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Objectives: While COVID-19 continues to challenge the world, meteorological variables are thought to impact COVID-19 tranA
mission. Previous studies showed evidence of negative associations between high temperature and absolute humidity on COVID-
19 transmission. Our research aims to fill the knowledge gap on the modifying effect of vaccination rates and strains on the
weather-COVID-19 association.

Methods: Our study included COVID-19 data from 439 cities in 22 countries spanning 3 February 2020 — 31 August 2022 and
meteorological variables (temperature, relative humidity, absolute humidity, solar radiation, and precipitation). We used a two-stage
time-series design to assess the association between meteorological factors and COVID-19 incidence. For the exposure modeling,
we used distributed lag nonlinear models with a lag of up to 14 days. Finally, we pooled the estimates using a random effect meta-
analytic model and tested vaccination rates and dominant strains as possible effect modifiers.

Results: Our results showed an association between temperature and absolute humidity on COVID-19 transmission. At 5 °C, the
relative risk of COVID-19 incidence is 1.22-fold higher compared to a reference level at 17 °C. Correlated with temperature, we
observed an inverse association for absolute humidity. We observed a tendency of increased risk on days without precipitation, but
no association for relative humidity and solar radiation. No interaction between vaccination rates or strains on the weather-COVID-19
association was observed.

Conclusions: This study strengthens previous evidence of a relationship of temperature and absolute humidity with COVID-19 inci-
dence. Furthermore, no evidence was found that vaccinations and strains significantly modify the relationship between environmental
factors and COVID-19 transmission.

Keywords: Temperature; Humidity; Solar radiation; Precipitation; COVID-19; Multi-Country Multi-City Collaborative Research
Network; Time-series design; Distributed lag nonlinear models
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The COVID-19 pandemic represents the most significant public
health crisis in recent years. Years after the first cases emerged, the
world is still recovering from its impacts. The pandemic has not
only taken its toll on healthcare systems worldwide but has brought
unprecedented political, social, and economic challenges."> While
the initial waves of cases and government shutdowns are over, new
strains are emerging, leading to new outbreaks. As the pandemic
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What this study adds

This study seeks to add to the existing literature on the associa-
tions between meteorological factors and COVID-19 transmis-
sion by considering the possible effects of temperature, humidity,
solar radiation, and precipitation over a large and heterogenous
set of cities, with a longer time series and fine granular times-
cale allowing for more robust statistical inference than earlier
studies with similar designs. A novelty of this study is that we
additionally assessed the modifying effects of vaccination rates
and dominant strains.
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is turning endemic, the impacts continue to pressure society to
react and adapt.’ The continuing impacts of COVID-19 are still
mounting; hence, it is key to gain a deeper understanding of SARS-
CoV-19 to reduce its impact, thereby minimizing further strain on
governments and healthcare systems.

Human mobility and government stringency have been
shown to substantially affect the spread of the disease.* SARS-
CoV-19 is mainly airborne, and an individual can be infected by
breathing in contaminated air. Actions such as social distancing,
wearing masks, and hand disinfection can significantly reduce
the spread of disease.” A review of existing evidence found that
social health factors were strongly related to the COVID-19
spread.® The natural environment, however, has been hypothe-
sized to impact the spread as well.”*

Since other respiratory diseases are often seasonal and are
therefore affected directly or indirectly by the environment, it
has been postulated that SARS-CoV-19 could behave similarly.?
The World Meteorological Organization published a report,
confirming that both meteorology and air quality played a sec-
ondary part in the transmission of COVID-19.” Several stud-
ies have shown that temperature and absolute humidity (AH)
indeed have some impact on the disease transmission; one study
hypothesized that humid climates and summer weather would
make outbreaks more likely.>*!°-12 However, other studies found
that high temperatures and humidity were associated with
decreased incidence of COVID-19.41%!1 Another study found
a small positive association between ultraviolet (UV) radiation
and COVID-19 incidence.!! Many other studies were inconclu-
sive or did not show significant impacts, which might be due to
the analysis on only data from early in the pandemic.** Some
researchers speculate that during the pandemic stage of a new
virus, environmental impacts play a minor role in a virus’ spread
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but that these might become more important factors during
endemic infections.®!?

While several studies have analyzed environmental predictors
or determinants of COVID-19, we still lack a comprehensive
understanding about key determinants of the COVID-19 spread.
Many studies may be limited due to either having had a short
timeframe or a focus on a single city or country. Our study aims to
fill this research gap by including data from 439 cities in 22 coun-
tries and a timeframe spanning multiple waves from 3 February
2020 until 31 August 2022. Understanding the factors impacting
the spread of the virus is one of the main tools we have to inform
policymakers and citizens for the effective control of COVID-19
and its related impacts, and such knowledge is also critical for
accurate estimates of impacts under various conditions.

This study seeks to add to the existing literature on this topic
by considering the possible effects of temperature, humidity,
solar radiation, and precipitation over a large and heterogenous
set of cities, with a longer time series and fine granular times-
cale allowing for a more robust statistical inference than earlier
studies with similar designs. A novelty of this study is that we
additionally assessed the modifying effects of vaccination rates
and dominant strains.

Methods
Data sources and extraction
COVID-19 data

Data extraction

The data for this study was retrieved from public sources
and integrated with data from the Multi-Country Multi-City
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(MCC) Collaborative Research Network (https://mccstudy.
Ishtm.ac.uk/). The full list of COVID-19 data sources can be
found in the supplemental material (Table S1; http://links.lww.
com/EE/A311). We initially considered data of COVID-19 daily
incidence from the start of the pandemic until 31 August 2022
in 458 cities and 22 countries. We included all the cities that are
part of the MCC network, as we have contextual data for those
cities available. We only excluded those that did not have daily
COVID-19 data available.

Data cleaning and processing

We processed each city’s time series of daily COVID-19 cases
to remove outliers and implausible values. In the first step, neg-
ative values and outliers were set to missing values, whereas
outliers were defined as values above the threshold, set as 10
times the interquartile range (IQR); the IQR was calculated over
days with more than 10 cases. This step was followed by setting
isolated zeros to missing values. That is, days with zero cases
whose surrounding 5-day average cases were greater than zero
were set to missing. Finally, missing values were imputed using
a 5-day centered moving average. To exclude the first imported
cases, the location-specific time series’ were shortened to start
up to 14 days (depending on the days of lag considered) before
the first time a city counted the COVID-19 incidence of 10 cases.
Further visual checks were performed, and time series with
>5% missing values and unexplainable spikes were excluded.
After the data cleaning and winnowing process, we considered
the COVID-19 daily time series for 439 cities in 22 countries.

Meteorological variables

Meteorological variables selected for the analysis included:
mean temperature, AH, relative humidity (RH), precipitation,
and solar radiation. We retrieved this meteorological data from
the Copernicus ERA-5 Land dataset with a latitude-longitude
grid size of 0.1° x 0.1°, roughly translating to a 9x 9 km grid.!
We extracted daily averages for temperature and dew tempera-
ture (2 m above the surface), surface solar radiation, total pre-
cipitation, and surface pressure from the grid cell containing
the centroid of each given city. We calculated RH and AH from
temperature, dew temperature, and surface pressure using the R
“humidity” package.'*

Government interventions

We used data on the Government Stringency Index (GSI)
from the Oxford COVID-19 Government Response Tracker
(OxCGRT) to control for the changing governmental public
health measures implemented in response to the pandemic,
which may play a role in modulating the association between
COVID-19 incidence and environmental factors.!”” The GSI
scale ranges from zero to 100 points, where a score of 100
represents the strictest policy measures to slow down the
transmission. Policy measures include interventions such as
closures, movement restrictions, income support, and testing
policies.

Vaccination

We retrieved vaccination data for each country from https://
OurWorldinData.org.!® State-specific vaccination data for
the USA, was additionally retrieved from the Johns Hopkins
University to account for large variability in vaccination cover-
age between the different states.” A person was considered vac-
cinated when they received at least one dose of vaccination, and
fully vaccinated, when they received all the doses as prescribed
by the initial vaccination protocol (1-2 doses depending on
the vaccine). Each measure is defined as the number of people
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vaccinated, or fully vaccinated, respectively, per 100 people over
the country’s total population. The main analysis considered the
countries/periods with less than 60% and periods with more
than 60% vaccination coverage.

Strains

We also considered the dominant strain for each period in
the analysis. We retrieved this information from online public
sources.!” The main strains used in the analysis were defined as
Delta, Omicron, and “Initial.” Hereafter, “Initial” is referred to
period of the first wave, when there was limited strain testing,
and several mutant strains emerged before any specific strains
became the dominant drivers of the pandemic. The dominant
strain was defined as the strain representing the majority of
cases per country for each month.

Statistical analysis

Descriptive analysis

Daily new and cumulative COVID-19 cases for each country
were aggregated from the included cities data. We calculated
cases per 100,000 inhabitants using the total population size
of each city.!® Daily time series of the meteorological variables
(mean temperature, relative and AH, solar radiation, and pre-
cipitation), government interventions (GSI), and vaccination
(total vaccinated per 100 people in the total population of the
country) were computed for each country for the entire obser-
vation period.

Two-stage design

We used a two-stage design to assess the association and tem-
poral variation between meteorological factors and COVID-
19 incidence. In the first stage, we estimated the city-specific
exposure-response associations, considering time-varying con-
founding in a time-series regression. We used a meta-analytical
model in the second stage to combine city-specific estimates to
obtain the pooled exposure-response association curve.

The first step in the first stage was to create independent
models for each exposure and location. We used a Generalized
Linear Model with a quasi-Poisson distribution to model the
case counts. We modeled the exposures using distributed lag
nonlinear models."”” We defined a 3rd degree polynomial for the
basis function for the exposure dimension (temperature, AH,
RH, solar radiation, and precipitation). We modeled the lag
dimension using a natural cubic spline with two equally spaced
(at logarithmic scale) internal knots. We used a lag of 14 days
for the main analyses, due to the estimated incubation period of
6 days for COVID-19 and a delay in testing or reporting.2®*! We
defined a bi-dimensional basis called a “cross-basis” by combin-
ing the two previously created bases.?

We considered several confounding factors for the main
model. We included a series of dummy day-of-week variable
(dow), since various factors, such as reporting, social behavior,
and testing capacity, are known to vary among weekdays, in
addition to the heterogeneous definitions of case date among
sources. We also considered other time-vary confounders, such
as temporal trend, modeled with a natural spline function of the
date with 10degrees of freedom (df), and governmental inter-
ventions, modeled with a linear lag association model of GSI
considering up to 14 days of lag dependence. We built the model
using the R package “dlnm.”?

To evaluate the independent effect of temperature, we fitted
four time-series models with temperature and each of the other
exposure variables (AH, RH, solar radiation, and precipitation).

For each meteorological variable, we estimated the temporal
variation of the relationships with COVID-19 using distributed
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lag nonlinear models, expressed through an interaction between
meteorological variables and flexibly defined periods for each
city. The time periods were defined by vaccination coverage
(below and above 60%) and by the dominant strain (Initial,
Delta, or Omicron).

For the subsequent second-stage meta-analysis, we used
the R package “mixmeta.”?* The coefficients, representing the
estimated meteorology-COVID-19 associations cumulated
over all lags, and their covariance matrix, obtained at the first
step, were pooled from all included locations using a random
effect meta-analytic model. Groups defined jointly by country
and climatic zones were considered as a random effect in the
main model. Using the pooled polynomial basis coefficients, the
pooled mean curve of COVID-19 risk was plotted against each
exposure and expressed as relative risk (RR) with median value
over all cities set at the baseline.

All the data and code examples used in the analyses will be
available on request.

Sensitivity analysis

We performed sensitivity analysis considering a linear associa-
tion for meteorological variables and COVID-19. Additionally,
we performed sensitivity analysis considering different thresh-
olds for vaccination coverage (e.g., 75%) and considering
fully vaccinated populations. We also considered seasonality
by analyzing the associations during winter months and sum-
mer months separately. We defined summer months as June,
July, and August and winter months as December, January, and
February for the northern hemisphere and the reversed months
for the southern hemisphere. These intra-annual and trend
effects were estimated with an interaction term between natu-
ral spline parametrization of the day of the year (with 3 degrees
of freedom) and year considered as a categorical variable.

Results

Descriptive

For the final analysis, we considered 96.1 million confirmed
COVID-19 cases across 439 cities in 22 countries between 3
February 2020 and 31 August 2022. The full list of the cit-
ies included in the analysis is reported in Table S2; http://links.
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Iww.com/EE/A311. The chosen cities represent an average of
26.4% of their country’s population, ranging from 5.5% in
the Philippines to 100% in Kuwait (Table S3; http://links.lww.
com/EE/A311). In total, the cities included in our study repre-
sent 4.7% of the world population and 16% of all reported
cases. Figures 1 and 2 show the city locations and country-wide
aggregated time series of daily reported COVID-19 cases per
100,000 inhabitants of each location. We can recognize the
waves related to different variants as well as an incidence peak
related to the Omicron variant in late 2021 and early 2022 for
each country.

Table 1 shows the average, minimum, and maximum
recorded exposures per country within the observation period.
In Supplementary Figures S1-S5; http://links.lww.com/EE/A311,
we present the daily country averages of the meteorological
variables over the observation period. As expected, countries in
tropical climates show less variation in the meteorological vari-
ables, especially mean temperature, RH, and AH. An overview
of the governmental interventions against COVID-19 over time
is given in the supplementary Figure S6; http:/links.lww.com/
EE/A311. Most countries started with stringent restrictions at
the beginning of 2020, with a declining trend in stringency up to
the summer of 2022. Figure S7; http://links.lww.com/EE/A311
shows the trend in vaccination coverage by country. In most
countries, the vaccination coverage reaches a plateau at the end
of 2021, with vaccination coverage over 60%, with the excep-
tions of Romania and South Africa, which have lower vaccina-
tion coverage (less than 40%).

Association between COVID-19 cases and meteorological
variables

Figure 3 shows the pooled association curves, representing over-
all results across all cities from the meta-analysis models for
meteorological variables considered independently. Low tem-
peratures were associated with a higher risk of infection. At §
°C, the risk of COVID-19 incidence is 1.22-fold higher (95%
CI = 1.09, 1.38) compared to a reference level at 17.0 °C. The
exposure lag association indicated increased RRs with a 3-day
lag after temperature exposure, peaked at 6-8 days, and decayed
by the end of the observed 13-day lag period (Figure S8; http://
links.Iww.com/EE/A311). We observed a substantial heteroge-
neity in the meta-analytic model (I* = 78.4%). Figure 3 indicates

Northern-Central America

Europe

Figure 1. Map of cities included in the analysis, with the majority of data coming from North America, Europe, and Latin America. Additional cities included

from South Africa, Australia, and Asia.
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Figure 2. Time series of COVID-19 cases per 100,000 inhabitants aggregated by country, with number of included cities ranging from 1 (e.g., Kuwait) to 204

(USA).

that AH had an inverse association similar to temperature.
Compared with the median value of 9.0 g/m3 there was a 1.14-
fold increased RR at the AH of 5.0g/m3 (95% CI = 1.03, 1.27).
The RRs increased (RR >1.00) between 2 and 9 days of lag
(Figure S8; http://links.lww.com/EE/A311). We did not observe
an association for RH and solar UV radiation but observed a
tendency of increased risk on days without precipitation.

As shown in Supplementary Figures S9-S12; http://links.
Ilww.com/EE/A311, when we considered models with tem-
perature and each of the other meteorological variables,
temperature, and precipitation seem to be independent pre-
dictors, whereas the association between AH and COVID-
19 incidence is reduced when temperature is included in the
model. Table S9; http:/links.lww.com/EE/A311 presents a
correlation matrix between all the meteorological variables,
which confirms that the strongest correlation is between AH
and temperature.

The results from the sensitivity analysis that consider a linear
relationship (Table S4 and Figure S13; http:/links.lww.com/EE/
A311) show similar results from our main model, but with a
stronger inverse association between RH and COVID-19 inci-
dence. The lagged effects of the linear relationship showed an
incidence peak at 6-8 days after temperature exposure, sim-
ilarily to the main model (Figure S14; http:/links.lww.com/
EE/A311). The seasonality analysis showed that the effect was
stronger during winter months for temperature and AH (Figure
S17; htep://links.lww.com/EE/A311).

Temporal variation of the association between COVID-19
cases and meteorological variables

Vaccination coverage

We observed some inconsistent patterns in the analysis of the
effect of meteorological variables on COVID-19 spread in peri-
ods with different vaccination coverage.

For average temperature as exposure, the model with interac-
tion shows higher RRs and uncertainty in the period with higher
coverage (Table 2 and Figure 4). We see a similar tendency for
the RRs for AH. RH shows a very slight opposite tendency, with

inverse relationships in the period with low vaccination cover-
age and no association if the vaccination coverage was above
60%. UV shows a consistent pattern of no association in the
two periods with different vaccination coverage, while precipi-
tation shows consistent inverse associations, with higher RRs in
days without precipitation.

The higher uncertainty in the periods with a higher vacci-
nation rate seems unexplained by lower power as there was a
higher number of cases (56,990,369) compared to the period
with lower vaccination rates (n = 39,070,933).

Our sensitivity analysis revealed that the modifier effect of
the vaccination period on the association between temperature
and COVID-19 incidence was stronger when using the defini-
tion of fully vaccinated people. (Table S6; http:/links.lww.com/
EE/A311). Although there is a lot of uncertainty, the RR in the
>60% vaccination period was higher (RR:2.37; CI = 1.19,4.75)
compared to the lower vaccination period (RR: 1.10; 95% CI =
0.91, 1.33). When considering the linear relationship, the asso-
ciation for temperature, AH, and RH were both stronger during
the <60% vaccination coverage period (Table S7 and Figure
S15; http://links.lww.com/EE/A311).

Strains

Our analyses of associations between meteorological variables
and COVID-19 incidence by time periods with different domi-
nant strains show a relatively consistent pattern of RR across
periods. Temperature, AH, and precipitation show consistent
associations with COVID-19 incidence during the observation
period (Table 3 and Figure 5). In contrast, we see no association
in the three periods per RH and UV. In the sensitivity, consider-
ing a linear relationship, we did however find an inverse associ-
ation for UV during the Omicron period (Table S8 and Figure
$16; http://links.lww.com/EE/A311).

Discussion

We found evidence of an association between COVID-19
incidence and temperature. At temperatures of 5 °C, the risk
of COVID-19 incidence is 1.22 times higher compared with
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Figure 3. Pooled association curves between COVID-19 cases and meteorological variables, with a lag of up to 14 days.

a reference level of 17 °C, with the exposure lag association
reaching a peak at 6-8 days. Additionally, we observed an
inverse association for AH, with a 1.13-fold increased risk at
5.0g/m3 compared with the median value of 9.0g/m?3, though
this appeared to be driven by its correlation with temperature
(Table S9; http://links.Iww.com/EE/A311). We also observed a
tendency of increased risk on days without precipitation and no
association for RH and solar radiation. When we analyzed these
factors for dominant strain and vaccination levels, we found lit-
tle evidence for interaction with meteorological factors.

This study is a continuing analysis of a preceding study
conducted using data from the first wave of COVID-19. Our
findings of an association between mean temperature and AH
with COVID-19 confirmed the results from the previous analy-
sis. Days with lower temperature and lower AH are associated
with higher COVID-19 incidence.!® We found no evidence for
associations with RH or UVj; other studies have shown similar
results. #6112

Since the first COVID-19 cases emerged and spread globally,
many articles have been published on meteorological factors and
their association with COVID-19. Previous studies have shown
more inconclusive results, but they tended to only cover a short
timeframe. Baker et al® hypothesized that at the beginning of an
outbreak, meteorological factors only play a minor role in trans-
mission. However, when an outbreak stabilizes, there might be
a clearer association. Much research on meteorological factors
and COVID-19 was done using different methodologies. A sys-
tematic review® of studies published within the first 2 years of
the pandemic found 289 relevant papers. Over a third of those
articles did not consider lag effects in their analysis. On the other
hand, we considered a lag of up to 14 days for each meteorolog-
ical variable. Furthermore, our analysis included data covering
2.5 years, which is much longer than the average observation
time of 123 days, as reported by Tan et al.?

Our results strengthen the evidence of previous studies on
the association between temperature and COVID-19. Wang et
al?® found that increased temperature was associated with a
lower transmission. Interestingly, they also found a negative
correlation between high RH and COVID-19 transmission.
In our study, we found a negative correlation between high
AH, though this was explained by its correlation with tem-
perature; moreover, we found no correlation for RH. On the
other hand, they did find a small positive association with
increased UV exposure, while our results were not statistically
significant.

Previous modeling studies showed that the effect of meteo-
rological variables should be stronger in an immunized pop-
ulation.® Our study included vaccination rates and dominant
strains as possible effect modifiers. The result of this analysis,
however, does not fully support the hypothesis for a higher
impact of meteorological variables on immunized persons, as
the associations for both temperature and AH were very uncer-
tain in the high-vaccination period. One limitation was that we
used country-wide vaccination rates, which might not be fully
representative of the vaccination rates for the included cities.
We did use state-specific vaccination rates for the United States
to account for the large variability in vaccination coverage
between the different states; however, we did not use any vac-
cination rates on a smaller spatial scale for the other countries,
which might experience some level of variability as well. While
research has shown that vaccination rates are strongly associ-
ated with a reduction in COVID-19 incidence, research on vac-
cination rates as an effect modifier of environmental impacts
on COVID-19 is still lacking. The difference in the relationship
between temperature and specific humidity, respectively, and
COVID-19 transmission among populations with different
immunization levels was investigated by Villatoro-Garcia et al.?”
They found that COVID-19 transmission fell slightly during
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Associations (RRs and 95% CIl) between meteorological variables and COVID-19 incidence, by total RR and vaccination coverage

threshold of 60%

RRs Vaccination coverage <60% Vaccination coverage >60%
(n cases = 96,061,302) 12 (n cases = 39,070,933) (n cases = 56,990,369)
Mean temperature (5 °C vs. 17 °C) 1.22 (1.09, 1.38) 78.4 1.20 (1.02, 1.40) 1.60 (0.99, 2.57)
RH (60% vs. 70%) 1.02(0.92,1.14) 75.5 1.03(1.02, 1.05) 1.02 (0.77,1.35)
AH (5g/m? vs. 9g/m?) 1.14(1.03,1.27) 73.7 1.17(1.07,1.28) 1.23(0.89, 1.69)
UV (100 W/m? vs. 200 W/m?) 0.95(0.71,1.28) 77.8 0.91(0.76,1.10) 0.87 (0.44,1.74)
Precipitation (0 mm vs. 5 mm) 1.02 (1.00, 1.04) 63.0 1.03 (1.01, 1.05) 1.05(0.97,1.15)
Relative risks are for a chosen value compared to a reference value, for example, the overall risk at a temperature of 5 °C is 1.22 times higher compared to the risk at 17 °C.
Air Temperature (°C) Relative Humidity (%) Absolute Humidity (g/m?3)
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Figure 4. Pooled association curves between COVID-19 cases and meteorological variables by periods with low (<60%) and high (>60%) vaccination coverage.

periods with higher temperatures and higher humidity in vacci-
nated populations. On the other hand, Hasan et al*® found that
when vaccination rates were included in the model, there was
no significant change in the impact of meteorological factors.

Similarly, little research has examined different strains as
effect modifiers. We found no differences in meteorological
impacts in periods with different strains. To our best knowl-
edge, this is the first study to investigate the association between
the different strains and the impact of meteorological factors
on COVID-19 transmission. Looking at other environmental
factors, a study by Ma et al® found that in later strains, such
as Delta and Omicron, susceptibility to COVID-19 significantly
increased with increased exposure to air pollution.

This study adds to the literature on how COVID-19 inci-
dence is impacted by meteorological variables, which can give
us insights on where to look for mechanisms impacting the
incidence. We specifically considered temperature, AH, RH,
precipitation, and solar radiation as the meteorological factors.
Some mechanistic studies undertaken in the laboratory found
that the stability and viability of viral particles is higher in
lower temperatures, which would explain why in our analysis

we found lower temperatures to have higher COVID-19 trans-
mission.?®3! According to animal experiments, lower tempera-
ture, and therefore lower blood circulation, could impact the
body’s ability to fight off respiratory viruses due to impaired
adaptive immunity.’>* However, much of the environmental
impact can also be explained by the related human behavior.
During winter months, people tend to stay indoors in heated
environments and closed spaces, resulting in human interaction
in smaller spaces, which can increase spread. Public transport
might be more crowded during days with lower temperatures,
as people are less likely to commute by foot or bicycle in colder
weather. Being surrounded by more people in a smaller space
increases the risk of being exposed to someone who is infected
with COVID-19.343%

We found that lower AH is associated with a higher risk of
COVID-19 infection. This positive association is explainable
by the theory that droplets containing viruses evaporate in
dry conditions. Through the evaporation, dry nuclei would be
formed, which could float in the air for longer times.** However,
we found no evidence for an effect of AH after controlling for
temperature.
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Associations (RRs and 95% CIl) between meteorological
variables and COVID-19 incidence, by time periods with different

dominant strains

Initial (first wave) Delta Omicron
(n cases = (n cases = (n cases =
25,702,294) 14,510,657) 48,085,841)

Mean temperature 1.34(1.12,1.61)
(5°Cvs. 17 °C)
RH (60% vs. 70%)

AH (5g/mé vs. 9g/m?)

1.41(1.02,1.95  1.35(1.15,1.59)

1.03(0.85,1.26) 1.
1.34(1.03,1.74)

2(0.83,1.16)
5(1.04,1.26)
1(0.67,

1.04 (0.99, 1.08)
1,16 (1.05,1.29)

—_
— O

UV (100 W/m? vs. 0.90 (0.58,1.39) 1.0 1.52)  0.91(0.64,1.31)
200 W/m?)

Precipitation 1.07 (1.00, 1.15) 1.00(0.98,1.20)  1.10(1.08,1.13)
(Omm vs. 5mm)

Relative risks are for a chosen value compared to a reference value, for example, the risk at a
temperature of 5 °C is 1.41 times higher compared to the risk at 17 °C during the Initial wave.

While we found no evidence for the UV-COVID-19 associ-
ation, the general trend seemed to be that lower UV exposure
is associated with higher transmission, though the association
reversed when controlled for temperature. Studies showed
that UV inactivates viruses in both the air and on surfaces.
Therefore, higher UV could decrease the exposure to SARS-
CoV-19.5” Comparable to temperature, the relationship between
UV and COVID-19 incidence could also be explained by human
behavior, as people tend to go outside in sunny weather and
spread out more, instead of being in closer proximity indoors.
Similar to our study, Balboni et al®%. found a negative associa-
tion between higher temperature and COVID-19 spread but no
significant association with RH.®

www.environmentalepidemiology.com

The sensitivity analysis only showed a small difference
in results when considering different vaccination thresholds
or definition of fully vaccinated. When considering linear
associations, we found slightly stronger evidence of associ-
ations, and when analyzing the effect modification of vac-
cination rates, we also found a stronger association in the
low-vaccination periods (Table S4-S7; http://links.lww.com/
EE/A311). We considered seasonality in our sensitivity anal-
ysis and found that the RR is mainly present during winter
and statistically significant for temperature and AH (Figure
S17; http://links.lww.com/EE/A311). One explanation could
be population behavior, as people have the tendency to stay
indoors in more crowded areas during low temperatures in
winter but tend to spend more time outdoors and spread out
when the temperature is higher. Another mechanism influenc-
ing this association could be that particles stay in the air lon-
ger under conditions of high levels of AH compared to levels
of low AH.

A key strength of our study was the size, breadth, and
spatiotemporal granularity of the data we used. In total, we
collected data for 96.1 million COVID-19 cases which rep-
resent 16% of the total cases (607,913,476) registered by
31 August 2022, according to Worldometer.® First, the data
included daily COVID-19 cases for 439 cities in 22 countries
spanning diverse settings across the globe, making it quite
representative, and by selecting all the cities that are in the
MCC network we avoided a selection bias. Cities included
in our study represent 4.7% of the world population, which
gives the analysis a lot of power and reduction of biases in
the results. The cities in the MCC network also tend to be
the largest cities in their respective countries and represent an
average of 26.4% of their country’s population. Second, the
observation period was much longer compared with previous

Air Temperature (°C) Relative Humidity (%) Absolute Humidity (g/m3)
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0.54
o 0 10 20 40 50 60 70 80 90 5 10 15
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Figure 5. Pooled association curves between COVID-19 cases and meteorological variables by periods with different dominant strains [Initial (First wave), Delta,

Omicron].
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studies on COVID-19. Using data spanning 2.5 years, we were
able to analyze several incidence peaks, over different periods
with varying vaccination coverage and dominant strains. To
our knowledge, our study included more locations, analyzed
as smaller spatial units, and longer observation periods than
most published literature on the subject.** Several ecological
and time-varying confounders were considered and incorpo-
rated in the analysis.

The study also has a few possible shortcomings. While the
study area is global, certain regions and locations are still under-
represented, as the cities included are not distributed propor-
tionally over the human population. Furthermore, definitions of
COVID-19 cases and reporting practices vary from country to
country, and the GSI, measured at country level, could not fully
capture governmental interventions as local interventions might
vary throughout a country and impact the efficiency of govern-
mental interventions.*

Strengthening previous research, this study shows evi-
dence of the relationship between lower temperatures and
AH levels and COVID-19 incidence. We did not find a sig-
nificant modifier effect of vaccination coverage on the asso-
ciations between meteorological factors and COVID-19. We
also found no clear differences in the associations between
the dominant strains. This is one of the first empirical stud-
ies looking at the modifying effect of vaccination cover-
age and dominant strains on the meteorology-COVID-19
association.
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