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What this study adds
This study seeks to add to the existing literature on the associa-
tions between meteorological factors and COVID-19 transmis-
sion by considering the possible effects of temperature, humidity, 
solar radiation, and precipitation over a large and heterogenous 
set of cities, with a longer time series and fine granular times-
cale allowing for more robust statistical inference than earlier 
studies with similar designs. A novelty of this study is that we 
additionally assessed the modifying effects of vaccination rates 
and dominant strains.
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Objectives:  While COVID-19 continues to challenge the world, meteorological variables are thought to impact COVID-19 trans-
mission. Previous studies showed evidence of negative associations between high temperature and absolute humidity on COVID-
19 transmission. Our research aims to fill the knowledge gap on the modifying effect of vaccination rates and strains on the 
weather-COVID-19 association.
Methods:  Our study included COVID-19 data from 439 cities in 22 countries spanning 3 February 2020 – 31 August 2022 and 
meteorological variables (temperature, relative humidity, absolute humidity, solar radiation, and precipitation). We used a two-stage 
time-series design to assess the association between meteorological factors and COVID-19 incidence. For the exposure modeling, 
we used distributed lag nonlinear models with a lag of up to 14 days. Finally, we pooled the estimates using a random effect meta-
analytic model and tested vaccination rates and dominant strains as possible effect modifiers.
Results:  Our results showed an association between temperature and absolute humidity on COVID-19 transmission. At 5 °C, the 
relative risk of COVID-19 incidence is 1.22-fold higher compared to a reference level at 17 °C. Correlated with temperature, we 
observed an inverse association for absolute humidity. We observed a tendency of increased risk on days without precipitation, but 
no association for relative humidity and solar radiation. No interaction between vaccination rates or strains on the weather-COVID-19 
association was observed.
Conclusions:  This study strengthens previous evidence of a relationship of temperature and absolute humidity with COVID-19 inci-
dence. Furthermore, no evidence was found that vaccinations and strains significantly modify the relationship between environmental 
factors and COVID-19 transmission.

Keywords: Temperature; Humidity; Solar radiation; Precipitation; COVID-19; Multi-Country Multi-City Collaborative Research 
Network; Time-series design; Distributed lag nonlinear models

Introduction
The COVID-19 pandemic represents the most significant public 
health crisis in recent years. Years after the first cases emerged, the 
world is still recovering from its impacts. The pandemic has not 
only taken its toll on healthcare systems worldwide but has brought 
unprecedented political, social, and economic challenges.1,2 While 
the initial waves of cases and government shutdowns are over, new 
strains are emerging, leading to new outbreaks. As the pandemic 
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is turning endemic, the impacts continue to pressure society to 
react and adapt.3 The continuing impacts of COVID-19 are still 
mounting; hence, it is key to gain a deeper understanding of SARS-
CoV-19 to reduce its impact, thereby minimizing further strain on 
governments and healthcare systems.

Human mobility and government stringency have been 
shown to substantially affect the spread of the disease.4 SARS-
CoV-19 is mainly airborne, and an individual can be infected by 
breathing in contaminated air. Actions such as social distancing, 
wearing masks, and hand disinfection can significantly reduce 
the spread of disease.5 A review of existing evidence found that 
social health factors were strongly related to the COVID-19 
spread.6 The natural environment, however, has been hypothe-
sized to impact the spread as well.7,8

Since other respiratory diseases are often seasonal and are 
therefore affected directly or indirectly by the environment, it 
has been postulated that SARS-CoV-19 could behave similarly.2 
The World Meteorological Organization published a report, 
confirming that both meteorology and air quality played a sec-
ondary part in the transmission of COVID-19.9 Several stud-
ies have shown that temperature and absolute humidity (AH) 
indeed have some impact on the disease transmission; one study 
hypothesized that humid climates and summer weather would 
make outbreaks more likely.6,8,10–12 However, other studies found 
that high temperatures and humidity were associated with 
decreased incidence of COVID-19.4,10,11 Another study found 
a small positive association between ultraviolet (UV) radiation 
and COVID-19 incidence.11 Many other studies were inconclu-
sive or did not show significant impacts, which might be due to 
the analysis on only data from early in the pandemic.4,6 Some 
researchers speculate that during the pandemic stage of a new 
virus, environmental impacts play a minor role in a virus’ spread 

but that these might become more important factors during 
endemic infections.8,10

While several studies have analyzed environmental predictors 
or determinants of COVID-19, we still lack a comprehensive 
understanding about key determinants of the COVID-19 spread. 
Many studies may be limited due to either having had a short 
timeframe or a focus on a single city or country. Our study aims to 
fill this research gap by including data from 439 cities in 22 coun-
tries and a timeframe spanning multiple waves from 3 February 
2020 until 31 August 2022. Understanding the factors impacting 
the spread of the virus is one of the main tools we have to inform 
policymakers and citizens for the effective control of COVID-19 
and its related impacts, and such knowledge is also critical for 
accurate estimates of impacts under various conditions.

This study seeks to add to the existing literature on this topic 
by considering the possible effects of temperature, humidity, 
solar radiation, and precipitation over a large and heterogenous 
set of cities, with a longer time series and fine granular times-
cale allowing for a more robust statistical inference than earlier 
studies with similar designs. A novelty of this study is that we 
additionally assessed the modifying effects of vaccination rates 
and dominant strains.

Methods

Data sources and extraction

COVID-19 data

Data extraction

The data for this study was retrieved from public sources 
and integrated with data from the Multi-Country Multi-City 
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(MCC) Collaborative Research Network (https://mccstudy.
lshtm.ac.uk/). The full list of COVID-19 data sources can be 
found in the supplemental material (Table S1; http://links.lww.
com/EE/A311). We initially considered data of COVID-19 daily 
incidence from the start of the pandemic until 31 August 2022 
in 458 cities and 22 countries. We included all the cities that are 
part of the MCC network, as we have contextual data for those 
cities available. We only excluded those that did not have daily 
COVID-19 data available.

Data cleaning and processing

We processed each city’s time series of daily COVID-19 cases 
to remove outliers and implausible values. In the first step, neg-
ative values and outliers were set to missing values, whereas 
outliers were defined as values above the threshold, set as 10 
times the interquartile range (IQR); the IQR was calculated over 
days with more than 10 cases. This step was followed by setting 
isolated zeros to missing values. That is, days with zero cases 
whose surrounding 5-day average cases were greater than zero 
were set to missing. Finally, missing values were imputed using 
a 5-day centered moving average. To exclude the first imported 
cases, the location-specific time series’ were shortened to start 
up to 14 days (depending on the days of lag considered) before 
the first time a city counted the COVID-19 incidence of 10 cases.

Further visual checks were performed, and time series with 
>5% missing values and unexplainable spikes were excluded. 
After the data cleaning and winnowing process, we considered 
the COVID-19 daily time series for 439 cities in 22 countries.

Meteorological variables

Meteorological variables selected for the analysis included: 
mean temperature, AH, relative humidity (RH), precipitation, 
and solar radiation. We retrieved this meteorological data from 
the Copernicus ERA-5 Land dataset with a latitude-longitude 
grid size of 0.1° × 0.1°, roughly translating to a 9 × 9 km grid.13 
We extracted daily averages for temperature and dew tempera-
ture (2 m above the surface), surface solar radiation, total pre-
cipitation, and surface pressure from the grid cell containing 
the centroid of each given city. We calculated RH and AH from 
temperature, dew temperature, and surface pressure using the R 
“humidity” package.14

Government interventions

We used data on the Government Stringency Index (GSI) 
from the Oxford COVID-19 Government Response Tracker 
(OxCGRT) to control for the changing governmental public 
health measures implemented in response to the pandemic, 
which may play a role in modulating the association between 
COVID-19 incidence and environmental factors.15 The GSI 
scale ranges from zero to 100 points, where a score of 100 
represents the strictest policy measures to slow down the 
transmission. Policy measures include interventions such as 
closures, movement restrictions, income support, and testing 
policies.

Vaccination

We retrieved vaccination data for each country from https://
OurWorldinData.org.16 State-specific vaccination data for 
the USA, was additionally retrieved from the Johns Hopkins 
University to account for large variability in vaccination cover-
age between the different states.9 A person was considered vac-
cinated when they received at least one dose of vaccination, and 
fully vaccinated, when they received all the doses as prescribed 
by the initial vaccination protocol (1–2 doses depending on 
the vaccine). Each measure is defined as the number of people 

vaccinated, or fully vaccinated, respectively, per 100 people over 
the country’s total population. The main analysis considered the 
countries/periods with less than 60% and periods with more 
than 60% vaccination coverage.

Strains

We also considered the dominant strain for each period in 
the analysis. We retrieved this information from online public 
sources.17 The main strains used in the analysis were defined as 
Delta, Omicron, and “Initial.” Hereafter, “Initial” is referred to 
period of the first wave, when there was limited strain testing, 
and several mutant strains emerged before any specific strains 
became the dominant drivers of the pandemic. The dominant 
strain was defined as the strain representing the majority of 
cases per country for each month.

Statistical analysis

Descriptive analysis

Daily new and cumulative COVID-19 cases for each country 
were aggregated from the included cities data. We calculated 
cases per 100,000 inhabitants using the total population size 
of each city.18 Daily time series of the meteorological variables 
(mean temperature, relative and AH, solar radiation, and pre-
cipitation), government interventions (GSI), and vaccination 
(total vaccinated per 100 people in the total population of the 
country) were computed for each country for the entire obser-
vation period.

Two-stage design

We used a two-stage design to assess the association and tem-
poral variation between meteorological factors and COVID-
19 incidence. In the first stage, we estimated the city-specific 
exposure-response associations, considering time-varying con-
founding in a time-series regression. We used a meta-analytical 
model in the second stage to combine city-specific estimates to 
obtain the pooled exposure-response association curve.

The first step in the first stage was to create independent 
models for each exposure and location. We used a Generalized 
Linear Model with a quasi-Poisson distribution to model the 
case counts. We modeled the exposures using distributed lag 
nonlinear models.19 We defined a 3rd degree polynomial for the 
basis function for the exposure dimension (temperature, AH, 
RH, solar radiation, and precipitation). We modeled the lag 
dimension using a natural cubic spline with two equally spaced 
(at logarithmic scale) internal knots. We used a lag of 14 days 
for the main analyses, due to the estimated incubation period of 
6 days for COVID-19 and a delay in testing or reporting.20,21 We 
defined a bi-dimensional basis called a “cross-basis” by combin-
ing the two previously created bases.22

We considered several confounding factors for the main 
model. We included a series of dummy day-of-week variable 
(dow), since various factors, such as reporting, social behavior, 
and testing capacity, are known to vary among weekdays, in 
addition to the heterogeneous definitions of case date among 
sources. We also considered other time-vary confounders, such 
as temporal trend, modeled with a natural spline function of the 
date with 10 degrees of freedom (df), and governmental inter-
ventions, modeled with a linear lag association model of GSI 
considering up to 14 days of lag dependence. We built the model 
using the R package “dlnm.”23

To evaluate the independent effect of temperature, we fitted 
four time-series models with temperature and each of the other 
exposure variables (AH, RH, solar radiation, and precipitation).

For each meteorological variable, we estimated the temporal 
variation of the relationships with COVID-19 using distributed 
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lag nonlinear models, expressed through an interaction between 
meteorological variables and flexibly defined periods for each 
city. The time periods were defined by vaccination coverage 
(below and above 60%) and by the dominant strain (Initial, 
Delta, or Omicron).

For the subsequent second-stage meta-analysis, we used 
the R package “mixmeta.”24 The coefficients, representing the 
estimated meteorology-COVID-19 associations cumulated 
over all lags, and their covariance matrix, obtained at the first 
step, were pooled from all included locations using a random 
effect meta-analytic model. Groups defined jointly by country 
and climatic zones were considered as a random effect in the 
main model. Using the pooled polynomial basis coefficients, the 
pooled mean curve of COVID-19 risk was plotted against each 
exposure and expressed as relative risk (RR) with median value 
over all cities set at the baseline.

All the data and code examples used in the analyses will be 
available on request.

Sensitivity analysis

We performed sensitivity analysis considering a linear associa-
tion for meteorological variables and COVID-19. Additionally, 
we performed sensitivity analysis considering different thresh-
olds for vaccination coverage (e.g., 75%) and considering 
fully vaccinated populations. We also considered seasonality 
by analyzing the associations during winter months and sum-
mer months separately. We defined summer months as June, 
July, and August and winter months as December, January, and 
February for the northern hemisphere and the reversed months 
for the southern hemisphere. These intra-annual and trend 
effects were estimated with an interaction term between natu-
ral spline parametrization of the day of the year (with 3 degrees 
of freedom) and year considered as a categorical variable.

Results

Descriptive

For the final analysis, we considered 96.1 million confirmed 
COVID-19 cases across 439 cities in 22 countries between 3 
February 2020 and 31 August 2022. The full list of the cit-
ies included in the analysis is reported in Table S2; http://links.

lww.com/EE/A311. The chosen cities represent an average of 
26.4% of their country’s population, ranging from 5.5% in 
the Philippines to 100% in Kuwait (Table S3; http://links.lww.
com/EE/A311). In total, the cities included in our study repre-
sent 4.7% of the world population and 16% of all reported 
cases. Figures 1 and 2 show the city locations and country-wide 
aggregated time series of daily reported COVID-19 cases per 
100,000 inhabitants of each location. We can recognize the 
waves related to different variants as well as an incidence peak 
related to the Omicron variant in late 2021 and early 2022 for 
each country.

Table 1 shows the average, minimum, and maximum 
recorded exposures per country within the observation period. 
In Supplementary Figures S1-S5; http://links.lww.com/EE/A311, 
we present the daily country averages of the meteorological 
variables over the observation period. As expected, countries in 
tropical climates show less variation in the meteorological vari-
ables, especially mean temperature, RH, and AH. An overview 
of the governmental interventions against COVID-19 over time 
is given in the supplementary Figure S6; http://links.lww.com/
EE/A311. Most countries started with stringent restrictions at 
the beginning of 2020, with a declining trend in stringency up to 
the summer of 2022. Figure S7; http://links.lww.com/EE/A311 
shows the trend in vaccination coverage by country. In most 
countries, the vaccination coverage reaches a plateau at the end 
of 2021, with vaccination coverage over 60%, with the excep-
tions of Romania and South Africa, which have lower vaccina-
tion coverage (less than 40%).

Association between COVID-19 cases and meteorological 
variables

Figure 3 shows the pooled association curves, representing over-
all results across all cities from the meta-analysis models for 
meteorological variables considered independently. Low tem-
peratures were associated with a higher risk of infection. At 5 
°C, the risk of COVID-19 incidence is 1.22-fold higher (95% 
CI = 1.09, 1.38) compared to a reference level at 17.0 °C. The 
exposure lag association indicated increased RRs with a 3-day 
lag after temperature exposure, peaked at 6–8 days, and decayed 
by the end of the observed 13-day lag period (Figure S8; http://
links.lww.com/EE/A311). We observed a substantial heteroge-
neity in the meta-analytic model (I2 = 78.4%). Figure 3 indicates 

Figure 1.  Map of cities included in the analysis, with the majority of data coming from North America, Europe, and Latin America. Additional cities included 
from South Africa, Australia, and Asia.
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that AH had an inverse association similar to temperature. 
Compared with the median value of 9.0 g/m³ there was a 1.14-
fold increased RR at the AH of 5.0 g/m³ (95% CI = 1.03, 1.27). 
The RRs increased (RR >1.00) between 2 and 9 days of lag 
(Figure S8; http://links.lww.com/EE/A311). We did not observe 
an association for RH and solar UV radiation but observed a 
tendency of increased risk on days without precipitation.

As shown in Supplementary Figures S9–S12; http://links.
lww.com/EE/A311, when we considered models with tem-
perature and each of the other meteorological variables, 
temperature, and precipitation seem to be independent pre-
dictors, whereas the association between AH and COVID-
19 incidence is reduced when temperature is included in the 
model. Table S9; http://links.lww.com/EE/A311 presents a 
correlation matrix between all the meteorological variables, 
which confirms that the strongest correlation is between AH 
and temperature.

The results from the sensitivity analysis that consider a linear 
relationship (Table S4 and Figure S13; http://links.lww.com/EE/
A311) show similar results from our main model, but with a 
stronger inverse association between RH and COVID-19 inci-
dence. The lagged effects of the linear relationship showed an 
incidence peak at 6-8 days after temperature exposure, sim-
ilarily to the main model (Figure S14; http://links.lww.com/
EE/A311). The seasonality analysis showed that the effect was 
stronger during winter months for temperature and AH (Figure 
S17; http://links.lww.com/EE/A311).

Temporal variation of the association between COVID-19 
cases and meteorological variables

Vaccination coverage

We observed some inconsistent patterns in the analysis of the 
effect of meteorological variables on COVID-19 spread in peri-
ods with different vaccination coverage.

For average temperature as exposure, the model with interac-
tion shows higher RRs and uncertainty in the period with higher 
coverage (Table 2 and Figure 4). We see a similar tendency for 
the RRs for AH. RH shows a very slight opposite tendency, with 

inverse relationships in the period with low vaccination cover-
age and no association if the vaccination coverage was above 
60%. UV shows a consistent pattern of no association in the 
two periods with different vaccination coverage, while precipi-
tation shows consistent inverse associations, with higher RRs in 
days without precipitation.

The higher uncertainty in the periods with a higher vacci-
nation rate seems unexplained by lower power as there was a 
higher number of cases (56,990,369) compared to the period 
with lower vaccination rates (n = 39,070,933).

Our sensitivity analysis revealed that the modifier effect of 
the vaccination period on the association between temperature 
and COVID-19 incidence was stronger when using the defini-
tion of fully vaccinated people. (Table S6; http://links.lww.com/
EE/A311). Although there is a lot of uncertainty, the RR in the 
>60% vaccination period was higher (RR: 2.37; CI = 1.19, 4.75) 
compared to the lower vaccination period (RR: 1.10; 95% CI = 
0.91, 1.33). When considering the linear relationship, the asso-
ciation for temperature, AH, and RH were both stronger during 
the <60% vaccination coverage period (Table S7 and Figure 
S15; http://links.lww.com/EE/A311).

Strains

Our analyses of associations between meteorological variables 
and COVID-19 incidence by time periods with different domi-
nant strains show a relatively consistent pattern of RR across 
periods. Temperature, AH, and precipitation show consistent 
associations with COVID-19 incidence during the observation 
period (Table 3 and Figure 5). In contrast, we see no association 
in the three periods per RH and UV. In the sensitivity, consider-
ing a linear relationship, we did however find an inverse associ-
ation for UV during the Omicron period (Table S8 and Figure 
S16; http://links.lww.com/EE/A311).

Discussion
We found evidence of an association between COVID-19 
incidence and temperature. At temperatures of 5 °C, the risk 
of COVID-19 incidence is 1.22 times higher compared with 

Figure 2.  Time series of COVID-19 cases per 100,000 inhabitants aggregated by country, with number of included cities ranging from 1 (e.g., Kuwait) to 204 
(USA).
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a reference level of 17 °C, with the exposure lag association 
reaching a peak at 6–8 days. Additionally, we observed an 
inverse association for AH, with a 1.13-fold increased risk at 
5.0 g/m³ compared with the median value of 9.0 g/m³, though 
this appeared to be driven by its correlation with temperature 
(Table S9; http://links.lww.com/EE/A311). We also observed a 
tendency of increased risk on days without precipitation and no 
association for RH and solar radiation. When we analyzed these 
factors for dominant strain and vaccination levels, we found lit-
tle evidence for interaction with meteorological factors.

This study is a continuing analysis of a preceding study 
conducted using data from the first wave of COVID-19. Our 
findings of an association between mean temperature and AH 
with COVID-19 confirmed the results from the previous analy-
sis. Days with lower temperature and lower AH are associated 
with higher COVID-19 incidence.10 We found no evidence for 
associations with RH or UV; other studies have shown similar 
results.4,6,11,12

Since the first COVID-19 cases emerged and spread globally, 
many articles have been published on meteorological factors and 
their association with COVID-19. Previous studies have shown 
more inconclusive results, but they tended to only cover a short 
timeframe. Baker et al8 hypothesized that at the beginning of an 
outbreak, meteorological factors only play a minor role in trans-
mission. However, when an outbreak stabilizes, there might be 
a clearer association. Much research on meteorological factors 
and COVID-19 was done using different methodologies. A sys-
tematic review25 of studies published within the first 2 years of 
the pandemic found 289 relevant papers. Over a third of those 
articles did not consider lag effects in their analysis. On the other 
hand, we considered a lag of up to 14 days for each meteorolog-
ical variable. Furthermore, our analysis included data covering 
2.5 years, which is much longer than the average observation 
time of 123 days, as reported by Tan et al.25

Our results strengthen the evidence of previous studies on 
the association between temperature and COVID-19. Wang et 
al26 found that increased temperature was associated with a 
lower transmission. Interestingly, they also found a negative 
correlation between high RH and COVID-19 transmission. 
In our study, we found a negative correlation between high 
AH, though this was explained by its correlation with tem-
perature; moreover, we found no correlation for RH. On the 
other hand, they did find a small positive association with 
increased UV exposure, while our results were not statistically 
significant.

Previous modeling studies showed that the effect of meteo-
rological variables should be stronger in an immunized pop-
ulation.8 Our study included vaccination rates and dominant 
strains as possible effect modifiers. The result of this analysis, 
however, does not fully support the hypothesis for a higher 
impact of meteorological variables on immunized persons, as 
the associations for both temperature and AH were very uncer-
tain in the high-vaccination period. One limitation was that we 
used country-wide vaccination rates, which might not be fully 
representative of the vaccination rates for the included cities. 
We did use state-specific vaccination rates for the United States 
to account for the large variability in vaccination coverage 
between the different states; however, we did not use any vac-
cination rates on a smaller spatial scale for the other countries, 
which might experience some level of variability as well. While 
research has shown that vaccination rates are strongly associ-
ated with a reduction in COVID-19 incidence, research on vac-
cination rates as an effect modifier of environmental impacts 
on COVID-19 is still lacking. The difference in the relationship 
between temperature and specific humidity, respectively, and 
COVID-19 transmission among populations with different 
immunization levels was investigated by Villatoro-Garcia et al.27 
They found that COVID-19 transmission fell slightly during 

Figure 3.  Pooled association curves between COVID-19 cases and meteorological variables, with a lag of up to 14 days.

http://links.lww.com/EE/A311
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periods with higher temperatures and higher humidity in vacci-
nated populations. On the other hand, Hasan et al28 found that 
when vaccination rates were included in the model, there was 
no significant change in the impact of meteorological factors.

Similarly, little research has examined different strains as 
effect modifiers. We found no differences in meteorological 
impacts in periods with different strains. To our best knowl-
edge, this is the first study to investigate the association between 
the different strains and the impact of meteorological factors 
on COVID-19 transmission. Looking at other environmental 
factors, a study by Ma et al29 found that in later strains, such 
as Delta and Omicron, susceptibility to COVID-19 significantly 
increased with increased exposure to air pollution.

This study adds to the literature on how COVID-19 inci-
dence is impacted by meteorological variables, which can give 
us insights on where to look for mechanisms impacting the 
incidence. We specifically considered temperature, AH, RH, 
precipitation, and solar radiation as the meteorological factors. 
Some mechanistic studies undertaken in the laboratory found 
that the stability and viability of viral particles is higher in 
lower temperatures, which would explain why in our analysis 

we found lower temperatures to have higher COVID-19 trans-
mission.30,31 According to animal experiments, lower tempera-
ture, and therefore lower blood circulation, could impact the 
body’s ability to fight off respiratory viruses due to impaired 
adaptive immunity.32,33 However, much of the environmental 
impact can also be explained by the related human behavior. 
During winter months, people tend to stay indoors in heated 
environments and closed spaces, resulting in human interaction 
in smaller spaces, which can increase spread. Public transport 
might be more crowded during days with lower temperatures, 
as people are less likely to commute by foot or bicycle in colder 
weather. Being surrounded by more people in a smaller space 
increases the risk of being exposed to someone who is infected 
with COVID-19.34,35

We found that lower AH is associated with a higher risk of 
COVID-19 infection. This positive association is explainable 
by the theory that droplets containing viruses evaporate in 
dry conditions. Through the evaporation, dry nuclei would be 
formed, which could float in the air for longer times.36 However, 
we found no evidence for an effect of AH after controlling for 
temperature.

Table 2.

Associations (RRs and 95% CI) between meteorological variables and COVID-19 incidence, by total RR and vaccination coverage 
threshold of 60%

RRs
(n cases = 96,061,302) I2

Vaccination coverage <60%
(n cases = 39,070,933)

Vaccination coverage >60%
(n cases = 56,990,369)

Mean temperature (5 °C vs. 17 °C) 1.22 (1.09, 1.38) 78.4 1.20 (1.02, 1.40) 1.60 (0.99, 2.57)
RH (60% vs. 70%) 1.02 (0.92, 1.14) 75.5 1.03 (1.02, 1.05) 1.02 (0.77, 1.35)
AH (5 g/m3 vs. 9 g/m3) 1.14 (1.03, 1.27) 73.7 1.17 (1.07, 1.28) 1.23 (0.89, 1.69)
UV (100 W/m2 vs. 200 W/m2) 0.95 (0.71, 1.28) 77.8 0.91 (0.76, 1.10) 0.87 (0.44, 1.74)
Precipitation (0 mm vs. 5 mm) 1.02 (1.00, 1.04) 63.0 1.03 (1.01, 1.05) 1.05 (0.97, 1.15)

Relative risks are for a chosen value compared to a reference value, for example, the overall risk at a temperature of 5 °C is 1.22 times higher compared to the risk at 17 °C.

Figure 4.  Pooled association curves between COVID-19 cases and meteorological variables by periods with low (<60%) and high (>60%) vaccination coverage.
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While we found no evidence for the UV-COVID-19 associ-
ation, the general trend seemed to be that lower UV exposure 
is associated with higher transmission, though the association 
reversed when controlled for temperature. Studies showed 
that UV inactivates viruses in both the air and on surfaces. 
Therefore, higher UV could decrease the exposure to SARS-
CoV-19.37 Comparable to temperature, the relationship between 
UV and COVID-19 incidence could also be explained by human 
behavior, as people tend to go outside in sunny weather and 
spread out more, instead of being in closer proximity indoors. 
Similar to our study, Balboni et al38. found a negative associa-
tion between higher temperature and COVID-19 spread but no 
significant association with RH.38

The sensitivity analysis only showed a small difference 
in results when considering different vaccination thresholds 
or definition of fully vaccinated. When considering linear 
associations, we found slightly stronger evidence of associ-
ations, and when analyzing the effect modification of vac-
cination rates, we also found a stronger association in the 
low-vaccination periods (Table S4–S7; http://links.lww.com/
EE/A311). We considered seasonality in our sensitivity anal-
ysis and found that the RR is mainly present during winter 
and statistically significant for temperature and AH (Figure 
S17; http://links.lww.com/EE/A311). One explanation could 
be population behavior, as people have the tendency to stay 
indoors in more crowded areas during low temperatures in 
winter but tend to spend more time outdoors and spread out 
when the temperature is higher. Another mechanism influenc-
ing this association could be that particles stay in the air lon-
ger under conditions of high levels of AH compared to levels 
of low AH.

A key strength of our study was the size, breadth, and 
spatiotemporal granularity of the data we used. In total, we 
collected data for 96.1 million COVID-19 cases which rep-
resent 16% of the total cases (607,913,476) registered by 
31 August 2022, according to Worldometer.39 First, the data 
included daily COVID-19 cases for 439 cities in 22 countries 
spanning diverse settings across the globe, making it quite 
representative, and by selecting all the cities that are in the 
MCC network we avoided a selection bias. Cities included 
in our study represent 4.7% of the world population, which 
gives the analysis a lot of power and reduction of biases in 
the results. The cities in the MCC network also tend to be 
the largest cities in their respective countries and represent an 
average of 26.4% of their country’s population. Second, the 
observation period was much longer compared with previous 

Table 3.

Associations (RRs and 95% CI) between meteorological 
variables and COVID-19 incidence, by time periods with different 
dominant strains

Initial (first wave)
(n cases = 
25,702,294)

Delta
(n cases = 
14,510,657)

Omicron
(n cases = 
48,085,841)

Mean temperature 
(5 °C vs. 17 °C)

1.41 (1.02, 1.95) 1.35 (1.15, 1.59) 1.34 (1.12, 1.61)

RH (60% vs. 70%) 1.03 (0.85, 1.26) 1.02 (0.83, 1.16) 1.04 (0.99, 1.08)
AH (5 g/m3 vs. 9 g/m3) 1.34 (1.03, 1.74) 1.15 (1.04, 1.26) 1.16 (1.05, 1.29)
UV (100 W/m2 vs. 
200 W/m2)

0.90 (0.58, 1.39) 1.01 (0.67, 1.52) 0.91 (0.64, 1.31)

Precipitation 
(0 mm vs. 5 mm)

1.07 (1.00, 1.15) 1.00 (0.98, 1.20) 1.10 (1.08, 1.13)

Relative risks are for a chosen value compared to a reference value, for example, the risk at a 
temperature of 5 °C is 1.41 times higher compared to the risk at 17 °C during the Initial wave.

Figure 5.  Pooled association curves between COVID-19 cases and meteorological variables by periods with different dominant strains [Initial (First wave), Delta, 
Omicron].
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studies on COVID-19. Using data spanning 2.5 years, we were 
able to analyze several incidence peaks, over different periods 
with varying vaccination coverage and dominant strains. To 
our knowledge, our study included more locations, analyzed 
as smaller spatial units, and longer observation periods than 
most published literature on the subject.4,25 Several ecological 
and time-varying confounders were considered and incorpo-
rated in the analysis.

The study also has a few possible shortcomings. While the 
study area is global, certain regions and locations are still under-
represented, as the cities included are not distributed propor-
tionally over the human population. Furthermore, definitions of 
COVID-19 cases and reporting practices vary from country to 
country, and the GSI, measured at country level, could not fully 
capture governmental interventions as local interventions might 
vary throughout a country and impact the efficiency of govern-
mental interventions.40

Strengthening previous research, this study shows evi-
dence of the relationship between lower temperatures and 
AH levels and COVID-19 incidence. We did not find a sig-
nificant modifier effect of vaccination coverage on the asso-
ciations between meteorological factors and COVID-19. We 
also found no clear differences in the associations between 
the dominant strains. This is one of the first empirical stud-
ies looking at the modifying effect of vaccination cover-
age and dominant strains on the meteorology-COVID-19 
association.
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