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Due to their widespread application in modeling natural issues, the study of piecewise linear
differential systems has gained relevance in recent years. It is well known that the qualitative
theory of piecewise linear differential systems heavily relies on limit cycles. Until now most
studies have only considered planar systems by examining the presence and maximum number
of limit cycles for piecewise differential systems. However few articles studied this issue in R3.
We remind the problem of the existence and the maximum number of limit cycles for planar
discontinuous piecewise differential systems formed by linear differential centers separated by
one or two parallel straight lines that have at most one limit cycle, respectively. Although in R?
the maximal number of limit cycles for the same problem is 0 when the separation surface is a
plane and at most four limit cycles if the separation surface is two parallel planes.

In this article we mainly focus on the problem of the existence and the maximum number of
limit cycles in R3, when the separating surface is formed by two intersecting half-planes.

First we prove that when the entire space is divided into two regions, this family can have at
most five limit cycles, where one limit cycle intersects the separation surface in two points and
the remaining four limit cycles intersect the separation surface in four points. Second when the
entire space is divided into three regions, we prove that the maximum number of limit cycles
intersecting the separation surface in three points and four points simultaneously is at most
eight.
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1. Introduction and statement of the main results

The 1930s noticed the beginning of the first studies of discontinuous piecewise linear differential systems
through the works of Andronov et al., see [Andronov et al., 1996]. After that, due to their extensive
use in modeling the mechanisms involved in numerous natural phenomena, piecewise differential systems
became more and more used in a variety of applied mathematics fields as well as in mechanics, electronics,
economics, neuroscience, and other areas, see for example [Di Bernardo et al., 2008; Makarenkov & Lamb,
2012; Simpson, 2010].

Following the Filippov rules given in [Filippov, 1988], we consider f : R? — R a C* smooth function
for 1 < k < oo having 0 as a regular value and S = f~1(0) the discontinuity region. Denoting by St =
{X = (2,9,2) €ER3: f(X) >0} and S~ = {X = (v,y,2) € R®: f(X) < 0}, we consider the discontinuous
piecewise differential systems of the form

. [F(X), if XeSt
X = {G(X), it Xes, ()

where F; ST — R? and G; S~ — R? are linear vector fields.

A point, X € S is a tangency point of F (resp. G) if F(X) = 0 (resp. G(X) = 0). A point X, of S is
called an escaping point if the vector fields F'(X() and G(Xp) move both either outward, or inward with
respect to S, and it is of sliding type if F(X() and G(X() points inward. The point X is of crossing type
if the vector fields F'(X() and G(X() move in the same direction with respect to S. The Lie derivatives are
useful for classifying points on the discontinuity region S, acting as follows. At the point Xy € S we know
that the Lie derivative has the form

F(f(Xo)) = (Vv f(Xo), F(Xo))-
The transversal points on S with respect to the vector fields /' and G are classified by:
The escaping region: R° = {X € S, F(f(X)) > 0and G(f(X)) <0} formed by escaping points.
The sliding region: R°* = {X € S, F(f(X)) <0and G(f(X)) > 0} formed by sliding points.
The crossing region: R ={X € S, F(f(X))-G(f(X)) > 0} formed by crossing points.

(a) (b) (c)
Fig. 1. (a) Escaping, (b) sliding and (c) crossing regions.

We recall that a limit cycle of a differential system is an isolated periodic orbit in the set of all periodic
orbits of the system. For piecewise vector field in R? if the limit cycle contains only crossing points on the
discontinuity surface, we say that it is a crossing limit cycle. In this paper we are interested in the crossing
limit cycle that will be referred to 3D-limit cycle.

Limit cycles have been considered for the first time by Poincaré [Poincaré, 1891,1897]. Further on,
the occurrence of limit cycles has been well observed in the real world, as the generalized Liénard system
[Kasbi & Roomi , 2018], the limit cycle of the Van der Pol equation [Van Der Pol, 1920, 1926], the limit
cycles of the Belousov Zhavotinskii model [Belousov, 1959], and of the galaxy motion [De Bustos et al.,
2016], and many others, which attracted the attention of the mathematical community, and evolved into
the primary goal of the second part of the 16th Hilbert’s problem. As seen in [Hilbert, 2003; Ilyashenko,
2002; Li , 2003], the second part of the 16th Hilbert’s problem asks for an upper bound for the maximum
number of limit cycles that planar polynomial differential systems of a given degree can have. The same
problem has been extended to piecewise differential systems, and numerous researchers have been working
on finding a solution to this problem for some specific classes of piecewise differential systems during these
last years.



3

Over the past two decades there have been many investigations of the limit cycles of piecewise differ-
ential systems in the plane, see for example [Braga & Mello, 2014, 2013; Llibre, 2023; Llibre et al., 2014;
Llibre & Teixeira, 2018; Zhao et al., 2021] and the references therein. The outcomes in the cited studies
have proved that the number of limit cycles that the piecewise differential systems can have is significantly
influenced by the form of the discontinuity curve.

It has been shown in [Llibre & Teixeira, 2018] that the simplest class of discontinuous piecewise vector
fields in R? produced by arbitrary linear centers separated by one straight line has no limit cycles, and it
has at most one limit cycle if the discontinuity curve is formed by two parallel straight lines. The same
class of discontinuous piecewise differential systems has been considered by Villanueva et al. [Villanueva et
al., 2022] in R3 where they separated the entire space by two parallel planes, and such class of differential
systems can have at most four limit cycles.

This paper investigates the maximum number of 3D-limit cycles for two families of discontinuous
piecewise differential systems in R3 separated by two intersecting half-planes instead of two parallel planes
and formed by linear differential centers in R®. More precisely, we consider arbitrary linear differential
center in R? defined by

with X = (z,y,2) and
mi1 Mmi2 M3 @;20,4C;3 — ;3042 + biabjaciz — bigbiacio
M; = | mo1 mo2 maz |, Ni= | —ai1aici3 + a;3a4¢i1 — birbjaciz + bisbuscin |, (3)
msy Mgz M33 ai104Ci2 — 0;20i4C;1 + bi1biacio — biabisci
such that
_ _ 2 2
M1 = Q18323 — A1ai3C2 + bibiacis — bibiscia,  maz = i3 (a + b)) — ciz(aizais + bigbis),
B 2 2 | 32
mig = ci3(aizais + bigbis) — cia (aZy + b%) ma1 = ci1(aiais + bitbis) — ¢i3 (a + b7)
2 p
Moy = —a1ai2Ci3 + Ainai3cin — bitbiacis + biabiscit, mas = ¢t (aky + b2%) — cis(airais + bibiz),
2 P 2 | 32
ms1 = ¢ig (a + b)) — ca(anai + bibiz), mss = cia(airai + binbio) — it (a + b%)

m33 = a;10;3Ci2 — A;20;3¢i1 + bi1bigcia — bizbizcin,
with its corresponding two independent first integrals
Hi(z,y,2) = cnx + cioy + ¢izz + cia,
Hip(x,y,2) = (ainx + aiy + aizz + ais)?® + (bir@ + bioy + bizz + big)?.

The arbitrary linear differential system in R? defined by the vector field (2), will be referred in this study
as a linear center in R3, or simply a 3D-center.

We note that the vector field (2) is obtained after applying an arbitrary affine transformation
(z,y,2) = (@12 + a2y + a3z + ag, b1 + bay + b3z + by, 1@ + coy + c32 + c4)
to the linear differential system
rT=-y, y=x, z=0,

which has the two independent first integrals Hi(x) = z.and Ha(x) = 22 + 32,
First we discuss our findings regarding 3D-limit cycles for the family of discontinuous piecewise linear
differential systems

MyX + Ny if X € Ry, (4)

where M; and N; with ¢ = 1,2 are given by (3), and the discontinuity surface I' = T';y U I's such that
I ={(z,y,2) ER3:2=0, >0} and 'y = {(x,9,2) € R3: 2 =0, 2> 0}, divides the space into two
regions

X{mx+m if X € Ry,

Ry ={(z,y,2) €ER®:2>0,2>0} and Ry = {(z,9,2) : x> 0,2 <0} U{(z,y,2) : © < 0}.

In this case we realized that there are only two different possible types of 3D-limit cycles for the discon-
tinuous piecewise linear differential system (4) separated by T



Fig. 2. The unique 3D-limit cycle of type T} for the discontinuous piecewise differential system (7)-(8) in two different views.

- The type T corresponding to the 3D-limit cycles intersecting the separation surface I at two points,
one in I'y and the other one in I'y, as shown Figure 2.

- The type T corresponding to the limit cycles intersecting I' at four points, two in I'; and the two
others in I'9, as shown Figure 3.

Fig. 3. Two different views of the four 3D-limit cycles of type T» for the discontinuous piecewise differential system (10)-(11).

Concerning the type of limit cycles intersecting with the separation surface I' at two points either in I'y,
or in I'y they do not exist, see for instance [Villanueva et al., 2022].
Our main results are stated in the next theorem.

Theorem 1. The family of discontinuous piecewise differential system (4) separated by I' and formed by
3D-centers has at most

(a) one 3D-limit cycle of type Ty, see Figure 2;
(b) four 3D-limit cycles of type To, see Figure 3;
(¢) five 3D-limit cycles of types Ty and Ty simultaneously.

There are examples of discontinuous piecewise differential system (4) having simultaneously one 3D-limit
cycle of type T1 and three 3D-limit cycles of type Ty, see Figure 4.

We cannot find an example of five 3D-limit cycles of types 177 and 75 simultaneously. But we have
provided an example of four 3D-limit cycles.
Theorem 1 is proved in section 2.



Fig. 4. Two different views of the three 3D-limit cycles of type T5 and one limit cycle of type T} simultaneously for the
discontinuous piecewise differential system (12)-(13).

Second we present our results on the 3D-limit cycles of the second family of discontinuous piecewise
linear differential system
_ M. X+ N, ifXeR,,
X=X MX+N;, ifXeRy, (5)
M;X + N; if X € Ry,

where M; and N; with i = r,[,d are given by (3), and the discontinuity surface ¥ = 31 U ¥y U X3 where
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Fig. 5. Two different views of the four 3D-limit cycles of type T3 for the discontinuous piecewise differential system (15)-
(16)-(17).

Y1 ={(z,y,2) ER3:2=0, >0}, Y ={(z,y,2) ER*:2=0, 2>0}and X3 = {(x,9,2) ER3: 2=
0, x <0} divided the space into three regions
R, ={(z,y,2) €R®*:2>0,2>0}, R ={(z,y,2) €eR®:2<0,z>0},
and
Ry ={(z,y,2) € R®: 2 < 0}.

The discontinuous piecewise linear differential systems (5) have two different types of 3D-limit cycles
separated by X.

- The type corresponding to the 3D-limit cycles intersecting the separation surface ¥ at four points, two
in ¥y and the two others are either in X1 or in X3 is equivalent to the type T4 of the family (4) but in
this case we have three regions instead of two regions. So, from the results of the family (4) it follows



that there are at most four limit cycles of this type and there are piecewise differential systems of the
second family with four limit cycles of this type.

- The other type named by T3 corresponding to the 3D-limit cycles intersecting the separation surface
> at three points, one point in each of the half-planes Y with k£ = 1,2, 3, as shown Figure 5.

The second main result of this paper is presented in the following theorem.

Theorem 2. For the family of discontinuous piecewise differential system (5) separated by X and formed
by 3D-centers, there are

at most four 3D-limit cycles of type T3, see Figure 5;
at most eight 3D-limit cycles of types To and T3 simultaneously, see Figure 6.

Theorem 2 is proved in section 3.
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Fig. 6. Two different views of the eight 3D-limit cycles of types T2 and T3 simultaneously for the discontinuous piecewise
differential system (18)-(19)-(20).

2. Proof of Theorem 1

In this section we are going to provide the maximum number of 3D-limit cycles of type 17, 15, and 11 and

T, simultaneously, for the discontinuous piecewise differential system (4) separated by I' and formed by
3D-centers.

Proof. [Proof of statement (a) of Theorem 1] If there is a limit cycle of type T; for the discontinuous piece-
wise differential system (4) separated by I'" and formed by 3D-centers, it must intersect the discontinuity
surface I" in the two points X, = (z,,¥,,0) and X, = (0,yu, 2,), where x,, z, > 0. It is clear that these
two points must verify the following closing equations with the variables vy, 2y, z, and y,.

Ey = Hu(2r,yr, 0) — H11(07yu7zu) =0,
= Hia(zr, yr,0) — Hia( ) =
= H1(0, Yu, 2u) — Ha1 (21, yr, 0) = 0,
Ey = H(0, yu, 24) — ( 0)=0,

O ylhzu

7

Hoo(zr, yr,
or equivalently

E1 = c12yy — c112r — c12yr + €132y = 0,
Eo = (a14 + a12Yy + a1324)? — (a14 + @112 + a12y,)? — (b1a + b1y + b2y, )? + (b1a + bi2yw + bi3zu)? = 0,
E3 = cooyy — 210y — o2y + €232y = 0,

Ey = (a4 + a2y + a2324)? — (a24 + a1 + agoyr)? — (bag + b1y + by )? + (baa + bogyu + bazzy)? = 0.
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Since the equations £ = 0 and F3 = 0 are linear, we have to study these two different cases c1oc21 —c11¢00 #
0 or C12€C21 — C11C22 = 0.
Case 1. If we assume that cioco1 — 11099 # 0, from the system Fy = 0 and E3 = 0 we get
_ C13C222y — C12C232y _ C11C22Yy — C12€21Yy + C11C232y, — C13C21 2y

r ) r
C11C22 — C12€21 C11C22 — C12€21

Replacing these expressions of the two variables x, and ¥, in the remaining equations Fs =0 and E4 =0
we find

Ey = —2(c12¢21 — c11¢22)(ca3(—cia(arnaia + biibia) + arzaiacii + bizbiacin) + arnaiacizear
—ai2a14¢13¢21 + a13a14(c12c21 — c11622) + br1biacizca — biabiscizear — bizbisciican
+bigbiaciacor) + 2yu(ciacar — cr1e22)(ara(aiciaces — aricizcan + arzciicor — aizci2
21) + aiy(c13c21 — cr1c23) + bia(briciacas — biicizcas — bizciicas + biacizcar + biscnn
o2 — bizcizcar)) + zu(c35 (cly (af) + b3,) — 2c11c12(ar1a12 + biibiz) + ¢y (ady + b1,))
—2c13¢23(c12022 (afy + b%,) — arrarz(cricon + c12e21) + afyciicar — birbia(cricos + ci2
e1) + bigcr1a1) + ci3(c5q (ai) +01y) — 2ca1022(a11a12 + bibia) + ¢35 (afy + b1y))

—a3;(c1aca1 — c11022)? — b25(c12c21 — c11092)?) = 0,

Ey = —2(c12¢21 — c11¢22)(cas(—cra(aziagg + barbas) + agsassciy + baabascr1) + agiasaciscas
—a22a24C13C21 + a23a24(c12€21 — €11¢22) + bobagcizeas — basbagcizcar — bagbasciicon
+basbagcracar) + 2y (c12c01 — c11¢22)(a22(ag1c12¢23 — ag1c13¢22 + ag3C11C22 — A23C12
c1) + ady(c13ca1 — ci1c23) + baa(barciacas — barcizcaz — baaciicas + bascizear + basenn
c22 — bageracan)) + zu(cds(c3y (a3, + b%y) — 2er1cia(asiags + barbas) + 3 (a3, + b3y))
—2c13¢3(c12¢22 (a3) + b3)) — ag1aga(crican + craca1) + a3aciicar — barbaa(crican + cio
c21) + 632011021) + 6%3 (C%z (a%l + b%l) — 2¢91¢92(ag1a22 + barbag) + C%l (a%2 + b%2))
—agz(craca1 — c11022)” — bis(cracar — cr1c)?) = 0.

Since Fs = E4 = 0 is a linear system of equations in the variables y, and z,, it has at most one real
solution. Then in this case we find that it is possible to have at most one 3D-limit cycle of type T for the
discontinuous piecewise differential system (4) separated by I

Case 2. If we assume that cioco1 — c11¢99 = 0, we have to study two subcases.

Subcase 2.1. If co; # 0 then c19 = (c11¢22)/co1 and we get x, = (co32y — C22Yr + C22Yn)/c21 from
the equation E3 = 0, and by substituting =, in E; = 0 we get z,(co1¢13 — c11¢23) = 0 that implies either
zy = 0 which contradicts the assumption that z, > 0, or co1¢13 — c11¢23 = 0, which reduces the number of
equations of system (6) to two polynomial equations containing three unknowns y,, v, and z,. Thus this
system has infinitely many solutions that produce a continuum of periodic solutions of the discontinuous
piecewise differential system (4). Then we cannot have 3D-limit cycles.

Subcase 2.2. If co; = 0 then c11c00 = 0 and we distinguish two possible subcases.

2.2.1. Incase of co1 = ¢11 = 0 and c22 # 0. If ¢12 # 0 then from E; = 0 we get y, = (c12yu+cC1324)/C12.
We substitute y, in F3 = 0 to find E3 = z,(c12c23 — c13¢22) = 0 which implies either ¢12¢23 — ¢13¢220 = 0
or z, = 0. If ¢19c03 — c13¢00 = 0 we have infinitely many solutions, and if z, = 0 we have a contradiction
with the assumptions. Therefore there are no 3D-limit cycles. But if ca1 = ¢11 = ¢12 = 0 and c¢g2 # 0. The
equation becomes Fy = c132, = 0, which implies either z, = 0 for ¢13 # 0 that is a contradiction with the
assumption of the theorem, or ¢;3 = 0 and then we have infinitely many solutions.

2.2.2. If cog1 = coo =0 and c11 # 0 or co1 = c99 = c11 = 0, we know that F3 = cogzy. If co3 = 0
we have infinitely many solutions, and if z,, = 0 we have a contradiction with the assumptions. Therefore
there are no 3D-limit cycles.



Consequently the maximum number of 3D-limit cycles of type T; for the discontinuous piecewise
differential system (4) separated by I' is at most one.
Now to confirm that the upper bound obtained is reached, we consider the differential system

@~ 7.34011z — 0.108903y — 11.1167z — 1.90548,
§ ~ —51.9801 + 4.64989y + 35.54392 — 18.7173, (7)
i~ 23.7087 — 2.5y — 11.992 + 11.686,

in the region R;, where

Hyi(x,y,2) =~z + 0.8y + 1.4444~ + 20.3801,
Hya(z,y,2) = (0.52 — 0.3y + 2.5z + 2.3)2 + (5.1z — 0.5y — 32 + 2.2)2,

are two independent first integrals. In the second region Rs, we consider the differential center

T ~ 66.9666x — 75.7593y + 16.81252 — 16.8125,
Y~ 986.758z — 9.61355y — 68.3345z + 68.3345, (8)
z ~ 807.857x — 2.94128y — 57.3532 + 57.353,

having the two independent first integrals

Hoi(z,y,2) ~ —6.37847x 4 80y — 97.1874z — 2,
Hoo(x,y,2) ~ (3.17294x — 0.1y — 0.2z 4+ 0.2)2 + (0.22 +y — 0.3z + 0.3)%.

The unique solution of system (6) satisfying x1,, 214, > 0 is (11, Y1r, Y1u, 214) =~ (0.366549, 0.316725,
1.4891,0.989095), which provides the unique 3D-limit cycle of type Ty for the discontinuous piecewise
differential system (7)-(8) separated by I, see Figure 2. W

Proof. [Proof of statement (b) of Theorem 1] If there is a limit cycle of type T3 for the discontinuous piece-
wise differential system (4) separated by I', then it has four intersection points on the discontinuity surface
I" noted by X; = (21,4,0), X = (24, 4r,0), Xy = (0,9u, 24) and X4 = (0,yq, za), where 21, 2, 24, 2y > 0,
X; # X, and X4 # X,. Therefore the conditions in the following equations must be achieved.

= Hu1(21,41,0) — H11(0,y4, za) = 0,
Hio (i, y1,0) — Hi2(0,Ya, 24) = 0,

l(afra Yr, ) Hll(o Yuy Zu
E4—H12($r,yr> 0) — H12(0, Yu, 2u ;
21(0, Yu, 2u) —
( ) —
(
(

)

)=20

)=0

H51(0, Yu, 2u) — H21(0, 94, za) = 0,
)=0

H9(0, yu, 2u) — H22(0, Y4, 24

E7_H21 Ty Yl ) H21(x1“7y7“5 )_07
= Hao(21,y1,0) — Hao(wr,yr,0) =0

)



having x;,y; with i = 7,1 and y;, z; with j = u,d as the variables. System (9) is equivalent to

Ey = ez — c12ya + ci2yr — 1324 = 0,

By = (a14 + an1zy + aroyn)? + (b1a + by + bioyr)? — (a14 + a1oyq + a132q)* — (bra + biaya + bizzq)*> = 0,
E3 = crizy + c12yr — c12yu — 1324 = 0,

Ey = (a14 + anizy + a12y,)? 4 (bia + buuwy + bioyr)? — (014 + a12yu + a1324)? — (bra + broyu + bi3z4)* = 0,
Es = caoyu — c22yd — 2324 + C2324 = 0,

Eg = (a4 + a2ayu + a23zu)? — (a24 + a22ya + a232a)® — (b2 + baoyq + bazza)? + (baa + baoyu + bazzu)* = 0,
E7 = co17p — co1mr + ooy — co2yr = 0,

Eg = (ag4 + ag1z; + agoy))? + (baa + barxy + booyn)? — (az4 + a21@y + agayr)® — (baa + ba1, + boayy)® = 0.

Analysing the linear odd equations F; = 0 with j = 1,3,5,7 we distinguish two cases cia2c22(c12c23 —
c13¢22) # 0 and ciae92(craca3 — c13¢22) = 0.

Case 1. By supposing ciacaa(ci2¢23 — c13¢22) # 0 and solving the system of the odd equations E; = 0

with j = 1,3,5,7 regarding y,, y;, yq and z4, we obtain

yr = (c132y — c11%7 + C12Yu) /12, Y1 = (C13C222y — C12C21T — C11C22Ty + C12€21 %1 + C12C22Y0) / (C12C22),

Ya = (012021023561 — €11C22C237%] + C11C22C23%y — C12C21C23%y — C12C22Yy + 013032%)/(022(013022 - 012023)),

zq = l(c11622%1 — C12€2171 — C11C22T + C12€21T7 — C12C232y + C13C2224) /(C13C22 — C12€23).
Upon replacing v, y;,yq and z4 in the remaining four equations, we obtain four new equations E; =0
for j = 2,4,6,8, with big expressions that we omit to write. We notice that the maximum exponent of
the equations E} = 0 and E) = 0 is two and that one is the maximum exponent for each variable in the
equations Eg = 0 and E§ = 0. Now we solve E§ = 0 and E{ = 0 for z, and z,, and substituting their
expressions in the two equations E} = 0 and E)} = 0 we obtain two quadratic equations having x, and yq4
as the two independent variables. According to Bézout theorem (see [Shafarevich & Lamb, 1974]), we can
find in this case at most four 3D-limit cycles of type T3 for the discontinuous piecewise differential system
(4) separated by I' and formed by 3D-centers.

Case 2. If we consider cjac92(c12¢23 — c13¢22) = 0, we distinguish the following subcases: ¢12 = 0 and
c29c13 # 0, or c1ace3 # 0 and coo = 0, or ¢12 = 0 and co2 = 0, or ¢12 = ¢13 = 0 and c9g # 0, or ¢33 # 0 and
22023 = 0, or ciac22 # 0 and co3 = (c13¢22)/c12.

Subcase 2.1. If ¢c1o = 0 and co2c13 # 0, from the system of linear equations 1 =0, F3 =0, F5 =0
and F7 =0 we get

za = (crimy) /13, zu = (cn1@r)/c13,  Ya = (C11¢232r — C11C2321 + C13¢22Y0) / (C13¢22),
y = (621$r — 1T + C22yr>/022-

Now by replacing these expressions of the variables y;, y4, 2y, and z4 in the remaining equations FEy = 0,
FEy =0, Fg =0 and Eg = 0, we obtain four new equations E; =0 for j = 2,4,6,8, with big expressions
that we omit to write. Solving the equations Ej = 0 and E}{ = 0 with respect to y,, and y, we get

yu = —((—2a20a24¢13¢22¢23 + 2a23024€13¢55 — 2basbaacizeancas + 2bazbaacizc3y + a3yc1165321 — 2a2a03
C11C22C232] + CL%3CHC%2£L’1 + b%QCHC%?,xl — 2b22()23011022023.%’[ + 533011632.%[ — a%QCuc%gx,« + aggcn
3oy — b3yc11C35x, + 330116301 /(2¢13C22 (—aBoCo3 + a20a23020 — b3aca3 + bagbazeas))),

Yr = —((2a21a24¢35 — 2a92a24¢21¢92 + 2b91b24C39 — 2ba2boycarcan + a3 3o — 2a21a22091C20T) + a39¢3
T + b3 3oz — 2b21boacor cooT) + b39Ch Ty + a3 By — a3yCE Ty + b3 oz — U393 21) [/ (2¢02(an1
a22C22 — 3521 + ba1baocas — b3yca1))).

By substituting these expressions of y,, and y, in E) = 0 and Ej = 0 we obtain two quadratic equations
with the independent variables x, and x;. According to Bézout theorem, we know that the discontinuous
piecewise differential system (4) has at most four 3D-limit cycles of type Tb.
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Subcase 2.2. If ¢99 = 0 and c¢2c23 # 0, then from F5 = 0 and E7 = 0 we get z, = zg and x, = z; by
replacing them in F; = 0 and F3 = 0 we get
_ C12Yu — €117 + C1324d = C12Yd — C11%] + C1324

r = s W=

C12 C12

Replacing y, and y; in the remaining equations E; = 0 with j = 2,4,6,8 we get new quadratic equations
E; =0 with j = 2,4,6,8. We have

By = (Ya — Yu) (2012551(@216@2 + ba1ba) — 2c117; (a3, + b3y) + c12(2a22a24 + 2b22b2s + ya(a3s + b3y)

+a3yyu + D3oyu) + 2¢1324 (a3 + b35) ) =0.

. : : . . . c a22a24 + baob
Since ¥y, # Y4, the unique solution of the equation E{ = 0 with respect to yq is yq = i:El — w-
C12 a5 + b3
a1a ba1b c
Wﬂ?l — Cﬁzd. After replacing y4 in B = 0 with j = 2,4,6 we get new equations £ = 0 with
22 22 12

Jj =2,4,6. Solving E = 0 with respect to y, where
E¢ = (c1ami(ag1a2: + baibao) — criay (a3y + b3y) + c12 (a22a24 + baobas + yu (a3y + b35)) + 1324
(a35 + b35)) (—cr2@i(ag1a22 + barbag) + 113y (a3y + b3y) + cr2(azzazs + basbas + yu(ady
+b%2) + 2(122@232d + 2b22b232d) — C132d (a%2 + b%Q)) =0.

we get y, = Cixl _ G202t b22ba4 _ Gdz b21b22 x; — Cﬁzd as the unique solution. Then by Bézout
12 a2, + b3, a3, + b3, 12

Theorem the quadratic system formed by Ef = 0 and EJ = 0 can have at most four real solutions.

Consequently in this case we can find at most four 3D-limit cycles of type T5 for the discontinuous piecewise

differential system (4).

Subcase 2.3. If ¢12 = co9 = 0, then from F5 = E7y = 0 we get z, = z4 and x, = x;, by replacing them
in By =0and F3 =0 we get £ = F; = E3 = c112; — c1324- Then a new system of five equations F = 0,
Ey =0, E4 =0, Eg =0 and Eg = 0 and six unknowns (7, Y1, Yr, Yd, 2d, Yu) is obtained. So we cannot have
3D-limit cycles.

Subcase 2.4. If co9 # 0 and c19 = ¢13 = 0, the equations F; = 0 and E3 = 0 becomes F; = c112; =0
and E3 = cj12, = 0. If ¢17 = 0 system (10) becomes a system of six equations with eight unknowns, then
we cannot have 3D-limit cycles. If ¢17 # 0 and due to the fact that x;, 2, > 0, then system (10) has no
solutions.

Subcase 2.5. If ¢19 # 0 and c22 = co3 = 0, the equation E5 = 0 and system (10) becomes a system of
seven equations with eight unknowns that can not provide any 3D-limit cycles.

C13C
Subcase 2.6. If ciaco0 # 0 then cog3 = 13722
12

, from Fy = F3 =0 we get

ya = (c11z + ci2y; — c132q)/c12,  Yu = (c112r + C12yr — C1324)/C12,

by replacing them in E5 = 0 and Fy = 0 we find x; = z, and y; = y, which is a contradiction with the
assumption of the theorem. Then no 3D-limit cycles.

Consequently the maximum number of 3D-limit cycles of type To for the discontinuous piecewise
differential system (4) separated by I' is at most four.

By providing a discontinuous piecewise differential system in R? separated by I' and constructed by
3D-centers with precisely four limit cycles of type Ts, we can now guarantee that the upper bound obtained
is reached. We consider the first 3.D-center

T~ —421.382x — 124.801y — 210.1152z + 225.766,
Y~ 775.3187 + 228.516y + 378.809z — 406.025, (10)
z ~ 828.857 + 214.044y 4 192.8662 — 178.943,
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which has
Hii(x,y, 2) ~ 75.139x + 42.4413y — 1.5z + 173.489,

His(x,y,2) = (0.72 + 0.4y + 1.72 — 2.)2 + (—6.0 — 1.55y — 1.4z + 1.3)%
as two independent first integrals defined in R;, and the 3D-center
T~ —87.1281x — 14.7292y — 33.6255z — 8.03317,

Y ~ 245.848z + 66.4952y + 92.77752 — 35.8364, (11)
a2 47.0065z — 21.5974y + 20.633z + 73.6542,
in Rp, having
Hoi (z,y, 2) ~ 63.6263z + 19.416y + 16.3863z + 0.8,
Hys(x,y, 2) ~ (—2.80146x — 1.43607y — 1.2 + 2.)? + (—4.96673x — 1.03907y — 1.92 + 0.01)?,

as two independent first integrals in Rp. Then the four solutions of system (9) satisfying x;j, zir, > 0,
X # X and X, # Xjq with ¢ = 1,2,3,4, j =r,l and k = u, d that provide the intersection points with
I' of the four 3D-limit cycles of type T3 for the discontinuous piecewise differential system (10)-(11) are

(Tt Yirs T10 Y11y Yids Z1ds Ylu, Z10) & (3.11249, —9.05624, 1.97147, —8.48574, —4.71924, 2.78076,
—2.8636,4.6364),

(Zar, Yars Tt Yoty Yads Z2ds Yous Z20) ~ (3.60217,—9.30109, 1.48179, —8.24089, —5.38473,2.11527,
—2.19811, 5.30189),

(37 Y3rs T30, Y31 Ysds Z3ds Ysus 230) ~ (3.92854, —9.46427,1.15542, —8.07771, —5.84482, 1.65518,
—1.73803,5.76197),

(Zar, Yars Tag, Yai, Yads Z4ds Yau, Z4u) ~ (4.19155, —9.59577,0.892413, —7.94621, —6.21922, 1.28078,
—1.36362, 6.13638).

This establishes the four 3D-limit cycles of type T5 for the discontinuous piecewise differential system
separated by I" and produced by the 3D-centers (10) and (11), see Figure 3. W

Proof. [Proof of statement (¢) of Theorem 1] From statement (a) of Theorem 1 we know that one is the
maximum number of 3D-limit cycles of the discontinuous piecewise differential system (4) of type 71, and
in the statement (b) of the same theorem we showed that four is the maximum number of 3D-limit cycles
of type T» for the same system. Therefore the upper bound number of 3D-limit cycles for discontinuous
piecewise differential system (4) of types 77 and T simultaneously is at most five.

Here we provide a discontinuous piecewise differential system of the form (4) separated by I' and
formed by 3D-centers that has exactly one 3D-limit cycle of type T7 and three 3D-limit cycles of type T5.
In region R; we consider the differential system

T~ —445.784x — 128.3y — 211.2 4 229.47,
Uy~ 291.36x + 81.044y 4 124.12z — 138.2, (12)

z ~ 1369.36x + 337.878y + 364.74z — 469.3,
with the independent first integrals
Hyi(x,y,2) =~ 20.2 + 40.y — 2z + 321.,
Hya(z,y,2) = (0.80 +0.49y + 1.7z — 1.5)% 4+ (—6.22 — 1.5y — 1.5z + 2)%

and in the region Ro we consider
T~ 17374.6z 4+ 4910.16y — 10140.82 — 6942.8,

Yy~ —11661.3z — 3188.89y + 6843.63z + 4490.63, (13)
z ~ 23791.92 + 5870.45y — 14185.7z — 8153.83,
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having
Hy(x,y,2) =~ 20.z + 40.y + 5z + 321.,
Hoo(x,y,2) ~ (—12.92442 — 13.6695y + 4.028162z + 21.0513)? + (—23.45062 — 2.8862y
+15z + 3.43746)2,

as two independent first integrals. Now the three solutions of system (9) representing the intersection points
of the three 3D-limit cycles of type T3 for the discontinuous piecewise differential system (12)-(13) with T',
satisfying x;j, zir. > 0, Xy # Xir and X, # Xiq with ¢ =1,2,3, j =r,l and k = u,d are

(Z1y Yirs T Y1y Yids Z1ds Yius 210) & (3.49769, —8.24885,0.94326, —6.97163, —5.12609, 1.37391,
—1.27637,5.22363),

(Zar, Yors Tt Yots Yods Z2ds Yous 220) = (3.608, —7.804, 0.551484, —6.27574, —5.19707, 0.802926,
—0.60935, 5.39065),

(230, Ysrs T30, Y1y Ysds Z3ds Y3u, Z30) ~ (3.682, —7.341,0.196025, —5.59801, —5.21476, 0.285236,
0.00437844, 5.50438),

and the unique solution of system (6) representing the two intersection points of the unique 3D-limit cycle
of type T for the discontinuous piecewise differential system (12)-(13) with I', satisfying x4, 24, > 0 is

(Tars Yars Y, 240) =~ (3.73181, —6.8659, 0.582336, 5.58234).

This proves the existence of four 3D-limit cycles of types T and T for the discontinuous piecewise
differential system separated by I' and formed by the 3D-centers (10) and (11), see Figure 3. This example
completes the proof of Theorem 1. M

3. Proof of Theorem 2

In this section we have to provide the maximum number of 3D-limit cycles of type T3, or T» and T3
simultaneously, of the discontinuous piecewise differential system (5) separated by ¥ and formed by 3D-
centers.

Proof.  [Proof of statement (a) of Theorem 2] In order to obtain 3D-limit cycle of type T3 which intersects
the separation surface ¥ in three points X, = (z,,y,,0), X; = (z1,4,0) and X, = (0, yu, 2,), where
x; < 0 < x, and z, > 0, it is necessary that these points satisfy the following system having v, z,, x;, and
y; with ¢ = r,[ as the variables.
(557“’ Yr, ) rl(o Yu,s Zu) = 0
2($r;y7"7 ) 7‘2<O7yu7zu) = 07
E3 = Hll(o Yu,y 2 u) Hl1($la ylao) = 0’ (14)
E4 = Hi3(0, yu, 2u) — Hip(2,41,0) = 0,
) Hdl(xhylao) = 05
0) —

Hd2($l,?/la 0) = 07

Hay (v, yr,

E¢ = Hap(xr, yr,
or equivalently
Ey = croyy — cr1mr — oy + cr3zy = 0,
Ey = (ara + aroyu + ar32u)? — (ara + ar12r + aroyr)? = (bra + b1y + brayr)® + (bra + brayu + brzza)® =0,
E3 = cioyu — cnw — cipyr + azzu = 0,
By = (ais + appyu + aizzu)? — (as + anwr + apyr)® — (bia + by + bioyr)? + (b + biayu + bizza)* = 0,
E5 = ca1w — ca1wr + cagyi — ca2yr = 0,

Es = (ags + ag1m; + agoyr)? + (bas + barxi + bazyr)? — (aas + aa1 @y + agayr)? — (baa + barzr + bazyr)? = 0.
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Since the equations E1 = 0, F5 = 0 and F5 = 0 are linear, we have to study these two cases cq1(¢i3cr2 —
cpcr3) # 0 or car(cacra — cacr3) = 0.

Case 1. By assuming that cg1 (¢3¢0 — cia¢r3) # 0 and solving the system of equations E1 =0, E3 =0
and E5 = 0 for the variables y,, z, and x,, we get

Yu = (Ca1€13¢1T1 — Ca1C11T1 — Ca1C126r3Y) + Ca2CI13C1 Y1 + Ca1Ci3Cr2Yr — Cazizcriyr)/ (ca1(cizcra — ci2¢r3),
2y = (Cq1C116r2%] — Ca1C1221 + Ca1C12C2Y1 — Cd2CI2Cr Yl — Cd1C12Cr2Yr + Ca2Ci2Cr1Yr) /(a1 (cizcra — C2¢r3),
Ty = (cq11 + caayi — Ca2yr)/Ca1-

After replacing yy, 2z, and z, in the remaining equations E; = 0 for j = 2,4,6 we obtain new expressions
that we denote by E; =0 for j = 2,4,6. We do not provide the large explicit expressions of the equations
B’ =0 for j = 2,4,6 that will need several pages to write them. We remark that the two equations £ = 0
and E) = 0 are quadratic while Ej; = 0 is linear. By solving the equation Ej; = 0 for the variable x; that
we substitute in the equations F) = 0 and E) = 0, we obtain two quadratic equations namely F} = 0 and
EY = 0 in the variables 3, and y;. Then based on the Bézout Theorem, there exists at most four 3D-limit
cycles of type T3 for the discontinuous piecewise differential system (5) separated by 3 and formed by
3D-centers.

Case 2. If we consider cq1 (¢j3¢r2 — ¢i2¢r3) = 0, we find these three subcases ¢g; = 0 and ¢3¢0 — ¢ja¢r3 #
0, or ¢q1 # 0 and ¢3¢0 — ci2cr3 = 0, or ¢q1 = 0 and ¢3¢0 — ¢jacr3 = 0.

Subcase 2.1. If ¢y = 0 and ¢3¢0 — ¢o¢r3 # 0, we get y; = y, from the equation F5 = 0. Solving
FE1 =0 and F3 =0 gives

_ Cl1Cr3T1 — C3Cr1Tr — C12Cr3Yu + C13Cr2Yuy o Cl1Cr2T] — C12Cr1 Ty
r = , v =
Ci3Cr2 — C12Cr3 Ci3Cr2 — C12Cr3

by replacing y, and z, in F; = 0 we get new system of equations E; =0 with j = 2,4, 6, where

EL = (z; — x,) <a:l(—cmcrg(a§1 + b%1) + ascr (ay + b3;) + 2c1¢3(aqiage + barbaz)) + iz, (cra
(a?ll + b?ll) —2¢ (adladg + bdlbdg)) — C12Cr3Ty (a?ﬂ + bgl) + 2(Cl3cr2 - ClQCr3)(adlad4 + ba1
bas + aq1aq2yu + bdlbdzyu)) = 0.

Since x, # x;, the unique solution of the equation E§ = 0 with respect to v, is

2 2 2 2
~cenwy 2(aa10as + barbas) + (adl + bdl) + Ty (adl + bdl) + C12C13Cr1Tr — C1CI3Cr2T]
= _

2 2(ag1ad2 + baibaz) ciz(cizera — cracr3)

when ¢ja(agiage + bg1bge) # 0. Then after replacing y,, in Ef = 0 and Ej = 0 we obtain a new quadratic
system of equations E = 0 and Ej = 0, which implies that system (6) has at most four real solutions.
Thus at most four 3D-limit cycles of type T3 for the discontinuous piecewise differential system (5). For
the case ¢ja(aqg1aq2 + baibge) = 0 we notice that the discontinuous piecewise differential system (5) has at
most four 3D-limit cycles of type T5.

Subcase 2.2. If c¢q; # 0 and ¢j3¢2 — ¢a¢.3 = 0 we have three different subcases.

c
2.2.1. If¢o #0 and ¢3 = T3, we get
Cr2
Cd2
x, =x + o (Wi —yr), Yu = (carcr1@1 + caacr1yi + Ca1Cr2Yr — Cd2Cr1Yr — Cd16r32u)/ (Cd16r2),

after solving the equations F; = 0 and E5 = 0. By replacing z, and y, in F3 = 0 we distinguish two
different cases cjpc1 — cicra = 0 or ¢acr1 — ¢rcro # 0.

C12Cr1 .
2L Since yi # yry Bz = oy — yr)(cancrn — carcra) = 0

2
has no solution or infinitely many solutions. Then there are no 3D-limit cycles.

2.2.1.1. If Ci2Cr1 — C|1Cr2 = 0, ie. Cl1 —
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cia(caicra — ca2cr1)

car(ciacr1 — ccr2)
z; in E; = 0 we get new quadratic equations E; =0 with j = 2,4,6, where

2.2.1.2. If ¢jp¢,1 — cicr2 # 0, and from Ej = 0 we get x; = (yi — yr). By replacing

Eg = (yi — yr) (20d1(0l20r1 — an¢r2)(—caz(agiaga + barbas) + ageagacar + bazbascar) + yi(caz (a3y + b%;)
(—2ca1¢12¢r2 + cazciiCra + cazciacr1) + 2ag1agacaicia(caicra — caacr1) + a2y (cracr — cricra) + 2
barbazcaici2(Caicra — Caacrt) + bigchy (ciacr1 — cner2)) + yr(—caz (a3) + b3) (—2carciacra + caren

2 2

cr2 + CgaC26r1) + 2aq1042¢q1¢r2(Cazcn — cq1ci2) + agyc (Ci2cr — cricr2) + 2bgibaacqi cra(cazen
2 2

—caic2) + biocs (cracr — Cllcr2))> =0.

Due to the fact X, # X; we know that y, # y;, then we can get the linear expression of one of the unknown

variables y,, or y; from E§ = 0. By replacing the linear expression of the finding variable in Ef = 0 and

E, = 0 we will get a quadratic system of two equations with two variables with at most four real solutions.

So there are at most four 3D-limit cycles of type T3 for the discontinuous piecewise differential system (5).
2.2.2. If ¢,o =c¢p=0and ¢.3 #0, from E; =0 and E5 = 0 we get

Cr1 Cd2
Zy = Lxra x :xeri(yr*yl),
Cr3 Cd1
by replacing z, and x, in the remaining equations, and from FE3 = 0 we get y; = (cqi(cpners —

ci3¢r1)xy)/(Cazcicrs) + yr because if cgo = 0 and ¢3 # 0, or ¢ = 0 and ¢g2 # 0, or ¢go = 0 and
¢;1 = 0 the equations E3 = 0 becomes either z,(¢i3c,1 — ¢1¢r3), Or €13¢r1Ty, OF €32y, respectively. In all
these cases 0 is the unique solution of F3 = 0, which contradicts the assumption of the theorem. Now by
replacing y; in the even equations E; = 0 we find a new quadratic system of equations named by EJ’ =0
with 7 = 2,4, 6, where

Eg = zr(cizer — cincrs) (Cllcr?’xr(cglz (a31 + b31) - C?ll (afn + b?m)) + ascr1y (032(5131 + b?ll) — 2¢a1€a2
(ag1aaz + barbaz) + %y (a2, + %)) + 2cazciiers(caz(agiags + barbaa + aqiaaeyr + barbasyr) — ca1
(aa2ads + bazbas + yr(aly + b?[g)))) =0.

From the equation Ej = 0 we can get the linear expression of one of the unknown variables z, or y,. By
replacing the linear expression of the finding variable in E), = 0 and Ej = 0 we will obtain a quadratic
system of two equations with two variables with at most four real solutions. So there are at most four
3D-limit cycles of type T3 for the discontinuous piecewise differential system (5).

2.2.3. If ¢;o = ¢r3 = 0 and ¢9 # 0 or if ¢9 = ¢9 = ¢r3 = 0, under these conditions the equation
Ey = 0 becomes Fi = ¢x,- = 0, that implies either x,. = 0 for ¢,; # 0 that is a contradiction with the
assumption of the theorem, or ¢,; = 0 and then we have infinitely many solutions.

Subcase 2.3. If ¢y = 0 and ¢3¢0 — ¢acr3 = 0, we have two subcases

2.3.1. If ¢;5 # 0 then ¢3 = <252

T
then if ¢;; = 0 we have Fy = x,.¢,1 = 0, which implies either x,, = 0 for ¢.; # 0 which is a contradiction
with the assumption of the theorem, or ¢,; = 0, then system (14) has infinitely many solutions.
If ¢;1 # 0, then solving F; = 0 and E3 = 0 we get
CraYu — Cr1Zyr + Cr32y - Cl2Cr1 Ty

r = ; =
Cr2 Cl11Cr2

, we get y; =y, from E5 = 0. Substituting y; in £1 =0 and E3 =0,

Replacing y, and x; in E; = 0, we get new quadratic equations E; = 0 with 7 = 2,4, 6, where we give only
the expression Ej; = 0 which is the simplest one

E} =z, (@1%(6;2(@31 +b21) — 2c1(ag1@az + barbaz)) + cincromy (a3, + b3)) + 2¢1 (er2(agiaa

+ba1bas + agq1aqoyy + baibiayu) + cr3zu(agage + bdlbdQ))) =0.
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Since z, # 0, in this equation we distinguish the two following cases
2.3.1.1. If ¢jier3(agiage + barbaz) # 0 the unique solution of Ej = 0 with respect to z, is

2y = —(cr1@y (2 (a3, +b3) — 2cn(agiaae + barbaz)) + cicromy (a3; + b3)) + 2cncr2
(agraga + ba1bas + agraa2yu + barbazyw))/ (2ci cr3(agiade + baibaz)),

after replacing z, in F) = 0 and E)} = 0 we get a quadratic system of equations EJ = 0 and E} = 0 that
can have at most four real solutions. Thus the discontinuous piecewise differential system (5) can have at
most four 3D-limit cycles of type T5.

2.3.1.2. If cieps(agrags + baibge) = 0 we have many subcases.

If ¢;1 = 0 and ¢3(agiaaz + ba1bge) # 0 the equation Ey = 0 becomes ¢ja¢y1 (azl + bfﬂ) z, = 0, that
implies either x, = 0 for ¢jpc (a?j1 + b?ﬂ) # 0 that is a contradiction with the assumption of the theorem,
Or Cj9Cr1 (a31 + b31) = 0, and then we have infinitely many solutions.

If ¢,3 = 0 and ¢1(agrage + ba1baz) # 0 under these conditions we get

Yu = —(2ci1¢2(ag1aas + barbas) + crizr(cip(aZ; + b3)) — 2ci1(agrage + barbaz)) + cincramy
(a3, +b%1))/ 2crcra(agiage + baibas)),

after replacing y,, in 5 = 0 and E} = 0 we get a quadratic system of equations E = 0 and E} = 0 that
can have at most four real solutions. Thus the discontinuous piecewise differential system (5) can have at
most four 3D-limit cycles of type T5.

If ¢p3c1 # 0 and agrage + bgibge = 0 then age = —(bg1bae)/aqr if agy # 0 (If agr = 0 then bg1bge = 0
in both cases bg; = 0 or bgy = 0 the system (14) has infinitely many solutions). For ¢j1¢,9 + ¢ja¢r1 # 0 the
equation Ej = —2c¢j2¢r1(ag1aqs + bg1bga) = 0 which means there are infinitely many solutions of system
(14). If cjree + cpper # 0 we get @, = —2cp¢r2(agrags + bdlbd4)/((a31 + b?ﬂ) (ciier + cacr1)) by solving
the equation Ef, = 0. Then after replacing z, in Ej = 0 and Ej = 0 we get a quadratic system of equations
EJ =0 and EJ = 0 that can have at most four real solutions. Consequently the discontinuous piecewise
differential system (5) can have at most four 3D-limit cycles of type T5.

2.3.2. If ¢,9 = 0 then ¢j¢p3 = 0, which implies ¢ = 0 or ¢,3 = 0 in both cases system (5) has
infinitely many solutions. Thus the discontinuous piecewise differential system (5) has no limit cycles.

Consequently the maximum number of 3D-limit cycles of type T3 for the discontinuous piecewise
differential system (5) separated by ¥ is at most four.

Now we verify that this upper bound is reached. In the region R,., we consider the 3D-center

T = 271.405z — 3.34397y — 249.703z + 33.4397,
U ~ —524.593z + 6.54954y + 481.651z — 65.4954, (15)
Z =~ 503.536x — 22.2316y — 277.955z + 222.316,
and we consider the following 3 D-center
&~ 17.0601z 4 40.0748y — 48.9849z + 1.57584,
U =~ 35.5255x + 37.0185y — 34.6504z 4 5.66785, (16)
Z =~ 53.7525x + 57.1489y — 54.0786z 4 8.51736,
in the region R;. In the region R4 we consider
T~ —9.41978x — 11.0591y — 19.3411z + 13.386,
Uy~ —3.83949zx — 4.50483y — 7.8807z + 5.45179, (17)
2~ 7.76689x + 6.99384y + 13.92462 — 7.81658.
The differential system (15) has two independent first integrals defined in R, given by
Hyi(z,y,2) ~ 35.8085x + 18.622y + 0.1z + 0.214711,
Hyo(z,y,2) = (0.2 — 0.2y + 2.12 + 2)% + (5 — 0.2y — 32 + 2)?,
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and the differential system (16) has the following two independent first integrals in R;
Hy(z,y,2) =z +29.1772y — 19.6009z — 5,
Hpp(z,y,2) ~ (1.0669x + 0.532235y — 0.2z + 0.2)% + (—0.880266x — 1.70412y + 2z — 0.1).
Finally in Ry two independent first integrals of the differential system (17) are
Hy(x,y,2z) =~ —60.5234x + 148.892y + 0.2z + 5,
Hyo(z,y, 2) ~ (—0.00997777z — 0.200281y — 0.22 + 0.3)% + (—0.2043472 — 0.114304y — 0.3z + 0.1)%.

The four solutions of system (14) that provide the intersection points of the four 3D-limit cycles of type T3
for the discontinuous piecewise differential system (15)-(16)-(17) with X, satisfying x;r, zi,, > 0 and z;; < 0
with ¢ = 1,2, 3,4 are

(T1rs Yir, Yiu, 21us T11, Y11) ~ (0.433032,0.283484,1.69163,1.19163, —1.21924,1.10962) ,
(T2r, Yor, Y2us Z2u, T21, Yor) =~ (0.836428,0.581786,2.75671,1.75671, —1.58126, 1.79063) ,
(30, Y3r, Ysu, 23us T31, Y31) ~ (1.14474,0.927628, 3.66268, 2.16268, —1.84819, 2.4241) ,
(Tary Yars Yau, Z4u, T4, Ya1) =~ (1.40588,1.29706, 4.49566, 2.49566, —2.06795, 3.03397) .
This proves the existence of the four 3D-limit cycles of type T3 for the discontinuous differential system

separated by ¥ and formed by the 3D-centers (15), (16) and (17), see Figure 5. W

Proof.  [Proof of statement (b) of Theorem 2] In the statement (a) of Theorem 2 we proved that four is
the maximum number of 3D-limit cycles for the discontinuous piecewise differential system (5) in each of
type T3 and from the proof of Theorem 1 also there are at most four 3D-limit cycles of type T5. Then we
know that the upper bound for the number of 3D-limit cycles for the discontinuous piecewise differential
system (5) of type T» and T3 simultaneously is at most eight.

Now to complete the proof of statement (b) Theorem 2. We must give an example with exactly eight
3D-limit cycles, four from each type. In the region R, we consider the differential system

T~ —1189.8z — 362.1y — 370.1642 + 587.326,
Y ~ 3316.4x 4 900.249y + 372.3582 — 1124.77, (18)
Z =~ 2349.12x + 641.944y + 289.547z — 816.754.
In the left region R; we consider the differential system
T ~ —485.793z — 336.105y — 386.782z 4 571.602,
y ~ 3052.22x — 1689.63y + 2176.27z — 12924.7, (19)
Z ~ 3051.17x — 1690.36y + 2175.43z — 12923 .4,
and in the region Ry we consider the system
T~ —84.1147x — 125.494y — 69.4585%z — T77.228,
7~ 90.3947x + 75.8781y + 36.5198z + 372.176, (20)
z =~ 222.352x 4 60.4018y + 8.2366z — 75.6165.
The differential system (18) has
Ho1(x,y,2) ~ =10z + 61.3844y — 91.7249z + 627.189,
Hyo(x,y, 2) = (—6z — 1.6y — 0.52 + 1.9)> + (0.8 + 0.5y + 1.8z — 1.6)?,
as two independent first integrals defined on R,. For the differential system (19)
Hy(z,y,2) = 0.1z 4+ 46y — 462z + 3609,
His(z,y, 2) ~ 64(x — 0.634489y + 0.7076062 — 4.43318)2 + (1.5x + 2.62081y + 1.3z + 2.12173)2



17

are two independent first integrals in R;. In Ry two independent first integrals of the differential system
(20) are

Hy(x,y, 2) =~ 23z + 46y — 10z + 369,
Hyo(z,y,2) ~ (2.52 +y + 0.3z + 1.66891)% + (0.394982z + 1.63185y + 2 + 11.8345)2.
The four solutions of system (9) satisfying x;;, zir, > 0, Xy # Xy and X, # Xiq with ¢ =1,2,3,4, j =1,1

and k = u,d are

(Z1r Yirs T10 Y11 Yids Z1ds Yiu, Z1u) = (3.69845, —8.84922, 1.48945, —7.74472, —3.86958, 3.13042,
—2.0397, 4.9603),

(T2r, Yor, Ta1, Yal, Yod, 22ds Y2u, 22u) ~ (3.88748, —8.44374,0.986067, —6.99303, —4.61913, , 1.88087,
—0.755096, 5.7449),

(T30 Y3 T30, Y31 Ysds Z3ds Ysus 230) ~ (4.00795, —8.00398,0.551249, —6.27562, —4.98698, 1.01302,
0.147807,6.14781),

(Zdr, Yars Tar, Yai, Yads Zads Yiu, 24u) =~ (4.08912, —7.54456,0.155737, —5.57787, —5.22022, 0.279781,
0.916095, 6.4161).

These four solutions provide the four 3D-limit cycles of type T3 for the discontinuous piecewise differential
system (18)-(19)-(20) separated by ¥. Now The four solutions of system (14) satisfying x;,, zi, > 0 and
xy < 0 with ¢ =5,6,7,8 are

(57, Ysrs Ysu, Z5u, Tsi, Yst) ~ (4.14392, —7.07196, 1.60816, 6.60816, —0.290098, —5.44015),
(Z6r, Yor- Yous Zou, Tel, Yo ) ~ (4.17943, —6.58971,2.24918, 6.74918, —0.712536, —5.45239),
(77, Yrrs Yru, 270, T, y7) A (4.20003, —6.10002, 2.85281, 6.85281, —1.10956, —5.47514),
(87, Ysrs Ysu, Zsu, Tst, Yst) ~ (4.20865, —5.60433, 3.4274, 6.9274, —1.49172, —5.5),

where these four solutions provide the four 3D-limit cycles of type 15 for the discontinuous piecewise dif-
ferential system (18)-(19)-(20) separated by 3, see Figure 6. This example completes the proof of Theorem
2. 1
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