0)

and γ′′ ∈ (γ, γ′). By assumption, there exists t < 0 such that λ(x̃s′) ≤ γ′′λ(ỹt) for every 
limit functional λ. Let us show that t has the desired properties to verify (ii).

Suppose that this is not the case. Using that U is an ultrafilter, this means that

E :=
{
j ∈ J : x̂s,j � γ′ŷt,j

}
belongs to U . For each j ∈ E, choose λj ∈ F(Sj) such that λj(xs,j) > γ′λj(yt,j). By 
rescaling λj if necessary, we may assume that

λj(xs,j) ≥ 1 > γ′λj(yt,j)

for all j ∈ E. Set λj = 0 for j ∈ J \ E, and let λ̄U be the limit functional in F(S)
associated to (λj)j . Then, on the one hand

1 ≤ lim
U

λj(xs,j) ≤ sup
s′′<s′

lim
U

λj(xs′′,j) = λ̄U (x̃s′),

while on the other hand

1 ≥ γ′ lim
U

λj(yt,j) ≥ γ′λ̄U (ỹt).

Thus, λ̄U (x̃s′) > γ′′λ̄U (ỹt), which is the desired contradiction.
We show that (ii) implies (ii’). Given s < 0 and γ′ > γ, apply the assumption to 

obtain t′ < 0 such that the set {j ∈ J : x̂s,j ≤ γ′ŷt′,j} belongs to U . Then set t = t′/2. 
To verify (ii’), let λj ∈ F(Sj) for each j, and let λ̄U be the associated limit functional in 
LimFU (S). Then

λ̄U (xs) ≤ lim λj(xs,j) ≤ lim γ′λj(yt′,j) ≤ γ′λ̄U (yt).
U U
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This proves (ii’). �
Notation 5.2. Given elements x and y in a partially ordered semigroup, and given N ∈ N, 
we write x ≤N y to mean that nx ≤ ny for all n ≥ N .

If elements x and y in a partially ordered semigroup satisfy (M + 1)x ≤ My for some 
M ∈ N, then for N := (M +1)M we have (n +1)x ≤ ny for all n ≥ N , and in particular 
x ≤N y; see the proof of [5, Proposition 5.2.13].

The next result describes the extent to which the order in a Cu-semigroup can be 
recovered by the order on functionals.

Lemma 5.3. Let x′, x and y be elements in a Cu-semigroup. Assume that x′ 
 x and 
that x̂ ≤ γŷ for some γ ∈ (0, 1). Then there exist M, N ∈ N such that (M + 1)x′ ≤ My

and x′ ≤N y.

Proof. The statement for M follows from [5, Theorem 5.2.18] or [43, Proposition 2.2.2]. 
As observed above, the statement for N follows immediately. �

The key to the solution of Problem 4.12 will be to quantify M and N in Lemma 5.3
depending on γ, but not the elements x′, x, y. In the context of scaled Cu-semigroups, 
we also need to record the ‘size’ of x and y as determined by the scale. To formalize this, 
given a scaled Cu-semigroup (S, Σ), and d ∈ N, we define the d-fold amplification of Σ
as

Σ(d) =
{
x ∈ S : for each x′ 
 x there are x1, . . . , xd ∈ Σ with x′ 
 x1 + . . . + xd

}
,

for d ≥ 1, and as Σ(0) = {0}.
Note that, for any x ∈ S, if there exists x̃ such that x 
 x̃, then x ∈ Σ(d) for some 

d ∈ N.

Recall that an ultrafilter U is said to be countably incomplete if there exists a sequence 
(En)n in U with 

⋂
n En = ∅.

Theorem 5.4. Let (Sj , Σj)j∈J be a collection of scaled Cu-semigroups that satisfy (O5). 
Let U be a countably incomplete ultrafilter on J , and let (T, Θ) =

∏
U (Sj , Σj). The 

following are equivalent:

(i) The set of limit functionals LimF(T ) is dense in F(T ).
(ii) For every γ ∈ (0, 1) and d ∈ N there exist N = N(γ, d) ∈ N and E = E(γ, d) ∈ U

such that:

x̂ ≤ γŷ implies x ≤N y, for all j ∈ E and x, y ∈ Σ(d)
j .
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Proof. We show that (i) implies (ii). To reach a contradiction, assume that (ii) does not 
hold. Using that U is an ultrafilter, this means that there exist γ ∈ (0, 1) and d ∈ N such 
that for every N ∈ N the set

EN :=
{
j ∈ J : there exist x, y ∈ Σ(d)

j with x̂ ≤ γŷ but x �N y
}

belongs to U . Using that U is countably incomplete, we may choose a decreasing sequence 
(E′

N )N∈N in U such that 
⋂

N E′
N = ∅ and E′

N ⊆ EN for each N .
We now pick suitable x′

j, x
′′
j , xj , y′j , yj ∈ Sj for each j ∈ J . If j ∈ J\E′

0, we simply 
set x′

j = x′′
j = xj = 0 and y′j = yj = 0. If j ∈ E′

N\E′
N+1 for N ≥ 0, then we use that 

E′
N ⊆ EN to choose xj , yj ∈ Sj such that

xj , yj ∈ Σ(d)
j , x̂j ≤ γŷj , and xj �N yj .

Next, choose x′
j , x

′′
j ∈ S such that x′

j 
 x′′
j 
 xj and x′

j �N yj . Pick γ′ ∈ (γ, 1). Then 

x̂′′
j 
 γ′ŷj , by Lemma A.3. This allows us to choose y′j ∈ Sj such that y′j 
 yj and 

x̂′′
j ≤ γ′ŷ′j .
By [6, Proposition 2.10], for each j ∈ J we can choose paths (xt,j)t≤0 and (yt,j)t≤0 in 

Sj such that

x−2,j = x′
j , x0,j = x′′

j , y−1,j = y′j , and y0,j = yj .

Set xt = (xt,j)j and yt = (yt,j)j for t ≤ 0. Since xt,j and yt,j belong to Σ(d)
j for 

each j, the elements x̃ := [(xt)t≤0] and ỹ := [(yt)t≤0] belong to the scaled product ∏
j(Sj , Σj). Let x = πU (x̃) and y = πU (ỹ). We also consider xs, ys, images of the 

cut-downs x̃s = [(xt+s)t≤0] and ỹs = [(yt+s)t≤0] for s < 0.
Observe that the set of indices j such that x̂0,j ≤ γ′ŷ−1,j contains E′

0, and thus 
belongs to U . By Proposition 5.1, this implies that x̂(λ) ≤ γ′ŷ(λ) for every functional λ
in the closure of LimF(T ). Since by assumption this set is all of F(T ), we conclude that 
x̂ ≤ γ′ŷ. Since x−1 
 x, by Lemma 5.3 there exists M ∈ N such that

(M + 1)x−1 ≤ My.

Choose z = [(zt)t≤0] ∈ cU such that (M+1)x̃−1 ≤ Mỹ+z. We have x̃−1 = [(xt−1)t≤0], 
and thus for t = −1 we obtain s < 0 such that

(M + 1)x−2 
pw Mys + zs.

Since z ∈ cU , we have supp(zs) /∈ U . Using that E′
(M+1)M ∈ U , we can choose j ∈ J such 

that j /∈ supp(zs) and j ∈ E′
(M+1)M .

Then

(M + 1)x′
j = (M + 1)x−2,j 
 Mys,j + zs,j = Mys,j ≤ Myj .
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As noted above Lemma 5.3, this implies that x′
j ≤(M+1)M yj . However, since j ∈

E′
(M+1)M , we have x′

j �≤(M+1)M yj by construction. This is the desired contradiction.
We show that (ii) implies (i). By Corollary A.12, it suffices to show that for all x, y ∈ T

with x̂(λ) ≤ ŷ(λ) for all λ in the closure of LimF(T ), we have x̂ ≤ ŷ.
Let x, y ∈ T be such that x̂(λ) ≤ ŷ(λ) for all λ in the closure of LimF(T ). Choose 

x̃ = [((xt,j)j)t≤0] and ỹ = [((yt,j)j)t≤0], lifts of x and y in 
∏

j(Sj , Σj). Given s < 0, we 
let x̃s denote the ‘cut-down’ x̃s = [((xs+t,j)j)t≤0], and similarly for ỹt for t < 0.

Let s < 0 and kl > γ′ > 1 with k, l ∈ N \ {0}. By Proposition 5.1, there exists t < 0
such that

E0 :=
{
j ∈ J : x̂s,j ≤ γ′ŷt,j

}
belongs to U . Choose d ∈ N such that xs,j, yt,j ∈ Σ(d)

j for all j. Applying the assumption 
for l

kγ
′ and d, we obtain N ∈ N and E1 ∈ U such that

v̂ ≤ l
kγ

′ŵ implies v ≤N w, for all j ∈ E1 and v, w ∈ Σ(d)
j .

For j ∈ E0 ∩E1, we have

l̂xs,j ≤ ( l
kγ

′)k̂yt,j

and therefore

lxs,j ≤N kyt,j .

This implies that lπU (x̃s) ≤N kπU (ỹ) = ky. Given λ ∈ F(
∏

U (Sj , Σj)), we obtain

λ(πU (x̃s)) ≤ k
l λ(y).

Since this holds for every s < 0 and for every k, l with kl > 1, we obtain λ(x) ≤ λ(y), as 
desired. �

Let us now briefly comment on the version of the preceding theorem for functionals 
on products rather than ultraproducts. Let (Sj, Σj)j∈J be a collection of scaled Cu-sem-
igroups that satisfy (O5). Consider their scaled product 

∏
j(Sj , Σj). For each k ∈ J , 

the projection map πk :
∏

j(Sj , Σj) → Sk induces a cone morphism F(πk) : F(Sk) →
F(
∏

j(Sj , Σj)), and we let Kk denote the image of F(πk).
The next result is proven similarly to Proposition 5.1. We omit the proof.

Proposition 5.5. Let γ ∈ R+, and let x = [((xt,j)j)t≤0] and y = [((yt,j)j)t≤0] in ∏
j(Sj , Σj). The following are equivalent:

(i) We have x̂(λ) ≤ γŷ(λ) for every λ in the closed subcone generated by 
⋃

j Kj.
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(ii) For every s < 0 and γ′ > γ, there exists t < 0 such that x̂s,j ≤ γ′ŷt,j for every j ∈ J .

A proof similar to the proof of Theorem 5.4, using Proposition 5.5 instead of 
Proposition 5.1, leads to the next result. We omit the proof.

Theorem 5.6. Let (Sj , Σj)j∈J be a collection of scaled Cu-semigroups that satisfy (O5). 
The following are equivalent:

(i) The subcone generated by 
⋃

j Kj is dense in F(
∏

j(Sj , Σj)).
(ii) For every γ ∈ (0, 1) and d ∈ N there exists N = N(γ, d) ∈ N such that:

x̂ ≤ γŷ implies x ≤N y, for all but finitely many j ∈ J and x, y ∈ Σ(d)
j .

6. Locally bounded comparison amplitude

When specialized to powers and ultrapowers of a given Cu-semigroup, Theorem 5.4(ii) 
and Theorem 5.6(ii) simplify to the same comparison property, which we formalize in 
the following definition:

Definition 6.1. We say that a scaled Cu-semigroup (S, Σ) has locally bounded comparison 
amplitude, or (LBCA), if for every γ ∈ (0, 1) and d ∈ N there exists N = N(γ, d) ∈ N

such that:

x̂ ≤ γŷ implies x ≤N y, for all x, y ∈ Σ(d).

Let (S, Σ) be a scaled Cu-semigroup. Let U be a free ultrafilter on some set. Recall 
that we denote by (S, Σ)U the scaled Cu-semigroup ultrapower of (S, Σ). Recall also that 
LimF((S, Σ)U ) denotes the set of limit functionals in F((S, Σ)U ).

The next result follows from Theorems 5.4 and 5.6.

Theorem 6.2. Let (S, Σ) be a scaled Cu-semigroup that satisfies (O5). The following are 
equivalent:

(i) (S, Σ) has (LBCA): For every γ ∈ (0, 1) and d ∈ N there exists N = N(γ, d) ∈ N

such that x̂ ≤ γŷ implies x ≤N y for all x, y ∈ Σ(d).
(ii) For some (equivalently, every) countably incomplete ultrafilter U , the set of limit 

functionals LimF((S, Σ)U ) is dense in F((S, Σ)U ).
(iii) For some (equivalently, every) infinite set J , the subcone generated by 

⋃
j∈J Kj is 

dense in F(
∏

j∈J (S, Σ)).

6.3 (Comparison amplitude). Let S be a Cu-semigroup. We define the comparison am-
plitude for x, y ∈ S as
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ca(x, y) = min{N ∈ N : x ≤N y
}
,

with the convention that ca(x, y) = ∞ if there is no N such that x ≤N y. Let Σ be a 
scale on S. For γ ∈ (0, 1) and d ∈ N consider the set

Cγ,d =
{
(x, y) ∈ Σ(d) × Σ(d) : x̂ ≤ γŷ

}
.

Note then that S has (LBCA) if and only if the comparison amplitude is bounded on 
each set Cγ,d. This explains the terminology in Definition 6.1.

For elements x and y in a partially ordered semigroup, one writes x <s y if (n +1)x ≤
ny for some n ∈ N. Given x, y ∈ S, we have x̂ <s ŷ if and only if x̂ ≤ γŷ for some 
γ ∈ (0, 1). Thus, Lemma 5.3 shows that the comparison amplitude ca(x′, y) is finite 
whenever x′, x, y satisfy x′ 
 x and x̂ <s ŷ.

A partially ordered semigroup is said to be almost unperforated if x <s y implies x ≤ y

for all elements x and y. It follows that a Cu-semigroup S is almost unperforated if and 
only if ca(x, y) = 1 for every x, y with x <s y. In particular, an almost unperforated 
Cuntz semigroup has (LBCA) relative to any scale. The converse is not true in general. 
However, we do have a converse under the additional assumption of almost divisibility. 
A Cu-semigroup S is called almost divisible if for every x′, x ∈ S with x′ 
 x and n ∈ N

there exists y ∈ S such that ny ≤ x and x′ ≤ (n + 1)y; see also Paragraph 10.1.

Proposition 6.4. Let S be an almost divisible Cu-semigroup satisfying (O5). Then S has 
(LBCA) for some (equivalently, every) scale on S if and only if S is almost unperforated.

Proof. If S is almost unperforated, then the comparison amplitude is globally bounded 
(by 1), as noted in 6.3. In particular, S has (LBCA) for every scale on S.

Suppose now that S is almost divisible and let Σ ⊆ S be a scale such that (S, Σ) has 
(LBCA). To verify that S is almost unperforated, let x, y ∈ S and n ∈ N be such that 
(n + 1)x ≤ ny. Then x̂ ≤ γŷ with γ = n

n+1 < 1, and we have to show that x ≤ y.
Choose γ′, γ′′ such that γ < γ′ < γ′′ < 1. Let x′, x′′ be such that x′′ 
 x′ 
 x. 

By Lemma A.3 applied to x′ 
 x and 1 < γ′

γ , we have that x̂′ 
 γ′ŷ, which allows us 
to choose y′′, y′ ∈ S such that y′′ 
 y′ 
 y and x̂′ ≤ γ′ŷ′′. Choose d ∈ N such that 
x′, y′ ∈ Σ(d). By definition of (LBCA) applied to γ′′ and d, there exists N = N(γ′′, d) ∈ N

such that v̂ ≤ γ′′ŵ, for v, w ∈ Σ(d), implies that v ≤N w. Let us increase N if necessary 
so that we also have that γ′N+1

N−1 < γ′′.
Applying the almost divisibility assumption to x′′ 
 x′ and y′′ 
 y′, we obtain 

elements v and w such that

(N − 1)v ≤ x′, x′′ ≤ Nv, Nw ≤ y′, and y′′ ≤ (N + 1)w.

Then
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(N − 1)v̂ ≤ x̂′ ≤ γ′ŷ′′ ≤ γ′(N + 1)ŵ.

Hence, v̂ ≤ γ′′ŵ. Since we also have that v, w ∈ Σ(d), we obtain that v ≤N w. Therefore, 
x′′ ≤ Nv ≤ Nw ≤ y′ ≤ y. Passing to the supremum over all x′′ 
 x, we get that x ≤ y, 
as desired. �

In particular, for a scaled Cu-semigroup (S, Σ) that is almost divisible and satisfies 
(O5), the set LimF((S, Σ)U ) is dense in F((S, Σ)U ) if and only if S is almost unperforated.

Given a unital C*-algebra A, we will show in Theorem 8.5 that the set LDF(A) of 
lower-semicontinuous dimension functions is dense in the space DF(A) of dimension 
functions if and only if the comparison amplitude ca(x, y) is finite for all x, y ∈ W (A)
such that y is full and x̂ <s ŷ. Blackadar and Handelman conjectured in [12] that LDF(A)
is always dense in DF(A), and this has been confirmed for several classes of C*-algebras; 
see Paragraph 8.4.

7. A stronger density result and application to C*-algebras

In the previous section we obtained a characterization of the density of limit function-
als on an ultraproduct of Cu-semigroups satisfying (O5). In this section we strengthen 
this result assuming that the Cu-semigroups also satisfy (O6) and Edwards’ condition 
(as defined in Paragraph B.1).

The Cuntz semigroups of C*-algebras always satisfy (O5), (O6) and Edward’s condi-
tion. Thus, it is this stronger result that we shall apply to the setting of C*-algebras. 
Furthermore, in the C*-algebraic setting the result can be reformulated as a density 
of limit quasitraces in ultraproducts of C*-algebras, by the identification between limit 
2-quasitraces and limit functionals given in Theorem 4.11.

Theorem 7.1. Let (Sj , Σj)j∈J be a collection of scaled Cu-semigroups that satisfy (O5), 
(O6), and Edwards’ condition. Let U be a countably incomplete ultrafilter on J , and let 
(T, Θ) =

∏
U (Sj , Σj). Then the following are equivalent:

(i) The set of limit functionals LimF(T ) is dense in F(T ).
(ii) For every γ ∈ (0, 1) and d ∈ N there exist N = N(γ, d) ∈ N and E = E(γ, d) ∈ U

such that:

x̂ ≤ γŷ implies x ≤N y, for all j ∈ E and x, y ∈ Σ(d)
j .

(iii) There exists M ∈ N such that for every d ∈ N there exist N = N(d) ∈ N and 
E = E(d) ∈ U such that

x̂ ≤ ŷ implies Nx ≤ MNy, for all j ∈ E and x, y ∈ Σ(d)
j .

Proof. The equivalence of (i) and (ii) is Theorem 6.2.



32 R. Antoine et al. / Journal of Functional Analysis 286 (2024) 110341
We show that (ii) implies (iii). We verify (iii) with M = 2. Let d ∈ N. Applying (ii) 
for 2d and γ = 1

2 , we obtain N ∈ N and E ∈ U such that x̂ ≤ 1
2 ŷ implies x ≤N y

for all x, y ∈ Σ(2d)
j . To verify that N and E have the desired properties, let j ∈ E and 

x, y ∈ Σ(d)
j satisfy x̂ ≤ ŷ. The elements x and 2y belong to Σ(2d) and satisfy x̂ ≤ 1

2 2̂y. 
We thus deduce that x ≤N 2y, and in particular Nx ≤ 2Ny.

We show that (iii) implies (i). The argument is analogous to the proof of the impli-
cation ‘(ii)⇒(i)’ in Theorem 5.4. Let M ∈ N as in (iii). By Theorem B.5, it suffices to 
show that for all x, y ∈ T with x̂(λ) ≤ ŷ(λ) for all λ in the closure of LimF(T ) we have 
x̂ ≤ 2Mŷ.

Let x, y ∈ T be such that x̂(λ) ≤ ŷ(λ) for all λ in the closure of LimF(T ). Let 
x̃ = [((xt,j)j)t≤0] and ỹ = [((yt,j)j)t≤0] in 

∏
j(Sj , Σj) be lifts of x and y, respectively, 

that is, x = πU (x̃) and y = πU (ỹ). Given s < 0, we let x̃s denote the ‘cut-down’ 
x̃s = [((xs+t,j)j)t≤0], and set xs = πU (x̃s). We define similarly ỹt and yt for t < 0.

Let s < 0. By Proposition 5.1, for γ = 1 and γ′ = 2, there exists t < 0 such that

E1 :=
{
j ∈ J : x̂s,j ≤ 2ŷt,j

}
∈ U .

Choose d ∈ N such that xs,j, yt,j ∈ Σ(d)
j for all j ∈ E1. Applying the assumption for d, 

we obtain N ∈ N and E2 ∈ U such that

v̂ ≤ ŵ implies Nv ≤ MNw, for all j ∈ E2 and v, w ∈ Σ(d)
j .

Let E = E1∩E2. For j ∈ E, we have x̂s,j ≤ 2ŷt,j , and so Nxs,j ≤ 2MNyt,j . This implies 
that

Nxs = NπU (x̃s) ≤ 2MNπU (ỹ) = 2MNy.

Evaluating at any functional λ ∈ F(T ), we deduce that λ(xs) ≤ 2Mλ(y). Since this holds 
for every s < 0, we obtain λ(x) ≤ 2Mλ(y), as desired. �

For the case of the ultrapower of a trivially scaled Cu-semigroup (that is, Σ = S) the 
previous result adopts the following simpler form:

Corollary 7.2. Let S be a Cu-semigroup satisfying (O5), (O6), and Edwards’ condition. 
Let U be a countably incomplete ultrafilter on a set J . The following are equivalent:

(i) The set LimF(SU ) is dense in F(SU ).
(ii) For every γ ∈ (0, 1) there exists N ∈ N such that x̂ ≤ γŷ implies x ≤N y for all 

x, y ∈ S.
(iii) There exists M ∈ N such that x̂ ≤ ŷ implies x ≤ My for all x, y ∈ S.

Remark 7.3. We do not have a direct proof of the equivalence of (ii) and (iii) in 
Corollary 7.2 that does not use ultrapowers and density of limit functionals.
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Let A be a C*-algebra. We remind the reader that the scale of A is

ΣA :=
{
x ∈ Cu(A) : for every x′ ∈ Cu(A) with x′ 
 x there exists 

a ∈ A+ with x ≤ [a]

}
.

The d-fold amplification of ΣA is then defined as

Σ(d)
A :=

{
x ∈ Cu(A) : for each x′ ∈ Cu(A) with x′ 
 x there are 

x1, . . . , xd ∈ ΣA with x′ 
 x1 + . . . + xd

}
.

We noticed in Paragraph 4.5 that ΣA admits useful descriptions in terms of Cuntz 
classes of positive elements in A. The next result shows that a similar result holds for Σ(d)

A

in terms of Cuntz classes of positive elements in Md(A).

Proposition 7.4. Let A be a C*-algebra and let d ∈ N with d ≥ 1. Then

Σ(d)
A =

{
x ∈ Cu(A) : there exists a sequence (an)n in Md(A)+ such 

that ([an])n is 
-increasing with x = supn[an]

}
=
{
x ∈ Cu(A) : there exists a ∈ Md(A)+ with x ≤ [a]

}
.

Proof. After identifying Cu(A) with Cu(Md(A)), we view ΣMd(A) as the subset{
x ∈ Cu(A) : for each x′ ∈ Cu(A) with x′ 
 x there is a ∈ Md(A)+ with x ≤ [a]

}
of Cu(A). Then, by [54, Lemma 3.3], ΣMd(A) agrees with the two displayed sets of the 

statement. It remains to verify that Σ(d)
A = ΣMd(A).

Let x ∈ Cu(A). To show the inclusion ‘⊆’, assume that x ∈ Σ(d)
A . Given x′ ∈ Cu(A)

with x′ 
 x, there are x1, . . . , xd ∈ ΣA such that x′ ≤ x1+. . .+xd. We obtain a1, . . . , ad ∈
A+ such that xj ≤ [aj ] for j = 1, . . . , d. Then the diagonal matrix a := diag(a1, . . . , ad)
belongs to Md(A)+ and we have x′ ≤ [a]. Since this holds for every x′ with x′ 
 x, we 
obtain x ∈ ΣMd(A).

To show the other inclusion, assume that x ∈ ΣMd(A). Pick a ∈ Md(A)+ such that 
x ≤ [a]. Given x′ ∈ Cu(A) with x′ 
 x, we find ε > 0 such that x′ ≤ [(a − ε)+]. 
Using an approximate unit (uλ)λ in A, for sufficiently large λ0 the diagonal matrix 
u = diag(uλ0 , . . . , uλ0) satisfies ‖a − uau‖ ≤ ε. Then

(a− ε)+ � uau � u2 ∼ u,

and it follows that

x′ ≤ [(a− ε)+] ≤ [u] = [uλ0 ] + . . . + [uλ0 ],

with [uλ0 ] ∈ ΣA. Since this holds for every x′ with x′ 
 x, we get x ∈ Σ(d)
A . �
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As mentioned in Paragraph 3.3, given τ ∈ QT(A), we obtain a functional dτ ∈
F(Cu(A)) defined as dτ ([a]) = limn τ(a 1

n ) for all [a] ∈ Cu(A). Moreover, the correspon-
dence τ 
→ dτ is an isomorphism of topological cones between QT(A) and F(Cu(A)). 
Through this identification, the function [̂a] induced by a Cuntz semigroup element 
[a] ∈ Cu(A) on F(Cu(A)) may be regarded as a function on QT(A). In the sequel we make 
this identification and thus regard [̂a] as having domain QT(A), that is, [̂a](τ) = dτ (a)
for τ ∈ QT(A).

Theorem 7.5. Let A be a C*-algebra and let U be a countably incomplete ultrafilter on a 
set J . The following are equivalent:

(i) The set of limit 2-quasitraces LimQT(AU ) is dense in QT(AU ).
(ii) For every γ ∈ (0, 1) and d ∈ N there exists N = N(γ, d) ∈ N such that

[̂a] ≤ γ [̂b] implies [a] ≤N [b], for all a, b ∈ Md(A)+.

(iii) There exists M ∈ N such that for every d ∈ N there exists N = N(d) ∈ N such 
that

[̂a] ≤ [̂b] implies N [a] ≤ MN [b], for all a, b ∈ Md(A)+.

Proof. By Theorem 4.11, statement (i) is equivalent to proving the density of limit func-
tionals in F((Cu(A), ΣA)U ). Then, using Theorem 7.1, we see that (i) implies (ii), and 
a similar argument as in the proof of said theorem shows that (ii) implies (iii). Let us 
show that (iii) implies (i).

Assume (iii). We will verify that condition (iii) in Theorem 7.1 is satisfied, which 
then implies (i). Let d ∈ N and consider M ∈ N and N := N(2d) as given from the 
assumption (iii). To verify (iii) in Theorem 7.1, let x, y ∈ Σ(d)

A satisfy x̂ ≤ ŷ.
Applying Proposition 7.4, we can write x and y as suprema of rapidly increasing 

sequences x = supn[an] and y = supn[bn], with an, bn ∈ Md(A)+. Using Lemma A.3 and 
reindexing conveniently we may assume that [̂an] ≤ 2[̂bn] for all n. Since [an] and 2[bn]
are Cuntz classes of positive elements in M2d(A), we obtain by the choice of M and N
that N [an] ≤ MN [bn]. Passing to the supremum over n, we get Nx ≤ MNy. �

A C*-algebra A is said to be stable if A ∼= A ⊗K.

Corollary 7.6. Let A be a stable C*-algebra, and let U be a countably incomplete ultrafilter 
on a set J . The following are equivalent:

(i) The set of limit 2-quasitraces LimQT(AU ) is dense in QT(AU ).
(ii) For every γ ∈ (0, 1) there exists N ∈ N such that [̂a] ≤ γ [̂b] implies [a] ≤N [b] for 

all a, b ∈ A+.
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(iii) There exists M ∈ N such that [̂a] ≤ [̂b] implies [a] ≤ M [b] for all a, b ∈ A+.

Proof. Since A is stable, the scale ΣA in Cu(A) is all of Cu(A). The result then fol-
lows from Theorem 7.5. Alternatively, we use the same argument as in the proof of 
Theorem 7.5 to deduce the result from Corollary 7.2. �

Using that traces form a closed subset among quasitraces, we obtain:

Corollary 7.7. Let A be a C*-algebra such that every lower semicontinuous 2-quasitrace 
on A is a trace (for example, if A is exact), and let U be a countably incomplete ultrafilter 
on a set J . Assume that Cu(A) satisfies the conditions of Theorem 7.5. Then every lower 
semicontinuous 2-quasitrace on AU is a trace.

7.8 (Comparison). Let S be a Cu-semigroup. Recall that the relation <s on S is defined 
by setting x <s y if there is k ∈ N such that (k+ 1)x ≤ ky. Given m ∈ N, one says that 
S has m-comparison if, for all x, y0, . . . , ym ∈ S, the condition x <s yj for j = 0, . . . , m
implies x ≤

∑m
i=0 yi; see [38, Definition 2.8]. Note that S is almost unperforated if and 

only if it has 0-comparison.

A C*-algebra is said to be nowhere scattered if it has no nonzero, elementary ideal-
quotients; see [52].

The next theorem is essentially a consequence of Corollary 7.6 and of [4, Theo-
rem 8.12].

Theorem 7.9. Let A be a stable, nowhere scattered C*-algebra of stable rank one, and let 
U be a countably incomplete ultrafilter on a set J . The following are equivalent:

(i) LimQT(AU ) is dense in QT(AU ),
(ii) Cu(A) is almost unperforated (equivalently, A has strict comparison of positive 

elements).

Proof. By Corollary 7.6 the density of LimQT(AU ) in QT(AU ) is equivalent to the state-
ment

There exists M ∈ N such that x̂ ≤ ŷ implies x ≤ My for all x, y ∈ Cu(A). (∗)

If Cu(A) is almost unperforated, then (∗) holds for M = 2, which shows that (ii) im-
plies (i).

On the other hand, it is shown in [4, Theorem 8.12] that (∗) implies that Cu(A) is 
almost unperforated whenever A is a separable, nowhere scattered C*-algebra of stable 
rank one. Separability, however, can be dropped, as we show in Theorem 7.10 below. 
The result thus follows. �
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The next result removes the separability assumption from [4, Theorem 8.12]. To this 
end we use the model theory of C*-algebras.

Theorem 7.10. Let A be a nowhere scattered C*-algebra of stable rank one. The following 
are equivalent:

(i) The Cuntz semigroup Cu(A) has m-comparison for some m ≥ 0.
(ii) There exist M ∈ N and γ ∈ (0, 1) such that x̂ ≤ γŷ implies that x ≤ My for all 

x, y in Cu(A).
(iii) The Cuntz semigroup Cu(A) is almost unperforated.

Proof. It is shown in [4, Theorem 8.12] that (i) implies (ii), and that (iii) implies (i). It 
remains to prove that (ii) implies (iii). We may assume that A is stable. Assume (ii) and 
suppose that x, y ∈ Cu(A) satisfy x <s y. Choose a, b ∈ A+ with x = [a] and y = [b]. 
We need to show that [a] ≤ [b]. By assumption, there exist M ∈ N and γ ∈ (0, 1) such 
that v̂ ≤ γŵ implies that v ≤ Mw for all v, w ∈ Cu(A).

Apply the downward Löwenheim–Skolem theorem for C*-algebras, [24, Theo-
rem 2.6.2], to obtain a separable sub-C*-algebra B ⊆ A that is an elementary submodel 
of A, and that contains a and b. By [24, Lemma 3.8.2] and [52, Proposition 4.11], B is 
nowhere scattered and has stable rank one. Further, by [24, Theorem 8.1.3], the induced 
map Cu(B) → Cu(A) is an order embedding.

Let us verify that Cu(B) satisfies (ii) for the given M and γ. So let v, w ∈ Cu(B)
satisfy λ(v) ≤ γλ(w) for all λ ∈ F (Cu(B)). The proof of [4, Lemma 9.2] is easily adapted 
to show that this implies that λ(v) ≤ γλ(w) for all λ ∈ F (Cu(A)). By the choice of M
and γ, we obtain that v ≤ Mw in Cu(A). Since Cu(B) → Cu(A) is an order embedding, 
we get v ≤ Mw in Cu(B).

We can now apply [4, Theorem 8.12] to B to show that Cu(B) is almost unperforated. 
Since the induced map Cu(B) → Cu(A) is an order embedding by [24, Theorem 8.1.3], 
we obtain that x <s y in Cu(B) and hence x ≤ y in Cu(B), which in turn gives x ≤ y

in Cu(A), as desired. �
8. Density of normalized limit quasitraces and a conjecture of Blackadar–Handelman

We now turn to the question of density of limit functionals normalized at a full 
compact element, and similarly to the question about the density of normalized limit 
quasitraces for a unital C*-algebra. Here we prove Theorem 8.3 from the introduction. 
We focus on ultraproducts over a free ultrafilter, but similar results are valid for products.

Let S be a Cu-semigroup satisfying (O5). Let u ∈ S be a compact, full element. 
Recall that we regard the pair (S, u) as a scaled Cu-semigroup endowed with the scale 
Σu = {x : x ≤ u}.

Let ((Sj , uj))j∈J be a family of pairs of a Cu-semigroup and a full compact element. 
Let U be an ultrafilter on J . In Paragraph 4.6 we have defined 

∏
U (Sj , uj) as the pair 
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(T, v), where (T, Σv) =
∏

U (Sj , Σuj
) and v ∈ T is the element induced in the ultraproduct 

by the constant path (u)t≤0, with u = (uj)j in PoM-
∏

j Sj .

Theorem 8.1. Let ((Sj , uj))j∈J be a collection of pairs of a Cu-semigroup satisfying (O5), 
together with full compact elements. Let U be a countably incomplete ultrafilter on J . Let 
(T, v) =

∏
U (Sj , uj). The following are equivalent:

(i) The set LimFv(T ) is dense in Fv(T ).
(ii) For every γ ∈ (0, 1) and d ∈ N there exist N = N(γ, d) ∈ N and E = E(γ, d) ∈ U

such that

x̂ ≤ γŷ implies x ≤N y,

for all j ∈ E and all x, y ∈ Sj such that x, y ≤ duj and uj ≤ dy.
(iii) There exists M ∈ N such that for every d ∈ N there exist N = N(d) ∈ N and 

E = E(d) ∈ U such that

x̂ ≤ ŷ implies Nx ≤ MNy,

for all j ∈ E and all x, y ∈ Sj with x, y ≤ duj and uj ≤ dy.

Proof. Set v̄ = [(u)t≤0] in 
∏

j Sj , so that v = πU (v̄) in 
∏

U Sj .
We show that (i) implies (ii). The proof proceeds as in the proof of ‘(i)⇒(ii)’ of 

Theorem 5.4, with minor modifications.
To reach a contradiction, assume that (ii) does not hold. Using that U is an ultrafilter, 

this means that there exist γ ∈ (0, 1) and d ∈ N such that for every N ∈ N the set

EN :=
{
j ∈ J : there are x, y ∈ Sj with x, y ≤ duj , uj ≤ dy, x̂ ≤ γŷ, and x �N y

}
belongs to U . Using that U is countably incomplete, we may choose a decreasing sequence 
(E′

N )N∈N in U such that 
⋂

N E′
N = ∅ and E′

N ⊆ EN for each N .
We now pick suitable x′

j, x
′′
j , xj , y′j , yj ∈ Sj for each j ∈ J . If j ∈ J\E′

0, we simply 
set x′

j = x′′
j = xj = 0 and y′j = yj = uj . If j ∈ E′

N\E′
N+1 for N ≥ 0, then we use that 

E′
N ⊆ EN to choose xj , yj ∈ Sj such that

xj , yj ≤ duj , uj ≤ dyj , x̂j ≤ γŷj , and xj �N yj .

Next, choose x′
j , x

′′
j ∈ Sj such that x′

j 
 x′′
j 
 xj and x′

j �N yj . Set γ′ = (1 + γ)/2. 
Then x̂′′

j 
 γ′ŷj , by Lemma A.3. This allows us to choose y′j ∈ Sj such that

y′j 
 yj , uj ≤ dy′j , and x̂′′
j ≤ γ′ŷ′j .
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By [6, Proposition 2.10], for each j ∈ J we can choose paths (xt,j)t≤0 and (yt,j)t≤0 in 
Sj such that

x−2,j = x′
j , x0,j = x′′

j , y−1,j = y′j , and y0,j = yj .

Since xt,j , yt,j ≤ duj and uj ≤ dy−1,j for each j, the elements x̄ := [(xt)t≤0] and ȳ :=
[(yt)t≤0] in 

∏
j(Sj , uj) satisfy that x̄, ȳ ≤ dv̄ and v̄ ≤ dȳ. Set x := πU (x̄) and y := πU (ȳ). 

The set of indices j such that x̂0,j ≤ γ′ŷ−1,j contains E′
0, and thus belongs to U . By 

Proposition 5.1, this implies that x̂(λ) ≤ γ′ŷ(λ) for every functional λ in the closure of 
LimF(T ). Since, by assumption, this set contains the set of all normalized functionals 
Fv(T ), the inequality x̂(λ) ≤ γ′ŷ(λ) holds for all λ ∈ F(T ) such that λ(v) < ∞. On 
the other hand, since v ≤ dy, the same inequality is trivially valid for all λ such that 
λ(v) = ∞. We thus conclude that x̂ ≤ γ′ŷ. The remainder of the proof follows verbatim 
the proof of ‘(i)⇒(ii)’ in Theorem 5.4.

We show that (ii) implies (iii). Let us prove that (iii) is valid with M = 2. Let d ∈ N. 
By (ii), applied with 2d and γ = 1

2 , there exist N ∈ N and E ∈ U such that for each 
j ∈ E if x, y ∈ Sj are such that x, y ∈ (2d)uj , uj ≤ (2d)y, and x̂ ≤ 1

2 ŷ, then x ≤N y. 
Then, for the same N and E, we clearly have that if x, y ∈ Sj are such that x, y ≤ duj , 
uj ≤ dy, and x̂ ≤ ŷ, then Nx ≤ 2Ny.

We show that (iii) implies (i). The proof proceeds as in the proof of ‘(iii)⇒(i)’ of 
Theorem 7.1, with minor modifications.

By Theorem C.1, it suffices to show that for all x, y ∈ T , with y full, such that 
x̂(λ) ≤ ŷ(λ) for all λ in the closure of LimFv(T ), we have x̂ ≤ 2Mŷ. Thus, let x, y ∈ T

be such that y is full and x̂(λ) ≤ ŷ(λ) for all λ in the closure of LimFv(T ).
By (4.2), we have that x̂(λ) ≤ ŷ(λ) for all λ ∈ LimF(T ) such that λ(v) = 1. This easily 

extends to all λ in LimF(T ) such that λ(v) = 1. The latter equality can be relaxed to 
λ(v) < ∞. On the other hand, since y is full, v ≤ dy for some d, and so x̂(λ) ≤ ŷ(λ) = ∞
is valid whenever λ ∈ F(T ) is such that λ(v) = ∞. In summary, we have shown that 
x̂(λ) ≤ ŷ(λ) for all λ in the closure of LimF(T ) in F(T ).

Choose x̃ = [((xt,j)j)t≤0] and ỹ = [((yt,j)j)t≤0], lifts of x and y in 
∏

j(Sj , uj). Since y
is full, there exists d0 ∈ N such that v ≤ d0y. Hence, there exist t0 < 0 such that

E0 :=
{
j ∈ J : uj ≤ d0yt0,j

}
∈ U .

Let s < 0. Applying Proposition 5.1 for the given s, as well as γ = 1 and γ′ = 2, we 
obtain t < 0 such that

E1 :=
{
j ∈ J : x̂s,j ≤ 2ŷt,j

}
∈ U .

We may assume that t0 ≤ t.
Choose d ≥ d0 such that xs,j , yt,j ≤ duj for all j ∈ E1. Applying the assumption (iii) 

for 2d, we obtain N ∈ N and E2 ∈ U such that
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v̂ ≤ ŵ implies Nv ≤ MNw,

for all j ∈ E2 and all v, w ∈ Sj with v, w ≤ (2d)uj and uj ≤ (2d)w.
Set E := E0 ∩ E1 ∩ E2. Let j ∈ E. We have xs,j , yt,j ≤ duj and consequently 

xs,j , 2yt,j ≤ (2d)uj . Since j ∈ E0, t0 ≤ t and d0 ≤ d, we also have uj ≤ dyt,j ≤ (2d)yt,j . 
Since j ∈ E1, we further have x̂s,j ≤ 2̂yt,j . For j ∈ E2, we get

Nxs,j ≤ MN2yt,j .

Consider the ‘cut-downs’ x̃s = [((xs+t,j)j)t≤0] and xs := πU (x̃s). The inequality just 
established implies that

Nxs = NπU (x̃s) ≤ 2MNπU (ỹ) = 2MNy.

Evaluating at any functional λ ∈ F(T ), we deduce that λ(xs) ≤ 2Mλ(y). Since this holds 
for every s < 0, we obtain λ(x) ≤ 2Mλ(y), as desired. �

The next result follows from Theorem 8.1 by specializing to the case of ultrapowers. 
We will refer to condition (ii) in Theorem 8.2 by saying that (S, u) has (LBCA) for 
uniformly full elements.

Theorem 8.2. Let (S, u) be a Cu-semigroup satisfying (O5) together with a full compact 
element u ∈ S. Let U be a countably incomplete ultrafilter on a set J , and consider the 
ultrapower (S, u)U with its canonical full compact element v. The following are equivalent:

(i) The set LimFv((S, u)U ) is dense in Fv((S, u)U ).
(ii) For every γ ∈ (0, 1) and d ∈ N there exists N = N(γ, d) ∈ N such that

x̂ ≤ γŷ implies x ≤N y, for all x, y ∈ S with x, y ≤ du and u ≤ dy.

(iii) There exists M ∈ N such that for every d ∈ N there exists N = N(d) ∈ N such 
that

x̂ ≤ ŷ implies Nx ≤ MNy, for all x, y ∈ S with x, y ≤ du and u ≤ dy.

Theorem 8.3. Let A be a unital C*-algebra and let U be a free ultrafilter on N. The 
following are equivalent:

(i) The set LimQT1(AU ) of limit 2-quasitracial states is dense in QT1(AU ).
(ii) For every γ ∈ (0, 1) and d ∈ N there exists N ∈ N such that

x̂ ≤ γŷ implies x ≤N y,

for all x, y ∈ Cu(A) such that x, y ≤ d[1] and [1] ≤ dy.
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(iii) There exists M ∈ N such that for every d ∈ N there exists N ∈ N such that

x̂ ≤ ŷ implies Nx ≤ NMy,

for all x, y ∈ Cu(A) such that x, y ≤ d[1] and [1] ≤ dy.

If we additionally assume that QT1(A) = T1(A) (for example, if A is exact), then these 
equivalent conditions imply that QT1(AU ) = T1(AU ) and that the natural map∐

U
T1(A) → T1(AU )

is an isomorphism.

Proof. Applying the above Theorem 8.2 in combination with Theorem 4.11 for the Cuntz 
semigroup of a unital C*-algebra, we deduce the equivalence of (i)–(iii).

Suppose now that (i)–(iii) hold and that QT1(A) = T1(A). It is then clear that 
LimQT1(AU ) = LimT1(AU ). It follows by (i) that QT1(AU ) = T1(AU ) and that 
LimT1(AU ) is dense in T1(AU ). By Theorem 2.9, the map 

∐
U T (A) → T (AU ) is an 

isomorphism, as required. �
8.4 (A conjecture of Blackadar–Handelman). Let A be a unital C*-algebra, and let 
M∞(A) =

⋃∞
n=1 Mn(A), where Mn(A) is regarded as a subalgebra of Mn+1(A)

through the upper-left corner embedding. Following [21, Section 3], let us call a map 
d : M∞(A)+ → [0, ∞) a normalized dimension function if d(a ⊕ b) = d(a) + d(b) for all 
a, b ∈ M∞(A)+, d(a) ≤ d(b) if a � b, and d(1A) = 1. Let us endow the set DF(A) of 
normalized dimension functions with the topology of pointwise convergence.

Let W (A) denote the classical (non-complete) Cuntz semigroup of A. This is the sub-
semigroup of Cu(A) consisting of those elements that admit a representative in M∞(A)
(regarded as a subalgebra of A ⊗K). Note that DF(A) is the set of normalized states on 
the partially ordered semigroup W (A).

Let LDF(A) denote the subset of DF(A) of lower semicontinuous (normalized) di-
mension functions. Blackadar and Handelman conjectured in [12] that LDF(A) is always 
dense in DF(A), and verified this in the commutative case; see [12, Theorem I.2.4]. The 
conjecture was also verified for simple, exact, Z-stable C*-algebras in [17, Theorem B], 
and this was further generalized in [49, Theorem 5.2.5] to include (not necessarily simple) 
C*-algebras with finite radius of comparison.

In the result below we offer a characterization of when LDF(A) is dense in DF(A) in 
terms of finiteness of the comparison amplitude. Another characterization was obtained 
in [49, Theorem 5.1.1]. Some parts of our argument follow a similar approach, which we 
include for completeness.

Theorem 8.5. Let A be a unital C*-algebra. The following are equivalent:
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(i) The set LDF(A) is dense in DF(A).
(ii) For any x, y ∈ W (A) with y full, x <s y if and only if x̂ <s ŷ.

Proof. In (ii), we only need to prove the backwards implication.
We show that (i) implies (ii). Let x, y ∈ W (A) be such that y is full and x̂ <s ŷ. 

Then there is k ∈ N such that (k + 1)x̂ ≤ kŷ and thus (k + 1)d(x) ≤ kd(y) for every 
d ∈ LDF(A). Since LDF(A) is dense in DF(A), this implies that (k + 1)d(x) ≤ kd(y) for 
any d ∈ DF(A). Since y is full, this implies x <s y; see [5, Proposition 5.2.13].

We show that (ii) implies (i). Let K = LDF(A) in DF(A). Using [14, Lemma 2.9], we 
need to show that, for x, y ∈ W (A), if d(x) < d(y) for every d ∈ K, then d(x) < d(y) for 
every d ∈ DF(A).

Thus, let x, y ∈ W (A) such that d(x) < d(y) for all d ∈ K. The function K → R

given by d 
→ d(y) − d(x) is strictly positive and continuous, hence there is δ > 0 such 
that d(y) − d(x) > δ. Choose n ∈ N such that nδ > 1 and we get

nd(x) + 1 < nd(y) for all d ∈ K.

This implies that

nλ(x) + λ([1]) ≤ nλ(y)

for every λ ∈ F[1](Cu(A)), and consequently for every λ ∈ F(Cu(A)) such that λ([1]) <
∞. Adding λ([1]) on both sides extends the inequality to all functionals λ ∈ F(Cu(A)), 
since both sides are then ∞ whenever λ([1]) = ∞. Hence,

nx̂ + 2[̂1] ≤ nŷ + [̂1].

Given any k ∈ N, we deduce that k(nx̂ + 2[̂1]) <s (k + 1)(nŷ + [̂1]), and using the 
assumption at the second step, we obtain

knx + 2k[1] = k(nx + 2[1]) <s (k + 1)(ny + [1]) = kny + ny + (k + 1)[1].

Since y ∈ W (A), there exists k such that ny ≤ (k − 2)[1], and therefore

ny + (k + 1)[1] ≤ (2k − 1)[1].

With this choice of k we get

knx + 2k[1] <s kny + ny + (k + 1)[1] ≤ kny + (2k − 1)[1].

Evaluating at any d ∈ DF(A), we see that d(x) < d(y), as desired. �
Theorem 8.6. Let A be a unital C*-algebra such that (Cu(A), [1]) has (LBCA) for uni-
formly full elements. Then LDF(A) is dense in DF(A).
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Proof. It suffices to verify (ii) of Theorem 8.5. Let x, y ∈ W (A) such that y is full and 
x̂ <s ŷ. We need to prove that x <s y.

Using that x̂ <s ŷ, we can choose m ∈ N such that (m + 2)x̂ ≤ mŷ. Set γ := m
m+1

and notice that then (m + 2)x̂ ≤ γ(m + 1)ŷ. Since every element z in W (A) satisfies 
z 
 ∞[1], and since y is full, we can choose d ∈ N such that (m + 2)x, (m + 1)y ≤ d[1]
and [1] ≤ d(m + 1)y.

Applying that (Cu(A), [1]) has (LBCA) for uniformly full elements for γ and d, we 
obtain N = N(γ, d), which we can apply to (m +2)x and (m +1)y to obtain (m +2)x ≤N

(m + 1)y, whence x <s y. �
8.7 (Radius of comparison). Let S be a Cu-semigroup, and let u ∈ S be a compact, full 
element. Following [13, Definition 3.2.2], the radius of comparison of (S, u), denoted by 
rc(S, u), is defined as the infimum over all r ∈ [0, ∞) such that the following holds: If 
x, y ∈ S satisfy x̂ + rû ≤ ŷ, then x ≤ y.

The radius of comparison of a unital C*-algebra A is rc(A) = rc(Cu(A), [1]).

Lemma 8.8. Let S be a Cu-semigroup satisfying (O5), let u ∈ S be a compact, full 
element, and assume that (S, u) has finite radius of comparison. Then (S, u) has (LBCA) 
for uniformly full elements.

Proof. Choose R ∈ N with rc(S, u) < R. Let γ ∈ (0, 1) and d ∈ N. Choose n = n(γ, d) ∈
N large enough such that

γ <
n

n + d + 1 .

Then set N ′ = R(n + d) and N = N ′(N ′ + 1).
To see that N has the desired properties, let x, y ∈ S such that x, y ≤ du and u ≤ dy

and x̂ ≤ γŷ. Then x̂ ≤ n
n+d+1 ŷ, and we get

(n + d + 1)x̂ ≤ nŷ.

Adding û ≤ dŷ and multiplying everything by R we have

R(n + d + 1)x̂ + Rû ≤ R(n + d)ŷ.

Using rc(S, u) < R, we get R(n + d + 1)x ≤ R(n + d)y, which implies (N ′ + 1)x ≤ N ′y, 
and consequently x ≤N y. �

We recover [49, Theorem 5.2.5 (1)] and [9, Theorem 3.19] for exact C*-algebras.

Theorem 8.9. Let A be a unital C*-algebra with finite radius of comparison. Then the set 
of limit 2-quasitracial states LimQT1(AU ) is dense in the set QT1(AU ) of 2-quasitracial 
states. Further, LDF(A) is dense in DF(A).
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Proof. By Lemma 8.8, (Cu(A), [1]) has (LBCA) for uniformly full elements, that is, con-
dition (ii) of Theorem 8.2 is satisfied. Using Theorem 4.11, it follows from Theorem 8.2(i) 
that LimQT1(AU ) is dense in QT1(AU ). Further, it follows from Theorem 8.6 that 
LDF(A) is dense in DF(A). �
9. The trace-kernel ideal

In this section we prove Theorem 9.3 from the introduction. Before doing so, we turn 
to the setting of normalized functionals on an ultraproduct of Cu-semigroups.

Let (Sj , uj)j∈J be a collection of pairs of Cu-semigroups and full compact elements. 
Let U be a free ultrafilter on J . Denote by (T, v) the ultraproduct 

∏
U (Sj , uj). Define

Υ =
{
x ∈ T : λ(x) = 0 for all λ ∈ LimFv(T )

}
. (9.1)

Observe that Υ is an ideal of T . Let FΥ
v (T ) ⊆ Fv(T ) denote the set of normalized 

functionals on (T, v) that vanish on Υ.
Given a pair (S, u) of a Cu-semigroup and full compact element, let us define

‖x‖λ,u = sup
{
λ(x) : λ ∈ Fu(S)

}
.

Lemma 9.1. Let (T, v) be as in the preceding paragraphs. Let w ∈ T , and let [((wt,j)j)t≤0]
be a lift of w to 

∏
j Sj (where wt,j ∈ S for all t ≤ 0 and j ∈ J). Then

w ∈ Υ ⇔ lim
U

‖wt,j‖λ,u = 0 for all t < 0.

Proof. Suppose that w ∈ Υ. Fix t < 0. Let ε > 0. Suppose, for the sake of contradiction, 
that

E :=
{
j ∈ J : ‖wt,j‖λ,u > ε

}
∈ U .

For each j ∈ E, let λj ∈ Fu(S) be such that λj(wt,j) > ε, and set λj = 0 for j �∈ E. Let 
λ ∈ LimFv(T ) be the limit functional associated to (λj)j . Then

λ(w) = sup
t<0

lim
U

λj(wt,j) ≥ ε,

contradicting that w ∈ Υ.
Suppose, conversely, that limU ‖wt,j‖λ,u = 0 for all t < 0. Let λ ∈ LimFv(T ) be a 

normalized limit functional induced by a selection of normalized functionals (λj)j . Then

λ(w) = sup
t<0

lim
U

λj(wt,j) ≤ sup
t<0

lim
U

‖wt,j‖λ,u = 0.

It follows that w ∈ Υ. �
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For x, y ∈ S, let us write x ≤λ,u y if for every ε > 0 there exists z ∈ S such that 
x ≤ y + z and ‖z‖λ,u < ε.

Theorem 9.2. Let M ∈ N. Let (Sj , uj)j∈J be a collection of Cu-semigroups satisfying 
(O5) and (O6), together with full compact elements. Let U be a countably incomplete 
ultrafilter on J , and set (T, v) =

∏
U (Sj , uj). Suppose that the collection (Sj, uj)j∈J has 

the following property: For each d ∈ N there exist N = N(d) ∈ N and E ∈ U such that, 
for all j ∈ E,

x̂ ≤ ŷ implies Nx ≤λ,u MNy,

for all x, y ∈ Sj with x, y ≤ duj and uj ≤ dy. Then LimFv(T ) is dense in FΥ
v (T ).

Proof. Let ṽ denote the image of v in T/Υ. Since all limit functionals in LimFv(T ) vanish 
on Υ, they factor through T/Υ. Let LimFṽ(T/Υ) denote the set of functionals on T/Υ
induced by functionals in LimFv(T ). The density of LimFv(T ) in FΥ

v (T ) is equivalent 
to the density of LimFṽ(T/Υ) in Fṽ(T/Υ). We can apply Theorem C.1 to establish the 
latter by showing that for all x, y ∈ T , with ỹ full in T/Υ,

x̂(λ) ≤ ŷ(λ) for all λ ∈ LimFv(T ) =⇒ x̂(λ) ≤ 2Mŷ(λ) for all λ ∈ FΥ
v (T ).

We can moreover assume that y is full in T . Indeed, if ỹ is full in T/Υ, and since v 
 v, 
there exist n ∈ N and w ∈ Υ such that v ≤ ny + w. Now y′ = y + w is full in T and 
ŷ(λ) = ŷ′(λ) for all λ ∈ FΥ

v (T ).
We prove this below, following closely the proof of the implication (iii)⇒(i) in 

Theorem 8.1 (omitting some details already addressed in that proof).
Let x, y ∈ T be such that y is full in T and x̂(λ) ≤ ŷ(λ) for all λ ∈ LimFv(T ). We 

proceed as in the proof of (iii)⇒(i) in Theorem 8.1, using that y is a full element of T , 
to conclude that the inequality x̂(λ) ≤ ŷ(λ) extends to all λ ∈ LimF(T ) (i.e., to all not 
necessarily normalized limit functionals).

Choose [((xt,j)j)t≤0] and [((yt,j)j)t≤0], lifts of x and y in the scaled product 
∏

j(Sj , uj). 
Since y is full, there exists d0 ∈ N such that v ≤ d0y. Hence, there exist t0 < 0 such that

E0 :=
{
j ∈ J : uj ≤ d0yt0,j

}
∈ U .

Let s < 0. Applying Proposition 5.1 for this s, as well as γ = 1 and γ′ = 2, we obtain 
t0 ≤ t1 < 0 such that

E1 :=
{
j ∈ J : x̂s,j ≤ 2ŷt1,j

}
∈ U .

Choose d ≥ d0 such that xs,j , yt1,j ≤ duj for all j ∈ E1. By the property assumed for 
the collection (Sj , uj)j , there exist N = N(2d) ∈ N and E2 ∈ U such that, for j ∈ E2,



R. Antoine et al. / Journal of Functional Analysis 286 (2024) 110341 45
x̂′ ≤ ŷ′ implies Nx′ ≤λ,u MNy′,

for all x′, y′ ∈ Sj with x′, y′ ≤ (2d)uj and uj ≤ (2d)y′.
Set E := E0∩E1∩E2. Let j ∈ E. We have xs,j , 2yt1,j ≤ (2d)uj . Since j ∈ E0, t0 ≤ t1, 

and d0 ≤ d, we also have uj ≤ (2d)yt1,j . Since j ∈ E1, we further have x̂s,j ≤ 2̂yt1,j . 
Then, since j ∈ E2, we conclude that

Nxs,j ≤λ,u 2MNyt1,j .

Using that U is a countably incomplete filter, let us choose a decreasing sequence 
(E′

n)∞n=1 of elements of U with E′
1 = E and 

⋂
n E

′
n = ∅. For each j ∈ E′

n\E′
n−1, let us 

choose zj ∈ Sj such that ‖zj‖uj ,λ ≤ 1
n and

Nxs,j ≤ 2MNyt1,j + zj .

Applying (O6) on Sj , let us choose z′′j 
 z′j 
 zj such that z′j ≤ Nxs,j and

Nx2s,j ≤ 2MNyt1,j + z′′j . (9.2)

Set zj = z′j = z′′j = 0 for j /∈ E and choose, for each j, any path (zt,j)t≤0 such that 
z−1,j = z′′j and z0,j = z′j . Set z = πU ([(zt,j)j ]t).

Since z′j ≤ (Nd)uj for all j, z is an element of the scaled ultraproduct T . Observe 
that

lim
U

‖zt,j‖uj ,λ ≤ lim
U

‖zj‖uj ,λ = 0

for all t < 0. Thus, z ∈ Υ, by Lemma 9.1.
Consider the cut-down x2s := πU ([((x2s+t,j)j)t≤0]). From (9.2) we get

Nx2s ≤ 2MNy + z.

Evaluating at any functional λ ∈ FΥ
v (T ), we obtain that λ(x2s) ≤ 2Mλ(y) for all such 

λ. Since this holds for every s < 0, we obtain λ(x) ≤ 2Mλ(y) for all λ ∈ FΥ
v (T ), as 

desired. �
Let A be a unital C*-algebra. Let U be a free ultrafilter on N. Recall that we have 

defined in the introduction the ideal

I =
{
a ∈ AU : τ(a∗a) = 0 for all τ ∈ LimT1(A)

}
.

Denote by TI
1(AU ) the set of tracial states on AU than vanish on I (in bijection with 

the tracial states on AU/I through composition with the quotient map). Denote also by 
QTI

1(AU ) the set of 2-quasitracial states on AU than vanish on I.
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Theorem 9.3. Let A be a separable, unital C*-algebra and U a free ultrafilter on N. 
Suppose that A has stable rank one, no finite dimensional representations, and QT1(A) =
T1(A). Then the natural map 

∐
U T1(A) → TI

1(AU ) is an isomorphism.

Proof. Since the map 
∐

U T1(A) → TI
1(AU ) is injective, and its range contains 

LimT1(AU ), it remains to show that LimT1(AU ) is a dense subset of TI
1(AU ). We shall 

show that it is dense in QTI
1(AU ), in passing also showing that QTI

1(AU ) = TI
1(AU ).

Let (S, u) = (Cu(A), [1]) and (T, v) = (Cu(A), [1])U , and identify the latter with 
(Cu(AU ), [1]). The bijection from QT1(AU ) to Fv(T ), associating to a 2-quasitracial 
state τ ∈ QT(AU ) the functional dτ ∈ Fv(T ), maps QTI

1(AU ) bijectively to FΥ
v (T ) with 

Υ ⊆ T as defined in (9.1). It thus suffices to show that (Cu(A), [1]) has the property 
stated in Theorem 9.2 with M = 1. In fact, we will show that x̂ ≤ ŷ implies x ≤λ,u y

for all x, y ∈ Cu(A). We will rely on the abundance of supersoft elements in Cu(A) ([4, 
8.1]) when A is as in the statement of the theorem.

Let x̂ ≤ ŷ. Let ε > 0. By [4, Theorem 7.8], there exists a full supersoft element 
z ∈ Cu(A) such that ẑ = ε[̂1], and consequently, ‖z‖λ,u = ε. Clearly, x̂ + ẑ ≤ ŷ + ẑ. 
Since the subsemigroup of full supersoft elements is an absorbing subsemigroup ([4, 
Corollary 8.6]), both x + z and y+ z are full and supersoft. It follows that x + z ≤ y+ z, 
by [4, Theorem 8.2 (ii)]. This shows that x ≤λ,u y, as desired. �
10. Applications to simple, pure C*-algebras

In this section, we show that every simple C*-algebra that is (m, n)-pure in the sense 
of Winter is already pure; see Theorem 10.5. An important ingredient in the proof is that 
m-comparison implies (LBCA) (Proposition 10.3), which we obtain from our results on 
density of limit functionals in Section 7.

10.1 (Divisibility). Let S be a Cu-semigroup. Given n ∈ N, an element x ∈ S is n-almost 
divisible if for every k ∈ N and every x′ ∈ S with x′ 
 x, there exists z ∈ S such that 
kz ≤ x and x′ ≤ (k+1)(n +1)z. If all elements in S are n-almost divisible, then S is said 
to be n-almost divisible. One says that S is almost divisible if it is 0-almost divisible.

This notion of (n-)almost divisibility differs slightly from other notions considered 
in the literature, but it has been considered, for example, in [46, Section 2.3] and [5, 
Definition 7.3.4]. It is a more convenient notion as it behaves well with respect to natural 
constructions such as ultraproducts and direct limits.

Remark 10.2. We remark that a Cu-semigroup S has m-comparison if, and only if, for 
x, y0, . . . , ym ∈ S, the condition x̂ ≤ γŷj for some γ < 1 and for j = 0, . . . , m implies 
x ≤

∑m
j=0 yj . This was observed in [42, Lemma 2.1], and we offer a short sketch of the 

argument for completeness: The backward implication is an immediate application of the 
definition. For the forward direction, if S has m-comparison and x, y0, . . . , ym ∈ S are 
such that x̂ ≤ γŷi for some γ < 1 and all j, let x′ ∈ S with x′ 
 x and apply Lemma 5.3
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to conclude that x′ <s yj for each j. It then follows that x′ ≤
∑m

j=0 yj , and the desired 
inequality follows by passing to the supremum over all x′ with x′ 
 x.

In particular, if S has m-comparison and x̂ ≤ ŷ, we have x ≤ 2(m + 1)y. This follows 
from the previous argument applied to x̂ ≤ 1

2 2̂y.

Proposition 10.3. Let S be a Cu-semigroup satisfying (O5), (O6), and Edwards’ condi-
tion, and assume that S has m-comparison for some m. Then S has (LBCA).

Proof. This follows from Remark 10.2 and Corollary 7.2. �
10.4 (Pure C*-algebras). A C*-algebra A is said to be (m, n)-pure provided Cu(A) has 
m-comparison and is n-almost divisible. This notion was considered by Winter in [60, 
Section 3] in the context of the non-complete Cuntz semigroup W (A), and replacing the 
condition x′ ≤ (k+1)(n +1)z as above with the stronger inequality x ≤ (k+1)(n +1)z. 
As defined here, this concept was introduced in [46, Paragraph 2.3]. Note that, in this 
terminology, (0, 0)-pure means that Cu(A) is almost unperforated and almost divisible. 
As in [60], a (0, 0)-pure C*-algebra will be called pure.

Winter proved in [60, Corollary 7.2] that if A is a unital, simple, separable C*-algebra 
with locally finite nuclear dimension and which is (m, n)-pure for some m, n ∈ N, then 
A is Z-stable. Using results of Rørdam from [47], this in turn implies that A is pure; 
see also [60, Proposition 3.7]. In [57], Tikuisis showed that the existence of a unit can be 
dropped.

We show here that (m, n)-pureness still implies pureness after dropping the assump-
tions of separability and of locally finite nuclear dimension. Note that pureness is the 
Cu-semigroup analogue of Z-stability, in the sense that it characterizes the Cu-semi-
groups that tensorially absorb Cu(Z); see [5, Theorem 7.3.11].

Theorem 10.5. A simple (m, n)-pure C*-algebra is pure.

Proof. Let A be a simple C*-algebra that is (m, n)-pure for some m, n ∈ N. Assume, 
without loss of generality, that A is stable.

Let us consider first the case that A has no nontrivial lower semicontinuous 2-
quasitraces. By the isomorphism between QT(A) and F(Cu(A)) (Theorem 4.11), this 
means that Cu(A) only has the zero and the ∞ functionals. Let us show that this im-
plies that A is purely infinite (hence, pure). Indeed, let x, y ∈ Cu(A) be nonzero elements. 
Using n-almost divisibility, find a nonzero z ∈ Cu(A) such that 2(m + 1)z ≤ y. Since 
x̂ ≤ ẑ, we have by m-comparison that x ≤ 2(m + 1)z; see Remark 10.2. Thus, x ≤ y. 
Since x, y are arbitrary, we obtain Cu(A) = {0, ∞}.

Let us now assume that F(Cu(A)) has at least one element other than the 0 and 
∞ functionals. Since Cu(A) has m-comparison, it has (LBCA) by Proposition 10.3. It 
suffices now to show that Cu(A) is almost divisible, since then almost unperforation 
follows from Proposition 6.4.
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Fix a free ultrafilter U on N. Let a ∈ A+ be a positive contraction. Let C = {a}′∩AU
and I = {a}⊥∩AU denote the commutant and annihilator of {a} in AU , respectively. By 
[46, Corollary 7.6], there exists a unital embedding of the Jiang–Su algebra in C/I. (In 
the notation of [46], C/I is F(C∗(a), A), which is a generalized central sequence algebra 
of the type studied by Kirchberg.) In particular, since [1] ∈ Cu(Z) is almost divisible 
(by [47, Lemma 4.2]), so is the case for [1] ∈ Cu(C/I).

Thus, for given k ∈ N there exists e ∈ C/I such that k[e] ≤ [1] ≤ (k + 1)[e] in 
Cu(C/I). Choose any positive lift ē ∈ C ⊆ AU , and consider the element b = aē ∈ AU . 
Since Cu(C/I) ∼= Cu(C)/ Cu(I), induced by the quotient map C → C/I, the inequality 
k[e] ≤ [1] means that k[ē] ≤ [1] + [z] in Cu(C), for some [z] ∈ Cu(I); see the comments 
prior to Paragraph 4.4. Using that b = aē = ēa and that az = za = 0, we obtain 
k[b] ≤ [a]. Likewise, it follows from [1] ≤ (k + 1)[e] that [a] ≤ (k + 1)[b] in Cu(C). Then 
k[b] ≤ [a] ≤ (k + 1)[b] in Cu(AU ), and thus [a] is almost divisible in Cu(AU ).

We now show that [a] is almost divisible as an element of Cu(A). Let ε > 0. Choose 
δ > 0 such that [(a − ε)+] ≤ (k + 1)[(b − δ)+] in Cu(AU ), where [b] is as in the previous 
paragraph. Then there exist x, y ∈ Mk+1(AU ) such that

‖b⊗ 1k − xax∗‖ < δ, and ‖(a− ε)+ − y((b− δ)+ ⊗ 1k+1)y∗‖ < ε.

Let (bn)n ∈ (
∏

n A)+, and (xn)n, (yn)n ∈
∏

n Mk+1(A) be lifts of b, x, and y. Then, with 
b′ = bn, x′ = xn, and y′ = yn for sufficiently large n, we have that

‖b′ ⊗ 1k − x′ax′ ∗‖ < δ, and ‖(a− ε)+ − y′((b′ − δ)+ ⊗ 1k+1)y′ ∗‖ < ε.

Now, working in Cu(A), we deduce from the first inequality that k[(b′ − δ)+] ≤ [a] and 
from the second one that [(a − 2ε)+] ≤ (k + 1)[(b′ − δ)+]. This shows that [a] is almost 
divisible in Cu(A), as desired. �
Appendix A. Separation of functionals

For a Cu-semigroup S satisfying (O5), we prove in this appendix a version of the 
Hahn–Banach separation theorem for F(S); see Theorem A.11. We deduce a version of 
the bipolar theorem, characterizing when a functional in F(S) belongs to the closed cone 
generated by a subset of F(S); see Theorem A.14.

Throughout this appendix we make the blanket assumption that S is a Cu-semigroup 
satisfying (O5).

Let us start with some preliminary definitions and lemmas. By a subcone of a cone C

we understand a subset D ⊆ C that is closed under addition and multiplication by 
strictly positive scalars and that is a monoid. Note that a subcone is not necessarily a 
submonoid since its origin may be different from the origin of the containing cone.

We say that a cone C is cancellative if x + z = y + z implies x = y, for all x, y, z ∈ C. 
Every R-vector space is a cancellative cone. More generally, every subcone of an R-vector 
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space is cancellative. Using the Grothendieck completion, one sees that the converse also 
holds: A cone is cancellative if and only if it is a subcone of an R-vector space.

We will use the following version of the Hahn–Banach Separation Theorem.

Proposition A.1. Let F and P be cancellative cones, let 〈_ , _ 〉 : F × P → R be a map 
that is additive and (0, ∞)-homogeneous in each variable. Let D ⊆ F be a subcone that 
is closed in the σ(F, P ) topology associated to the pairing 〈_ , _ 〉, and that contains the 
origin of F . Let μ ∈ F \D. Then there exist f1, f2 ∈ P such that

〈λ, f1〉 ≤ 〈λ, f2〉 for all λ ∈ D, and 〈μ, f1〉 > 〈μ, f2〉.

Proof. Let V denote the Grothendieck completion of P . Then V is an R-vector space. 
Since P is cancellative, the canonical map P i→ V is injective. Let us use this map to 
identify P with a subset of V . Let V ∗ denote the algebraic dual of all R-linear maps 
V → R. Define κ : F → V ∗ by

κ(λ)(g1 − g2) := 〈λ, g1〉 − 〈λ, g2〉

for λ ∈ F and g1, g2 ∈ P . One verifies that κ is well defined, additive and (0, ∞)-
homogeneous. Let us denote by 〈_ , _ 〉V ∗,V : V ∗ × V → R the natural pairing given by 
evaluation. From our definitions, it is clear that the diagram

F × P

〈_ ,_ 〉
κ×i

V ∗ × V
〈_ ,_ 〉V ∗,V

R

is commutative, that is, 〈λ, g〉 = 〈κ(λ), g〉V ∗,V whenever λ ∈ F and g ∈ P .
Note that κ(D) ⊆ V ∗ is a subcone containing the origin of V ∗. Let κ(D) ⊆ V ∗ be the 

closure of κ(D) in the weak*-topology σ(V ∗, V ). Then κ(D) is a subcone that is closed 
in the σ(V ∗, V )-topology and that contains the origin of V ∗.

Let us verify that κ(μ) /∈ κ(D). By assumption, D ⊆ F is closed in the σ(F, P )
topology and μ ∈ F \D. Thus, there exist g1, . . . , gm ∈ P and t1, . . . , tm ∈ (0, ∞) such 
that the set

U =
{
λ ∈ F : |〈λ, gj〉 − 〈μ, gj〉| < tj for j = 1, . . . ,m

}
is disjoint from D. (Note that the sets of the form as U above form a neighborhood basis 
of μ, for different choices of g1, . . . , gm in P and t1, . . . , tm in (0, ∞).) Now, the set

U ′ =
{
Λ ∈ V ∗ : |〈Λ, gj〉V ∗,V − 〈κ(μ), gj〉V ∗,V | < tj for j = 1, . . . ,m

}
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is a subset of V ∗ that is open for σ(V ∗, V ) and contains κ(μ). Since, as observed above, 
〈λ, g〉 = 〈κ(λ), g〉V ∗,V for any λ ∈ F , g ∈ P , and U is disjoint from D, we conclude that 
U ′ is disjoint from κ(D), as desired.

As a consequence of the Bipolar Theorem (see [29, Theorem 5, p. 62]) applied to 
the pair V ∗, V , there exists f ∈ V such that 〈Λ, f〉V ∗,V ≥ −1 for all Λ ∈ κ(D) and 
〈κ(μ), f〉 < −1. (Note that a subcone of a R-vector space is called a convex cone in [29].)

Since κ(D) is a cone, we get from the first inequality that 〈Λ, f〉 ≥ 0 for all Λ ∈ κ(D). 
(Indeed, if 〈Λ, f〉 < 0 for some Λ ∈ κ(D), then −1 ≤ 〈tΛ, f〉 = t〈Λ, f〉 < 0 for all t > 0, 
which is impossible.) Since P spans V , we may write f = f2 − f1, with f1, f2 ∈ P . Then

〈Λ, f1〉V ∗,V ≤ 〈Λ, f2〉V ∗,V

for all Λ ∈ κ(D), and

〈κ(μ), f1〉V ∗,V > 〈κ(μ), f2〉V ∗,V .

Now f1 and f2 have the desired properties. �
A.2. An algebraically ordered, compact cone is a cone C such that the algebraic pre-
order is antisymmetric (if λ + λ′ = μ and μ + μ′ = λ, then λ = μ) endowed with a 
compact, Hausdorff topology such that addition and scalar multiplication become jointly 
continuous; see [3, Section 3.1]. We use Lsc(C) to denote the set of maps C → [0, ∞]
that are lower semicontinuous, zero-preserving, additive, and (0, ∞)-homogeneous.

For f, g ∈ Lsc(C), we write f � g provided there is ε > 0 such that f ≤ (1 − ε)g and f
is continuous at λ ∈ C whenever g(λ) < ∞. We use L(C) to denote the set of functions 
in Lsc(C) that are suprema of �-increasing sequences in Lsc(C).

Let S be a Cu-semigroup satisfying (O5). Then F(S) is an algebraically ordered, 
compact cone (see [43, Proposition 2.2.3] and [23, Section 4]). Given x ∈ S, recall that 
we denote by x̂ : F(S) → [0, ∞] the function such that x̂(λ) = λ(x) for all λ ∈ F(S). Then 
x̂ ∈ L(F(S)) for all x ∈ S ([43]). By [43, Theorem 3.2.1], L(F(S)) is also the smallest 
subset of Lsc(F(S)) containing x̂ for all x ∈ S and closed under multiplication by scalars 
in (0, ∞) and by suprema of increasing sequences. Moreover, for each f ∈ L(F(S)) we 
have f = sup x̂n

kn
for suitable xn ∈ S and kn ∈ N such that the sequence ( x̂n

kn
)n is 


-increasing. It follows from [43, Proposition 3.1.1, Theorem 3.2.1] that L(F(S)) is a 
Cu-semigroup.

Given u ∈ S, recall from Paragraph 3.3 that Fu(S) denotes the convex set of func-
tionals normalized at u. If û is a continuous function on F(S), then Fu(S) is a closed 
(hence compact) subset of F(S). In particular, if u is a compact element of S, then û is 
continuous and Fu(S) is a compact subset of F(S).

We will make use of the following lemmas, which we state here for convenience. We 
remind the reader that we assume throughout the appendix that S is a Cu-semigroup 
satisfying (O5).
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Lemma A.3 ([43, Lemma 2.2.5]). Let x 
 y in S and let α < β in (0, ∞). Then αx̂ 
 βŷ

in Lsc(F(S)) (and consequently also in L(F(S))).

Following [23, Section 5.1], we define set(f) = {λ ∈ C : f(λ) > 1} for f ∈ Lsc(C). 
Large parts of the next result are shown in [23, Proposition 5.1]. We include a complete 
proof for the convenience of the reader.

Lemma A.4. Let C be an algebraically ordered, compact cone. (For example, C = F (S)
for a Cu-semigroup S satisfying (O5).) Let f, g ∈ Lsc(C). Consider the following state-
ments:

(i) There exists g′ ∈ Lsc(C) such that f ≤ g′ � g.
(ii) We have set(f) ⊆ set(g).
(iii) The function f is non-sequentially way-below g in Lsc(C), that is, whenever an 

increasing net (hj)j in Lsc(C) satisfies g ≤ supj hj then there exists j′ such that 
f ≤ hj′ .

(iv) We have f 
 g, that is, f is sequentially way-below g in Lsc(C).

Then the implications ‘(i)⇒(ii)⇒(iii)⇒(iv)’ hold. If g belongs to L(C), then (iv) im-
plies (i) and then all statements are equivalent.

Proof. To verify that (i) implies (ii), let (λj)j be a net in set(f) converging to λ ∈ C. 
We need to show λ ∈ set(g), that is, g(λ) > 1. This is clear if g(λ) = ∞. On the other 
hand, if g(λ) < ∞, then g′ is continuous at λ and therefore

g′(λ) = lim
j

g′(λj) ≥ lim inf
j

f(λj) ≥ 1.

Since g′ � g, there is ε > 0 such that g′ ≤ (1 − ε)g, and so g(λ) ≥ 1
1−ε > 1.

To verify that (ii) implies (iii), let (hj)j be an increasing net in Lsc(C) satisfying 
g ≤ supj hj . Then (set(hj))j is an increasing net of open subsets of C satisfying set(g) ⊆⋃

j set(hj). Using that set(f) is compact, we get j′ such that set(f) ⊆ set(hj′), which 
implies that f ≤ hj′ .

It is clear that (iii) implies (iv). Lastly, assuming that g belongs to L(C), let us show 
that (iv) implies (i). By definition of L(C), there exists a �-increasing sequence (gn)n in 
Lsc(C) with supremum g. Since f 
 g, we obtain m such that f ≤ gm. Then f ≤ gm�g, 
as desired. �

Let K ⊆ F(S) be a closed subcone. Then K is an algebraically ordered, compact cone. 
Further, for each f ∈ Lsc(F(S)) the restriction f |K belongs to Lsc(K).

Lemma A.5. Let K ⊆ F(S) be a closed subcone, and let f, g ∈ L(F(S)) satisfy f 
 g. 
Then f |K is non-sequentially way-below g|K in Lsc(K) (and hence also f |K 
 g|K in 
Lsc(K)).
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Proof. Using that g is the supremum of a �-increasing sequence in Lsc(F(S)), we obtain 
g′ ∈ Lsc(F(S)) such that f ≤ g′ � g. Then f |K ≤ g′|K � g|K . By Lemma A.4, we get 
that f |K is non-sequentially way-below g|K . �
A.6. Let I ⊆ S be an ideal. Let λI ∈ F(S) denote the functional that is 0 on I and ∞
otherwise. (Note that, with this notation, λS is the zero functional.) Define

FI(S) = λI +
{
λ ∈ F(S) : λ(x′) < ∞ whenever x′ 
 x for some x ∈ I

}
. (A.1)

Then FI(S) is a subcone of F(S) with origin λI . As noted in [43, Proposition 3.2.3], 
FI(S) is cancellative.

For each λ ∈ F(S) there exists a unique ideal I ⊆ S such that λ ∈ FI(S); namely, 
the ideal generated by the set {x ∈ S : λ(x) < ∞}. This ideal is termed the support 
ideal of λ; see [3]. In this way, the cone F(S) is decomposed into the disjoint union of 
the cancellative subcones FI(S), where I ranges through the ideals of S.

We need a few more lemmas for the proof of Corollary A.12.

Lemma A.7. Let μ ∈ F(S) with support ideal I, and let x ∈ S. Then x̂(λI) = 0 if and 
only if μ(x′) < ∞ for every x′ ∈ S satisfying x′ 
 x.

Proof. Since I is the support ideal of μ, we have μ ∈ FI(S), and thus μ = λI +μ0, where 
μ0 ∈ F(S) satisfies μ0(x′) < ∞ whenever x′ 
 x and x ∈ I. Since λI is idempotent, we 
also have μ = λI + μ.

Now assume that λI(x) = 0 and let x′ ∈ S satisfy x′ 
 x. Then x′ ≤ x ∈ I and 
therefore λI(x′) = 0. Since also μ0(x′) < ∞, we have μ(x′) = λI(x′) + μ0(x′) < ∞.

Conversely, assume that μ(x′) < ∞ for every x′ ∈ S with x′ 
 x. Then from μ = λI+μ

we deduce that λI(x′) = 0 for every x′ way-below x. Passing to the supremum over all 
such x′, we obtain λI(x) = 0. �
Lemma A.8. Let K be a closed subcone of F(S) with 0 ∈ K. Let I be an ideal of S. 
Suppose that for all x, y ∈ S with x̂|K ≤ ŷ|K , we have x̂(λI) ≤ ŷ(λI). Then λI ∈ K.

Proof. Set

C = K ∩
{
λ ∈ F(S) : λ ≤ λI

}
.

Observe that 0 ∈ C, since 0 ∈ K and 0 ≤ λI . Further, C is closed under sums and a 
closed subset of F(S), as it is the intersection of two subsets with these properties. In 
particular, C is upward directed. Set λ = supC, which is the limit of a net of elements 
in C, and thus belongs to C.

Since 2λ ∈ C, we have 2λ = λ, which in turn implies that λ = λJ for some ideal J
of S; namely, J = {x ∈ S : λ(x) = 0}. Further, since λJ ≤ λI , we have that I ⊆ J . We 
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will show that I = J , and thus λI ∈ K. To reach a contradiction, suppose that I �= J , 
and take y ∈ J \ I. Choose y′ ∈ S such that y′ 
 y and y′ /∈ I.

If x ∈ I, then x̂(λI) = 0, while ŷ′(λI) = ∞. Thus, x̂|K � ŷ′|K (since otherwise 
x̂(λI) ≥ ŷ′(λI) by assumption). Choose λx ∈ K such that x̂(λx) < ŷ′(λx). Scaling the 
functional λx if necessary, we may assume that 1 ≤ ŷ′(λx). Denote by E(I) = {x ∈
I : x = 2x}, the set of idempotent elements in I. If now x ∈ E(I), we have x̂ is also 
idempotent and thus x̂(λx) = 0.

Note that E(I) is an upward directed set. Since F(S) is compact, there exists a 
convergent subnet (λx(j))j of (λx)x∈E(I). Let λ̄ be its limit. As K is closed, λ̄ ∈ K.

Fix x ∈ E(I). Then, for every y ∈ E(I) with x ≤ y, we have x̂(λy) ≤ ŷ(λy) = 0. Using 
that x̂ is lower semicontinuous, it follows that x̂(λ̄) = 0. We deduce that λ̄ vanishes on 
I, and thus λ̄ ≤ λI . By definition, we get λ̄ ∈ C, and so λ̄ ≤ λJ .

On the other hand, using that y′ 
 y and that λ̄ = limj λx(j), we have

1 ≤ lim sup
j

λx(j)(y′) ≤ λ̄(y).

Since y belongs to J , we have λ̄(y) ≤ λJ(y) = 0, a contradiction. Thus, I = J . �
For Corollary A.12 below, we shall only need the case M = 1 of the next two results. 

The general versions will be used later in the proof of Theorem B.5.

Lemma A.9. Let K be a closed subcone of F(S) with 0 ∈ K. Let μ ∈ F(S) with support 
ideal I. Suppose that there is M ∈ (0, ∞) such that for all x, y ∈ S with x̂|K ≤ ŷ|K we 
have x̂(μ) ≤ Mŷ(μ). Then λI ∈ K.

Proof. We will show that for all x, y ∈ S with x̂|K ≤ ŷ|K , we have x̂(λI) ≤ ŷ(λI). It 
then follows from Lemma A.8 that λI ∈ K.

So let x, y ∈ S satisfy x̂|K ≤ ŷ|K . If ŷ(λI) = ∞, then clearly x̂(λI) ≤ ŷ(λI). Thus, we 
may assume that ŷ(λI) = 0. Choose a 
-increasing sequence (yn)n in S with supremum 
y. By Lemma A.7, we have μ(yn) < ∞ for every n ∈ N. Let x′ ∈ S satisfy x′ 
 x. By 
Lemma A.3, we have x̂′ 
 2ŷ in Lsc(F(S)). Applying Lemma A.5, we obtain x̂′|K 

2ŷ|K in Lsc(K), and we get m ∈ N such that x̂′|K ≤ 2ŷm|K . Using the assumption at 
the first step, we have

x̂′(μ) ≤ 2Mŷm(μ) < ∞.

Using Lemma A.7 again, it follows that x̂(λI) = 0, and so x̂(λI) ≤ ŷ(λI). �
Lemma A.10. Let K ⊆ F(S) be a closed subset, let μ ∈ F(S), and let M ∈ (0, ∞). 
Suppose that x̂|K ≤ ŷ|K implies x̂(μ) ≤ Mŷ(μ) for all x, y ∈ S. Then f |K ≤ g|K implies 
f(μ) ≤ Mg(μ) for all f, g ∈ L(F(S)).
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Proof. Let f, g ∈ L(F(S)) satisfy f |K ≤ g|K . Choose sequences (xn)n and (yn)n in S and 
natural numbers (kn)n and (ln)n such that ( x̂n

kn
)n and ( ŷn

ln
)n are 
-increasing sequences 

in L(F(S)) with suprema f and g, respectively; see Paragraph A.2. Applying Lemma A.5, 
it follows that the sequences ( x̂n

kn
|K)n and ( ŷn

ln
|K)n are 
-increasing in Lsc(K), with 

suprema f |K and g|K , respectively.
Fix m ∈ N. Since f |K ≤ g|K , there exists n such that x̂m

km
|K ≤ ŷn

ln
|K , that is, l̂nxm|K ≤

k̂myn|K . Hence, by assumption, l̂nxm(μ) ≤ Mk̂myn(μ). Therefore

x̂m

km
(μ) ≤ M

ŷn
ln

(μ) ≤ Mg(μ).

Passing to the supremum over all m ∈ N we get f(μ) ≤ Mg(μ), as desired. �
For an ideal I of S define

PI(S) :=
{
f ′ ∈ L(F(S)) : f ′ � f 
 x̂ for some f ∈ L(F(S)) and x ∈ I

}
(A.2)

and

P̃I(S) :=
{
f |FI(S) : f ∈ PI(S)

}
.

As established in the proof of [43, Proposition 3.2.3], the functions in PI(S) are finite 
on FI(S). It follows that P̃I(S) is a subcone of the vector space of maps FI(S) → R. In 
particular, P̃I(S) is a cancellative cone. We define a pairing 〈_ , _ 〉 : FI(S) × P̃I(S) → R

by setting 〈λ, f〉 = f(λ). This map is additive and (0, ∞)-homogeneous in each variable.
The restriction of the topology of F(S) to FI(S) agrees with the σ(FI(S), ̃PI(S))

topology. In other words, if a net (λj)j and a functional λ are in FI(S), then λj → λ if 
and only if f(λj) → f(λ) for all f ∈ PI(S). Indeed, the forward implication follows since 
one can check that every function in PI(S) is continuous on FI(S). The other implication 
is proven in [43, Proposition 3.2.3].

An ideal I of S is called countably generated if it is the smallest ideal containing 
a countable set {x1, x2, . . .}. In this case, I is also singly generated by the element 
x =

∑∞
j=1 xj , and further ∞ · x is the largest element in I.

We are now ready to prove the first separation result for subcones of F(S).

Theorem A.11. Let K be a closed subcone of F(S) with 0 ∈ K, and let μ ∈ F(S)\K. 
Then there exist x, y ∈ S such that x̂|K ≤ ŷ|K and x̂(μ) > ŷ(μ).

Proof. To reach a contradiction, we assume that for all x, y ∈ S with x̂|K ≤ ŷ|K we have 
x̂(μ) ≤ ŷ(μ). It then follows from Lemma A.10 (with M = 1) that for all f, g ∈ L(F(S))
with f |K ≤ g|K we have f(μ) ≤ g(μ). Our goal is to reach a contradiction. Let I be 
the support ideal of μ, so that μ ∈ FI(S). Applying Lemma A.9 (with M = 1), we have 
λI ∈ K.
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Claim: There is a countably generated ideal J ⊆ I such that λJ + μ /∈ λJ + K.
To prove the claim, let S denote the family of countably generated ideals contained 

in I. Ordered by inclusion, S is upward directed with I =
⋃
S. Hence, limJ∈S λJ = λI .

To reach a contradiction, assume that for every J ∈ S we have λJ +μ ∈ λJ +K, that 
is, there exists νJ ∈ K such that λJ + μ = λJ + νJ . Since K is compact, there exists a 
convergent subnet (νJα

)α. Denote its limit by ν ∈ K. We have limα λJα
= λI . Using at 

the first step that μ ∈ FI(S), and using at the last step that λI ∈ K, we get

μ = λI + μ = lim
α

(λJα
+ μ) = lim

α
(λJα

+ νJα
) = λI + ν ∈ K.

This is the desired contradiction that proves the claim.
Fix J as in the claim and set D := (λJ + K) ∩ FJ(S). Then D is a subcone of FJ(S)

closed in the σ(FJ(S), ̃PJ(S)) topology and containing the origin λJ . Since λJ + μ ∈
FJ(S)\D, we can apply Proposition A.1 to the pairing between FJ(S) and P̃J(S) to 
obtain f̃1, f̃2 ∈ P̃J(S) such that f̃1|D ≤ f̃2|D and f̃1(λJ + μ) > f̃2(λJ + μ). Choose 
f1, f2 ∈ PJ (S) such that f1|FJ (S) = f̃1 and f2|FJ (S) = f̃2

Using that J is countably based, choose a 
-increasing sequence (zn)n in J whose 
supremum is the largest element of J . Note that J is the support ideal of λJ + μ. Given 
n ∈ N, we have ẑn(λJ) = λJ(zn) = 0, and thus

ẑn(μ) = ẑn(λJ + μ) < ∞.

Define

h =
∞∑

n=0
βnẑn ∈ L(F(S)),

where the scalars (βn)n are strictly positive and chosen so that h(μ) ≤ 1. Now set

g1 = f1 + h and g2 = f2 + h.

Since f1, f2 ∈ PJ(S) (see (A.2)), we have f1(λJ) = f2(λJ) = 0. Using that h(μ) < ∞, 
we deduce that

g1(μ) = f1(μ) + h(μ) = f1(λJ + μ) + h(μ) > f2(λJ + μ) + h(μ) = g2(μ).

Let us show that g1|K ≤ g2|K , which will yield the desired contradiction. Let λ ∈ K. 
Assume first that λJ + λ ∈ FJ(S). Then λJ + λ ∈ D. Hence, f1(λJ + λ) ≤ f2(λJ + λ). 
Using that h(λJ) = 0, which is clear from the definition of h, we get

g1(λ) = f1(λ) + h(λ)

= f1(λ + λJ ) + h(λ + λJ)

≤ f2(λ + λJ ) + h(λ + λJ) = g2(λ).
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Assume now that λJ +λ /∈ FJ(S). From the definition of FJ(S) (see (A.1)) we deduce 
that

λ /∈
{
λ′ ∈ F(S) : λ′(x′) < ∞ whenever x′ 
 x for some x ∈ J

}
.

Recall that (zn)n is an increasing sequence with supremum the largest element of J . 
Hence, we must have that λ(zn) = ∞ for some n, and thus h(λ) = ∞. Then, g1(λ) =
∞ = g2(λ). �
Corollary A.12. Let K ⊆ F(S) be a closed subcone containing 0. Assume that x̂|K ≤ ŷ|K
implies x̂ ≤ ŷ, for all x, y ∈ S. Then K = F(S).

Example A.13. Let S = {0, ∞}. Then F(S) contains only two elements: the zero func-
tional and the functional λ∞ that satisfies λ∞(∞) = ∞. Set K = {λ∞}. Then K is a 
proper closed subcone of F(S), such that for all x, y ∈ S with x̂|K ≤ ŷ|K we have x̂ ≤ ŷ. 
Thus, the assumption that K contains 0 cannot be removed from Corollary A.12.

We derive a kind of bipolar theorem for subsets of F(S).

Theorem A.14. Let K be a subset of F(S), and let μ ∈ F(S). The following are equivalent:

(i) The element μ belongs to the closed cone generated by K ∪ {0}.
(ii) For all x, y′, y ∈ S with x̂|K ≤ ŷ′|K and y′ 
 y, we have x̂(μ) ≤ ŷ(μ).
(iii) For all x′, x, y′, y ∈ S and γ ∈ (0, 1) satisfying x′ 
 x, x̂|K ≤ γŷ′|K and y′ 
 y, 

we have x̂′(μ) ≤ ŷ(μ).

Proof. To show that (i) implies (ii), let C be the cone generated by K ∪ {0}, that is,

C =
{
t1λ1 + . . . + tnλn : tj ∈ (0,∞), λj ∈ K ∪ {0}

}
.

By assumption, μ ∈ C.
Let x, y′, y ∈ S satisfy x̂|K ≤ ŷ′|K and y′ 
 y. We need to verify x̂(μ) ≤ ŷ(μ). Using 

that x̂ and ŷ′ are linear and (0, ∞)-homogeneous, it follows that x̂(λ) ≤ ŷ′(λ) for every 
λ ∈ C. Let (λj)j be a net in C that converges to μ. Then

x̂(μ) = μ(x) ≤ lim inf
j

λj(x) ≤ lim sup
j

λj(y′) ≤ μ(y) = ŷ(μ).

It is clear that (ii) implies (iii). To show that (iii) implies (i), let L be the closed cone 
generated by K ∪{0}. To reach a contradiction, assume μ /∈ L. Applying Theorem A.11, 
we obtain v, w ∈ S such that

v̂|L ≤ ŵ|L, and v̂(μ) > ŵ(μ).
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Using that μ preserves suprema of increasing sequences, we can choose v′ such that

v′ 
 v, and v̂′(μ) > ŵ(μ).

Choose v′′ ∈ S and m ∈ N such that

v′ 
 v′′ 
 v, and mv̂′(μ) > (m + 2)ŵ(μ).

By Lemma A.3, we have mv̂′′ 
 (m + 1)v̂ in L(F(S)). Let (wn)n be a 
-increasing 
sequence in S with supremum w. Applying Lemma A.5 at the first step, we get

mv̂′′|L 
 (m + 1)v̂|L ≤ (m + 1)ŵ|L = sup
n

(m + 1)ŵn|L

in Lsc(L), which allows us to choose l ∈ N such that mv̂′′|L ≤ (m + 1)ŵl|L. Then 
x′ = mv′, x = mv′′, y′ = (m + 2)wl, y = (m + 2)w, and γ = m+1

m+2 satisfy

x′ 
 x, x̂|K ≤ γŷ′|K , y′ 
 y, and x̂′(μ) > ŷ(μ),

which is the desired contradiction. �
Proposition A.15. Let K be a subcone of F(S) with closure K. Let x, y ∈ S and γ ∈ R+. 
The following are equivalent:

(i) We have x̂|K ≤ γŷ|K .
(ii) For every x′ ∈ S with x′ 
 x and every γ′ > γ there exists y′ ∈ S such that y′ 
 y

and x̂′|K ≤ γ′ŷ′|K .

Proof. We show that (ii) implies (i). To verify (i), let λ ∈ K. Choose a net (λj)j in K
that converges to λ. Let x′ ∈ S satisfy x′ 
 x, and let γ′ > γ. By assumption, we obtain 
y′ ∈ S such that y′ 
 y and γx̂′|K ≤ ŷ′|K . Then

λ(x′) ≤ lim inf
j

λj(x′) ≤ lim sup
j

γ′λj(y′) ≤ γ′λ(y).

Passing to the supremum over all x′ way-below x on the left hand side, and to the 
infimum over all γ′ > γ on the right hand side, we get that λ(x) ≤ λ(y).

We show that (i) implies (ii). Suppose that x̂|K ≤ γŷ|K . Let x′ ∈ S satisfy x′ 
 x

and let γ′ > γ. Then x̂′ 
 γ′

γ x̂ in Lsc(F(S)) (and hence in L(F(S)) by Lemma A.3. 
Using Lemma A.5 at the first step, it follows that

x̂′|K 
 γ′
x̂|K ≤ γ′

γŷ|K = γ′ŷ|K
γ γ
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in Lsc(K). Choose a 
-increasing sequence (yn)n in S with supremum y. Then x̂|K 

supn γ

′ŷn|K , and we obtain n such that x̂′|K ≤ γ′ŷn|K . Then y′ := yn has the desired 
properties. �
Appendix B. A stronger separation theorem

Our goal in this appendix is to obtain an improved version of Corollary A.12 imposing 
further properties on S. This is achieved in Theorem B.5.

B.1. We say that a Cu-semigroup S satisfies Edwards’ condition if, for any λ ∈ F(S) and 
x, y ∈ S, one has

inf
{
λ1(x) + λ2(y) : λ1 + λ2 = λ

}
= sup

{
λ(z) : z ≤ x, y

}
;

see [3, Definition 4.1], [50, Section 4] and [4, 6.3]. We remark that the expression on 
the left hand side of the above equality is equal to the infimum of the functions x̂ and 
ŷ, taken in Lsc(F(S)), evaluated at λ; see [3, Lemma 3.4]. The Cuntz semigroup of a 
C*-algebra satisfies Edwards’ condition; see [3, Theorem 5.3].

Lemma B.2. Let S be a Cu-semigroup satisfying (O5), (O6) and Edwards’ condition. 
Then this is also the case for L(F(S)).

Proof. Set T = L(F(S)). By [43, Proposition 3.1.1, Theorem 3.2.1], T is a Cu-semigroup 
satisfying (O5). By [43, Lemma 4.0.1], T satisfies (O6). It remains to prove Edwards’ 
condition for T .

For each Λ ∈ F(T ) there exists a unique λ ∈ F(S) such that Λ(h) = h(λ) for all 
h ∈ T , and this assignment is moreover additive; see the last paragraph of the proof of 
[43, Proposition 3.1.1]. That is, the functionals on T arise as point evaluations on F(S). 
We use this below.

Given Λ ∈ F(T ), let λ ∈ F(S) such that Λ(h) = h(λ) for all h ∈ T . To prove Edwards’ 
condition for Λ, we must show that

inf
{
f(λ1) + g(λ2) : λ1 + λ2 = λ

}
= sup

{
h(λ) : h ≤ f, g

}
, (B.1)

for all f, g ∈ T . It is straightforward to show that the right hand side is dominated by 
the left hand side. Let us prove the opposite inequality.

By [3, Theorem 3.5], the left hand side of (B.1) is equal to (f∧g)(λ), where f∧g is the 
infimum of f and g in Lsc(F(S)). Choose sequences (xn)n and (yn)n in S, and sequence 
(kn)n and (ln)n in N \ {0}, such that ( x̂n

kn
)n and ( ŷn

ln
)n are 
-increasing sequences in 

Lsc(F(S)) with suprema f and g, respectively; see Paragraph A.2. By [3, Theorem 3.5], 
we have

(f ∧ g)(λ) = sup
(

x̂n

kn
∧ ŷn

ln

)
(λ),
n
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where the infima on both sides are taken in Lsc(F(S)).
This makes it clear that it is enough to prove ≤ in (B.1) for the case f = x̂

k and g = ŷ
l

for x, y ∈ S and k, l ∈ N \ {0}. So assume that f and g are of this form. Then, applying 
Edward’s condition to mx, ny ∈ S at the last equality, we have

(f ∧ g)(λ) = inf
{
f(λ1) + g(λ2) : λ = λ1 + λ2

}
= inf

{
λ1(x)
k

+ λ2(y)
l

: λ = λ1 + λ2

}
= 1

kl
inf
{
λ1(lx) + λ2(ky) : λ = λ1 + λ2

}
= 1

kl
sup
{
λ(z) : z ≤ lx, ky

}
≤ sup

{
ẑ

kl
(λ) : ẑ

kl
≤ x̂

k
,
ŷ

l

}
≤ sup

{
h(λ) : h ≤ f, g

}
as desired. The result thus follows. �
B.3. A ray in a cancellative cone C is a subset of the form R+λ, for a non-zero element 
λ ∈ C. A ray R is said to be extreme if for all μ ∈ R, whenever μ = μ1 + μ2 for some 
μ1, μ2 ∈ C we have μ1, μ2 ∈ R ∪ {0}; see, for example, [41, p. 79].

Let S be a Cu-semigroup and let I be an ideal of S. Let μ ∈ FI(S) \ {λI} be a 
functional generating an extreme ray of FI(S). Define σμ : F(S) → [0, ∞] as

σμ(λ) =

⎧⎪⎪⎨⎪⎪⎩
0 if λ ≤ λI ,

t if λ + λI = tμ, where t ∈ (0,∞),
∞ otherwise.

The result below is proved for the Cuntz semigroup of a C*-algebra in [4, Proposi-
tion 7.4]. We follow here a similar argument in the context of Cu-semigroups.

Lemma B.4. Let S be a Cu-semigroup satisfying (O5), (O6), and Edwards’ condition. 
Let I be an ideal of S and let μ ∈ FI(S) \{λI} be a functional generating an extreme ray 
of FI(S) Then σμ defined as above is the supremum of an increasing net of functions in 
L(F(S)).

Proof. Consider the set

X =
{
f ∈ L(F(S)) : f(μ) < 1

}
.

Claim 1: Let f1, f2 ∈ X satisfy f1(μ) ≤ f2(μ). Then

f1(μ) = inf
{
f1(λ1) + f2(λ2) : λ1 + λ2 = μ

}
.
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The inequality ‘≥’ follows using λ1 = μ and λ2 = 0. To show the converse inequality, 
let λ1, λ2 ∈ F(S) satisfy λ1 + λ2 = μ. Then λ1 + λI and λ2 + λI belong to FI(S). Since

1
2μ = 1

2(λ1 + λI) + 1
2 (λ2 + λI)

and since μ generates an extreme ray of FI(S), we see that λ1 +λI and λ2 +λI are scalar 
multiples of μ. Say λ1+λI = t1μ and λ2+λI = t2μ. Now (t1+t2)μ = (λ1+λI) +(λ2+λI) =
μ, and since μ �= λI , we have t1 + t2 = 1. Thus, λ1 + λI = tμ and λ2 + λI = (1 − t)μ
for some t ∈ [0, 1] (where we use the convention that 0 · μ = λI , the neutral element of 
FI(S)). Using that f1(μ), f2(μ) < ∞ and λI +μ = μ, it follows that f1(λI) = f2(λI) = 0. 
Then

f1(λ1) + f2(λ2) = f1(λ1 + λI) + f2(λ2 + λI)

= tf1(μ) + (1 − t)f2(μ)

≥ tf1(μ) + (1 − t)f1(μ) = f1(μ).

This proves the claim.
Claim 2: X is upward directed. To prove the claim, let f1, f2 ∈ X. Without loss 

of generality, we may assume that f1(μ) ≤ f2(μ). By Lemma B.2, L(F(S)) satisfies 
Edwards’ condition. Using this at the second step (see (B.1)), and using Claim 1 at the 
first step, we get

f1(μ) = inf
{
f1(λ1) + f2(λ2) : λ1 + λ2 = μ

}
= sup

{
g(μ) : g ≤ f1, f2, g ∈ L(F(S))

}
.

Choose ε > 0 such that f2(μ) + ε < 1. Then choose g′, g ∈ L(F(S)) such that

g′ � g 
 f1, f2, and g′(μ) > f1(μ) − ε.

Applying [43, Lemma 3.3.2] to g′ � g 
 f1 + f2, we obtain h ∈ L(F(S)) and C ∈ (0, ∞)
such that

g′ + h = f1 + f2, and g′ ≤ Ch.

We have

f1 + h ≥ g′ + h = f1 + f2.

If λ ∈ F(S) satisfies h(λ) < ∞, then g′(λ) < ∞, whence f1(λ) < ∞. This allows us to 
cancel f1(λ) to conclude that h(λ) ≥ f2(λ). If on the other hand h(λ) = ∞, then again 
h(λ) ≥ f2(λ). Hence, h ≥ f2, and symmetrically h ≥ f1. On the other hand,

f1(μ) − ε + h(μ) ≤ g′(μ) + h(μ) = f1(μ) + f2(μ),
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from which we deduce that h(μ) ≤ f2(μ) + ε < 1. Thus, h is an upper bound for f1
and f2 in X. This proves the claim.

Let us show that supf∈X f(λ) = σμ(λ) for all λ ∈ F(S), from which the lemma readily 
follows by the claim that we have just established. We distinguish the following three 
cases:

Case 1: Let λ ∈ F(S) satisfy λ ≤ λI . Given f ∈ X, using that f(μ) < 1 and μ +λI = μ, 
we have f(λI) = 0, and so f(λ) = 0. This implies that supf∈X f(λ) = 0 = σμ(λ).

Case 2: Let λ ∈ F(S) satisfy λ + λI = tμ for some t ∈ (0, ∞). Given f ∈ X, we saw 
in Case 1 that f(λI) = 0, whence

f(λ) = f(λ + λI) = f(tμ) = tf(μ) < t = σμ(λ).

This shows that supf∈X f(λ) ≤ σμ(λ). To show the converse, note that there exists 
g ∈ X with g(μ) > 0. (Otherwise, μ would only take values in {0, ∞} on L(F(S)), which 
would imply μ = 2μ, a contradiction.) Then, fn = n

(n+1)g(μ)g belongs to X and satisfies 
fn(λ) = n

n+1 t. Therefore, supf∈X f(λ) ≥ supn fn(λ) = t = σμ(λ).
Case 3: Suppose that we are in neither one of the two cases above. Then σμ(λ) = ∞, 

and we need to show that supf∈X f(λ) = ∞. Let C ∈ (0, ∞). It will suffice to argue 
that there exists f ∈ X such that f(λ) > C. Since λ + λI is not a scalar multiple of 
μ and the latter generates an extreme ray, we have λ �≤ 2Cμ. Let y ∈ S be such that 
2Cμ(y) < λ(y). If μ(y) = 0 and λ(y) = ∞, then f = ŷ is as desired, and if μ(y) = 0
and 0 < λ(y) < ∞, then f = 2C

λ(y) ŷ is as desired. Finally, if μ(y) > 0, then f = 1
2μ(y) ŷ

satisfies

f(μ) = 1
2 < 1, and f(λ) = λ(y)

2μ(y) > C.

Hence, f is as desired. �
Let C be a cone embedded in a locally convex topological R-vector space. A subset K

of C is called a cap if K is compact, convex, and C\K is also convex. The cone C is 
said to be well capped if it is the union of its caps; see, for example, [41, p. 80]. It was 
proved in [3, Proposition 3.11] that if I is a countably generated ideal of a Cu-semigroup 
satisfying (O5), then the cone FI(S) is well-capped.

The next result is an improved version of Corollary A.12.

Theorem B.5. Let S be a Cu-semigroup satisfying (O5), (O6), and Edwards’ condition, 
and let K be a closed subcone of F(S) with 0 ∈ K. Let M ∈ (0, ∞). Assume that 
x̂|K ≤ ŷ|K implies x̂ ≤ Mŷ, for all x, y ∈ S. Then K = F(S).

Proof. By Lemma A.10, f |K ≤ g|K implies f ≤ Mg, for all f, g ∈ L(F(S)).
Let I be a countably generated ideal of S. By Lemma A.9, we have λI ∈ K. We claim 

that K contains every extreme ray of the cone FI(S) (see Paragraph B.3). To this end, 
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let μ ∈ FI(S) \ {λI} be a functional generating an extreme ray of FI(S) and assume, for 
the sake of contradiction, that μ /∈ K.

Let σμ be as defined in Paragraph B.3. If λ ∈ K and λ +λI = tμ for some t > 0, then 
this implies that μ ∈ K, contrary to our assumption. Hence, by the definition of σμ, we 
have σμ(λ) ∈ {0, ∞} for all λ ∈ K. Put differently, (M + 1)σμ|K = σμ|K .

By Lemma B.4, there is an increasing net (fj)j in L(F(S)) with supremum σμ in 
Lsc(F(S)). Fix an index j0, and let h ∈ L(F(S)) be such that h 
 fj0 . Then (M +1)h 

(M + 1)fj0 . Let us use ≪ to denote the non-sequential way-below relation. Applying 
Lemma A.5 at the first step, we get

(M + 1)h|K ≪ (M + 1)fj0 |K ≤ (M + 1)σμ|K = σμ|K = sup
j

fj |K

in Lsc(K). Hence, (M + 1)h|K ≤ fj |K for some j. It follows from our assumption on K
that (M + 1)h ≤ Mfj ≤ Mσμ. Evaluating both sides at μ, and using that σμ(μ) = 1, 
we get (M + 1)h(μ) ≤ M . Since L(F(S)) is a Cu-semigroup, fj0 is the supremum of all 
h ∈ L(F(S)) satisfying h 
 fj0 . Passing to the supremum over all h way-below fj0 , we 
get (M + 1)fj0(μ) ≤ M . Now passing to the supremum over all j0 and using again that 
σμ(μ) = 1 we get M + 1 ≤ M . This is the desired contradiction.

We have thus shown that K contains every extreme ray of FI(S). Since I is countably 
generated, we have by [3, Proposition 3.11] that FI(S) is well capped. Therefore, K
contains all of FI(S) by [41, p. 81].

As at the end of the proof of Corollary A.12, it now follows that K = F (S). �
Corollary B.6. Let S be a Cu-semigroup satisfying (O5), (O6), and Edwards’ condition. 
Let K be a subcone of F(S) with 0 ∈ K. Let M ∈ (0, ∞). Suppose that for all x, y′, y ∈ S

with x̂|K ≤ ŷ′|K and y′ 
 y, we have x̂ ≤ Mŷ. Then K is dense in F(S).

Proof. By Theorem B.5, it suffices to show that x̂|K ≤ ŷ|K implies x̂ ≤ 2Mŷ, for all 
x, y ∈ S. So let x, y ∈ S satisfy x̂|K ≤ ŷ|K . Let x′ ∈ S satisfy x′ 
 x. By Lemma A.3, 
we get x̂′ 
 2x̂. Applying Lemma A.5, we obtain x̂′|K 
 2ŷ|K in Lsc(K). This allows 
us to choose y′ ∈ S such that

x̂′|K ≤ 2ŷ′|K , and y′ 
 y.

By assumption, we get x̂′ ≤ 2Mŷ. Passing to the supremum over all x′ such that x′ 
 x, 
we obtain that x̂ ≤ 2Mŷ, as desired. �
Appendix C. Separation of normalized functionals

In this section we obtain a result on the separation of functionals similar to 
Theorem B.5, but in the context of normalized functionals. This time we rely on standard 
tools from the theory of compact convex sets.
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Recall that an element x in a Cu-semigroup S is called full if it generates S as an 
ideal.

Theorem C.1. Let S be a Cu-semigroup satisfying (O5). Let u ∈ S be a full compact 
element, and let K ⊆ Fu(S) be a closed convex subset. Let M ∈ (0, ∞). Suppose that for 
all x, y ∈ S with y full and with x̂|K ≤ ŷ|K , we have x̂ ≤ Mŷ. Then K = Fu(S).

Proof. The proof of Lemma A.10 is easily adapted to show that, under the present 
hypotheses, f |K ≤ g|K implies f ≤ Mg for all f, g ∈ L(F(S)) with g full in L(F(S)).

We will show that K contains every extreme point of Fu(S). Then, by the Krein–
Milman Theorem, it will follow that K = Fu(S). Let μ ∈ Fu(S) be an extreme point, 
and define σμ as in Paragraph B.3. Then σμ|Fu(S) is a strictly positive, lower semicon-
tinuous, affine function. Applying [1, Corollary I.1.4], we find a net of continuous, affine 
functions (fj)j defined on Fu(S) and with supremum σμ|Fu(S). We can also arrange for 
the functions fj to be strictly positive.

By [4, Proposition 6.9], each function fj can be extended to a full function f̃j ∈
L(F(S)). More explicitly, as shown in the proof [4, Proposition 6.9], we have

f̃j(λ) =

⎧⎪⎪⎨⎪⎪⎩
∞ if λ(u) = ∞
λ(u)fj( λ

λ(u) ) if 0 < λ(u) < ∞
0 if λ(u) = 0.

Since the functions f̃j are full, they are infinite on all λ ∈ F(S) such that λ(u) = ∞. 
It readily follows that (f̃j)j is an increasing net of functions in L(F(S)) with supremum 
σμ.

The rest of the argument is very similar to the proof of Theorem B.5. We sketch it 
here: To reach a contradiction, assume that μ /∈ K. Fix an index j0 and let h ∈ L(F(S))
satisfy h 
 f̃j0 . Then use Lemma A.5 to find j > j0 such that (M + 1)h|K ≤ f̃j |K , and 
hence (M + 1)h ≤ Mf̃j ≤ Mσμ. Passing to the supremum over all h way-below f̃j0 and 
then over all j0, we get (M + 1)σμ ≤ Mσμ, which implies M + 1 ≤ M after evaluating 
at μ, an absurdity. �
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