Journal of Functional Analysis 286 (2024) 110341

journal homepage: www.elsevier.com/locate/jfa

Contents lists available at ScienceDirect =

Journal of Functional Analysis

JOURNAL OF

Regular Article

Traces on ultrapowers of C*-algebras ™ n

Check for
updates

Ramon Antoine

Hannes Thiel ©*

, Francesc Perera ™", Leonel Robert ,

? Departament de Matematiques, Universitat Autonoma de Barcelona, 08193

Bellaterra, Barcelona, Spain

b Centre de Recerca Matematica, Edifici Cc, Campus de Bellaterra, 08193

Cerdanyola del Vallés, Barcelona, Spain

¢ University of Louisiana at Lafayette, Lafayette, 70504-3568, USA
d Department of Mathematical Sciences, Chalmers University of Technology and
the University of Gothenburg, Gothenburg 412 96, Sweden

ARTICLE INFO

ABSTRACT

Article history:

Received 10 December 2023
Accepted 9 January 2024
Available online 27 January 2024
Communicated by Stefaan Vaes

MSC:

primary 19K14, 46L05, 46B08,
46MO7

secondary 06B35, 06F05, 46L30,
46L35, 46L51, 46L80

Keywords:
Ultraproducts

Using Cuntz semigroup techniques, we characterize when limit
traces are dense in the space of all traces on a free ultrapower
of a C*-algebra. More generally, we consider density of limit
quasitraces on ultraproducts of C*-algebras.

Quite unexpectedly, we obtain as an application that every
simple C*-algebra that is (m,n)-pure in the sense of Winter
is already pure. As another application, we provide a partial
verification of the first Blackadar—-Handelman conjecture on
dimension functions.

Crucial ingredients in our proof are new Hahn-Banach type
separation theorems for noncancellative cones, which in

* The two first named authors were partially supported by the Spanish State Research Agency (grants
No. MTM2017-83487-P and PID2020-113047GB-100/AEI/10.13039/501100011033), by the Comissionat per
Universitats i Recerca de la Generalitat de Catalunya (grant No. 2017-SGR-1725) and by the Spanish
State Research Agency through the Severo Ochoa and Maria de Maeztu Program for Centers and
Units of Excellence in R&D (CEX2020-001084-M). The fourth named author was partially supported by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy EXC 2044-390685587 (Mathematics Miinster: Dynamics-Geometry-Structure), by the ERC
Consolidator Grant No. 681207, and by the Knut and Alice Wallenberg Foundation (KAW 2021.0140).

* Corresponding author.

E-mail addresses: ramon.antoine@uab.cat (R. Antoine), francesc.perera@uab.cat (F. Perera),
Irobert@louisiana.edu (L. Robert), hannes.thiel@chalmers.se (H. Thiel).
URLs: https://mat.uab.cat/web/perera (F. Perera), https://www.hannesthiel.org (H. Thiel).

https://doi.org/10.1016/j.jfa.2024.110341

0022-1236/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.jfa.2024.110341
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2024.110341&domain=pdf
mailto:ramon.antoine@uab.cat
mailto:francesc.perera@uab.cat
mailto:lrobert@louisiana.edu
mailto:hannes.thiel@chalmers.se
https://mat.uab.cat/web/perera
https://www.hannesthiel.org
https://doi.org/10.1016/j.jfa.2024.110341
http://creativecommons.org/licenses/by/4.0/

2 R. Antoine et al. / Journal of Functional Analysis 286 (2024) 110341

Traces particular apply to the cone of extended-valued traces on
Cuntz semigroups a C*-algebra.
C™-algebras © 2024 The Authors. Published by Elsevier Inc. This is an

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Ultraproducts have a well-established presence in the field of operator algebras, begin-
ning with McDuff’s pioneering work [35] on the tensorial absorption of the hyperfinite ITy
factor, and later, Connes [19] classification of injective factors. Ultraproducts have also
been studied in Banach space theory ([31,32,10]), and play a crucial role in the model
theory of C*-algebras ([26,25,24]).

In recent years, work on the stably finite case of Elliott’s classification program and on
the Toms—Winter conjecture has drawn attention to the trace space of the free ultrapower
of a C*-algebra (see, for example, [34], [58], and [15]). A natural question arises in this
context: To what extent is the trace space of a free ultrapower of a C*-algebra determined
by the trace space of the C*-algebra? The same question can be asked more generally
for trace spaces of products and ultraproducts of C*-algebras.

Since there are various notions of trace associated to a C*-algebra, to make the above
question more precise we must fix what is meant by trace space. Given a unital C*-algebra
A, let us consider first the set T (A) of tracial states on A regarded as a compact convex
set (embedded in A* and endowed with the weak* topology). Let U be a free ultrafilter
on N, and let Ay denote the free ultrapower of A with respect to U. The category of
compact convex sets admits ultracoproducts, and there is a naturally defined continuous
affine map

u

The question of calculating T1(Az) can be made explicit by asking whether this map
is an isomorphism. The map (1.1) is always injective, but may fail in general to be
surjective. For instance, it is possible for T1(A) to be a singleton set while Ty (Ay) is
not. For the ultraproduct of an arbitrary collection of unital C*-algebras (A4;);es, a
similar map [[,, T1(4;) — T1(] [, 4;) can be defined. Again, this map is guaranteed to
be injective (Lemma 2.6), while its surjectivity may fail even more dramatically: we can
have Ty (A;) empty for all j while T(]],, A;) is nonempty; see Examples 2.11 and 2.12
below and [11, Corollary 2.2], and also the recent paper by Milhgj and Rgrdam [36].

The range of the map (1.1) can be described as the closure of the set LimT; (4;) of
limit tracial states in Ty (Az), where a limit tracial state is an element in T;(Ay,) that is
the limit along U of a sequence of tracial states in Tq(A4). Surjectivity in (1.1) can thus
be alternately stated as the density of LimT; (4y) in Tq(Ay).
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Stated in this form, surjectivity of the map in (1.1) has been obtained in the literature
under different kinds of “regularity properties” for the C*-algebras. For ultrapowers
of an exact C*-algebra that tensorially absorbs the Jiang—Su algebra, the density of
LimT;(Ay) was proved by Ozawa in [39, Theorem 8]. This was extended by Ng and
the third named author to ultraproducts of unital C*-algebras with the property of
strict comparison of full positive elements by bounded traces ([37, Theorem 1.2]). In
the context of products of unital C*-algebras, Archbold, Tikuisis, and the third named
author showed in [9, Theorem 3.19] that the map [[; T1(A;) — T1(I]; 4;) is surjective
if the involved C*-algebras have uniformly bounded radius of comparison by traces. Very
recently, analogous questions have also been considered in the context of ultraproducts
of W*-bundles by Vaccaro [59].

In order to investigate exactly which regularity properties on A guarantee an isomor-
phism in (1.1), we use the theory of the Cuntz semigroup. For this reason, our results are
more naturally phrased in terms of spaces of 2-quasitraces, since 2-quasitracial states are
in bijection with functionals on the Cuntz semigroup normalized at the class of the unit
([23, Theorem 4.4]). To pass from 2-quasitraces to traces, one can add the assumption
of exactness to the C*-algebras, and invoke Haagerup’s theorem asserting that for exact
C*-algebras “2-quasitraces are traces” ([30]), or simply assume that 2-quasitraces are
traces for the C*-algebras in the collection.

Let us introduce some notation. Let A be a C*-algebra. Let Cu(A) denote its Cuntz
semigroup, that is, the set of Cuntz classes of positive elements in A®K (the stabilization
of A) endowed with a suitable order and addition operation. We denote the Cuntz class
of a positive element a € A ® K by [a]; see Paragraph 3.2.

Given N € N, we define the relation <y on Cu(A) by setting = <y y if nx < ny for
all n > N; see Notation 5.2. Suppose now that A is unital. Let QT (A) denote the set of
2-quasitracial states of A. The rank of a Cuntz class [a] € Cu(A) is defined as the function
[a]: QT,(A) — [0,00] given by [a](r) = lim,, 7(a= ), where 7 is canonically extended to
A®K to be evaluated at ax. Finally, for an ultrapower Ay of A, let LimQT; (4y/) denote
the set of limit 2-quasitracial states on Ay, defined similarly as for traces.

Theorem A (8.3). Let A be a unital C*-algebra and let U be a free ultrafilter on N. The
following are equivalent:

(i) The set LimQT, (Ay) of limit 2-quasitracial states is dense in QT (Ay).
(ii) For every v € (0,1) and d € N there exists N € N such that

T <~y implies x<nu,

for all x,y € Cu(A) such that z,y < d[1] and [1] < dy.
(ili) There exists M € N such that for every d € N there exists N € N such that

<y implies Nx < NMy,
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for all x,y € Cu(A) such that z,y < d[1] and [1] < dy.

If we additionally assume that QT (A) = T1(A) (for example, if A is exact), then these
equivalent conditions imply that QT (Ay) = T1(Ay) and that the natural map

[]T:(4) = T1(Aw)
u

is an isomorphism.
Let us now consider the ideal
I={a€ Ay :7(a*a) =0 for all 7 € LimT;(A)},

of Ay (sometimes called the trace-kernel ideal). Clearly, every limit tracial state vanishes
on I. We can thus weaken the question addressed in Theorem A by seeking conditions
that guarantee the density of LimT; (A) in the set T1(A) of tracial states on Ay than
vanish on I (in bijection with the tracial states on Ay /I). We investigate this question
in the setting of abstract Cu-semigroups, using similar techniques as those used to prove
Theorem A. As an application, we obtain the following theorem:

Theorem B (9.3). Let A be a separable, unital C*-algebra and U a free ultrafilter on N.
Suppose that A has stable rank one, no finite dimensional representations, and QT (A) =
T1(A). Then the natural map [, T1(A) — T1(Ay) is an isomorphism.

Let us discuss now a different trace space associated to a C*-algebra A (possibly
nonunital). Let T(A) denote the set of [0, oo]-valued, lower semicontinuous traces on A;
see Paragraph 3.1. We regard T(A) as a cone endowed with pointwise addition and
pointwise scalar multiplication by positive real numbers. The cone T(A) is always non-
cancellative, so it does not embed into a vector space. There is, however, a compact
Hausdorff topology on T(A) compatible with the cone operations; see [23].

Consider an ultrapower Az, of A. A sequence of traces in T(A) naturally defines a limit
trace in T(Ay). We denote the set of limit traces on Ay arising this way by LimT(Ay).
The central question that we address in the context of the trace space T(Ay) is that of
characterizing, through comparability properties on the Cuntz semigroup, the density of
LimT(Ay) in T(Ay). We also investigate this density question for the cones of traces
of products and ultraproducts of arbitrary collections of C*-algebras. Although these
density questions can be reformulated in terms of the surjectivity of maps with domain
a coproduct or ultracoproduct of cones, we shall refrain from formulating them in this
way. This point of view will be pursued in a separate work.

As in the case of tracial states, our results are more naturally formulated in terms of
the cone QT(A) of [0, co]-valued, lower semicontinuous 2-quasitraces. By the homeomor-
phism between QT(A) and the cone F(Cu(A)) of functionals on Cu(A), the problem of
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density of LimQT (A ) in QT (Ay) is translated into the density of a set of limit function-
als in F(Cu(Ay)). Moreover, in this setting the problem admits a formulation working
purely in the category Cu of abstract Cuntz semigroups, usually called Cu-semigroups;
see Problem 4.12.

The category Cu was introduced in [20] and was extensively studied in [5,2,6-8,4] as
well as [53,51,52]. The cones of functionals on Cu-semigroups have also been thoroughly
studied; see, for example, [23,43,3]. This allows us to use functional analytic techniques
developed for the category Cu together with the computation of Cuntz semigroups of
ultraproducts, as carried out in [8]. We thus show that the density of limit 2-quasitraces
on an ultrapower of a C*-algebra is equivalent to a certain comparability property on
the Cuntz semigroup of the algebra. These results are obtained as corollaries of their
counterparts on functionals on abstract Cuntz semigroups, and solve the original problem
under the not uncommon assumption that 2-quasitraces are traces, and in particular if
the algebra is exact.

We now explicitly state the results. Let A be a C*-algebra, and let 7 € QT(A), which
we regard as a 2-quasitrace defined on (A ® K)+. For a € (A® K), we define the rank
of a as the function [a]: QT(A) — [0, 00] given by [a](T) = lim, 7(a® ), as we did in the
case of quasitracial states. Given a free ultrafilter & on N, as before we have that every
sequence in QT(A) naturally induces a limit 2-quasitrace in QT (Ay/) and we denote the
set of limit 2-quasitraces by LimQT(Az). Our main result characterizing the density of
limit 2-quasitraces of an ultrapower is the following:

Theorem C (7.5). Let A be a C*-algebra and letU be a free ultrafilter on N. The following
are equivalent:

(i) The set of limit 2-quasitraces LimQT (Ay) is dense in QT (Ay).
(ii) For every vy € (0,1) and d € N there exists N € N such that

— ~

[a] < ~v[b] implies [a] <y [b], for alla,be My(A),.

(i) There exists M € N such that for every d € N there exists N € N such that

o~ ~

[a] < [b] implies Nla] < MN[b], foralla,be My(A)4.

A rather unexpected corollary of our results is the equivalence of different kinds of
comparability properties in the Cuntz semigroup of a C*-algebra as is evidenced, for ex-
ample, from (ii) and (iii) in Theorem C. We do not know a direct proof of this equivalence
that avoids the use of ultrapowers.

In [60], Winter defines a C*-algebra to be (m,n)-pure provided it satisfies certain
comparability and divisibility properties, called m-comparison and n-divisibility; see
Paragraphs 7.8 and 10.1. A C*-algebra is said to be pure if it is (0,0)-pure, which by
definition means that its Cuntz semigroup is almost unperforated and almost divisible.
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The relevance of purity resides in Winter’s theorem [60] showing that (m,n)-pure, uni-
tal, simple, separable C*-algebras with locally finite nuclear dimension are Z-stable (an
important regularity property) and thus pure by [47]. We generalize this consequence of
Winter’s theorem to general simple C*-algebras:

Theorem D (10.5). A simple (m,n)-pure C*-algebra is pure.

In the course of our investigations we obtain a partial confirmation of a conjecture
by Blackadar and Handelman ([12]), which we proceed to recall. The classical Cuntz
semigroup W (A) of a C*-algebra A is the subsemigroup of Cu(A) consisting of the Cuntz
classes of positive elements in A ® M,,(C) C AR K, for n € N. A dimension function on
a unital C*-algebra A is a normalized state on W(A), and the set of dimension functions
is denoted by DF(A). The subset LDF(A) of lower semicontinuous dimension functions
is of special importance, as by results from [12] these are in natural bijection with the set
QT (A) of normalized quasitraces. Blackadar and Handelman conjectured that LDF(A)
is always dense in DF(A), and confirmed this in the commutative case. The simple, exact
Z-stable case was established in [17], and the case of C*-algebras with finite radius of
comparison in [49]. We show here that LDF(A) is dense in DF(A) whenever A is a unital
C*-algebra such that LimQT, (Ay) is dense in QT (A4y) (see Theorem 8.6). This result
suggests that the Blackadar-Handelman conjecture might be false in general, but an
example seems difficult to come by.

The central results obtained on cones of functionals, which may well be of independent
interest, are separation results & la Hahn—Banach that allow us to characterize when a
subcone of functionals is dense; see Appendix A. Moreover, in this context, and under
mild additional assumptions (that are satisfied by the Cuntz semigroups of any C*-al-
gebra, [3]), we are able to obtain even stronger separation results; see Appendix B. We
discuss these results in the appendix in order not to disturb the flow of the presentation.

Here is a brief outline of the paper. Throughout, we will largely focus on ultrapowers
and ultraproducts. When similar results hold for products we make some brief remarks
on how the methods can be adapted to that case. In Section 2 we review the main
ideas relating coproducts of compact convex sets, limit tracial states, and commutators,
and we present some motivating examples. In Section 3 we go over some necessary pre-
liminaries on the Cuntz semigroup, its functionals, and (quasi)traces on C*-algebras.
In Section 4 we review the construction of ultraproducts of abstract Cuntz semigroups
as well as their relation to ultraproducts of C*-algebras. In Section 5, we use the new
Hahn-Banach theorems from the appendices to give a characterization of density of limit
functionals in an ultrapower of an abstract Cuntz semigroup in terms of comparability
conditions. In Section 6 we introduce the notion of Locally Bounded Comparison Ampli-
tude (LBCA) and discuss its connection with the density results of the previous section.
In Section 7, we revisit the question on the density of limit functionals under stronger
axioms on the Cu-semigroups (satisfied by the Cuntz semigroups of all C*-algebras). We
then translate our results to the setting of C*-algebras to prove Theorem C. In Section 8
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we prove Theorem A and study the Blackadar—-Handelman conjecture. In Section 9 we
prove Theorem B. In Section 10 we prove Theorem D.

2. Tracial states on products and ultraproducts

The main result of this section, Theorem 2.9, characterizes in multiple ways the den-
sity of limit tracial states on an ultraproduct of unital C*-algebras. Parts of this result
are well known to experts in the area, although it has not been previously stated in the
form given below (see [11, Section 2], [39, Theorem 8], [37, Proposition 2.3], [24, Sec-
tion 3.5]). At the end of the section we give two examples of ultraproducts of C*-algebras
where the density of limit tracial states fails to hold.

Throughout this section we assume that A is a unital C*-algebra. We denote by Ag,
the set of selfadjoint elements of A. Let T7(A) denote the set of tracial states of A
endowed with the weak™ topology. Given a € As,, define a: T1(A) — R by a(r) = 7(a)
forall 7 € T1(A). Let Aff(T1(A)) denote the Banach space of R-valued, continuous, affine
functions on T;(A), equipped with the supremum norm. Observe that @ € Aff(T;(A)),
for a € Aqa,.

Let [A, A] denote the linear span of the set of commutators {[z,y] : z,y € A}, where
[z,y] := zy — yz in A. We form the quotient Ag,/(Asa N [A, A]), which we regard as a

real Banach space under the quotient norm.
The following lemma is well known.

Lemma 2.1. The real Banach spaces Asa/(Asa N [A, A]) and Aff(T1(A)) are isomorphic
via the map a + [A, A] — a.

Proof. Surjectivity is a well-known consequence of Kadison’s function representation
theorem; see [1, Theorem I1.1.8] and [40, Section 3.10]. That the map a + [A, A] — @ is
isometric is proven in the proof of [56, Lemma 3.1], and also in [39, Theorem 5]. The
case of a positive a is also obtained in [22, Theorem 2.9]. (Note that the subspace A

considered in [22] and in [56, Lemma 3.1] agrees with As, N[A, A].) O

We will use below the following lemma.

Lemma 2.2. Let N € N and let A be a C*-algebra with the property that for all a € [A, A]
there exist by, c, € A with ||b]], ||cx]| < |lallz for k=1,...,N such that

< 5 llall.

N | =

N
a — Z[bk, Ck]
k=1

Then, for all m € N and all a € [A, A] there exist by, c, € A with ||b]], |lcx]| < |lal 2
fork=1,...,mN such that
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mN

a — Z[bk, Ck]

k=1

< o llall-

2m

Proof. Given a € [A, A], the element a1 = a — ZkN:l[bk, cx] is again in [A, A], and has
norm |la1 || < 3lal|. A straightforward induction yields the desired result. 0O

2.3 (Compact convez sets and complete order unit vector spaces). Let us recall briefly the
duality between compact convex sets and complete order unit vector spaces. We refer
the reader to [1] for further details. Given a compact, convex set K, let Aff(K) denote
the vector space of R-valued, continuous, affine functions on K. We regard Aff(K) as an
ordered vector space endowed with the pointwise order and with order unit the constant
function 1. The norm induced by the order unit is the supremum norm, and thus Aff(K)
is a complete order unit vector space.

Given a complete order unit vector space (V, V4, e), let S1(V) C V* denote the set
of states on V, that is, A € V* such that A(e) = ||A|| = 1. Then S;(V) is convex
and compact when endowed with the weak* topology. The constructions of Aff(-) and
S1(+) extend to morphisms thus yielding functors Aff and S; between the categories of
complete order unit vector spaces and of compact convex sets. The natural isomorphisms
K — S1(Aff(K)) and V — Aff(S1(V)) establish a contravariant duality between these
two categories.

2.4 (Ultraproducts of C*-algebras). Let (A;);cs be a family of C*-algebras and let U be
a free ultrafilter on the set J. Consider the product C*-algebra J]; A;. Set

a((4y);) = {(a)); € [T 4, tim s = 0},

which is a (closed, two-sided) ideal in []; A;. The ultraproduct of the family (A;);es
(along U) is [, A; = [I; Aj/cu((A;);). In case A; = A for all j, we speak of the
ultrapower [[,, A. We denote by my: [[; A; — [[;, A, the quotient map.

2.5. The category of complete order unit vector spaces admits products and ultraprod-
ucts: given (Vj, (Vj)4,¢;) for j € J, we form V' =[], Vj, composed of norm bounded
collections (v;);ecs, and endow it with the coordinatewise order and with order unit
(ej);. If U is an ultrafilter on the set J, then passing to the quotient by the subspace
cau((V;);) = {(v;); : limy [Jvj]| = 0} we obtain the ultraproduct [],, V;.

Since the category of complete order unit vector spaces admits products and ultra-
products, the category of compact convex sets admits coproducts and ultra-coproducts.
Given compact convex sets (K;);es and an ultrafilter I/ on the index set J, we denote by
11 j K; and [, K; their coproduct and ultracoproduct, respectively. We can concretely
think of these compact convex sets as follows:

[T 5 = s (T]af(x;)),
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15 = su(T[ AR(K)
u u

Now consider a family of unital C*-algebras (A;);cs. For each k € J, the projec-
tion map mg: Hj A; — Ay induces Aff Tq(my): AﬁTl(Hj Aj) — Aff T1(Ag). By the
universal property of the product, we get a map

j J
It is easy to calculate that given a selfadjoint a = (a;); € [[A;, the function @ €
AfFT([]; 4;) is mapped by the above map to (a;); € [[; AMFT1(4;).
Let U be an ultrafilter on J. If a € ¢((A;);), then limy ||@;|| = 0. Thus, again we
have a map

ATy (JTA)) = [J A TL(A)). (2.2)
u

u

Applying the functor S;(-) in (2.1) and (2.2) we obtain continuous affine maps

Lemma 2.6. Let (A;) cs be a family of unital C*-algebras and let U be a free ultrafilter
on the index set J. The following are true:

(i) The maps in (2.1) and (2.2) are surjective.
(ii) The maps in (2.3) and (2.4) are injective.

Proof. (i) Let (f;); be an element of []; Aff T1(4;). By the isometric isomorphism of
AfF T (A;) with (A;)sa/((A)sa N [A;, A;]) (Lemma 2.1), we can choose for each j an
element a; € (A;)sa such that f; = @; and ||a;|| < 3/2[|f;[|. Let a = (a;); € [; 4;. Then
a € Aff T1(]]; A;) is mapped to (f;); by (2.1). This proves surjectivity of this mapping.

Let f € [[,, Af T1(4;). Let (f;); be alift of f in J]; AffT:(A;) having norm at most
3/2||f]]. By the arguments from the previous paragraph, we can choose a selfadjoint
a € [[; Aj such that @ is mapped to (f;); by (2 1)

be the image of a in the ultraproduct. Then b is mapped to f by (2.2). This proves

surjectivity of (2.2).

(ii) Injectivity of (2.3) and (2.4) follows at once from the surjectivity of (2.1) and (2.2)
and the definition of the former maps as the functor S;(-) applied to the latter. O
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2.7 (Limit tracial states). Let us recall the construction of limit tracial states on an
ultraproduct of unital C*-algebras. Let (A;);cs be a family of unital C*-algebras and
let U be a free ultrafilter on the index set J. Let (7;),cs be such that 7; € T1(A;) for
all j. For each k € J, let 7;, denote the tracial state on HjeJ A; induced by 73 via the
projection 7y : [[;c; Aj — Ay. The limit

7_'1,{ = limi’k
u

exists by the compactness of T1([];c; 4;). Moreover, 7, is easily seen to vanish on the
ideal cz4((A;);). It thus induces a tracial state 7, € T1(]];, A;). The tracial states on
[I, A; obtained in this way are called limit tracial states. We denote by LimT([],, 4;)
the subset of T (]],, A;) of limit tracial states.

We use co(M) to denote the convex hull of a subset M of a convex space.

Lemma 2.8. Let (A;) cs be a family of unital C*-algebras and let U be a free ultrafilter
on the index set J. The following are true:

i) The range of the map (2.3) is equal to co(lJ. T1(A; closure in the weak* topol-
i J
0gy)- -
ii) The range of the map (2.4) is equal to LimT, A;) (closure in the weak™ topol-
(ii) g P q u 4 P
0gy)-

Proof. (i) For each k € J, we have a commutative diagram

Ty (Ag)

|

II; T1(4;) — Tu(IL; 4j)

where the horizontal arrow is the map from (2.3), the vertical arrow maps a trace 7 €
T1(Ag) to the functional A, € []; T1(A;) given by A;((f;);) = fx(7), and the diagonal
one maps 7 to 7 € T1([[ 4;) given by 7((a;);) = 7(ax). Since the range of (2.3) is closed,
as it is the image of a compact set under a continuous map, to complete the proof it will
suffice to show that the convex hull of the images of {T1(Ay) : k € J} in []; T1(4;) is
a dense set in [, T1(A4;).

Suppose that this is not the case. Then by Hahn-Banach’s separation theorem, there
exists f = (f;); € [[; AET1(A;) such that A (f) < 1 for all 7 € T1(Ay) and all &,
but p(f) > 1 for some p € []; T1(A;). Shifting f by a scalar multiple of the unit and
renormalizing (that is, replacing f by {—frf for sufficiently large ¢ € R), we may assume
that f > 0. Then 0 < A.(f) <1 for all 7 € T1(Ag) readily implies that | f;]| < 1 for
all j. Hence || f|| < 1, which contradicts that p(f) > 1.
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(i) A collection of tracial states (7;);, with 7; € T1(A;), induces an element Ny of
the coproduct as follows: Given f € [],, Aff T1(A;), choose a lift (f;); € [[; AMET1(4;),
and define

Au(f) = lim fj (7).

Let us call such a Ay a limit state on J],, Aff T1(A;). Limit states are mapped to limit
tracial states in T1(]],, A;) by the map (2.4), with Ay as defined above being mapped to
the limit tracial state 74 associated to (7;),. Since the range of (2.4) is closed, to complete
the proof it will suffice to show that the limit states are dense in Sy ([, Aff T1(4;)).

Supposing that this is not case, we use Hahn—Banach as in (i) to obtain an element
f e [l AFTi(A;), with lift (f;);, such that Ay(f) < 1 for every limit state, while
p(f) > 1 for some p € [, Ti(A;). As before, we may assume that f > 0. Let (f;);
be a positive lift of f in []; AffTi(A;). For each j, let 7; be a tracial state such that
fi(m;) = || f;|l (which exists by the compactness of T1(A;)). Let Ay be the associated
limit state. Then

. T T £ () — <1
hZ/I{anJ” llz/r{an(TJ) Au(f) <1
Thus, ||f|| <1, in contradiction with p(f) > 1. O

An ultrafilter U is said to be countably incomplete if there exists a sequence (Ey )y
in U with (), E, = @. We note that every free ultrafilter on a countable set is countably
incomplete.

Theorem 2.9. Let (A;)jecs be a family of unital C*-algebras and let U be a countably
incomplete ultrafilter on the index set J. The following are equivalent:

(i) The natural map [1,, T1(A;) = T1(II, Aj) from (2.4) is an isomorphism.
(ii) The set LimT (] ],, A;) is dense in T1([],, A;), in the weak™ topology.
(i) There exist N € N and E € U such that for all j € E and all a € [A}, A;] there
exist by, e, € A; with ||by], ||| < llal|z for k=1,...,N such that

(iv) We have

(Here [y [Aj, A;] denotes the image of [[,c;[Aj, Aj], regarded as a subset of

[T;c; Aj, under the quotient map [];c; A; — 1y Aj-)
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Proof. The equivalence of (i) and (ii) follows from previous lemmas. Indeed, the map
(2.4) is always injective, by Lemma 2.6. Thus, it is an isomorphism if and only if it is
surjective. Since its range is the closure of the set of limit tracial states, by Lemma 2.8
its surjectivity amounts to the density of the limit tracial states.

We show that (ii) implies (%ii). For n € N and j € J, set

T, = {Z[mk,yk] c 2, Y € Aj, [z, |yl < 1 for all k}
k=1

It will suffice to show that there exists N such that the set of indices j € J for which
dist(a,T'n,;) < § for all a € (A;)sa N[A;, Aj], with [a] = 1, belongs to U. The result for
a general nonselfadjoint element « is then easily obtained decomposing it as a = a; +1ias,
with a1, as selfadjoint, and normalizing a; and as.

Suppose for the sake of contradiction that for every n =1,2,..., the sets

E, :={j € J:dist(a,Ty ;) > — for some a € [A;, A;] with [la]| <1}

1
4
belong to U. Using that U/ is countably incomplete, let us choose a decreasing sequence
(E])nen in U such that (), E}, = @ and E;, C E,, for all n.

Let us choose (a;);es as follows: If j € J\E], set a; = 0. If j € E/\E],,, choose
a; € [Aj,A;] N (Aj)sa of norm 1 whose distance to the set I', ; is > 1/4. Since the
family (T',, j), is increasing, this construction has the property that if j € EJ,, then the
distance from a; to I'y, ; is > 1/4.

Let a = (a;);jcs. Observe that the tracial states in T1(A;), regarded as a subset of
T1(I[; Aj), vanish on a for all j. The same is thus true for the limits limy 7;, with
7; € T1(A;) for all j. Thus, my(a) is in the kernel of every limit tracial state. It follows
by hypothesis that my(a) is in the kernel of every tracial state of [],, A;. By Lemma 2.1,
we have

<1
4

mu(a) =Y [bi, il
k=

1

for some N € N and by, ¢, € [[, A;. Enlarging N if necessary, let us assume that
b&l, llcx || < 1 for all k. Choose lifts by, &, € [1; A; of bk, cx such that bel, [|éx ]l < 1 for
all k. Then the set

N 1
E:= {j € J: fla; =Y [(be);, (@)l < Z}

k=1

belongs to U. Now choose j € E N E}. On one hand, ||a; — Zgzl[(l;k)j, (er);]ll < 1/4.
On the other hand, since j € EY;, the distance from a; to I'y ; is > 1/4. This is the
desired contradiction.
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We show that (iii) implies (iv). Let us first prove the inclusion of the left-hand side
in the right-hand side. Let a € [[],, 4;,];, 4;]- By [9, Theorem 1.6], a can be lifted to
a € [[1; Aj,I1; Aj]. The latter element clearly belongs to []; [A;, A;]. Thus, a belongs
to the image of [[; [4;, A;] under my.

Suppose now that a € [, [A;, A;]. Let @ € []; [A;, A;] be a lift of a. Let € > 0. Using
(ii) and Lemma 2.2, choose N € N and F € U such that

<ella;l,

N
E , [bk, 55 Ck,j]
k=1

forall j € E, where by, j, ¢, ; € Aj are such that kuJ’Hv ||Ck7j|| < ||ZL]||% Set b j =ck,; =0
for all j ¢ E and all k. Define b, = m((b,j);) and ¢ = my((ck,;);). Then

<celal.

N
g bk, cx)
k=1

Since this argument can be applied to every € > 0, we get a € [[[,, 45,1, 4;]-

We show that (iv) implies (ii). Assume (iv). Suppose for the sake of contradiction
that there exists © € Ti([[;, A;) that is not in the weak™ closure of LimT (][, 4;).
Observe that the set of limit tracial states is convex. Thus, by Hahn-Banach, there
exists b € [],, A; separating p from LimT;([],, A;), that is, such that Re(7(b)) < 1
for all 7 € LimT:([[,, A;) and Re(u(b)) > 1+ 4, for some 6 > 0. Replacing b by its
selfadjoint part, we may assume that it is selfadjoint. Translating b by a scalar multiple
of 1 and renormalizing (as in the proof of Lemma 2.8), we may further assume that b is
positive (this step may change ¢).

Let (bj); € [I;A; be a positive lift of b. For each j € J, let 7; € T1(A;) be a
tracial state at which the mapping T1(A;) > 7 — 7(b;) attains its maximum. Since
limy, 7;(b;) < 1, we have that

E={jeJ:7b)<1+3} el
Thus, 7(b;) < 1+ ¢ for all 7 € T1(4;) and j € E. By Lemma 2.1, the distance from b;
to [A;, A;] is at most 1+ 2. Hence, for each j € E there exist ¢; € A; and d; € [4;, A]]
such that

bj =cj —I-dj,

and ||c;]| < 1+ 3. Set ¢; = d; =0 for all j ¢ E. Observe that (d;); is bounded, since
(bj); and (aj); are bounded. By hypothesis, m((d;);) € [, 45,1y 4;]- Then

b=mu((b;);) = mu(c;);) + mu((ds);)-
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The term my((c;);) has norm at most 1+ 2, while the term m((d;);) vanishes on every
tracial state of [],, A;. Evaluating both sides on u we get a contradiction. O

We remark that, for a compact Hausdorff space X, Thomsen proved in [55, Proposi-
tion 1.3] that selfadjoint elements a € M,,(C(X)) with zero trace can be written as the
sum of two commutators.

We state below a similar density theorem for tracial states on the product Hj’;l A
We omit the proof as the arguments run along the same lines (with some simplifications).

Theorem 2.10. Let (A;)jcs be a collection of unital C*-algebras indexed by an infinite
set J. The following are equivalent:

i e natural ma T1(4;) =Ty i) Jrom (2.3) is an isomorphism.
(i) Th Emap T1; T1(Az) = To(1; A;) from (2.3) is an i phi
(i) The set co(U;c; T1(4;)) is dense in Tl(H]EJ i), in the weak* topology.

111 ere exists N € such that for all j € J and a € |A;, A;| there exist by, c, € A;
iii) Th ists N € N h that f ll J and Aj Ayl th ist b A;

with ||be |, 1bx]| < llal|z for k=1,...,N such that

< 5 lal.-

DN | =

N
Z b, ¢k

(iv) We have [H] Aj,Hj Ajl= Hj [4;, Aj].

Example 2.11. In [44, Theorem 1.4] (see also [28, Example 4.7]) an example is given of a
simple, unital C*-algebra A with a unique tracial state such that for each m € N there

exists a contraction a,, € [A4, A] whose distance to the set

m

{Z[xuyi] LT, Y € A}

i=1

is 1. Let U be a free ultrafilter on N. Observe that, since T1(A) is a singleton set,
so is LimT;(]],, A;) (and it is thus closed). On the other hand, since the property in
Theorem 2.9(iii) does not hold, Ty (A4y) is not a singleton in this case.

Example 2.12. Consider the nc-polynomial in four variables

g = [xl,mz][$3,$4]~

Given a C*-algebra A, denote by g(A) the range of g on A. Given n € N, denote by
32" g(A) the set of sums Y7 a;, with a; € g(A) for all j.

Let n € N. By [45, Example 3.11], there exists a unital C*-algebra B, without
bounded traces and a projection b, € B, such that the distance from b, to the set
> "g(By) is 1. Fix a free ultrafilter ¢ on N, and set B = [],, B,. Observe that there
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are no limit traces in T1(B), since T1(B,,) = @ for all n € N. Let us argue that B has
a non-zero one-dimensional representation (and in particular T;(B) is non-empty).

Suppose for a contradiction that B has no one-dimensional representations. Then, by
[28, Theorem A], there exists N € N such that B = 32" g(B). In particular, m((by)y)
belongs to -V g(B). We thus get a set of indices E € U such that the distance from
b,, to the set ZN g(By) is < 1/2 for all n € E. This, however, contradicts our choice of
b, for any n € E such that n > N. (Note that -~ g(B,) is contained in 3" g(B,,) for
n > N, as 0 belongs to the range of g.)

3. Quasitraces and the Cuntz semigroup

In this section we describe the main objects that appear in coming sections of the
paper: quasitraces on C*-algebras, abstract Cuntz semigroups, and functionals on Cuntz
semigroups; see, among others, [20,5,23,43].

3.1 (Traces and quasitraces). Let A be a C*-algebra. We call a map 7: Ay — [0,00] a
trace (on A) if it is additive, linear, and maps 0 to 0. We denote the set of all lower
semicontinuous traces on A by T(A). This is a cone when endowed with the operations
of pointwise addition and pointwise multiplication by positive scalars. (In this paper, by
a cone we understand a commutative monoid endowed with a scalar multiplication by
(0, 00). Note that we do not define multiplication by 0. We call the zero element of a
cone its origin. We refer to [3, Section 3.1] for details.)

By a quasitrace on A we understand a map 7: Ay — [0,00] whose restriction to
the positive part of any commutative sub-C*-algebra of A is a trace. A 2-quasitrace
is a quasitrace that admits an extension to a quasitrace on Ms(A);. We denote by
QT(A) the cone of [0, co]-valued, lower semicontinuous 2-quasitraces on A. Every lower
semicontinuous 2-quasitrace admits a unique extension to a lower semicontinuous 2-
quasitrace on A ® K, where K denotes the compact operators on £2(N). We thus regard
(A® K)4+ as the common domain of the elements of QT(A).

The cone QT(A) can be endowed with a compact Hausdorff topology in which a
net (7;); converges to 7 in QT(A) if and only if for all a € A} and € > 0 we have

limsup;((a —€)+) < 7(a) < liminf 7;(a),
P j

where (a—¢)4 is the e-cut-down of a, which is defined by applying continuous functional
calculus to a with the function R — R, ¢ — max{0,t — ¢}; see [23, Section 4].

A very convenient technical tool to deal with quasitraces on a C*-algebra is the Cuntz
semigroup. We give below the axioms used to define the objects of the category Cu that
they belong to. For further details, we refer to the recent survey [27].
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3.2 (Cuntz semigroups). A partially ordered monoid S is positively ordered provided that
x > 0 for every element z € S. A commutative, positively ordered monoid S is called a
Cu-semigroup if it satisfies the following axioms:

(O1) If (zy)n is an increasing sequence in S, then sup,, ,, exists.

(O2) For any x € S there exists a sequence (), such that x,, < z,41 for all n and
x = sup,, Tn. (We say that (z,), is a <-increasing sequence.)

(03) If 21 < 29 and y1 < ya, then 1 + y1 K 2 + yo.

(04) If (x,,)n and (yn ), are increasing sequences in S, then sup,, (2, +y») = sup,, T, +

sup,, Yn-

The relation < in these axioms is defined as follows: z < y if for every increasing
sequence (yn), satisfying y < sup,, y, there exists ng € N such that z < y,,. The
relation < is called the way-below relation, or compact containment relation, and one
says that ‘z is way-below ¥y’ if © < y. An element u € S such that u < w is termed
compact.

There are additional axioms that we often impose on a Cu-semigroup:

(O5) For all o/, x,y with 2’ <« = < y there exists z such that 2’ + 2z <y < x + 2.
Moreover, if z +w < y for some w, and w’ < w, then z may be chosen such that
w K z.

(06) For all 2’,z,y,2z € S such that © < y + z and 2’ < x there exist 3/, 2’ such that
' <y’ + 2, such that ¥/ <y, z, and 2’ < 2, z.

Given positive elements a,b in a C*-algebra A, one says that a is Cuntz subequivalent
| = 0.
Further, a and b are Cuntz equivalent, denoted a ~ b, if a 3 b and b = a. These relations

to b, denoted a 3 b, if there is a sequence (r,), in A such that lim,_, |l@a — r,br}
were introduced by Cuntz in [21].

The Cuntz semigroup of A is defined as Cu(4) = (A ® K)4/~, equipped with the
partial order induced by =, and equipped with addition induced by addition of orthogonal
positive elements. It is known that Cu(A) satisfies (01)—(06); see [20], [48], [5, Section 4],
[43, Proposition 5.1.1]. Further properties (O7) and (O8) for Cu(A) have been obtained
in [3, Section 2.2] and [52, Section 7].

Classes of projections in A are natural examples of compact elements in Cu(A4), and
often the only ones; see [16].

As defined above, Cu-semigroups are the objects of a category, termed Cu. The mor-
phisms in this category are called Cu-morphisms. By definition, a Cu-morphism between
Cu-semigroups is an order-preserving monoid homomorphism that preserves the relation
< and suprema of increasing sequences. The assignment A — Cu(A) is functorial; see
[20].
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3.3 (Functionals on Cuntz semigroups). Let S be a Cu-semigroup. We call a map A: S —
[0, 0] a functional on S if A is an order-preserving monoid homomorphism that preserves
the suprema of increasing sequences. The set of functionals on S is denoted by F(S). This
set is a cone under pointwise addition of functionals and pointwise scalar multiplication
by positive real numbers. Its origin is the zero functional. The properties of F(S) have
been studied in [43] under the additional assumption that S satisfies (O5). The question
of whether (O5) is necessary for a proper theory of F(S) is an interesting one, but we
do not take it up here.

The cone F(S) has a natural compact Hausdorff topology such that a net (\;); con-
verges to A in F(S) if and only if

limsup A;(z") < A(z) < limjinf Aj(2),
j
for all 2’ <« z in S; see [23, Theorem 4.8], [43], and [33, Theorem 3.17].

Given z € S, we denote by Z: F(S) — [0,00] the function such that Z(A\) = A(z)
for all A € F(S), which is lower semicontinuous, zero-preserving, additive and (0, 00)-
homogeneous (see Paragraph A.2 for further details). Given u € S, we denote by F,,(.5)
the set of functionals A € F(S) that are normalized at w, that is, A(u) = 1. If u is
continuous (for example, if u is a compact element of S), then F,,(S) is a closed, convex
subset of F(.5), and hence a compact convex set.

Below, we will work with limits along ultrafilters. We will thus find it convenient to
formulate convergence of functionals in those terms:

Lemma 3.4. Let S be a Cu-semigroup satisfying (05), let (X\;)jes be a collection of
functionals in F(S), and let U be an ultrafilter on the set J. Then there is a unique
A € F(S) such that (\;); converges to A along U in the compact Hausdorff topology
of F(S). This X is given by

Az) = sup lim \j(z"),  for allz € S.
z'ga U

Proof. Since F(S) is compact and Hausdorff, the limit \ exists and is unique. Let U >
E — jg € E be an arbitrary selection. Let 2/ < « in S. Since the net (\;, ) pey converges
to A, we have

lilgn Aj(2) = limsup \j, (z') < A(x),
E
and
Az') < limEinf N (2') = lizjr{n Aj(2").

Thus, A(z’) < limgy Aj(2’) < X(z). This, combined with the fact that A(z) =
SUP,/ -, AM(@), yields the desired result. O



18 R. Antoine et al. / Journal of Functional Analysis 286 (2024) 110341

3.5. The link between quasitraces and functionals on Cuntz semigroups is as follows: For
every 7 € QT(A), define d,: Cu(4) — [0, 00] by

dr([a]) = lim7(a™)

for all positive elements a € A ® K. Then d, is a functional on Cu(A). Moreover, the
assignment

T+ dr,
from QT(A) to F(Cu(A)), is an isomorphism of topological cones; see [23, Theorem 4.4].
4. Ultraproducts, limit quasitraces, and limit functionals

In this section we define limit quasitraces and state the density of limit quasitraces
problem; see Problem 4.2. We then rephrase this problem in the language of abstract
Cuntz semigroups; see Problem 4.12.

4.1 (Limit quasitraces). Let (A;) ;e be a family of C*-algebras. Let U be a free ultrafilter
on J, and let J],, A; denote the ultraproduct of the family (A;); along Y. Given a
selection of 2-quasitraces 7; € QT (4;) forall j € J, let 7; = 7;7;, where m;: [[; A; — A;
is the quotient map. Observe that 7; € QT(][; A;) for all j. Define 7, € QT(][; A;) as
the limit of (7;); along U, which exists by compactness of QT(]] ; A;). More explicitly,
it is not difficult to calculate that 7, is given by

Tu(a) = suplim7; ((a; — t)4),
t>0 U

for a = (a;); in (J[; Aj)+; see Lemma 3.4. Observe that 7y vanishes on the ideal
cu((A;j);), and thus induces a lower semicontinuous 2-quasitrace 74 on the ultraproduct
[I, A; such that 7y = 7ymy. We call 7y a limit 2-quasitrace on [[,; A;. We denote by
LimQT(J],, A;) the set of all limit 2-quasitraces.

If each 7; is a trace, then so is 7y and we call it a limit trace. We denote by
LimT(]J],; A;) the set of all limit traces on [],, A;.

Finally, if each A; is unital, and each 7; is a tracial state, then 7, is again a tracial
state. In this case the set of limit tracial states agrees with the set LimT, (] ],, A;) that
we have already introduced in Paragraph 2.7.

As mentioned in the introduction, one of the main problems that we address in this
paper is the following:

Problem 4.2. Retaining the notation from the previous paragraph, under what conditions
is the set of limit 2-quasitraces LimQT(J],, A;) dense in QT(]],, 4;)?
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To tackle this problem, we use the correspondence between 2-quasitraces and func-
tionals on the Cuntz semigroup described in Paragraph 3.5. This translates the above
problem into a question on the density of limit functionals in the cone of functionals of
an ultraproduct of Cuntz semigroups. In the coming paragraphs we formulate a version
of said problem in this setting and, as we shall see, the techniques developed in [§] play
a key role in the solution of Problem 4.2.

4.3. For completeness, we give a brief account of the construction of the quotient semi-
group by an ideal, which will be used in the sequel. For more details see, for example,
[5, 5.1.1]. Given a Cu-semigroup S, an ideal I of S is a downward-hereditary subset that
is closed under addition and under suprema of increasing sequences. Given elements
z,y € S, we define x <y y if there is z € I such that x < y + z. We also set x ~; y
if both © <; y and y <; x occur. Define S/I = S/~, which is a Cu-semigroup with
the naturally induced addition and order. The quotient map 7;: S — S/I is a surjective
Cu-morphism. In the case of a C*-algebra A and a closed, two-sided ideal J of A, the
inclusion of J in A induces an order embedding of Cu(J) as an ideal of Cu(A), and the
quotient map A — A/J induces a Cu-isomorphism Cu(A)/ Cu(J) = Cu(A/J); see [18,
Proposition 1].

4.4 (Products and ultraproducts of Cu-semigroups). Let us review the construction of
products and ultraproducts of Cu-semigroups developed in [8]. Let (S;);cs be a collection
of Cu-semigroups. We denote by PoM-]| j S, their product in the category of positively
ordered monoids. This is simply the cartesian product endowed with the entrywise order
and entrywise addition. We denote by <, the relation in PoM-]] j S; of entrywise
< -comparison.

By a path in POM—Hj S; we understand a map v: (—o0,0] — POM—Hj Si, t = vy,
that satisfies:

(1) vy <pw vy for all s,t <0 with s < ¢,
(2) vi =supy ., vy for all t € (—o0,0].

In the sequel, given a path v = (v;);<o we shall write v, = (v, ;); with v, ; € S; for
each ¢t < 0 and j € J. We define on the set of paths in PoM-[| j S; a preorder relation
as follows: (v;)i<o 3 (W¢)i<o if for every s < 0 there exists t < 0 such that vy <pw Wy,

~

that is, v, ; < wy; for all j € J. We define (v¢)i<o ~ (We)i<o if (Vi)i<o T (We)i<o and

~

(We)i<o 3 (Vi)i<o. We denote by [(v¢)i<o] the equivalence class of the path (v¢)i<o.

The product [ | j S; in the category of Cu-semigroups is defined as the set of equivalence
classes [(v¢)i<o], where v: (—00,0] — PoM-[[,S; is a path. Addition and order on

[1; S; are defined by [(v¢)i<o] + [(We)i<o] = [(ve + Wi)i<o] and [(vi)i<o] < [(Wi)i<o]
if (vi)t<o 3 (We¢)i<o, respectively. Here v¢ + w; = (v j + wy j);. The projection maps

mj: [[; S — S; are defined as
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Wj([(vt)tgo]) = ’U()’j S Sj, With V¢ = (’Ut’j)j.

It is shown in [8, Corollary 3.9] that [, S; is a Cu-semigroup satisfying the universal
property for products in the category of Cu-semigroups. (See also [6, Section 3] for a full
account of this construction.)

Let U be an ultrafilter on the set J. Define c/((S;);) as the subset of []; S; of [(v¢):<o],
with v; = (v ;); for all ¢ <0, such that

{jeJ:v,;=0}eu forallt<Oo.

Then cy((S;);) is an ideal of []; S;. Following [8], we define the ultraproduct of (S;);
along U as follows:

I1s; = (H Sj)/CM((Sj)j)~

The natural quotient map [] ;S — [1;,S; will be denoted by .

By [8, Lemma 7.8], the order in the ultraproduct is characterized as follows: For
[(ve)i<ol, [(We)e<o] € I, S; with v¢ = (vr;) and we = (wy;), we have my([(ve)i<o]) <
mu([(We)i<o]) if, and only if, for every s < 0, there are ¢t < 0 and E € U such that
Vs, K wy,; for each j € F.

We are also interested in products and ultraproducts of scaled Cu-semigroups, as these
arise naturally from products and ultraproducts of C*-algebras.

4.5 (Scales). A scale on a Cu-semigroup S is a downward hereditary subset ¥ C S that is
closed under suprema of increasing sequences and that generates S as an ideal, that is, for
every 2/, x € S with 2’ < x, there are elements z1,...,2, € ¥ such that 2/ < > | @;;
see [8, Definition 4.1]. The pair (5, X) is referred to as a scaled Cu-semigroup. Given scaled
Cu-semigroups (5,%) and (T, 0), a scaled Cu-morphism is a Cu-morphism ¢: S — T
such that ¢(X) € ©. We denote by Cug. the category of scaled Cu-semigroups with
scaled Cu-morphisms.

We shall also consider pairs (S,u) of a Cu-semigroup together with a compact full
element u € S, that is, u is such that © < v and oo - u is the largest element of S. The
element u gives rise to a scale on S, namely, ¥, = {z € S : z < u}. In the sequel, we
regard a pair (S,u) as a scaled Cu-semigroup precisely in this fashion.

For a C*-algebra A, the set

for every 2’ € Cu(A) with 2’ < x there exists
Ya= A):
A {x € Cu(4) a € Ay with z < [d]

is a scale for Cu(A). The scaled Cuntz semigroup of A is Cug.(A) = (Cu(A),X4); see [8,
4.2]. By parts (1) and (2) of [54, Lemma 3.3], the scale ¥4 can also be described as
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Yy = {I € Cu(d): in A, such that = sup,,[ay]

_there exists a Z-increasing sequence (a")n}

= {z € Cu(A) : there exists a € Ay with z < [a]}.

If p: A — B is a x-homomorphism, then Cu(yp) maps X4 into Xp, and thus is a
scaled Cu-morphism. One has therefore a functor from the category of C*-algebras to
the category Cus.. For a unital C*-algebra A, we obtain a pair (Cu(A), [1]) of a Cu-sem-
igroup with a compact full element [1] € Cu(A).

4.6 (Scaled products and ultraproducts). Let ((S;,X;))jes be a collection of scaled Cu-
semigroups. Define ¥ C [[, S; as

Y ={[(v¢)i<0] € HSj tvy; €% forall j € J and all ¢ < 0}.
J

The set ¥ is downward hereditary and closed under passing to suprema of increasing
sequences, though possibly not full in [, Sj. The scaled product of [[;(S;,¥;) is defined
as the pair (S, %), where S is the ideal generated by X in [, S;.

Let U be an ultrafilter on J. The scaled ultraproduct (T',0) = [],,(S;,E;) is defined
as the images of S and ¥ under the quotient by cy((S;);). In the case S; = S for all
J, we shall denote the ultrapower [],,(S,X) by (S,X)y. The reader is referred to [8,
Paragraph 4.5] for further details on this construction.

Consider now a collection (S;, u;) ey of Cu-semigroups together with a full compact
element u; € S; for each j. Let v, = (u;);, for t < 0, denote the constant path equal
to (u;); in the cartesian product PoM-T[;.; S;. Let v = [(v¢)i<o] be the corresponding
equivalence class in ] jeJ S;. Then it is readily verified that v is a compact full element
of the scaled product (S,%) = [];c;(5;,u;). We define (5,0) = [[;c,(S;,us). I U
is an ultrafilter on J, then passing to the quotient by cu((Sj)j) we obtain v = 7y (v),
a compact full element in the ultraproduct (T,0) = [],,(S;,X.,). Again, in this case
we write (T,v) = [],,(Sj,u;). For ultrapowers, we denote by (S, u)y the ultraproduct
HZ/{(57 u)

It is proved in [8, Theorem 5.13] that the scaled Cuntz semigroup functor pre-
serves products. More concretely, given a family (A;);c; of C*-algebras, let (S,3)
be the scaled product of (Cu(A;),¥4,) as described in the paragraph above. Then
(5,%) = Cus([[; Aj) as scaled Cu-semigroups. It is also shown in [8, Theorem 7.5]
that the scaled Cuntz semigroup preserves ultraproducts. In other words, given an ul-
trafilter & on a set J and a family of C*-algebras (A;);es, there is an isomorphism
Cuge([ Ty A5) = [1(Cu(A4y), X 4,). In fact, we have the following commutative diagram:
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Cuge([T; 4;) — T1, Cusc(4;)

Cuge (WM) l l ™

~

CUSC(HM Aj) - Hu Cugc (Aj)'

In the case A; = A for all j, we shall use (Cu(A), ¥ 4)y to denote the scaled ultrapower
which, as observed, is isomorphic to Cusc(Ay).

We now introduce the limit functionals on an ultraproduct of Cu-semigroups.

4.7. Let us continue to denote by (S;);es a collection of Cu-semigroups and by U an
ultrafilter on J. Let S = [],S; be their product. Observe that for each k € J the
projection map 7 : S — Sy induces a cone morphism F(my): F(Si) — F(S).

Consider now a selection of functionals \; € F(S;) for all j. Set A\; = F(m;)()\;) for
all j. Let Ay be the limit of (\;); in F(S) along U, which exists and is unique, since F(S)
is compact and Hausdorff. Using Lemma 3.4, it is readily established that

Mt ([(ve)e<ol) = sup lim A (v ), (4.1)

for any path (v;)i<o in PoM—Hj S;.
Lemma 4.8. The functional Ny vanishes on cy((S;);)-

Proof. Let v = (v¢):<o be a path in PoM-]; S; with v; = (v ;);, and assume that [v] €
cu((Sj);j)- Then {j € J: v, ; = 0} € U for every t < 0. It follows that limy \;(vs ;) = 0
for every ¢ < 0, and therefore Ay ([v]) = 0 by (4.1). O

Since Ay vanishes on cy((S;);), it induces a functional \y; on the ultraproduct [, S,
which is simply given by

Mu(my([V])) = Mu([v])  for all [v] € Hsj.

4.9 (Limit functionals). Retain the notation of Paragraph 4.7. Let T' = [],,S;. We call
the functional Ay on T' defined above the limit functional associated to the family (A;);.
We use LimF(7") to denote the subset of F(T') of limit functionals.

Note: Our notation for the set of limit functionals introduces ambiguity, as LimF(T)
depends on a specific representation of the Cu-semigroup 7" as an ultraproduct. A no-
tation like LimFy,((S;);) would be more suitable. We have, however, opted for a more
concise notation, since the ultraproduct structure is always evident within the context.

We also call the functional Ay on [] j S; defined in Paragraph 4.7 a limit functional,
and we denote by LimF¥([] ;5j) the subset of F([, Sj) consisting of such limit func-
tionals.
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Given a scaled Cu-semigroup (S5, X), we set F((S, X)) = F(S). That is, when we speak
of functionals on a scaled Cu-semigroup (.5, %) we simply mean functionals on S.

Let X, be a scale on S; for each j. Let (T,0) now denote their scaled ultraproduct
[1,,(S;,%;). Recall that T is an ideal in [[,,S;. Thus, functionals on [],,S; induce
functionals on the scaled ultraproduct by restriction. We denote by LimF((T, ©)), or
simply LimF(T), the subset of F(T') induced by the limit functionals.

Suppose now that (S;j,u;)jes is a collection of Cu-semigroups endowed with full
compact elements u; € S; for each j € J. Let (T,v) = [],,(Sj,u;) be their scaled
ultraproduct. We denote by LimF,,(T') the set of limit functionals associated to families
(Aj); with A; € Fy,(S;), that is, normalized at u; for each j in some E € U. Notice that
every limit functional in LimF, (7)) is normalized at v. In fact, it is easily established
that

LimF,(T) = {\ € LimF(T) : A(v) = 1}. (4.2)

That is, a limit functional normalized at v can always be obtained as the functional
associated to a collection (A;); of normalized functionals. To see that the right-hand
side is contained in the left-hand side, let Ay = limy, j\j, with A; € F(S;) for all j, be
such that Ay (v) = 1. We get at once that limy \j(u;) = 1, and after normalizing each
)\; (along an index set where 0 < \;(u;) < 00), we obtain that Ay = limy 5\3 where
A, € Fy, (S;) for all j.

4.10. Let (A;);cs be a family of C*-algebras. Let U be a free ultrafilter on the set J.
As mentioned at the end of Paragraph 4.5, Cug.(]],, 4;) is isomorphic to the scaled
ultraproduct [],, Cusc(A4;) = [],,(Cu(A;),X4;). We thus obtain an isomorphism be-
tween F(Cus ([, 4;)) and F([],, Cusc(A4;)). Recall that, for a scaled Cu-semigroup
(S,%), we have defined F(S,X) = F(S). Therefore we may identify F(Cu(]],, 4;)) with
F(Ty, Cuse(4;)):

Fix k € J. A 2-quasitrace 7 € QT(Ax) induces a functional F(Cu(Ay)) under the
correspondence 7 +— d, described in Paragraph 3.5. On the other hand, 7 gives rise to
T =r7m, in QT(Hj A;) via the projection map. We have the commutative diagram

T—dr

QT(Ax)

F(Cu(Ay))

Td,

QT(Hj Aj) —— F(HJ Cusc(45)),

where the vertical arrows are induced by the projection maps m: [[A; — Ai and
Cu(my): I[; Cu(4;) — Cu(Ay). Since 7 — d; is a homeomorphism, the limit 7, =
limy, 7; associated to a collection (7;); is mapped to the limit Ay = limy, d;, associated

to the functionals (d,);. After factoring both 7 and Ay by suitable ideals, the limit
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2-quasitrace 1, associated to (7;); is mapped to the limit functional Ay associated to
(dr,);. Notice finally that, if all the C*-algebras A; are unital and 7;(1) = 1 for all j, then
both 7;(1) = 1 and d, ([1]) = 1. Further, 7,(1) = 1 and Ay([(1);]) = 1. In summary, we
have the following theorem:

Theorem 4.11. The isomorphism between QT(]]; A;) and F([]; Cusc(4;)), given by 7 —
d,, restricts to a natural bijection between the set LimQT(Hj Aj) of limit 2-quasitraces
and the set LImF ([, Cusc(A;)) of limit functionals.

Similarly, for wultraproducts, T +— d. yields a natural bijection from the set
LimQT([[,, A;) to the set LimF(]],, Cusc(A;)).

Furthermore, if all the C*-algebras A; are unital, then T — d, also gives a bijec-
tion between the set LimQT, (I ],, A;) of limits of normalized 2-quasitraces and the set
LimF (3 (I, (Cu(Ay), [1])) of normalized limit functionals.

In view of the previous theorem, Problem 4.2 is subsumed in the following more
general problem:

Problem 4.12. Retaining the setting from Paragraph 4.9, characterize when the set
LimF([[,, S;) is dense in F(]],, S;)-

We address this problem in Section 5, together with similar questions for scaled ul-
trapowers and ultraproducts.

5. Density of limit functionals

In this section we solve Problem 4.12 by characterizing the density of limit functionals
in terms of a comparability condition; see Theorem 5.4. We study this condition more
closely in Section 6.

We start by characterizing when elements in an ultraproduct compare on all function-
als in the closure of limit functionals.

Proposition 5.1. Let (S;,%;) e be a collection of scaled Cu-semigroups that satisfy (O5).
Let U be a free ultrafilter on J and let (T',0) = [[,,(S;,%;). Let v € Ry and z,y € T.
Suppose that x = my(Z) and y = my(§), where

T =[((ze5))i<0)s  and G = [((ye.5);)t<0]

are elements of the product Hj(S’j, Y;). The following are equivalent:

(i) We have () < ~y(A) for every A € LimF(T).
(ii) For every s < 0 and ' > =, there exists t < 0 such that

{jed:z; <~u,;} €U,
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Proof. Let (5, %) = [[;(S;, ;). Recall that we denote by LimF¥(S) the limit functionals
(for the fixed ultrafilter &) on S. In terms of the lifts Z,§ € S of z and y respectively,
condition (i) can be restated as follows:

(") We have Z(\) < v§()) for every A € LimF¥(S).

Given s < 0, we let Z, denote the ‘cut-down’ &, = [((Zs4+,5);)t<0], and similarly
denote by ¢; the cut-downs of §. Applying Proposition A.15, and using that LimFu(S)
is a subcone of F(S), we see that (i’) is equivalent to:

(ii”) For every s < 0 and 4/ > =, there exists ¢ < 0 such that A\(Zs) < ~'A(g;) for every
A € LimFY(S9).

It remains to verify that (ii) and (ii’) are equivalent.

We show that (ii’) implies (ii). To verify (ii), let s < 0 and +" > ~. Pick ¢’ € (s,0)
and " € (v,v'). By assumption, there exists ¢t < 0 such that A(Zs) < +"A(g:) for every
limit functional . Let us show that ¢ has the desired properties to verify (ii).

Suppose that this is not the case. Using that I/ is an ultrafilter, this means that

E:={jeJ 7 £V}
belongs to U. For each j € E, choose \; € F(S;) such that A;(zs;) > 7' Aj(ye,;). By
rescaling A; if necessary, we may assume that
Aj(ms5) 21> 9" (ye)
for all j € E. Set \; = 0 for j € J\ E, and let )y be the limit functional in F(S)

associated to (A;);. Then, on the one hand

1< li&n Aj(zs5) < sup lilgn)\j(wsfgj) = Mu(Ey),

s/ <s’

while on the other hand
1>+ lig{ﬂ Ai(Wes) =7 Au(Gie)-

Thus, A¢(Zs) > 7" My (), which is the desired contradiction.

We show that (i) implies (ii’). Given s < 0 and 4’ > +, apply the assumption to
obtain ¢ < 0 such that the set {j € J : Z,; < 7'yw ;} belongs to U. Then set t = t'/2.
To verify (ii’), let \; € F(S;) for each 7, and let Ay be the associated limit functional in
LimF¥(S). Then

Mu(zs) < lim A (s ;) < 1ig{n7’>\j(yt/,j) < Au(ye)-
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This proves (ii’). O

Notation 5.2. Given elements x and y in a partially ordered semigroup, and given N € N,
we write x <y y to mean that nx < ny for all n > N.

If elements = and y in a partially ordered semigroup satisfy (M + 1)z < My for some
M € N, then for N := (M +1)M we have (n+ 1)z < ny for all n > N, and in particular
x <y y; see the proof of [5, Proposition 5.2.13].

The next result describes the extent to which the order in a Cu-semigroup can be
recovered by the order on functionals.

Lemma 5.3. Let 2,2 and y be elements in a Cu-semigroup. Assume that ' < x and
that T < vy for some v € (0,1). Then there exist M, N € N such that (M + 1)z’ < My
and ¥’ <y y.

Proof. The statement for M follows from [5, Theorem 5.2.18] or [43, Proposition 2.2.2].
As observed above, the statement for N follows immediately. 0O

The key to the solution of Problem 4.12 will be to quantify M and N in Lemma 5.3
depending on «, but not the elements z’, z,y. In the context of scaled Cu-semigroups,
we also need to record the ‘size’ of x and y as determined by the scale. To formalize this,
given a scaled Cu-semigroup (5,Y), and d € N, we define the d-fold amplification of X
as

»d — {x € S :for each 2’ < & there are x1,...,xq € ¥ with 2’ < 1 + ... + x4},

for d > 1, and as () = {0}.
Note that, for any = € S, if there exists & such that < Z, then z € (9 for some
d e N.

Recall that an ultrafilter U is said to be countably incomplete if there exists a sequence
(En)p in U with N, E,, = @.

Theorem 5.4. Let (S;,%;)es be a collection of scaled Cu-semigroups that satisfy (O5).
Let U be a countably incomplete ultrafilter on J, and let (T,©) = [],,(S;,%;). The
following are equivalent:

(i) The set of limit functionals TimF (T) is dense in F(T).
(ii) For every v € (0,1) and d € N there exist N = N(v,d) € N and E = E(v,d) e U
such that:

T <~y implies x<pyy, forallj € E and z,y € E§d)_
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Proof. We show that (i) implies (ii). To reach a contradiction, assume that (ii) does not
hold. Using that U is an ultrafilter, this means that there exist v € (0,1) and d € N such
that for every N € N the set

Ey = {j € J : there exist z,y € Egd) with Z < vy but = £n y}

belongs to Y. Using that U is countably incomplete, we may choose a decreasing sequence
(B )nen in U such that () Efy = @ and E)\y C Ey for each N.

We now pick suitable %, 27, z;,y%,y; € S; for each j € J. If j € J\Ej, we simply
set o =2 =x; =0and y; = y; = 0. If j € EN\E)y,, for N > 0, then we use that
EY\ C En to choose zj,y; € S; such that

) o~ _
vy €S, & <qgy, and 35 £y
Next, choose #;, 27 € S such that 2 <z < 2; and @} £y y;. Pick 4" € (7,1). Then
rf < v'y;, by Lemma A.3. This allows us to choose y; € S; such that y; < y; and
z <Ayl
By [6, Proposition 2.10], for each j € J we can choose paths (2 ;)i<o and (y;,;)i<o in
S; such that

_ / _ 1 _ ! _
T_gj=1x;, To;=1=;, Y-1;=1Y; and yo;=y;.

Set x; = (x4,;); and y, = (y;,;); for t < 0. Since z;; and y;,; belong to Egd) for
each j, the elements Z := [(x¢)i<0] and § = [(y,)i<0] belong to the scaled product
[1,(55.%)). Let @ = my(2) and y = my(gy). We also consider z, ys, images of the
cut-downs T, = [(X¢4s)t<o] and §s = [(¥;44)t<0] for s <O0.

Observe that the set of indices j such that o, < +'y_1, contains Ej, and thus
belongs to Y. By Proposition 5.1, this implies that Z(\) < v'g()\) for every functional A
in the closure of LimF(T"). Since by assumption this set is all of F(T"), we conclude that
7 < ~'y. Since x_1 < z, by Lemma 5.3 there exists M € N such that

(M +1)a_y < My.

Choose z = [(z¢)1<0] € cy such that (M +1)Z_1 < Mg+z. We have Z_1 = [(x¢—1)t<0],
and thus for £ = —1 we obtain s < 0 such that

(M +1)x_9 <pw My, + z,.
Since z € ¢y, we have supp(zs) ¢ U. Using that EZMH)M € U, we can choose j € J such
that j ¢ supp(zs) and j € EEMH)M'
Then

(M + 1)z = (M +1)w_2; < My j + 255 = My, ; < My;.
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As noted above Lemma 5.3, this implies that ac; <(m+1)m yj.- However, since j €
EEM+1)M’ we have m; Z(Mm+1)m yj by construction. This is the desired contradiction.

We show that (i) implies (i). By Corollary A.12, it suffices to show that for all z,y € T
with Z(A\) < g(A) for all A in the closure of LimF(T"), we have ¥ < 3.

Let z,y € T be such that Z(\) < g(A) for all A in the closure of LimF(T'). Choose
T = [((wt,5))t<0] and § = [((yz,5);)e<0], lifts of x and y in [[;(S;,%;). Given s < 0, we
let , denote the ‘cut-down’ Zs = [((@s4+,;);)t<0], and similarly for g, for ¢t < 0.

Let s <0 and £ >+ > 1 with k,I € N\ {0}. By Proposition 5.1, there exists ¢ < 0
such that

Ey:={jeJ:z,; <~U;}

belongs to . Choose d € N such that z, j,y:; € E§d) for all j. Applying the assumption
for éfy’ and d, we obtain N € N and F; € U such that

v < %7’@ implies v <yw, forallje€ F;andv,wée ng).

For j € Ey N E4, we have

—

lzs; < (£7)kyr s
and therefore
lesj <N kye ;-

This implies that lmy (%) <y kmy(§) = ky. Given A € F(],,(S;,%;)), we obtain
Amu(s)) < FA(y).

Since this holds for every s < 0 and for every k,! with ¥ > 1, we obtain A(z) < A(y), as
desired. O

Let us now briefly comment on the version of the preceding theorem for functionals
on products rather than ultraproducts. Let (S;,3;) e be a collection of scaled Cu-sem-
igroups that satisfy (O5). Consider their scaled product Hj (S;,%;). For each k € J,
the projection map my: [[;(55,%;) — Sk induces a cone morphism F(my): F(Sk) —
F(TL,;(S;,%5)), and we let K denote the image of F(my).

The next result is proven similarly to Proposition 5.1. We omit the proof.

Proposition 5.5. Let v € Ry, and let © = [((z4;))i<0] and y = [((yt.);)t<0] in
[1;(S;.%5). The following are equivalent:

(i) We have Z(X) < vY(A) for every X in the closed subcone generated by |J; K.
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(i) Foreverys < 0 and~' > =, there existst < 0 such that T, ; < 'y, for everyj € J.

A proof similar to the proof of Theorem 5.4, using Proposition 5.5 instead of
Proposition 5.1, leads to the next result. We omit the proof.

Theorem 5.6. Let (S;,%;)cs be a collection of scaled Cu-semigroups that satisfy (05).
The following are equivalent:

(i) The subcone generated by J; K is dense in F([;(S;,%;)).
(ii) For every v € (0,1) and d € N there exists N = N(v,d) € N such that:

T <~y implies x<yvy, for allbut finitely many j € J and x,y € Egd).
6. Locally bounded comparison amplitude

When specialized to powers and ultrapowers of a given Cu-semigroup, Theorem 5.4(ii)
and Theorem 5.6(ii) simplify to the same comparison property, which we formalize in
the following definition:

Definition 6.1. We say that a scaled Cu-semigroup (.5, X)) has locally bounded comparison
amplitude, or (LBCA), if for every v € (0,1) and d € N there exists N = N(vy,d) € N
such that:

<~y implies xz<puy, for all z,y € B9,

Let (S,%) be a scaled Cu-semigroup. Let U be a free ultrafilter on some set. Recall
that we denote by (S, X)s the scaled Cu-semigroup ultrapower of (S, 3). Recall also that
LimF((S, X)) denotes the set of limit functionals in F((S, X)y).

The next result follows from Theorems 5.4 and 5.6.

Theorem 6.2. Let (S,X) be a scaled Cu-semigroup that satisfies (05). The following are
equivalent:

(i) (S,X) has (LBCA): For every v € (0,1) and d € N there exists N = N(v,d) € N
such that T < 43 implies x <n y for all z,y € (4.

(ii) For some (equivalently, every) countably incomplete ultrafilter U, the set of limit
functionals LimF ((S, X)) is dense in F((S,X)u).

(iii) For some (equivalently, every) infinite set J, the subcone generated by \J;c ; K; is

dense in F([[;c;(5,%)).

6.3 (Comparison amplitude). Let S be a Cu-semigroup. We define the comparison am-

plitude for x,y € S as
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ca(z,y) =min{N € N : 2 <y y},

with the convention that ca(z,y) = oo if there is no N such that x <y y. Let ¥ be a
scale on S. For v € (0,1) and d € N consider the set

Cya={(z,y) € 2D x 5 : 2 <47}

Note then that S has (LBCA) if and only if the comparison amplitude is bounded on
each set C 4. This explains the terminology in Definition 6.1.

For elements x and y in a partially ordered semigroup, one writes © <s y if (n+1)z <
ny for some n € N. Given z,y € S, we have ¥ < 7 if and only if Z < ~¥ for some
v € (0,1). Thus, Lemma 5.3 shows that the comparison amplitude ca(z’,y) is finite
whenever 2/, z, y satisfy 2’ < x and T <, 7.

A partially ordered semigroup is said to be almost unperforated if x <, y implies z <y
for all elements x and y. It follows that a Cu-semigroup S is almost unperforated if and
only if ca(x,y) = 1 for every x,y with x <, y. In particular, an almost unperforated
Cuntz semigroup has (LBCA) relative to any scale. The converse is not true in general.
However, we do have a converse under the additional assumption of almost divisibility.
A Cu-semigroup S is called almost divisible if for every 2/, x € S with 2’ < x andn € N
there exists y € S such that ny < z and 2’ < (n + 1)y; see also Paragraph 10.1.

Proposition 6.4. Let S be an almost divisible Cu-semigroup satisfying (O5). Then S has
(LBCA) for some (equivalently, every) scale on S if and only if S is almost unperforated.

Proof. If S is almost unperforated, then the comparison amplitude is globally bounded
(by 1), as noted in 6.3. In particular, S has (LBCA) for every scale on S.

Suppose now that S is almost divisible and let ¥ C S be a scale such that (S, X) has
(LBCA). To verify that S is almost unperforated, let x,y € S and n € N be such that
(n+ 1)z < ny. Then ¥ < 4y with v = ;15 <1, and we have to show that z < y.

Choose +/,~4" such that v < o' < 4" < 1. Let 2/, 2" be such that 2" < 7/ < =.
By Lemma A.3 applied to 2’ < z and 1 < 77/7 we have that ' < 77, which allows us

to choose 4,y € S such that ¢’/ < y < y and 2 < 4'y”. Choose d € N such that
2,y € (4. By definition of (LBCA) applied to 4" and d, there exists N = N(v”,d) € N
such that © < 4”@, for v,w € (D implies that v <y w. Let us increase N if necessary
so that we also have that v/ {1 < /.

Applying the almost divisibility assumption to z” < z’ and 3" < %', we obtain

elements v and w such that
(N-1w<a, 2/<Nv, Nw<y, and y” < (N+1)w.

Then
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(N —1)3 <& <'y" <~ (N + 1)d.

Hence, 7 < 4"@. Since we also have that v, w € (¥ we obtain that v <y w. Therefore,
" < Nv < Nw <y <y. Passing to the supremum over all 2"/ < x, we get that z <y,
as desired. O

In particular, for a scaled Cu-semigroup (S,Y) that is almost divisible and satisfies
(05), the set LimF((.S, X)) is dense in F((S, X)) if and only if S is almost unperforated.

Given a unital C*-algebra A, we will show in Theorem 8.5 that the set LDF(A) of
lower-semicontinuous dimension functions is dense in the space DF(A) of dimension
functions if and only if the comparison amplitude ca(z,y) is finite for all x,y € W(A)
such that y is full and Z <, y. Blackadar and Handelman conjectured in [12] that LDF(A)
is always dense in DF(A), and this has been confirmed for several classes of C*-algebras;
see Paragraph 8.4.

7. A stronger density result and application to C*-algebras

In the previous section we obtained a characterization of the density of limit function-
als on an ultraproduct of Cu-semigroups satisfying (O5). In this section we strengthen
this result assuming that the Cu-semigroups also satisfy (06) and Edwards’ condition
(as defined in Paragraph B.1).

The Cuntz semigroups of C*-algebras always satisfy (05), (06) and Edward’s condi-
tion. Thus, it is this stronger result that we shall apply to the setting of C*-algebras.
Furthermore, in the C*-algebraic setting the result can be reformulated as a density
of limit quasitraces in ultraproducts of C*-algebras, by the identification between limit
2-quasitraces and limit functionals given in Theorem 4.11.

Theorem 7.1. Let (S;,%;)cs be a collection of scaled Cu-semigroups that satisfy (05),
(06), and Edwards’ condition. Let U be a countably incomplete ultrafilter on J, and let
(T,0) =11,,(5;5,%5). Then the following are equivalent:

(i) The set of limit functionals LimF(T') is dense in F(T).
(ii) For every v € (0,1) and d € N there exist N = N(v,d) € N and E = E(vy,d) e U
such that:

T <~y implies x<nuy, forallj € E and x,y € E§d).

(iii) There exists M € N such that for every d € N there exist N = N(d) € N and
E = E(d) € U such that
<y implies Nx < M Ny, for alleEandx,yeE(d).

J

Proof. The equivalence of (i) and (ii) is Theorem 6.2.
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We show that (i) implies (). We verify (iii) with M = 2. Let d € N. Applying (ii)
for 2d and v = %, we obtain N € N and F € U such that 7 < %ﬂ implies x <y vy

for all z,y € Z;Qd)

T,y € E;d) satisfy Z < . The elements z and 2y belong to ¥9 and satisfy Z < %@
We thus deduce that x <y 2y, and in particular Nz < 2Ny.

. To verify that N and E have the desired properties, let j € E and

We show that (iii) implies (i). The argument is analogous to the proof of the impli-
cation ‘(ii)=-(i)’ in Theorem 5.4. Let M € N as in (iii). By Theorem B.5, it suffices to
show that for all z,y € T with Z(A\) < y()) for all A in the closure of LimF(T") we have
7 < 2M7y.

Let z,y € T be such that Z(A) < g(A) for all A in the closure of LimF(T"). Let
T = [((wt,5)j)i<0] and § = [((y¢,5)5)e<0] in [T;(S;,%;) be lifts of z and y, respectively,
that is, * = (%) and y = mu(§). Given s < 0, we let s denote the ‘cut-down’
Zs = [((xs+1,5)5)e<0], and set x5 = my(Z,). We define similarly §, and y, for ¢ < 0.

Let s < 0. By Proposition 5.1, for v = 1 and +' = 2, there exists ¢ < 0 such that

E:={jeJ:z,; <2y ;} €U.

Choose d € N such that x, ;,y.; € Egd) for all j € Fy. Applying the assumption for d,
we obtain N € N and Fy € U such that

v<w implies Nv<MNw, foralljeEgandv,weE§d).

Let E = EyNE,. For j € E, we have z, ; < 2y ;, and so Nz, ; < 2M Ny, ;. This implies
that

Nxg = Nmy(Zs) < 2MNmy () = 2M Ny.

Evaluating at any functional A € F(T), we deduce that A(zs) < 2MA(y). Since this holds
for every s < 0, we obtain A(z) < 2M\(y), as desired. O

For the case of the ultrapower of a trivially scaled Cu-semigroup (that is, ¥ = S) the
previous result adopts the following simpler form:

Corollary 7.2. Let S be a Cu-semigroup satisfying (05), (06), and Edwards’ condition.
Let U be a countably incomplete ultrafilter on a set J. The following are equivalent:

(i) The set LimF(Sy) is dense in F(Sy).
(ii) For every v € (0,1) there exists N € N such that T < ~y implies x <y y for all
z,y€S.
(iii) There exists M € N such that T <7y implies x < My for all z,y € S.

Remark 7.3. We do not have a direct proof of the equivalence of (ii) and (iii) in
Corollary 7.2 that does not use ultrapowers and density of limit functionals.
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Let A be a C*-algebra. We remind the reader that the scale of A is

Ya:=<z € Cu(A): for every 2/ € Cu(A) with 2’ < x there exists
T "a€ Ay with z < |d] .

The d-fold amplification of ¥ 4 is then defined as

fo) = Lo ecu): for each 2’ € Cu(.A) V\/Iith z’ < x there are .
T1,...,0g EXg with o' K z14+ ...+ 24

We noticed in Paragraph 4.5 that ¥4 admits useful descriptions in terms of Cuntz
classes of positive elements in A. The next result shows that a similar result holds for Eff)

in terms of Cuntz classes of positive elements in M;(A).

Proposition 7.4. Let A be a C*-algebra and let d € N with d > 1. Then

fo) _ {x € Cu(A) : there exists a sequence (an)n in Mg(A)+ such}

" that ([an])n is <-increasing with © = sup,, [ay]

= {z € Cu(A) : there exists a € Mq(A)4 with z < [a]}.
Proof. After identifying Cu(A) with Cu(M4(A)), we view Xz, (a) as the subset
{x € Cu(A) : for each 2’ € Cu(A) with 2’ < x there is a € My(A); with z < [a]}

of Cu(A). Then, by [54, Lemma 3.3], ¥,,(4) agrees with the two displayed sets of the
statement. It remains to verify that Eff) = X,(A)-

Let € Cu(A). To show the inclusion ‘C’; assume that x € fo). Given 2’ € Cu(A4)
with 2’ < z, thereare x1,...,xq € Y4 such that 2’ < z1+...+x4. Weobtainaq,...,aq €
A, such that z; < [a;] for j = 1,...,d. Then the diagonal matrix a := diag(a,...,aq)
belongs to My(A)+ and we have 2’ < [a]. Since this holds for every z’ with 2’ < x, we
obtain x € Yy, (4)-

To show the other inclusion, assume that = € ¥y, (4). Pick a € M4(A); such that
x < [a]. Given 2/ € Cu(A) with / < z, we find € > 0 such that 2’ < [(a — €)4].
Using an approximate unit (uy)y in A, for sufficiently large Ay the diagonal matrix
u = diag(uy,, ..., uy,) satisfies |ja — vau|| < e. Then

(a —e)y Suau I u? ~u,
and it follows that

2 < (a—e)y] < [u] = [ux] + .-+ [ux,],

with [uy,] € X 4. Since this holds for every o’ with 2’ < =, we get x € fo). O
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As mentioned in Paragraph 3.3, given 7 € QT(A), we obtain a functional d, €
F(Cu(A)) defined as d,([a]) = lim, 7(a=) for all [a] € Cu(A). Moreover, the correspon-
dence 7 > d, is an isomorphism of topological cones between QT(A) and F(Cu(4)).
Through this identification, the function [a] induced by a Cuntz semigroup element
[a] € Cu(A) on F(Cu(A)) may be regarded as a function on QT(A). In the sequel we make
this identification and thus regard [a] as having domain QT(A), that is, [a](7) = d,(a)
for 7 € QT(A).

Theorem 7.5. Let A be a C*-algebra and let U be a countably incomplete ultrafilter on a
set J. The following are equivalent:

(i) The set of limit 2-quasitraces LimQT(Ay) is dense in QT (Ay).
(ii) For every v € (0,1) and d € N there exists N = N(v,d) € N such that

— ~

[a] < ~[b] implies [a] <y [b], for all a,b € My(A)+.

(iii) There exists M € N such that for every d € N there exists N = N(d) € N such
that

— ~

[a] <[b] implies Nla] < MN[b], for all a,b e My(A)+.

Proof. By Theorem 4.11, statement (i) is equivalent to proving the density of limit func-
tionals in F((Cu(A), X 4)y). Then, using Theorem 7.1, we see that (i) implies (ii), and
a similar argument as in the proof of said theorem shows that (ii) implies (iii). Let us
show that (iii) implies (i).

Assume (iii). We will verify that condition (iii) in Theorem 7.1 is satisfied, which
then implies (i). Let d € N and consider M € N and N := N(2d) as given from the
assumption (iii). To verify (iii) in Theorem 7.1, let 2,y € fo) satisfy T < 7.

Applying Proposition 7.4, we can write = and y as suprema of rapidly increasing
sequences T = sup,,[a,] and y = sup,, [b,], with a, b, € M4(A)+. Using Lemma A.3 and
reindexing conveniently we may assume that [a,] < 2[b,] for all n. Since [a,] and 2[b,]
are Cuntz classes of positive elements in Myq(A), we obtain by the choice of M and N
that Nla,] < M NIb,]. Passing to the supremum over n, we get No < MNy. O

A C*-algebra A is said to be stable if A= A® K.

Corollary 7.6. Let A be a stable C*-algebra, and let U be a countably incomplete ultrafilter
on a set J. The following are equivalent:

(i) The set of limit 2-quasitraces LimQT (Ay) is dense in QT (Ay).
(ii) For every v € (0,1) there exists N € N such that [a] < v[b] implies [a] <n [b] for
alla,be Ay.
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— ~

(i) There exists M € N such that [a] < [b] implies [a] < M]b] for all a,b € A,.

Proof. Since A is stable, the scale ¥4 in Cu(A) is all of Cu(A). The result then fol-
lows from Theorem 7.5. Alternatively, we use the same argument as in the proof of
Theorem 7.5 to deduce the result from Corollary 7.2. O

Using that traces form a closed subset among quasitraces, we obtain:

Corollary 7.7. Let A be a C*-algebra such that every lower semicontinuous 2-quasitrace
on A is a trace (for example, if A is exact), and let U be a countably incomplete ultrafilter
on a set J. Assume that Cu(A) satisfies the conditions of Theorem 7.5. Then every lower
semicontinuous 2-quasitrace on Ay is a trace.

7.8 (Comparison). Let S be a Cu-semigroup. Recall that the relation <, on S is defined
by setting x < y if there is k € N such that (k+ 1) < ky. Given m € N, one says that
S has m-comparison if, for all z,yo,...,ym € S, the condition z <, y; for 5 =0,...,m
implies 2 < 3" v;; see [38, Definition 2.8]. Note that S is almost unperforated if and
only if it has 0-comparison.

A C*-algebra is said to be nowhere scattered if it has no nonzero, elementary ideal-
quotients; see [52].

The next theorem is essentially a consequence of Corollary 7.6 and of [4, Theo-
rem 8.12].

Theorem 7.9. Let A be a stable, nowhere scattered C*-algebra of stable rank one, and let
U be a countably incomplete ultrafilter on a set J. The following are equivalent:

(i) LimQT(Ay) is dense in QT(Ay),
(ii) Cu(A) is almost unperforated (equivalently, A has strict comparison of positive
elements).

Proof. By Corollary 7.6 the density of LimQT(Ay) in QT (Ay) is equivalent to the state-
ment

There exists M € N such that T < g implies © < My for all 2,y € Cu(4).  (x)

If Cu(A) is almost unperforated, then (x) holds for M = 2, which shows that (ii) im-
plies (i).

On the other hand, it is shown in [4, Theorem 8.12] that (%) implies that Cu(A) is
almost unperforated whenever A is a separable, nowhere scattered C*-algebra of stable
rank one. Separability, however, can be dropped, as we show in Theorem 7.10 below.
The result thus follows. 0O
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The next result removes the separability assumption from [4, Theorem 8.12]. To this
end we use the model theory of C*-algebras.

Theorem 7.10. Let A be a nowhere scattered C*-algebra of stable rank one. The following
are equivalent:

(i) The Cuntz semigroup Cu(A) has m-comparison for some m > 0.
(ii) There exist M € N and v € (0,1) such that T < vy implies that © < My for all
x,y in Cu(A).
(iii) The Cuntz semigroup Cu(A) is almost unperforated.

Proof. It is shown in [4, Theorem 8.12] that (i) implies (ii), and that (iii) implies (i). It
remains to prove that (ii) implies (iii). We may assume that A is stable. Assume (ii) and
suppose that =,y € Cu(A) satisfy < y. Choose a,b € Ay with z = [a] and y = [b].
We need to show that [a] < [b]. By assumption, there exist M € N and v € (0,1) such
that ¥ < v implies that v < Mw for all v,w € Cu(A).

Apply the downward Lowenheim—Skolem theorem for C*-algebras, [24, Theo-
rem 2.6.2], to obtain a separable sub-C*-algebra B C A that is an elementary submodel
of A, and that contains a and b. By [24, Lemma 3.8.2] and [52, Proposition 4.11], B is
nowhere scattered and has stable rank one. Further, by [24, Theorem 8.1.3], the induced
map Cu(B) — Cu(A) is an order embedding.

Let us verify that Cu(B) satisfies (ii) for the given M and . So let v,w € Cu(B)
satisfy A(v) < yA(w) for all A € F(Cu(B)). The proof of [4, Lemma 9.2] is easily adapted
to show that this implies that A(v) < yA(w) for all A € F(Cu(A)). By the choice of M
and v, we obtain that v < Mw in Cu(A). Since Cu(B) — Cu(A) is an order embedding,
we get v < Mw in Cu(B).

We can now apply [4, Theorem 8.12] to B to show that Cu(B) is almost unperforated.
Since the induced map Cu(B) — Cu(A) is an order embedding by [24, Theorem 8.1.3],
we obtain that x <, y in Cu(B) and hence < y in Cu(B), which in turn gives z <y
in Cu(A), as desired. O

8. Density of normalized limit quasitraces and a conjecture of Blackadar-Handelman

We now turn to the question of density of limit functionals normalized at a full
compact element, and similarly to the question about the density of normalized limit
quasitraces for a unital C*-algebra. Here we prove Theorem 8.3 from the introduction.
We focus on ultraproducts over a free ultrafilter, but similar results are valid for products.

Let S be a Cu-semigroup satisfying (O5). Let uw € S be a compact, full element.
Recall that we regard the pair (S,u) as a scaled Cu-semigroup endowed with the scale
Yu={z:z<u}.

Let ((S;,u;))jes be a family of pairs of a Cu-semigroup and a full compact element.
Let U be an ultrafilter on J. In Paragraph 4.6 we have defined [],,(S;,u;) as the pair
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(T',v), where (T, %,) = [[,,(S;, £u,;) and v € T is the element induced in the ultraproduct
by the constant path (u)i<o, with u = (u;); in PoM-][; S;.

Theorem 8.1. Let ((S},u;));es be a collection of pairs of a Cu-semigroup satisfying (05),
together with full compact elements. Let U be a countably incomplete ultrafilter on J. Let
(T,v) = [14,(Sj,u;). The following are equivalent:

(i) The set LimF,(T) is dense in F,(T).
(ii) For every v € (0,1) and d € N there exist N = N(v,d) € N and E = E(y,d) e U
such that

<~y implies x <y,

forall j € E and all x,y € S; such that x,y < du; and u; < dy.
(iii) There exists M € N such that for every d € N there exist N = N(d) € N and
E = E(d) €U such that

<y implies Nx < MNy,
forallj € E and all z,y € S; with x,y < du; and u; < dy.

Proof. Set v = [(u):<o] in [; S;, so that v = my(v) in [, S;.

We show that (i) implies (ii). The proof proceeds as in the proof of ‘(i)=-(ii)’ of
Theorem 5.4, with minor modifications.

To reach a contradiction, assume that (ii) does not hold. Using that I/ is an ultrafilter,
this means that there exist v € (0,1) and d € N such that for every N € N the set

Eyn = {j € J : there are z,y € S; with z,y < du;, u; < dy, T <~y, and x £n y}

belongs to Y. Using that U/ is countably incomplete, we may choose a decreasing sequence
(Ey)nen in U such that () Ey = @ and Ey C Ey for each N.

We now pick suitable z%, 27, z;,9},y; € S; for each j € J. If j € J\Ej, we simply
set ¥y = 27 = x; =0 and y; = y; = u;. If j € Ey\E}y,, for N > 0, then we use that

EYy C En to choose zj,y; € S; such that
zj,y; < duj, uj <dy;, T3 <vg;, and x; £N y;.

Next, choose z,z] € Sj such that 2, < 2% < z; and o £n y;. Set 7' = (1+7)/2.

AR j
Then 2/ < v'y;, by Lemma A.3. This allows us to choose y; € S; such that

y; <yj, uj <dyi, and xf <Ayl
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By [6, Proposition 2.10], for each j € J we can choose paths (¢ ;)i<o and (yt,;)¢<o in

S; such that
T ooy =ay, wo; =, y-1;=y; and yo; = ;.

Since x4, Y5 < duj and u; < dy_1 ; for each j, the elements Z := [(x;);<o] and § :=
[(¥¢)t<o] in JT;(Sj, uy) satisfy that z,y < dv and v < dy. Set z := (%) and y := my ().
The set of indices j such that Zp,; < 7'y_1,, contains Ej, and thus belongs to U. By
Proposition 5.1, this implies that Z(\) < +'g(A) for every functional A in the closure of
LimF(T). Since, by assumption, this set contains the set of all normalized functionals
F,(T), the inequality Z(A\) < 4'7(A) holds for all A € F(T') such that A(v) < co. On
the other hand, since v < dy, the same inequality is trivially valid for all A such that
A(v) = co. We thus conclude that Z < 4'y. The remainder of the proof follows verbatim
the proof of ‘(i)=-(ii)’ in Theorem 5.4.

We show that (ii) implies (). Let us prove that (iii) is valid with M = 2. Let d € N.
By (ii), applied with 2d and v = %, there exist N € N and E € U such that for each
j € Eif z,y € S; are such that z,y € (2d)u;, u; < (2d)y, and T < 37, then z <y v.
Then, for the same N and F, we clearly have that if z,y € S; are such that z,y < duy,
uj < dy, and <7, then No < 2Ny.

We show that (iii) implies (i). The proof proceeds as in the proof of ‘(iii)=(i)’ of
Theorem 7.1, with minor modifications.

By Theorem C.1, it suffices to show that for all x,y € T, with y full, such that
Z(A) < y(A) for all A in the closure of LimF,(T'), we have ¥ < 2M7y. Thus, let z,y € T
be such that y is full and Z(\) < g(A) for all X in the closure of LimF, (7).

By (4.2), we have that Z(\) < y(A) for all A € LimF(T') such that A(v) = 1. This easily
extends to all A in LimF(T") such that A(v) = 1. The latter equality can be relaxed to
A(v) < oo. On the other hand, since y is full, v < dy for some d, and so T(\) < y(A) = oo
is valid whenever A € F(T') is such that A(v) = oo. In summary, we have shown that
Z(A) < g(A) for all A in the closure of LimF(T) in F(T).

Choose 2 = [((t,j);)t<o] and § = [((yt,;);)¢<o], lifts of z and y in J;(S;, u;). Since y
is full, there exists dy € N such that v < dyy. Hence, there exist {5 < 0 such that

Ey:={jeJ:u; <doyy,;} €U.

Let s < 0. Applying Proposition 5.1 for the given s, as well as v = 1 and +' = 2, we
obtain ¢ < 0 such that

Ey:={jeJ:z,; <2y} €U.
We may assume that ¢y < ¢.

Choose d > dj such that x; j,y:; < du; for all j € E;. Applying the assumption (iii)
for 2d, we obtain N € N and E» € U such that
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v<®w implies Nv<MNuw,

for all j € Ey and all v,w € S; with v,w < (2d)u; and u; < (2d)w.

Set £ :== EgNEyNE, Let j € E. We have x,;,y:; < du; and consequently
Ts,j,2yr; < (2d)u;. Since j € Ey, tog <t and dy < d, we also have u; < dy;; < (2d)y: ;.
Since j € E;, we further have 7, ; < Qy/t\] For j € E5, we get

NIS,j S MN2yt,j.

Consider the ‘cut-downs’ Zs = [((Zs4+¢,j);)t<o] and x5 := my(Z5s). The inequality just
established implies that

Na, = Nmy(#,) < 2MNmy(§) = 2M Ny.

Evaluating at any functional A € F(T'), we deduce that A(z;) < 2M \(y). Since this holds
for every s < 0, we obtain A(z) < 2M\(y), as desired. O

The next result follows from Theorem 8.1 by specializing to the case of ultrapowers.
We will refer to condition (ii) in Theorem 8.2 by saying that (S,u) has (LBCA) for
uniformly full elements.

Theorem 8.2. Let (S,u) be a Cu-semigroup satisfying (O5) together with a full compact
element w € S. Let U be a countably incomplete ultrafilter on a set J, and consider the
ultrapower (S, u)y with its canonical full compact element v. The following are equivalent:

(i) The set LimF, ((S,u)y) s dense in Fy,((S, u)y).
(ii) For every v € (0,1) and d € N there exists N = N(v,d) € N such that

T <~y implies x<yvy, forallxzy€eS withzy<duandu<dy.

(i) There exists M € N such that for every d € N there exists N = N(d) € N such
that

T <y implies Nx < MNy, forallx,yeS withz,y<du andu<dy.

Theorem 8.3. Let A be a unital C*-algebra and let U be a free ultrafilter on N. The
following are equivalent:

(i) The set LimQT, (Ay) of limit 2-quasitracial states is dense in QT (Ay).
(ii) For every v € (0,1) and d € N there exists N € N such that

<~y implies x <y,

for all x,y € Cu(A) such that z,y < d[1] and [1] < dy.
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(iii) There exists M € N such that for every d € N there exists N € N such that
<y implies Nx < NMy,
for all x,y € Cu(A) such that z,y < d[1] and [1] < dy.

If we additionally assume that QT (A) = T1(A) (for example, if A is exact), then these
equivalent conditions imply that QT (Ay) = T1(Ay) and that the natural map

H Tl(A) — Tl(Au)
u

is an isomorphism.

Proof. Applying the above Theorem 8.2 in combination with Theorem 4.11 for the Cuntz
semigroup of a unital C*-algebra, we deduce the equivalence of (i)—(iii).

Suppose now that (i)—(iii) hold and that QT,(A) = Ty(A). It is then clear that
LimQT,(Ay) = LimT;(A4y). It follows by (i) that QT;(Ay) = Ti(Ay) and that
LimT; (Ay) is dense in Ty(Ay). By Theorem 2.9, the map [[,T(4) — T(Ay) is an
isomorphism, as required. O

8.4 (A conjecture of Blackadar—Handelman). Let A be a unital C*-algebra, and let
My (4) = U, M,(A), where M,(A) is regarded as a subalgebra of M, (A)
through the upper-left corner embedding. Following [21, Section 3], let us call a map
d: Moo(A)+ — [0,00) a normalized dimension function if d(a ® b) = d(a) + d(b) for all
a,b € Moo (A)y, d(a) < d(b) if a 2 b, and d(14) = 1. Let us endow the set DF(A) of
normalized dimension functions with the topology of pointwise convergence.

Let W (A) denote the classical (non-complete) Cuntz semigroup of A. This is the sub-
semigroup of Cu(A) consisting of those elements that admit a representative in My, (A)
(regarded as a subalgebra of A® K). Note that DF(A) is the set of normalized states on
the partially ordered semigroup W(A).

Let LDF(A) denote the subset of DF(A) of lower semicontinuous (normalized) di-
mension functions. Blackadar and Handelman conjectured in [12] that LDF(A) is always
dense in DF(A), and verified this in the commutative case; see [12, Theorem 1.2.4]. The
conjecture was also verified for simple, exact, Z-stable C*-algebras in [17, Theorem B],
and this was further generalized in [49, Theorem 5.2.5] to include (not necessarily simple)
C*-algebras with finite radius of comparison.

In the result below we offer a characterization of when LDF(A) is dense in DF(A) in
terms of finiteness of the comparison amplitude. Another characterization was obtained
in [49, Theorem 5.1.1]. Some parts of our argument follow a similar approach, which we
include for completeness.

Theorem 8.5. Let A be a unital C*-algebra. The following are equivalent:
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(i) The set LDF(A) is dense in DF(A).
(ii) For any x,y € W(A) with y full, © <5y if and only if T <, 7.

Proof. In (ii), we only need to prove the backwards implication.

We show that (i) implies (ii). Let x,y € W(A) be such that y is full and T <, .
Then there is k € N such that (k + 1) < ky and thus (k + 1)d(z) < kd(y) for every
d € LDF(A). Since LDF(A) is dense in DF(A), this implies that (k+ 1)d(z) < kd(y) for
any d € DF(A). Since y is full, this implies 2 <; y; see [5, Proposition 5.2.13].

We show that (ii) implies (7). Let K = LDF(A) in DF(A). Using [14, Lemma 2.9], we
need to show that, for z,y € W(A), if d(x) < d(y) for every d € K, then d(z) < d(y) for
every d € DF(A).

Thus, let =,y € W(A) such that d(z) < d(y) for all d € K. The function K — R
given by d — d(y) — d(z) is strictly positive and continuous, hence there is § > 0 such
that d(y) — d(z) > ¢. Choose n € N such that nd > 1 and we get

nd(z) +1 < nd(y) for all d € K.
This implies that
nA(z) + A([1]) < nA(y)

for every A € F33(Cu(A)), and consequently for every A € F(Cu(A)) such that A([1]) <
00. Adding A([1]) on both sides extends the inequality to all functionals A € F(Cu(A4)),
since both sides are then oo whenever A([1]) = co. Hence,

o~ o~

nT + 2[1] < ny+ [1].

o~ o~

Given any k € N, we deduce that k(nZ + 2[1)) <, (k + 1)(ny + [1]), and using the
assumption at the second step, we obtain

knx + 2k[1] = k(nz + 2[1]) <s (k + 1)(ny + [1]) = kny + ny + (k 4+ 1)[1].
Since y € W(A), there exists k such that ny < (k — 2)[1], and therefore
ny + (k+1)[1] < (2k — 1)[1].
With this choice of k£ we get
knx + 2k[1] <s kny +ny + (k+ 1)[1] < kny + (2k — 1)[1].
Evaluating at any d € DF(A), we see that d(x) < d(y), as desired. O

Theorem 8.6. Let A be a unital C*-algebra such that (Cu(A),[1]) has (LBCA) for uni-
formly full elements. Then LDF(A) is dense in DF(A).
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Proof. Tt suffices to verify (ii) of Theorem 8.5. Let 2,y € W(A) such that y is full and
Z <s 3. We need to prove that x <; y.

Using that Z <; ¥, we can choose m € N such that (m + 2)7 < my. Set v 1= 5
and notice that then (m + 2)T < vy(m + 1)y. Since every element z in W(A) satisfies
z < oo[1], and since y is full, we can choose d € N such that (m + 2)z, (m + 1)y < d[1]
and [1] < d(m + 1)y.

Applying that (Cu(A),[1]) has (LBCA) for uniformly full elements for v and d, we
obtain N = N (v, d), which we can apply to (m+2)z and (m+1)y to obtain (m+2)x <y
(m+ 1)y, whence xz <gy. O

8.7 (Radius of comparison). Let S be a Cu-semigroup, and let u € S be a compact, full
element. Following [13, Definition 3.2.2], the radius of comparison of (S,u), denoted by
re(S,u), is defined as the infimum over all r € [0,00) such that the following holds: If
xz,y € S satisfy T + ru < 7, then z < y.

The radius of comparison of a unital C*-algebra A is rc(A4) = rc(Cu(4), [1]).

Lemma 8.8. Let S be a Cu-semigroup satisfying (0O5), let u € S be a compact, full
element, and assume that (S,w) has finite radius of comparison. Then (S,u) has (LBCA)
for uniformly full elements.

Proof. Choose R € N with rc(S,u) < R. Let v € (0,1) and d € N. Choose n = n(y,d) €
N large enough such that

n

7<n+d+1'

Then set N' = R(n+d) and N = N'(N' +1).
To see that N has the desired properties, let x,y € S such that z,y < du and u < dy

and ¥ < y. Then 7 < —"-=¥, and we get

(n+d+ 1)z < ny.
Adding w < dy and multiplying everything by R we have
R(n+d+1)x+ Ru < R(n + d)y.

Using rc(S,u) < R, we get R(n+d+ 1)z < R(n + d)y, which implies (N’ + 1)z < N'y,
and consequently x <y y. O

We recover [49, Theorem 5.2.5 (1)] and [9, Theorem 3.19] for exact C*-algebras.

Theorem 8.9. Let A be a unital C*-algebra with finite radius of comparison. Then the set
of limit 2-quasitracial states LimQT (Ay) is dense in the set QT (Ay) of 2-quasitracial
states. Further, LDF(A) is dense in DF(A).
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Proof. By Lemma 8.8, (Cu(A), [1]) has (LBCA) for uniformly full elements, that is, con-
dition (ii) of Theorem 8.2 is satisfied. Using Theorem 4.11, it follows from Theorem 8.2(i)
that LimQT,(Ay) is dense in QT (Ay). Further, it follows from Theorem 8.6 that
LDF(A) is dense in DF(A). O

9. The trace-kernel ideal

In this section we prove Theorem 9.3 from the introduction. Before doing so, we turn
to the setting of normalized functionals on an ultraproduct of Cu-semigroups.

Let (Sj,u;)jes be a collection of pairs of Cu-semigroups and full compact elements.
Let U be a free ultrafilter on J. Denote by (T,v) the ultraproduct [,,(S;,u;). Define

T={zeT:\x)=0 for all A € LimF,(T)}. (9.1)

Observe that T is an ideal of T. Let F) (T) C F,(T) denote the set of normalized
functionals on (7, v) that vanish on Y.
Given a pair (S, u) of a Cu-semigroup and full compact element, let us define

2]lxu =sup {A(z) : X € Fyu(S) }.

Lemma 9.1. Let (T, v) be as in the preceding paragraphs. Let w € T, and let [((wy,;);)t<o]
be a lift of w to []; S; (where wy; € S for allt <0 and j € J). Then

weT & libr[n llwe jl|xu =0 for allt <0.

Proof. Suppose that w € T. Fix t < 0. Let € > 0. Suppose, for the sake of contradiction,
that

E:={jeJ:|wyllru>c}eU.

For each j € E, let \; € Fy,(S) be such that A\;j(w; ;) > ¢, and set \; =0 for j € E. Let
A € LimF, (T') be the limit functional associated to (A;);. Then

A(w) = suplim A\j(wy, ;) > €,
t<o U

contradicting that w € T.
Suppose, conversely, that limgy ||ws j|x. = 0 for all ¢ < 0. Let A € LimF,(T') be a
normalized limit functional induced by a selection of normalized functionals (););. Then

Aw) = suplim \j(wy ;) < suplim ||wy jxu = 0.
t<0 U t<o U

It follows that w € Y. 0O
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For z,y € 5, let us write <, , y if for every € > 0 there exists z € S such that
x<y+zand ||z]a. <&

Theorem 9.2. Let M € N. Let (S;,u;)jes be a collection of Cu-semigroups satisfying
(05) and (0O6), together with full compact elements. Let U be a countably incomplete
ultrafilter on J, and set (T',v) = [[,,(S;,u;). Suppose that the collection (Sj,u;)jcs has
the following property: For each d € N there exist N = N(d) € N and E € U such that,
forallj e F,

T <7y implies Nx <), MNy,
for allx,y € S; with x,y < du; and u; < dy. Then LimF, (T) is dense in FE(T)

Proof. Let ¢ denote the image of v in 7'/Y. Since all limit functionals in LimF, (T") vanish
on T, they factor through T'/Y. Let LimF;(T/Y) denote the set of functionals on T'/T
induced by functionals in LimF, (7). The density of LimF,(T) in F} (T) is equivalent
to the density of LimF;(T/Y) in F5(T/T). We can apply Theorem C.1 to establish the
latter by showing that for all z,y € T, with ¢ full in T/,

Z(\) < () for all X € LimF,(T) = Z(\) < 2M7()) for all A € FX (T).

We can moreover assume that y is full in 7. Indeed, if § is full in 7'/Y, and since v < v,
there exist n € N and w € T such that v < ny + w. Now ¢y = y + w is full in T and
7(\) = ¢/(\) for all A € FX(T).

We prove this below, following closely the proof of the implication (iii)=-(i) in
Theorem 8.1 (omitting some details already addressed in that proof).

Let x,y € T be such that y is full in 7" and Z(\) < () for all A € LimF,(T). We
proceed as in the proof of (iii)=-(i) in Theorem 8.1, using that y is a full element of T
to conclude that the inequality Z(A) < y(A) extends to all A € LimF(T') (i.e., to all not
necessarily normalized limit functionals).

Choose [((21,5);)t<0] and [((y+,5);)¢<0], lifts of z and y in the scaled product [ ] (Sj, u;).
Since y is full, there exists dy € N such that v < dyy. Hence, there exist tg < 0 such that

Eo:={jeJ:u; <doy,;} €U.

Let s < 0. Applying Proposition 5.1 for this s, as well as v = 1 and «' = 2, we obtain
to < t1 < 0 such that

Ey:={jeJ:z,; <2y, ,} €U.

Choose d > dy such that z, ;,ys, ; < duj for all j € F. By the property assumed for
the collection (S;,u;);, there exist N = N(2d) € N and Ey € U such that, for j € Es,
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z < gj’ implies Nz’ <), MNy,

for all /.y’ € S; with 2/, y' < (2d)u; and u; < (2d)y'.

Set E := EgNE NEsy. Let j € E. We have x, j, 2y, ; < (2d)u;. Since j € Eo, to < t1,
and dy < d, we also have u; < (2d)y, ;. Since j € Eq, we further have 7, ; < ﬂ:
Then, since j € Es, we conclude that

NJZS’j S)\,u 2MNyt1,j~

Using that U/ is a countably incomplete filter, let us choose a decreasing sequence
(B}, of elements of ¢ with Ef = E and (), E;, = @. For each j € E/\E],_,, let us
choose z; € S; such that ||z;lu,x» <+ and

- n

N‘I’S’j S 2MNyt1,j + Zj.
Applying (O6) on S, let us choose 27 < 2} < z; such that 2 < Nz ; and
Nwas j <2M Ny, j + 2. (9.2)

Set z; = 2 = 27 = 0 for j ¢ E and choose, for each j, any path (2 ;)i<o such that

Zo15 = z&’ and zo; = z; Set z = my([(2¢,5)5]¢)-

Since z; < (Nd)u; for all j, z is an element of the scaled ultraproduct 7. Observe
that

o B Y P

for all t < 0. Thus, z € T, by Lemma 9.1.
Consider the cut-down zos := my([((22s++,5);)t<0]). From (9.2) we get

Nzos <2MNy + 2.

Evaluating at any functional A € F)(T), we obtain that \(z2s) < 2MA(y) for all such
A. Since this holds for every s < 0, we obtain A(z) < 2MA(y) for all A\ € FX(T), as
desired. O

Let A be a unital C*-algebra. Let U be a free ultrafilter on N. Recall that we have
defined in the introduction the ideal

I={a€ Ay :7(a*a) =0 for all 7 € LimT;(A)}.
Denote by TZ(Ay) the set of tracial states on Ay than vanish on I (in bijection with

the tracial states on Ay /I through composition with the quotient map). Denote also by
QT! (Ay) the set of 2-quasitracial states on Ay, than vanish on I.
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Theorem 9.3. Let A be a separable, unital C*-algebra and U a free ultrafilter on N.
Suppose that A has stable rank one, no finite dimensional representations, and QT (A) =
T (A). Then the natural map [, T1(A) — T1(Ay) is an isomorphism.

Proof. Since the map [], T1(4) — T!(Ay) is injective, and its range contains
LimT; (Ay), it remains to show that LimT; (Ay) is a dense subset of T4 (Ay). We shall
show that it is dense in QT4 (Ay), in passing also showing that QT1(Ay) = T} (Ay).

Let (S,u) = (Cu(A),[1]) and (T,v) = (Cu(A),[1])u, and identify the latter with
(Cu(Ay),[1]). The bijection from QT;(Ay) to F,(T), associating to a 2-quasitracial
state 7 € QT(Ay) the functional d, € F,(T), maps QT4 (Ay) bijectively to FY (T) with
T C T as defined in (9.1). It thus suffices to show that (Cu(A),[1]) has the property
stated in Theorem 9.2 with M = 1. In fact, we will show that z < 7 implies z <, , y
for all z,y € Cu(A). We will rely on the abundance of supersoft elements in Cu(A4) ([4,
8.1]) when A is as in the statement of the theorem.

Let 7 < y. Let ¢ > 0. By [4, Theorem 7.8], there exists a full supersoft element
z € Cu(A) such that z = ¢[1], and consequently, ||z||x, = €. Clearly, T+ 2z < § + Z.
Since the subsemigroup of full supersoft elements is an absorbing subsemigroup ([4,
Corollary 8.6]), both « + z and y + z are full and supersoft. It follows that z + 2 < y+ z,
by [4, Theorem 8.2 (ii)]. This shows that x < , vy, as desired. O

10. Applications to simple, pure C*-algebras

In this section, we show that every simple C*-algebra that is (m, n)-pure in the sense
of Winter is already pure; see Theorem 10.5. An important ingredient in the proof is that
m-comparison implies (LBCA) (Proposition 10.3), which we obtain from our results on
density of limit functionals in Section 7.

10.1 (Divisibility). Let S be a Cu-semigroup. Given n € N, an element x € S is n-almost
divisible if for every k € N and every 2’ € S with 2’ < z, there exists 2 € S such that
kz <zand 2’ < (k+1)(n+1)z. If all elements in S are n-almost divisible, then S is said
to be n-almost divisible. One says that S is almost divisible if it is 0-almost divisible.

This notion of (n-)almost divisibility differs slightly from other notions considered
in the literature, but it has been considered, for example, in [46, Section 2.3] and [5,
Definition 7.3.4]. It is a more convenient notion as it behaves well with respect to natural
constructions such as ultraproducts and direct limits.

Remark 10.2. We remark that a Cu-semigroup S has m-comparison if, and only if, for
Z,Y0,- -+, Ym € S, the condition T < ~g; for some v < 1 and for j = 0,...,m implies
x < 377 yj. This was observed in [42, Lemma 2.1], and we offer a short sketch of the
argument for completeness: The backward implication is an immediate application of the
definition. For the forward direction, if S has m-comparison and x,yg,...,ym € S are
such that Z < ~g; for some v < 1 and all j, let ' € S with '’ < z and apply Lemma 5.3
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to conclude that 2’ <, y; for each j. It then follows that 2’ < Z;ﬁ:o yj, and the desired
inequality follows by passing to the supremum over all z’ with 2’ < .

In particular, if S has m-comparison and Z < g, we have & < 2(m + 1)y. This follows
from the previous argument applied to T < %@

Proposition 10.3. Let S be a Cu-semigroup satisfying (05), (06), and Edwards’ condi-
tion, and assume that S has m-comparison for some m. Then S has (LBCA).

Proof. This follows from Remark 10.2 and Corollary 7.2. O

10.4 (Pure C*-algebras). A C*-algebra A is said to be (m,n)-pure provided Cu(A) has
m-comparison and is n-almost divisible. This notion was considered by Winter in [60,
Section 3] in the context of the non-complete Cuntz semigroup W (A), and replacing the
condition z’ < (k+1)(n+ 1)z as above with the stronger inequality x < (k+1)(n+1)z.
As defined here, this concept was introduced in [46, Paragraph 2.3]. Note that, in this
terminology, (0,0)-pure means that Cu(A) is almost unperforated and almost divisible.
As in [60], a (0, 0)-pure C*-algebra will be called pure.

Winter proved in [60, Corollary 7.2] that if A is a unital, simple, separable C*-algebra
with locally finite nuclear dimension and which is (m,n)-pure for some m,n € N, then
A is Z-stable. Using results of Rgrdam from [47], this in turn implies that A is pure;
see also [60, Proposition 3.7]. In [57], Tikuisis showed that the existence of a unit can be
dropped.

We show here that (m,n)-pureness still implies pureness after dropping the assump-
tions of separability and of locally finite nuclear dimension. Note that pureness is the
Cu-semigroup analogue of Z-stability, in the sense that it characterizes the Cu-semi-
groups that tensorially absorb Cu(Z); see [5, Theorem 7.3.11].

Theorem 10.5. A simple (m,n)-pure C*-algebra is pure.

Proof. Let A be a simple C*-algebra that is (m,n)-pure for some m,n € N. Assume,
without loss of generality, that A is stable.

Let us consider first the case that A has no nontrivial lower semicontinuous 2-
quasitraces. By the isomorphism between QT(A) and F(Cu(A4)) (Theorem 4.11), this
means that Cu(A) only has the zero and the oo functionals. Let us show that this im-
plies that A is purely infinite (hence, pure). Indeed, let 2,y € Cu(A) be nonzero elements.
Using n-almost divisibility, find a nonzero z € Cu(A) such that 2(m + 1)z < y. Since
Z < z, we have by m-comparison that < 2(m + 1)z; see Remark 10.2. Thus, x < y.
Since x,y are arbitrary, we obtain Cu(A) = {0, co}.

Let us now assume that F(Cu(A)) has at least one element other than the 0 and
oo functionals. Since Cu(A) has m-comparison, it has (LBCA) by Proposition 10.3. It
suffices now to show that Cu(A) is almost divisible, since then almost unperforation
follows from Proposition 6.4.
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Fix a free ultrafilter U/ on N. Let a € A4 be a positive contraction. Let C = {a}' N Ay
and I = {a}* N Ay denote the commutant and annihilator of {a} in Ay, respectively. By
[46, Corollary 7.6], there exists a unital embedding of the Jiang—Su algebra in C/I. (In
the notation of [46], C'/I is F(C*(a), A), which is a generalized central sequence algebra
of the type studied by Kirchberg.) In particular, since [1] € Cu(Z) is almost divisible
(by [47, Lemma 4.2]), so is the case for [1] € Cu(C/I).

Thus, for given k € N there exists e € C/I such that kle] < [1] < (k4 1)[e] in
Cu(C/I). Choose any positive lift e € C' C Ay, and consider the element b = ae € Ay.
Since Cu(C/I) = Cu(C)/ Cu(I), induced by the quotient map C' — C/I, the inequality
kle] < [1] means that kle] < [1] + [z] in Cu(C), for some [z] € Cu(]); see the comments
prior to Paragraph 4.4. Using that b = ae = ea and that az = za = 0, we obtain
k[b] < [a]. Likewise, it follows from [1] < (k + 1)[e] that [a] < (k + 1)[b] in Cu(C). Then
kD] < [a] < (k+ 1)[b] in Cu(Ay), and thus [a] is almost divisible in Cu(Ay).

We now show that [a] is almost divisible as an element of Cu(A). Let ¢ > 0. Choose
d > 0 such that [(a —e)4+] < (k+1)[(b—d)+] in Cu(A4y), where [b] is as in the previous
paragraph. Then there exist x,y € Myy1(Ay) such that

Ib® L —zaa®]| <6, and ||(a—e)s — y((b—8)s ® Ly )y"|l < e.

Let (bn)n € (I1,, A)+> and (n)n, (Yn)n € [1,, Mr+1(A) be lifts of b, , and y. Then, with
b =b,, ¥ =x,, and ¥y =y, for sufficiently large n, we have that

IV @1k — 2’az’™|| <6, and |[[(a—e)y —y'((b' = 0)4 ® Lps1)y' ™|l <e.

Now, working in Cu(A), we deduce from the first inequality that k[(b' — §)4] < [a] and
from the second one that [(a — 2¢) 4] < (k4 1)[(b' — 6)4]. This shows that [a] is almost
divisible in Cu(A), as desired. O

Appendix A. Separation of functionals

For a Cu-semigroup S satisfying (O5), we prove in this appendix a version of the
Hahn-Banach separation theorem for F(S); see Theorem A.11. We deduce a version of
the bipolar theorem, characterizing when a functional in F(.S) belongs to the closed cone
generated by a subset of F(S); see Theorem A.14.

Throughout this appendix we make the blanket assumption that S is a Cu-semigroup
satisfying (O5).

Let us start with some preliminary definitions and lemmas. By a subcone of a cone C'
we understand a subset D C C' that is closed under addition and multiplication by
strictly positive scalars and that is a monoid. Note that a subcone is not necessarily a
submonoid since its origin may be different from the origin of the containing cone.

We say that a cone C' is cancellative if x + 2z = y + z implies « = y, for all z,y,z € C.
Every R-vector space is a cancellative cone. More generally, every subcone of an R-vector
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space is cancellative. Using the Grothendieck completion, one sees that the converse also
holds: A cone is cancellative if and only if it is a subcone of an R-vector space.
We will use the following version of the Hahn-Banach Separation Theorem.

Proposition A.1. Let F' and P be cancellative cones, let {_, _): F x P = R be a map
that is additive and (0, 00)-homogeneous in each variable. Let D C F be a subcone that
is closed in the o(F, P) topology associated to the pairing (__, ), and that contains the
origin of F. Let p € F'\ D. Then there exist f1, fo € P such that

<)‘7f1>§<>‘7f2> fO?” CL”)\ED, and <,u7f1>><ﬂ7f2>

Proof. Let V' denote the Grothendieck completion of P. Then V' is an R-vector space.
Since P is cancellative, the canonical map P = V is injective. Let us use this map to
identify P with a subset of V. Let V* denote the algebraic dual of all R-linear maps
V — R. Define k: F — V* by

K(A) (g1 — 92) == (A, g1) — (A g2)

for A € F and g1,92 € P. One verifies that « is well defined, additive and (0, c0)-
homogeneous. Let us denote by {_, )y« y: V* x V — R the natural pairing given by
evaluation. From our definitions, it is clear that the diagram

FxP

KX1

VExV R

<717>V*,V

is commutative, that is, (A, g) = (k()\), g)v+,v whenever A € F and g € P.
Note that x(D) C V* is a subcone containing the origin of V*. Let (D) C V* be the
closure of (D) in the weak*-topology o(V*,V). Then x(D) is a subcone that is closed

in the o(V*, V)-topology and that contains the origin of V*.

Let us verify that x(p) ¢ (D). By assumption, D C F is closed in the o(F,P)
topology and p € F'\ D. Thus, there exist g1,...,9, € P and ty,...,t, € (0,00) such
that the set

U={ e F:|(\g)— (g <tjforj=1,...,m}

is disjoint from D. (Note that the sets of the form as U above form a neighborhood basis
of u, for different choices of ¢1,...,gm in P and ty,...,t, in (0,00).) Now, the set

U ={AeV*: |(Agj)vev — (6(n),gj)vev] <tjforj=1,....m}
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is a subset of V* that is open for o(V*,V) and contains (). Since, as observed above,
(A, g) = (k(N),g)y=y forany A € F, g € P, and U is disjoint from D, we conclude that
U’ is disjoint from (D), as desired.

As a consequence of the Bipolar Theorem (see [29, Theorem 5, p. 62]) applied to

the pair V*,V, there exists f € V such that (A, f)y+«y > —1 for all A € k(D) and
(k(p), f) < —1. (Note that a subcone of a R-vector space is called a convex cone in [29].)

Since k(D) is a cone, we get from the first inequality that (A, f) > 0 for all A € k(D).

(Indeed, if (A, f) < 0 for some A € k(D), then —1 < (tA, f) = ¢(A, f) < 0 for all ¢ > 0,
which is impossible.) Since P spans V', we may write f = fo — f1, with f1, fo € P. Then

A, fr)vev <A, fa)yv-v

for all A € k(D), and

(k(), fr)vev > (k(p), fo)v=v.

Now f; and f; have the desired properties. O

A.2. An algebraically ordered, compact cone is a cone C' such that the algebraic pre-
order is antisymmetric (if A+ X = p and p+ ¢/ = A, then A\ = p) endowed with a
compact, Hausdorff topology such that addition and scalar multiplication become jointly
continuous; see [3, Section 3.1]. We use Lsc(C) to denote the set of maps C' — [0, o0
that are lower semicontinuous, zero-preserving, additive, and (0, oo)-homogeneous.

For f,g € Lsc(C), we write f <1g provided there is € > 0 such that f < (1 —¢)g and f
is continuous at A € C' whenever g(\) < co. We use L(C') to denote the set of functions
in Lsc(C) that are suprema of <-increasing sequences in Lsc(C).

Let S be a Cu-semigroup satisfying (O5). Then F(S) is an algebraically ordered,
compact cone (see [43, Proposition 2.2.3] and [23, Section 4]). Given = € S, recall that
we denote by Z: F(S) — [0, oo] the function such that Z(\) = A(x) for all A € F(S). Then
Z € L(F(9)) for all z € S ([43]). By [43, Theorem 3.2.1], L(F(.9)) is also the smallest
subset of Lsc(F(S)) containing ¥ for all € S and closed under multiplication by scalars
in (0,00) and by suprema of increasing sequences. Moreover, for each f € L(F(S)) we

have f = sup% for suitable z, € S and k, € N such that the sequence () is
<-increasing. It follows from [43, Proposition 3.1.1, Theorem 3.2.1] that L(F(S5)) is a
Cu-semigroup.

Given u € S, recall from Paragraph 3.3 that F,(S) denotes the convex set of func-
tionals normalized at w. If @ is a continuous function on F(S), then F,(S) is a closed
(hence compact) subset of F(S). In particular, if u is a compact element of S, then u is

continuous and F,(S) is a compact subset of F(5).

We will make use of the following lemmas, which we state here for convenience. We
remind the reader that we assume throughout the appendix that S is a Cu-semigroup
satisfying (O5).
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Lemma A.3 ([}3, Lemma 2.2.5]). Letx < y in S and let oo < B in (0,00). Then aZ < [y
in Lsc(F(S)) (and consequently also in L(F(S))).

Following [23, Section 5.1], we define set(f) = {\ € C : f(\) > 1} for f € Lsc(C).
Large parts of the next result are shown in [23, Proposition 5.1]. We include a complete
proof for the convenience of the reader.

Lemma A.4. Let C be an algebraically ordered, compact cone. (For example, C = F(S)
for a Cu-semigroup S satisfying (05).) Let f, g € Lsc(C). Consider the following state-
ments:

(i) There exists g’ € Lsc(C) such that f < ¢’ <g.
(ii) We have set(f) C set(g).
(iii) The function f is non-sequentially way-below g in Lsc(C), that s, whenever an
increasing net (h;); in Lsc(C) satisfies g < sup; h; then there exists j' such that
f < hy.
(iv) We have f < g, that is, f is sequentially way-below g in Lsc(C').

Then the implications ‘(i)=(ii)=(iii)= (iv)’ hold. If g belongs to L(C), then (iv) im-
plies (i) and then all statements are equivalent.

Proof. To verify that (i) implies (ii), let ();); be a net in set(f) converging to A € C.
We need to show A € set(g), that is, g(A\) > 1. This is clear if g(A) = co. On the other
hand, if g(A\) < oo, then ¢’ is continuous at A and therefore

g'(A\) =limg’(\;) > liminf f(\;) > 1.
J J

Since ¢’ < g, there is € > 0 such that ¢’ < (1 —¢€)g, and so g(A) > 1= > 1.

To verify that (ii) implies (iii), let (h;); be an increasing net in Lsc(C) satisfying
g <sup; h;. Then (set(h;)); is an increasing net of open subsets of C' satisfying set(g) C
UJ; set(h;). Using that set(f) is compact, we get j° such that set(f) C set(h;/), which
implies that f < hj.

It is clear that (iii) implies (iv). Lastly, assuming that g belongs to L(C), let us show
that (iv) implies (i). By definition of L(C), there exists a <-increasing sequence (g, ), in
Lsc(C') with supremum g. Since f < g, we obtain m such that f < g,,,. Then f < g,, <g,
as desired. O

Let K C F(S) be a closed subcone. Then K is an algebraically ordered, compact cone.
Further, for each f € Lsc(F(S)) the restriction f|x belongs to Lsc(K).

Lemma A.5. Let K C F(S) be a closed subcone, and let f,g € L(F(S)) satisfy [ < g.
Then f|k is non-sequentially way-below gk in Lsc(K) (and hence also f|x < g|x in
Lsc(K)).
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Proof. Using that g is the supremum of a <-increasing sequence in Lsc(F(.9)), we obtain
g € Lsc(F(S)) such that f < ¢’ <g. Then f|x < ¢'|k < g|k. By Lemma A.4, we get
that f|x is non-sequentially way-below g|x. O

A.6. Let I C S be an ideal. Let A\; € F(S) denote the functional that is 0 on I and oo
otherwise. (Note that, with this notation, Ag is the zero functional.) Define

Fr(S) = A1 + {A € F(S) : M(&') < 0o whenever 2’ < x for some z € I}. (A1)

Then F;(S) is a subcone of F(S) with origin A;. As noted in [43, Proposition 3.2.3],
F;(S) is cancellative.

For each A € F(S) there exists a unique ideal I C S such that A € F;(S); namely,
the ideal generated by the set {z € S : A(z) < oo}. This ideal is termed the support
ideal of A; see [3]. In this way, the cone F(S) is decomposed into the disjoint union of
the cancellative subcones F(S), where I ranges through the ideals of S.

We need a few more lemmas for the proof of Corollary A.12.

Lemma A.7. Let pn € F(S) with support ideal I, and let x € S. Then T(A\;) = 0 if and
only if p(z') < oo for every x’ € S satisfying ' < x.

Proof. Since I is the support ideal of p, we have u € F(S), and thus u = A\; + o, where
po € F(S) satisfies po(x’) < oo whenever ' < x and x € I. Since A; is idempotent, we
also have p = A + p.

Now assume that A;(x) = 0 and let 2’ € S satisfy ' < z. Then 2’ < x € I and
therefore A\j(z") = 0. Since also po(z’) < oo, we have u(z') = Ar(z') + po(2’) < .

Conversely, assume that p(z') < oo for every 2’ € S with 2’ < x. Then from p = A+
we deduce that A;(2’) = 0 for every 2/ way-below x. Passing to the supremum over all
such 2/, we obtain A\;(z) =0. O

Lemma A.8. Let K be a closed subcone of F(S) with 0 € K. Let I be an ideal of S.
Suppose that for all z,y € S with |k < Y|k, we have T(A;) < y(Ar). Then A\ € K.

Proof. Set
C=Kn{XeF(S): A<}

Observe that 0 € C, since 0 € K and 0 < A;. Further, C is closed under sums and a
closed subset of F(S), as it is the intersection of two subsets with these properties. In
particular, C' is upward directed. Set A = sup C, which is the limit of a net of elements
in C, and thus belongs to C.

Since 2\ € C, we have 2\ = A, which in turn implies that A = A; for some ideal J
of S; namely, J = {x € S: A(z) = 0}. Further, since A\; < A7, we have that I C J. We
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will show that I = J, and thus A\; € K. To reach a contradiction, suppose that I # J,
and take y € J\ I. Choose y’' € S such that ¥/ < y and ¢’ ¢ I.

If + € I, then Z(\;) = 0, while 5/(A\;) = oo. Thus, Z|x * /| (since otherwise
Z(A;) > ¢/ (A) by assumption). Choose A, € K such that Z(\;) < 5 (\y). Scaling the
functional )\, if necessary, we may assume that 1 < 3/(\,). Denote by E(I) = {z €
I: xz = 2z}, the set of idempotent elements in I. If now = € E(I), we have T is also
idempotent and thus Z(\;) = 0.

Note that E(I) is an upward directed set. Since F(S) is compact, there exists a
convergent subnet (A;(;)); of (Az)zer (). Let X be its limit. As K is closed, A € K.

Fix € E(I). Then, for every y € E(I) with < y, we have Z(\,) <y(\,) = 0. Using
that Z is lower semicontinuous, it follows that Z(\) = 0. We deduce that A vanishes on
I, and thus A < A;. By definition, we get A € C, and so A < \J.

On the other hand, using that 3 < y and that A = lim; A (;), we have

7)

1 < limsup Ay () (y') < A(y).
i

Since y belongs to .J, we have A(y) < A;(y) = 0, a contradiction. Thus, I =.J. O

For Corollary A.12 below, we shall only need the case M = 1 of the next two results.
The general versions will be used later in the proof of Theorem B.5.

Lemma A.9. Let K be a closed subcone of F(S) with 0 € K. Let n € F(S) with support
ideal I. Suppose that there is M € (0,00) such that for all x,y € S with |k < Y|k we
have Z(u) < My(u). Then A\; € K.

Proof. We will show that for all z,y € S with Z|x < y|k, we have Z(A;) < y(Ar). It
then follows from Lemma A.8 that A\; € K.

So let x,y € S satisy Z|x < ylk. If y(A;) = oo, then clearly Z(Ar) < y(Ar). Thus, we
may assume that (A7) = 0. Choose a <-increasing sequence (yy ), in S with supremum
y. By Lemma A.7, we have pu(y,) < oo for every n € N. Let 2’ € S satisfy @/ < z. By
Lemma A.3, we have < 2y in Lsc(F(S)). Applying Lemma A.5, we obtain :;’|K <
2y|k in Lsc(K), and we get m € N such that a?’|K < 2Um| k. Using the assumption at
the first step, we have

() < 2Mijm (1) < .
Using Lemma A.7 again, it follows that Z(A;) =0, and so Z(A;) <y(Ar). O
Lemma A.10. Let K C F(S) be a closed subset, let p € F(S), and let M € (0,00).

Suppose that T| g < Yli implies T(p) < My(u) for all x,y € S. Then f|x < g|k implies
f(u) < Mg(p) for all f,g € L(F(S)).
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Proof. Let f,g € L(F(S)) satisfy f|x < g|k. Choose sequences (), and (y,)n in S and

natural numbers (ky ), and (I,), such that ($*), and (%)n are <-increasing sequences

in L(F(S)) with suprema f and g, respectively; see Paragraph A.2. Applying Lemma A.5,
it follows that the sequences (%h()n and (%h{)n are <-increasing in Lsc(K), with
suprema f|x and g|k, respectiveiy.

Fix m € N. Since f|x < g|k, there exists n such that %h( < %|K, that is, l:a;nh( <

@JK. Hence, by assumption, @(M) < M@l(u) Therefore

T,
Tmy < M
km(u)_

W
In

(1) < Mg(p).
Passing to the supremum over all m € N we get f(u) < Mg(u), as desired. O
For an ideal I of S define
Pr(S):={f € LF(S)): f' < f < & for some f € L(F(S)) and z € I} (A.2)

and

P1(S) := {flr.(s) : f € P1(S)}.

As established in the proof of [43, Proposition 3.2.3], the functions in P;(S) are finite
on F;(S). It follows that P;(S) is a subcone of the vector space of maps F;(S) — R. In
particular, P;(S) is a cancellative cone. We define a pairing (_, ): F;(S) xP;(S) = R
by setting (A, f) = f(A). This map is additive and (0, co)-homogeneous in each variable.

The restriction of the topology of F(S) to F;(S) agrees with the o(F;(S),P;(S))
topology. In other words, if a net (\;); and a functional A are in F;(S), then A; — X if
and only if f(A;) — f(A) for all f € P;(S). Indeed, the forward implication follows since
one can check that every function in P(.S) is continuous on F;(.S). The other implication
is proven in [43, Proposition 3.2.3].

An ideal I of S is called countably generated if it is the smallest ideal containing
a countable set {x1,zq,...}. In this case, I is also singly generated by the element
xr = Z;il z;, and further oo - = is the largest element in 1.

We are now ready to prove the first separation result for subcones of F(S).

Theorem A.11. Let K be a closed subcone of F(S) with 0 € K, and let p € F(S)\K.
Then there exist x,y € S such that Z|x < Y|lx and T(pu) > y(p).

Proof. To reach a contradiction, we assume that for all z,y € S with Z|x < y|x we have
Z(p) < y(p). It then follows from Lemma A.10 (with M = 1) that for all f,g € L(F(S))
with f|x < g|x we have f(u) < g(u). Our goal is to reach a contradiction. Let I be
the support ideal of p, so that p € Fy(S). Applying Lemma A.9 (with M = 1), we have
A€ K.
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Claim: There is a countably generated ideal J C I such that A\j +p ¢ A\j+ K.

To prove the claim, let S denote the family of countably generated ideals contained
in I. Ordered by inclusion, S is upward directed with I = JS. Hence, limjes Ay = As.

To reach a contradiction, assume that for every J € S we have A\j+p € Ay + K, that
is, there exists v; € K such that Ay + pu = Ay + v;. Since K is compact, there exists a
convergent subnet (v, ),. Denote its limit by v € K. We have lim, Ay, = A;. Using at
the first step that p € F;(S), and using at the last step that A\; € K, we get

u:)\]+u:11(£n()\Ja+u):11£n(>\Ja+VJQ)=)\[+V€K.

This is the desired contradiction that proves the claim.

Fix J as in the claim and set D := (Ay + K)NF ;(5). Then D is a subcone of F ;(5)
closed in the o(F;(S),P;(S)) topology and containing the origin A;. Since A\j + p €
F;(S)\D, we can apply Proposition A.1 to the pairing between F;(S) and P;(S) to
obtain fi, fo € I?’J(S) such that f1|D < f2|D and fl(/\J +u) > falhs + ). Choose
f1, f2 € Py(S) such that filp,(s) = fi and falp,(s) = f2

Using that J is countably based, choose a <-increasing sequence (z,), in J whose
supremum is the largest element of J. Note that J is the support ideal of Aj 4+ p. Given
n € N, we have z,(\s) = Aj(z,) =0, and thus

) = T + ) < ox.

Define
h=" Bnzn € L(F(S)),
n=0

where the scalars (3,,), are strictly positive and chosen so that h(u) < 1. Now set

g1=fi+h and g2= fo+h.

Since f1, fa € P;(S) (see (A.2)), we have f1(Ay) = f2(Ay) = 0. Using that h(p) < oo,
we deduce that

g1(p) = fi(p) + h(p) = fr(Ag +p) + h(p) > f2(Ag + p) + h(p) = g2(p).

Let us show that g1|x < go|k, which will yield the desired contradiction. Let A € K.
Assume first that Ay + A € F;(S). Then Ay + A € D. Hence, fi(As+ A) < fa(As + N).
Using that h(A;) = 0, which is clear from the definition of h, we get

=N+ X))+ RN+ Ay)
< faOA+A5) + h(A+ Ay) = g2(N).



56 R. Antoine et al. / Journal of Functional Analysis 286 (2024) 110341

Assume now that Ay + X ¢ F;(S). From the definition of F;(S) (see (A.1)) we deduce
that

A ¢ {N €F(9): N(2') < oo whenever 2/ < z for some z € J}.

Recall that (z,), is an increasing sequence with supremum the largest element of .J.
Hence, we must have that A(z,) = oo for some n, and thus h(A\) = co. Then, g1(\) =
00 =g2(A). O

Corollary A.12. Let K C F(S) be a closed subcone containing 0. Assume that T|x < Y|k
implies T <y, for all x,y € S. Then K = F(S).

Example A.13. Let S = {0,00}. Then F(S) contains only two elements: the zero func-
tional and the functional A that satisfies Ao (00) = 00. Set K = {Ax}. Then K is a
proper closed subcone of F(S), such that for all z,y € S with Z|x <k we have T <.
Thus, the assumption that K contains 0 cannot be removed from Corollary A.12.

We derive a kind of bipolar theorem for subsets of F(S).

Theorem A.14. Let K be a subset of F(S), and let u € F(S). The following are equivalent:

(i) The element p belongs to the closed cone generated by K U {0}.
(ii) For all x,y',y € S with T|x < yA’|K and y' <y, we have T(u) < gy(u).
(iii) For all ', z,y',y € S and v € (0,1) satisfying ¥’ < z, T|g < 73;’|K and y <y,
we have 7' (1) < §(u).

Proof. To show that (i) implies (ii), let C be the cone generated by K U {0}, that is,
C = {tl)\l + .o+t t; € (0,00), /\]’ e KU {O}}

By assumption, u € C.

Let x,y’,y € S satisfy Z|x < gj’\K and 3’ < y. We need to verify Z(u) < y(u). Using
that Z and ¢/ are linear and (0, 0o)-homogeneous, it follows that Z(A) < 5/()) for every
A€ C. Let (A\j); be anet in C that converges to y. Then

2(n) = p(2) < liminf X; () < lim sup Ai(Y') < mly) = g(p).
J

~

It is clear that (ii) implies (iii). To show that (iii) implies (i), let L be the closed cone
generated by K U{0}. To reach a contradiction, assume p ¢ L. Applying Theorem A.11,
we obtain v, w € S such that

Ol < @[, and O(p) > @(p).
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Using that u preserves suprema of increasing sequences, we can choose v’ such that
v < v, and v(p) > B(p).
Choose v"" € S and m € N such that
v <o <o, and mu'(p) > (m+ 2)d(p).

By Lemma A3, we have mv” < (m + 1)v in L(F(S)). Let (wy), be a <-increasing
sequence in S with supremum w. Applying Lemma A.5 at the first step, we get

mo"|, < (m+ )3, < (m+ 1)@, = sup(m + 1)1

in Lsc(L), which allows us to choose | € N such that mﬁ\L < (m + 1)wy|r. Then
=mv, x=mv" y = (m+2w, y=(m+2)w, and vy = m satisfy

o <z, Tl <k, ¥ <y, and @'(u) > G(p),
which is the desired contradiction. O

Proposition A.15. Let K be a subcone of F(S) with closure K. Let x,5 € S and v € R .
The following are equivalent:

(i) We have Z|% < VYl%-
(ii) For every 2’ € S with ' < © and every v’ > v there exists y' € S such thaty' < y
and ¥ |k <V'Y'|Kk.

Proof. We show that (i) implies (i). To verify (i), let A € K. Choose a net (\;); in K
that converges to . Let 2’ € S satisfy 2’ < x, and let 7/ > ~. By assumption, we obtain
y € S such that ¥’ < y and va'|x < y'|k. Then

A(z") < liminf )\ (2") < limsup~y'A;(y") < ' A(y).
J

J

Passing to the supremum over all 2’ way-below x on the left hand side, and to the
infimum over all 4’ > v on the right hand side, we get that A\(x) < A(y).

We show that (i) implies (zz) Suppose that Z|z < vy|%. Let 2’ € S satisly 2’/ < z
and let 7" > . Then 2/ < 1.7 in Lsc(F(S5)) (and hence in L(F(S5)) by Lemma A.3.
Using Lemma A.5 at the first step, it follows that

/

Tl < ;’y??f =v7l%

2

7 <

=2 |2
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in Lsc(K). Choose a <-increasing sequence (yy ), in S with supremum y. Then Z|z <
sup,, V'Un|i, and we obtain n such that 2’|z < v'y,|%. Then v’ := y,, has the desired
properties. 0O

Appendix B. A stronger separation theorem

Our goal in this appendix is to obtain an improved version of Corollary A.12 imposing
further properties on S. This is achieved in Theorem B.5.

B.1. We say that a Cu-semigroup S satisfies Edwards’ condition if, for any A € F(S) and
x,y € S, one has

inf {1 (@) + A2(y) : A+ Ao = A} =sup {A(2) : 2 < z,y };

see [3, Definition 4.1], [50, Section 4] and [4, 6.3]. We remark that the expression on
the left hand side of the above equality is equal to the infimum of the functions Z and
¥y, taken in Lsc(F(S)), evaluated at A; see [3, Lemma 3.4]. The Cuntz semigroup of a
C*-algebra satisfies Edwards’ condition; see [3, Theorem 5.3].

Lemma B.2. Let S be a Cu-semigroup satisfying (05), (06) and Edwards’ condition.
Then this is also the case for L(F(S)).

Proof. Set T'= L(F(S5)). By [43, Proposition 3.1.1, Theorem 3.2.1], T is a Cu-semigroup
satisfying (O5). By [43, Lemma 4.0.1], T satisfies (O6). It remains to prove Edwards’
condition for T

For each A € F(T) there exists a unique A € F(S) such that A(h) = h()) for all
h € T, and this assignment is moreover additive; see the last paragraph of the proof of
[43, Proposition 3.1.1]. That is, the functionals on T arise as point evaluations on F(S).
We use this below.

Given A € F(T), let A € F(S) such that A(h) = k() for all h € T'. To prove Edwards’
condition for A, we must show that

inf {f(A1) +9(A2) : A4+ A2 = A} =sup {h(\) : h < [, g}, (B.1)

for all f,g € T It is straightforward to show that the right hand side is dominated by
the left hand side. Let us prove the opposite inequality.

By [3, Theorem 3.5], the left hand side of (B.1) is equal to (f Ag)()), where fAg is the
infimum of f and g in Lsc(F(S)). Choose sequences (), and (yn), in S, and sequence

(kn)n and (1) in N\ {0}, such that (?z)n and (4*), are <-increasing sequences in

Lsc(F(S)) with suprema f and g, respectively; see Paragraph A.2. By [3, Theorem 3.5],
we have

(f A g)(N) = sup (£ A2 ) (),

n
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where the infima on both sides are taken in Lsc(F(S5)).

This makes it clear that it is enough to prove < in (B.1) for the case f = % and g = %A
for z,y € S and k,l € N\ {0}. So assume that f and g are of this form. Then, applying
Edward’s condition to mz,ny € S at the last equality, we have

(FAg)(N) =inf {f(M) +g(X2) s A= A1 + Ao}

1
= H inf {)\1([.’17) + )\2<k’y) A=A+ )\2}

= %sup {/\(z) :z <z, ky}
z zZ Ty
< — =< =, =25 < <

as desired. The result thus follows. O

B.3. A ray in a cancellative cone C' is a subset of the form R\, for a non-zero element
A € C. A ray R is said to be extreme if for all 4 € R, whenever u = u1 + po for some
11, 2 € C we have p1, us € RU {0}; see, for example, [41, p. 79].

Let S be a Cu-semigroup and let I be an ideal of S. Let pu € Fy(S) \ {A\;} be a
functional generating an extreme ray of F;(S). Define o,,: F(S) — [0, 00] as

0 if A< Ap,
ou(N) =1t if A+ Ar = tp, where t € (0, 00),

oo  otherwise.

The result below is proved for the Cuntz semigroup of a C*-algebra in [4, Proposi-
tion 7.4]. We follow here a similar argument in the context of Cu-semigroups.

Lemma B.4. Let S be a Cu-semigroup satisfying (05), (06), and Edwards’ condition.
Let I be an ideal of S and let p € Fr(S)\{A1} be a functional generating an extreme ray
of F1(S) Then o, defined as above is the supremum of an increasing net of functions in

L(F(S5)).
Proof. Consider the set
X ={f eLF(9)): f(p) <1}.
Claim 1: Let f1, fa € X satisfy f1(n) < fa(p). Then

fi(p) = inf {fi(A1) + f2(A2): A+ Ao =
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The inequality ‘>’ follows using A\; = p and A2 = 0. To show the converse inequality,
let A1, Ao € F(S) satisfy A1 + A2 = p. Then A; + A; and A2 + A; belong to F;(S). Since

p=3A+A)+ 2N+ Ap)

and since p generates an extreme ray of F;(S), we see that A1 +A; and Ao+ A are scalar
multiples of 1. Say A+ Ar = typand Ao+A; = top. Now (t1+t2)u = (A+A1)+(Ae+A1) =
i, and since g # Ar, we have t1 + ¢ = 1. Thus, A\; + Ay = tp and My + A\f = (1 — t)p
for some t € [0, 1] (where we use the convention that 0 -y = A, the neutral element of
F7(S)). Using that fi(p), fo(p) < co and Ar+p = p, it follows that f1(Ar) = fa(Ar) = 0.
Then

Ji(A1) + fa(A2) = fi(A1 + A1) + fa(A2 + A1)
=tfi(p) + (1 —t)f2(n)
> tfi(p) + (1 =) fi(n) = fr(p).

This proves the claim.

Claim 2: X is upward directed. To prove the claim, let fi, fo € X. Without loss
of generality, we may assume that f1(u) < fo(p). By Lemma B.2, L(F(S)) satisfies
Edwards’ condition. Using this at the second step (see (B.1)), and using Claim 1 at the
first step, we get

Fi(p) = mf {fi(A1) + fa(X2): Aa + Ao = p} = sup {g(n): g < f1, f2, g € L(F(S))}.
Choose € > 0 such that fo() +e < 1. Then choose ¢', g € L(F(.5)) such that

g <9< fi,fo, and g¢'(p) > fi(p) —e.

Applying [43, Lemma 3.3.2] to ¢’ < g < f1 + f2, we obtain h € L(F(S)) and C € (0, 00)
such that

g +h=fi+f, and ¢ <Ch.
We have
fithzg +h=fi+fo
If A € F(S) satisfies h(\) < oo, then ¢'(\) < oo, whence f1(A) < co. This allows us to

cancel f1(\) to conclude that h(A) > fo(A). If on the other hand h(\) = oo, then again
h(A) > fa(A). Hence, h > fo, and symmetrically h > fi. On the other hand,

fi(p) — e+ h(p) < g'(p) +h(p) = fr(p) + fa(p),
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from which we deduce that h(u) < fo(u) + & < 1. Thus, h is an upper bound for f;
and f5 in X. This proves the claim.

Let us show that sup;c x f(A) = 0, () for all A € F(S), from which the lemma readily
follows by the claim that we have just established. We distinguish the following three
cases:

Case 1: Let A € F(5) satisfy A < A;. Given f € X using that f(u) < 1and p+A; = pu,
we have f(Ar) =0, and so f(\) = 0. This implies that sup;cx f(A) =0 = 0, ()).

Case 2: Let A € F(S) satisfy A+ A; = tu for some t € (0,00). Given f € X, we saw
in Case 1 that f(A;) = 0, whence

FO = FOA+ AL = fltn) = tF() < t = 3, (A).

This shows that sup;cx f(A) < 0,(A). To show the converse, note that there exists
g € X with g(u) > 0. (Otherwise, u would only take values in {0, 00} on L(F(S)), which
would imply g = 2u, a contradiction.) Then, f, = (n+1—YngL) g belongs to X and satisfies
fn(A) = gt. Therefore, sup;cx f(A) = sup,, fn(A) =t = 0u(}).

Case 3: Suppose that we are in neither one of the two cases above. Then o,,(\) = oo,
and we need to show that sup;cy f(A) = co. Let C' € (0,00). It will suffice to argue
that there exists f € X such that f(\) > C. Since A 4+ A; is not a scalar multiple of
1 and the latter generates an extreme ray, we have A £ 2Cpu. Let y € S be such that
2Cu(y) < My). If u(y) = 0 and A(y) = oo, then f = ¥ is as desired, and if u(y) =0
and 0 < A(y) < oo, then f = %@\ is as desired. Finally, if u(y) > 0, then f = m@\
satisfies

Hence, f is as desired. O

Let C be a cone embedded in a locally convex topological R-vector space. A subset K
of C is called a cap if K is compact, convex, and C\K is also convex. The cone C is
said to be well capped if it is the union of its caps; see, for example, [41, p. 80]. It was
proved in [3, Proposition 3.11] that if I is a countably generated ideal of a Cu-semigroup
satisfying (O5), then the cone F(S) is well-capped.

The next result is an improved version of Corollary A.12.

Theorem B.5. Let S be a Cu-semigroup satisfying (05), (06), and Edwards’ condition,
and let K be a closed subcone of F(S) with 0 € K. Let M € (0,00). Assume that
Z|k <Yl implies T < My, for all z,y € S. Then K = F(95).

Proof. By Lemma A.10, f|x < g|k implies f < Mg, for all f,g € L(F(S)).
Let I be a countably generated ideal of S. By Lemma A.9, we have A\; € K. We claim
that K contains every extreme ray of the cone F;(S) (see Paragraph B.3). To this end,
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let € Fr(S)\ {Ar} be a functional generating an extreme ray of F;(S) and assume, for
the sake of contradiction, that u ¢ K.

Let 0, be as defined in Paragraph B.3. If A € K and A+ Ay = tu for some ¢ > 0, then
this implies that ¢ € K, contrary to our assumption. Hence, by the definition of o, we
have o, (\) € {0,000} for all A € K. Put differently, (M + 1)o,|x = ou|k-

By Lemma B.4, there is an increasing net (f;); in L(F(S)) with supremum o, in
Lsc(F(S)). Fix an index jo, and let h € L(F(S)) be such that h < f;,. Then (M +1)h <
(M + 1)fj,- Let us use <« to denote the non-sequential way-below relation. Applying
Lemma A.5 at the first step, we get

(M+1)h|K < (M+1)fj0|1( § (M'F].)U#lK = O'#|K :su_pfj|K
J

in Lsc(K). Hence, (M + 1)h|x < f;|k for some j. It follows from our assumption on K
that (M + 1)h < M f; < Mo,. Evaluating both sides at p, and using that o, (1) = 1,
we get (M + 1)h(p) < M. Since L(F(S)) is a Cu-semigroup, fj, is the supremum of all
h € L(F(S)) satisfying h < f;,. Passing to the supremum over all h way-below f;,, we
get (M + 1) fj, (1) < M. Now passing to the supremum over all jo and using again that
ou(p) =1 we get M 4+ 1 < M. This is the desired contradiction.

We have thus shown that K contains every extreme ray of Fr(S). Since I is countably
generated, we have by [3, Proposition 3.11] that F;(S) is well capped. Therefore, K
contains all of F;(S) by [41, p. 81].

As at the end of the proof of Corollary A.12; it now follows that K = F(S). O

Corollary B.6. Let S be a Cu-semigroup satisfying (05), (06), and Edwards’ condition.
Let K be a subcone of F(S) with0 € K. Let M € (0,00). Suppose that for all z,y',y € S
with T| g < |k and y' < y, we have T < My. Then K is dense in F(S).

Proof. By Theorem B.5, it suffices to show that Z|z < y|x implies ¥ < 2M7y, for all
x,y € S. S0 let x,y € S satisfy Z|;z < ylw. Let 2’ € S satisfy 2/ < z. By Lemma A.3,
we get 2/ < 27. Applying Lemma A.5, we obtain £’|7 < 27| in Lsc(K). This allows
us to choose ¢’ € S such that

P <2|%, and ¥ <y.

By assumption, we get 7 < 2M7. Passing to the supremum over all 2’ such that 2’ < x,
we obtain that 7 < 2M7y, as desired. O

Appendix C. Separation of normalized functionals
In this section we obtain a result on the separation of functionals similar to

Theorem B.5, but in the context of normalized functionals. This time we rely on standard
tools from the theory of compact convex sets.
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Recall that an element z in a Cu-semigroup S is called full if it generates S as an
ideal.

Theorem C.1. Let S be a Cu-semigroup satisfying (0O5). Let u € S be a full compact
element, and let K C F,(S) be a closed convex subset. Let M € (0,00). Suppose that for
all x,y € S with y full and with Z|g < Y|k, we have T < My. Then K = F,(S).

Proof. The proof of Lemma A.10 is easily adapted to show that, under the present
hypotheses, f|x < g|x implies f < Mg for all f,g € L(F(S)) with g full in L(F(S)).

We will show that K contains every extreme point of F,(S). Then, by the Krein—
Milman Theorem, it will follow that K = F,(S). Let u € F,(S) be an extreme point,
and define ¢, as in Paragraph B.3. Then o[, (s) is a strictly positive, lower semicon-
tinuous, affine function. Applying [1, Corollary 1.1.4], we find a net of continuous, affine
functions (f;); defined on F,(S) and with supremum o, |, sy. We can also arrange for
the functions f; to be strictly positive.

By [4, Proposition 6.9], each function f; can be extended to a full function fj €
L(F(S)). More explicitly, as shown in the proof [4, Proposition 6.9], we have

00 if Mu) =00
Fi) = M) fi(5h) 10 < Au) < o0
0 if A(u) = 0.

Since the functions fj are full, they are infinite on all A € F(S) such that A(u) = co.
It readily follows that (f;); is an increasing net of functions in L(F(S)) with supremum
Tp-

The rest of the argument is very similar to the proof of Theorem B.5. We sketch it
here: To reach a contradiction, assume that p ¢ K. Fix an index jo and let h € L(F(S))
satisfy h < f;,. Then use Lemma A.5 to find j > jo such that (M + 1)h|x < fj|x, and
hence (M + 1)h < M fj < Mo, Passing to the supremum over all A way-below fjo and
then over all jo, we get (M + 1)o, < Mo, which implies M + 1 < M after evaluating
at u, an absurdity. O
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