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Due to their widespread application in modeling natural issues, the study of piecewise linear
differential systems has gained relevance in recent years. It is well known that the qualitative
theory of piecewise linear differential systems heavily relies on limit cycles. Until now most
studies have only considered planar systems by examining the presence and maximum number
of limit cycles for piecewise differential systems. However few articles studied this issue in R3.
We remind the problem of the existence and the maximum number of limit cycles for planar
discontinuous piecewise differential systems formed by linear differential centers separated by
one or two parallel straight lines that have at most one limit cycle, respectively. Although in R3

the maximal number of limit cycles for the same problem is 0 when the separation surface is a
plane and at most four limit cycles if the separation surface is two parallel planes.
In this article we mainly focus on the problem of the existence and the maximum number of
limit cycles in R3, when the separating surface is formed by two intersecting half-planes.
First we prove that when the entire space is divided into two regions, this family can have at
most five limit cycles, where one limit cycle intersects the separation surface in two points and
the remaining four limit cycles intersect the separation surface in four points. Second when the
entire space is divided into three regions, we prove that the maximum number of limit cycles
intersecting the separation surface in three points and four points simultaneously is at most
eight.
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1. Introduction and statement of the main results

The 1930s noticed the beginning of the first studies of discontinuous piecewise linear differential systems
through the works of Andronov et al., see [Andronov et al., 1996]. After that, due to their extensive
use in modeling the mechanisms involved in numerous natural phenomena, piecewise differential systems
became more and more used in a variety of applied mathematics fields as well as in mechanics, electronics,
economics, neuroscience, and other areas, see for example [Di Bernardo et al., 2008; Makarenkov & Lamb,
2012; Simpson, 2010].

Following the Filippov rules given in [Filippov, 1988], we consider f : R3 → R a Ck smooth function
for 1 ≤ k ≤ ∞ having 0 as a regular value and S = f−1(0) the discontinuity region. Denoting by S+ =
{X = (x, y, z) ∈ R3 : f(X) ≥ 0} and S− = {X = (x, y, z) ∈ R3 : f(X) ≤ 0}, we consider the discontinuous
piecewise differential systems of the form

Ẋ =

{
F (X), if X ∈ S+,
G(X), if X ∈ S−,

(1)

where F ;S+ → R3 and G;S− → R3 are linear vector fields.
A point, X ∈ S is a tangency point of F (resp. G) if F (X) = 0 (resp. G(X) = 0). A point X0 of S is

called an escaping point if the vector fields F (X0) and G(X0) move both either outward, or inward with
respect to S, and it is of sliding type if F (X0) and G(X0) points inward. The point X0 is of crossing type
if the vector fields F (X0) and G(X0) move in the same direction with respect to S. The Lie derivatives are
useful for classifying points on the discontinuity region S, acting as follows. At the point X0 ∈ S we know
that the Lie derivative has the form

F (f(X0)) = ⟨▽f(X0), F (X0)⟩.
The transversal points on S with respect to the vector fields F and G are classified by:

The escaping region: Re = {X ∈ S, F (f(X)) > 0 and G(f(X)) < 0} formed by escaping points.
The sliding region: Rs = {X ∈ S, F (f(X)) < 0 and G(f(X)) > 0} formed by sliding points.
The crossing region: Rc = {X ∈ S, F (f(X)) ·G(f(X)) > 0} formed by crossing points.

( a ) ( b ) ( c )

Fig. 1. (a) Escaping, (b) sliding and (c) crossing regions.

We recall that a limit cycle of a differential system is an isolated periodic orbit in the set of all periodic
orbits of the system. For piecewise vector field in R3 if the limit cycle contains only crossing points on the
discontinuity surface, we say that it is a crossing limit cycle. In this paper we are interested in the crossing
limit cycle that will be referred to 3D-limit cycle.

Limit cycles have been considered for the first time by Poincaré [Poincaré, 1891,1897]. Further on,
the occurrence of limit cycles has been well observed in the real world, as the generalized Liénard system
[Kasbi & Roomi , 2018], the limit cycle of the Van der Pol equation [Van Der Pol, 1920, 1926], the limit
cycles of the Belousov Zhavotinskii model [Belousov, 1959], and of the galaxy motion [De Bustos et al.,
2016], and many others, which attracted the attention of the mathematical community, and evolved into
the primary goal of the second part of the 16th Hilbert’s problem. As seen in [Hilbert, 2003; Ilyashenko,
2002; Li , 2003], the second part of the 16th Hilbert’s problem asks for an upper bound for the maximum
number of limit cycles that planar polynomial differential systems of a given degree can have. The same
problem has been extended to piecewise differential systems, and numerous researchers have been working
on finding a solution to this problem for some specific classes of piecewise differential systems during these
last years.
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Over the past two decades there have been many investigations of the limit cycles of piecewise differ-
ential systems in the plane, see for example [Braga & Mello, 2014, 2013; Llibre, 2023; Llibre et al., 2014;
Llibre & Teixeira, 2018; Zhao et al., 2021] and the references therein. The outcomes in the cited studies
have proved that the number of limit cycles that the piecewise differential systems can have is significantly
influenced by the form of the discontinuity curve.

It has been shown in [Llibre & Teixeira, 2018] that the simplest class of discontinuous piecewise vector
fields in R2 produced by arbitrary linear centers separated by one straight line has no limit cycles, and it
has at most one limit cycle if the discontinuity curve is formed by two parallel straight lines. The same
class of discontinuous piecewise differential systems has been considered by Villanueva et al. [Villanueva et
al., 2022] in R3 where they separated the entire space by two parallel planes, and such class of differential
systems can have at most four limit cycles.

This paper investigates the maximum number of 3D-limit cycles for two families of discontinuous
piecewise differential systems in R3 separated by two intersecting half-planes instead of two parallel planes
and formed by linear differential centers in R3. More precisely, we consider arbitrary linear differential
center in R3 defined by

Ẋ = MiX +Ni, (2)

with X = (x, y, z) and

Mi =




m11 m12 m13

m21 m22 m23

m31 m32 m33


 , Ni =




ai2ai4ci3 − ai3ai4ci2 + bi2bi4ci3 − bi3bi4ci2
−ai1ai4ci3 + ai3ai4ci1 − bi1bi4ci3 + bi3bi4ci1
ai1ai4ci2 − ai2ai4ci1 + bi1bi4ci2 − bi2bi4ci1


 , (3)

such that

m11 = ai1ai2ci3 − ai1ai3ci2 + bi1bi2ci3 − bi1bi3ci2, m12 = ci3
(
a2i2 + b2i2

)
− ci2(ai2ai3 + bi2bi3),

m13 = ci3(ai2ai3 + bi2bi3)− ci2
(
a2i3 + b2i3

)
, m21 = ci1(ai1ai3 + bi1bi3)− ci3

(
a2i1 + b2i1

)
,

m22 = −ai1ai2ci3 + ai2ai3ci1 − bi1bi2ci3 + bi2bi3ci1, m23 = ci1
(
a2i3 + b2i3

)
− ci3(ai1ai3 + bi1bi3),

m31 = ci2
(
a2i1 + b2i1

)
− ci1(ai1ai2 + bi1bi2), m32 = ci2(ai1ai2 + bi1bi2)− ci1

(
a2i2 + b2i2

)
,

m33 = ai1ai3ci2 − ai2ai3ci1 + bi1bi3ci2 − bi2bi3ci1,

with its corresponding two independent first integrals

Hi1(x, y, z) = ci1x+ ci2y + ci3z + ci4,

Hi2(x, y, z) = (ai1x+ ai2y + ai3z + ai4)
2 + (bi1x+ bi2y + bi3z + bi4)

2.

The arbitrary linear differential system in R3 defined by the vector field (2), will be referred in this study
as a linear center in R3, or simply a 3D-center.

We note that the vector field (2) is obtained after applying an arbitrary affine transformation

(x, y, z) 7→ (a1x+ a2y + a3z + a4, b1x+ b2y + b3z + b4, c1x+ c2y + c3z + c4)

to the linear differential system

ẋ = −y, ẏ = x, ż = 0,

which has the two independent first integrals H1(x) = z.and H2(x) = x2 + y2.
First we discuss our findings regarding 3D-limit cycles for the family of discontinuous piecewise linear

differential systems

Ẋ =

{
M1X +N1 if X ∈ R1,
M2X +N2 if X ∈ R2,

(4)

where Mi and Ni with i = 1, 2 are given by (3), and the discontinuity surface Γ = Γ1 ∪ Γ2 such that
Γ1 = {(x, y, z) ∈ R3 : z = 0, x ≥ 0} and Γ2 = {(x, y, z) ∈ R3 : x = 0, z ≥ 0}, divides the space into two
regions

R1 = {(x, y, z) ∈ R3 : x ≥ 0, z ≥ 0} and R2 = {(x, y, z) : x ≥ 0, z ≤ 0} ∪ {(x, y, z) : x ≤ 0}.
In this case we realized that there are only two different possible types of 3D-limit cycles for the discon-
tinuous piecewise linear differential system (4) separated by Γ.
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Fig. 2. The unique 3D-limit cycle of type T1 for the discontinuous piecewise differential system (7)-(8) in two different views.

- The type T1 corresponding to the 3D-limit cycles intersecting the separation surface Γ at two points,
one in Γ1 and the other one in Γ2, as shown Figure 2.

- The type T2 corresponding to the limit cycles intersecting Γ at four points, two in Γ1 and the two
others in Γ2, as shown Figure 3.

Fig. 3. Two different views of the four 3D-limit cycles of type T2 for the discontinuous piecewise differential system (10)-(11).

Concerning the type of limit cycles intersecting with the separation surface Γ at two points either in Γ1,
or in Γ2 they do not exist, see for instance [Villanueva et al., 2022].

Our main results are stated in the next theorem.

Theorem 1. The family of discontinuous piecewise differential system (4) separated by Γ and formed by
3D-centers has at most

(a) one 3D-limit cycle of type T1, see Figure 2;
(b) four 3D-limit cycles of type T2, see Figure 3;
(c) five 3D-limit cycles of types T1 and T2 simultaneously.

There are examples of discontinuous piecewise differential system (4) having simultaneously one 3D-limit
cycle of type T1 and three 3D-limit cycles of type T2, see Figure 4.

We cannot find an example of five 3D-limit cycles of types T1 and T2 simultaneously. But we have
provided an example of four 3D-limit cycles.

Theorem 1 is proved in section 2.
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Fig. 4. Two different views of the three 3D-limit cycles of type T2 and one limit cycle of type T1 simultaneously for the
discontinuous piecewise differential system (12)-(13).

Second we present our results on the 3D-limit cycles of the second family of discontinuous piecewise
linear differential system

Ẋ =





MrX +Nr if X ∈ Rr,
MlX +Nl if X ∈ Rl,
MlX +Nl if X ∈ Rd,

(5)

where Mi and Ni with i = r, l, d are given by (3), and the discontinuity surface Σ = Σ1 ∪ Σ2 ∪ Σ3 where

Fig. 5. Two different views of the four 3D-limit cycles of type T3 for the discontinuous piecewise differential system (15)-
(16)-(17).

Σ1 = {(x, y, z) ∈ R3 : z = 0, x ≥ 0}, Σ2 = {(x, y, z) ∈ R3 : x = 0, z ≥ 0} and Σ3 = {(x, y, z) ∈ R3 : z =
0, x ≤ 0} divided the space into three regions

Rr = {(x, y, z) ∈ R3 : x ≥ 0, z ≥ 0}, Rl = {(x, y, z) ∈ R3 : x ≤ 0, z ≥ 0},
and

Rd = {(x, y, z) ∈ R3 : z ≤ 0}.
The discontinuous piecewise linear differential systems (5) have two different types of 3D-limit cycles
separated by Σ.

- The type corresponding to the 3D-limit cycles intersecting the separation surface Σ at four points, two
in Σ2 and the two others are either in Σ1 or in Σ3 is equivalent to the type T2 of the family (4) but in
this case we have three regions instead of two regions. So, from the results of the family (4) it follows
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that there are at most four limit cycles of this type and there are piecewise differential systems of the
second family with four limit cycles of this type.

- The other type named by T3 corresponding to the 3D-limit cycles intersecting the separation surface
Σ at three points, one point in each of the half-planes Σk with k = 1, 2, 3, as shown Figure 5.

The second main result of this paper is presented in the following theorem.

Theorem 2. For the family of discontinuous piecewise differential system (5) separated by Σ and formed
by 3D-centers, there are

(a) at most four 3D-limit cycles of type T3, see Figure 5;
(b) at most eight 3D-limit cycles of types T2 and T3 simultaneously, see Figure 6.

Theorem 2 is proved in section 3.

Fig. 6. Two different views of the eight 3D-limit cycles of types T2 and T3 simultaneously for the discontinuous piecewise
differential system (18)-(19)-(20).

2. Proof of Theorem 1

In this section we are going to provide the maximum number of 3D-limit cycles of type T1, T2, and T1 and
T2 simultaneously, for the discontinuous piecewise differential system (4) separated by Γ and formed by
3D-centers.

Proof. [Proof of statement (a) of Theorem 1] If there is a limit cycle of type T1 for the discontinuous piece-
wise differential system (4) separated by Γ and formed by 3D-centers, it must intersect the discontinuity
surface Γ in the two points Xr = (xr, yr, 0) and Xu = (0, yu, zu), where xr, zu > 0. It is clear that these
two points must verify the following closing equations with the variables yu, zu, xr and yr.

E1 = H11(xr, yr, 0)−H11(0, yu, zu) = 0,

E2 = H12(xr, yr, 0)−H12(0, yu, zu) = 0,

E3 = H21(0, yu, zu)−H21(xr, yr, 0) = 0,

E4 = H22(0, yu, zu)−H22(xr, yr, 0) = 0,

(6)

or equivalently

E1 = c12yu − c11xr − c12yr + c13zu = 0,

E2 = (a14 + a12yu + a13zu)
2 − (a14 + a11xr + a12yr)

2 − (b14 + b11xr + b12yr)
2 + (b14 + b12yu + b13zu)

2 = 0,

E3 = c22yu − c21xr − c22yr + c23zu = 0,

E4 = (a24 + a22yu + a23zu)
2 − (a24 + a21xr + a22yr)

2 − (b24 + b21xr + b22yr)
2 + (b24 + b22yu + b23zu)

2 = 0.
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Since the equations E1 = 0 and E3 = 0 are linear, we have to study these two different cases c12c21−c11c22 ̸=
0 or c12c21 − c11c22 = 0.

Case 1. If we assume that c12c21 − c11c22 ̸= 0, from the system E1 = 0 and E3 = 0 we get

xr =
c13c22zu − c12c23zu
c11c22 − c12c21

, yr =
c11c22yu − c12c21yu + c11c23zu − c13c21zu

c11c22 − c12c21
.

Replacing these expressions of the two variables xr and yr in the remaining equations E2 = 0 and E4 = 0
we find

E2 = −2(c12c21 − c11c22)(c23(−c12(a11a14 + b11b14) + a12a14c11 + b12b14c11) + a11a14c13c22

−a12a14c13c21 + a13a14(c12c21 − c11c22) + b11b14c13c22 − b12b14c13c21 − b13b14c11c22

+b13b14c12c21) + 2yu(c12c21 − c11c22)(a12(a11c12c23 − a11c13c22 + a13c11c22 − a13c12

c21) + a212(c13c21 − c11c23) + b12(b11c12c23 − b11c13c22 − b12c11c23 + b12c13c21 + b13c11

c22 − b13c12c21)) + zu(c
2
23

(
c212

(
a211 + b211

)
− 2c11c12(a11a12 + b11b12) + c211

(
a212 + b212

))

−2c13c23(c12c22
(
a211 + b211

)
− a11a12(c11c22 + c12c21) + a212c11c21 − b11b12(c11c22 + c12

c21) + b212c11c21) + c213(c
2
22

(
a211 + b211

)
− 2c21c22(a11a12 + b11b12) + c221

(
a212 + b212

)
)

−a213(c12c21 − c11c22)
2 − b213(c12c21 − c11c22)

2) = 0,

E4 = −2(c12c21 − c11c22)(c23(−c12(a21a24 + b21b24) + a22a24c11 + b22b24c11) + a21a24c13c22

−a22a24c13c21 + a23a24(c12c21 − c11c22) + b21b24c13c22 − b22b24c13c21 − b23b24c11c22

+b23b24c12c21) + 2yu(c12c21 − c11c22)(a22(a21c12c23 − a21c13c22 + a23c11c22 − a23c12

c21) + a222(c13c21 − c11c23) + b22(b21c12c23 − b21c13c22 − b22c11c23 + b22c13c21 + b23c11

c22 − b23c12c21)) + zu(c
2
23(c

2
12

(
a221 + b221

)
− 2c11c12(a21a22 + b21b22) + c211

(
a222 + b222

)
)

−2c13c23(c12c22
(
a221 + b221

)
− a21a22(c11c22 + c12c21) + a222c11c21 − b21b22(c11c22 + c12

c21) + b222c11c21) + c213
(
c222

(
a221 + b221

)
− 2c21c22(a21a22 + b21b22) + c221

(
a222 + b222

))

−a223(c12c21 − c11c22)
2 − b223(c12c21 − c11c22)

2) = 0.

Since E2 = E4 = 0 is a linear system of equations in the variables yu and zu, it has at most one real
solution. Then in this case we find that it is possible to have at most one 3D-limit cycle of type T1 for the
discontinuous piecewise differential system (4) separated by Γ.

Case 2. If we assume that c12c21 − c11c22 = 0, we have to study two subcases.
Subcase 2.1. If c21 ̸= 0 then c12 = (c11c22)/c21 and we get xr = (c23zu − c22yr + c22yu)/c21 from

the equation E3 = 0, and by substituting xr in E1 = 0 we get zu(c21c13 − c11c23) = 0 that implies either
zu = 0 which contradicts the assumption that zu > 0, or c21c13 − c11c23 = 0, which reduces the number of
equations of system (6) to two polynomial equations containing three unknowns yr, yu and zu. Thus this
system has infinitely many solutions that produce a continuum of periodic solutions of the discontinuous
piecewise differential system (4). Then we cannot have 3D-limit cycles.

Subcase 2.2. If c21 = 0 then c11c22 = 0 and we distinguish two possible subcases.
2.2.1. In case of c21 = c11 = 0 and c22 ̸= 0. If c12 ̸= 0 then from E1 = 0 we get yr = (c12yu+c13zu)/c12.

We substitute yr in E3 = 0 to find E3 = zu(c12c23 − c13c22) = 0 which implies either c12c23 − c13c22 = 0
or zu = 0. If c12c23 − c13c22 = 0 we have infinitely many solutions, and if zu = 0 we have a contradiction
with the assumptions. Therefore there are no 3D-limit cycles. But if c21 = c11 = c12 = 0 and c22 ̸= 0. The
equation becomes E1 = c13zu = 0, which implies either zu = 0 for c13 ̸= 0 that is a contradiction with the
assumption of the theorem, or c13 = 0 and then we have infinitely many solutions.

2.2.2. If c21 = c22 = 0 and c11 ̸= 0 or c21 = c22 = c11 = 0, we know that E3 = c23zu. If c23 = 0
we have infinitely many solutions, and if zu = 0 we have a contradiction with the assumptions. Therefore
there are no 3D-limit cycles.
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Consequently the maximum number of 3D-limit cycles of type T1 for the discontinuous piecewise
differential system (4) separated by Γ is at most one.

Now to confirm that the upper bound obtained is reached, we consider the differential system

ẋ ≈ 7.34011x− 0.108903y − 11.1167z − 1.90548,

ẏ ≈ −51.9801x+ 4.64989y + 35.5439z − 18.7173,

ż ≈ 23.708x− 2.5y − 11.99z + 11.686,

(7)

in the region R1, where

H11(x, y, z) ≈ x+ 0.8y + 1.4444z + 20.3801,

H12(x, y, z) = (0.5x− 0.3y + 2.5z + 2.3)2 + (5.1x− 0.5y − 3z + 2.2)2,

are two independent first integrals. In the second region R2, we consider the differential center

ẋ ≈ 66.9666x− 75.7593y + 16.8125z − 16.8125,

ẏ ≈ 986.758x− 9.61355y − 68.3345z + 68.3345,

ż ≈ 807.857x− 2.94128y − 57.353z + 57.353,

(8)

having the two independent first integrals

H21(x, y, z) ≈ −6.37847x+ 80y − 97.1874z − 2,

H22(x, y, z) ≈ (3.17294x− 0.1y − 0.2z + 0.2)2 + (0.2x+ y − 0.3z + 0.3)2.

The unique solution of system (6) satisfying x1r, z1u > 0 is (x1r, y1r, y1u, z1u) ≈ (0.366549, 0.316725,
1.4891, 0.989095), which provides the unique 3D-limit cycle of type T1 for the discontinuous piecewise
differential system (7)-(8) separated by Γ, see Figure 2. ■

Proof. [Proof of statement (b) of Theorem 1] If there is a limit cycle of type T2 for the discontinuous piece-
wise differential system (4) separated by Γ, then it has four intersection points on the discontinuity surface
Γ noted by Xl = (xl, yl, 0), Xr = (xr, yr, 0), Xu = (0, yu, zu) and Xd = (0, yd, zd), where xl, xr, zd, zu > 0,
Xl ̸= Xr and Xd ̸= Xu. Therefore the conditions in the following equations must be achieved.

E1 = H11(xl, yl, 0)−H11(0, yd, zd) = 0,

E2 = H12(xl, yl, 0)−H12(0, yd, zd) = 0,

E3 = H11(xr, yr, 0)−H11(0, yu, zu) = 0,

E4 = H12(xr, yr, 0)−H12(0, yu, zu) = 0,

E5 = H21(0, yu, zu)−H21(0, yd, zd) = 0,

E6 = H22(0, yu, zu)−H22(0, yd, zd) = 0,

E7 = H21(xl, yl, 0)−H21(xr, yr, 0) = 0,

E8 = H22(xl, yl, 0)−H22(xr, yr, 0) = 0,

(9)
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having xi, yi with i = r, l and yj , zj with j = u, d as the variables. System (9) is equivalent to

E1 = c11xl − c12yd + c12yl − c13zd = 0,

E2 = (a14 + a11xl + a12yl)
2 + (b14 + b11xl + b12yl)

2 − (a14 + a12yd + a13zd)
2 − (b14 + b12yd + b13zd)

2 = 0,

E3 = c11xr + c12yr − c12yu − c13zu = 0,

E4 = (a14 + a11xr + a12yr)
2 + (b14 + b11xr + b12yr)

2 − (a14 + a12yu + a13zu)
2 − (b14 + b12yu + b13zu)

2 = 0,

E5 = c22yu − c22yd − c23zd + c23zu = 0,

E6 = (a24 + a22yu + a23zu)
2 − (a24 + a22yd + a23zd)

2 − (b24 + b22yd + b23zd)
2 + (b24 + b22yu + b23zu)

2 = 0,

E7 = c21xl − c21xr + c22yl − c22yr = 0,

E8 = (a24 + a21xl + a22yl)
2 + (b24 + b21xl + b22yl)

2 − (a24 + a21xr + a22yr)
2 − (b24 + b21xr + b22yr)

2 = 0.

Analysing the linear odd equations Ej = 0 with j = 1, 3, 5, 7 we distinguish two cases c12c22(c12c23 −
c13c22) ̸= 0 and c12c22(c12c23 − c13c22) = 0.

Case 1. By supposing c12c22(c12c23 − c13c22) ̸= 0 and solving the system of the odd equations Ej = 0
with j = 1, 3, 5, 7 regarding yr, yl, yd and zd, we obtain

yr = (c13zu − c11xr + c12yu)/c12, yl = (c13c22zu − c12c21xl − c11c22xr + c12c21xr + c12c22yu)/(c12c22),

yd = (c12c21c23xl − c11c22c23xl + c11c22c23xr − c12c21c23xr − c12c22yu + c13c
2
22yu)/(c22(c13c22 − c12c23)),

zd = l(c11c22xl − c12c21xl − c11c22xr + c12c21xr − c12c23zu + c13c22zu)/(c13c22 − c12c23).

Upon replacing yr, yl, yd and zd in the remaining four equations, we obtain four new equations E′
j = 0

for j = 2, 4, 6, 8, with big expressions that we omit to write. We notice that the maximum exponent of
the equations E′

2 = 0 and E′
4 = 0 is two and that one is the maximum exponent for each variable in the

equations E′
6 = 0 and E′

8 = 0. Now we solve E′
6 = 0 and E′

8 = 0 for xr and zu, and substituting their
expressions in the two equations E′

2 = 0 and E′
4 = 0 we obtain two quadratic equations having xr and yd

as the two independent variables. According to Bézout theorem (see [Shafarevich & Lamb, 1974]), we can
find in this case at most four 3D-limit cycles of type T2 for the discontinuous piecewise differential system
(4) separated by Γ and formed by 3D-centers.

Case 2. If we consider c12c22(c12c23 − c13c22) = 0, we distinguish the following subcases: c12 = 0 and
c22c13 ̸= 0, or c12c23 ̸= 0 and c22 = 0, or c12 = 0 and c22 = 0, or c12 = c13 = 0 and c22 ̸= 0, or c12 ̸= 0 and
c22c23 = 0, or c12c22 ̸= 0 and c23 = (c13c22)/c12.

Subcase 2.1. If c12 = 0 and c22c13 ̸= 0, from the system of linear equations E1 = 0, E3 = 0, E5 = 0
and E7 = 0 we get

zd = (c11xl)/c13, zu = (c11xr)/c13, yd = (c11c23xr − c11c23xl + c13c22yu)/(c13c22),
yl = (c21xr − c21xl + c22yr)/c22.

Now by replacing these expressions of the variables yl, yd, zu, and zd in the remaining equations E2 = 0,
E4 = 0, E6 = 0 and E8 = 0, we obtain four new equations E′

j = 0 for j = 2, 4, 6, 8, with big expressions

that we omit to write. Solving the equations E′
6 = 0 and E′

8 = 0 with respect to yu and yr we get

yu = −((−2a22a24c13c22c23 + 2a23a24c13c
2
22 − 2b22b24c13c22c23 + 2b23b24c13c

2
22 + a222c11c

2
23xl − 2a22a23

c11c22c23xl + a223c11c
2
22xl + b222c11c

2
23xl − 2b22b23c11c22c23xl + b223c11c

2
22xl − a222c11c

2
23xr + a223c11

c222xr − b222c11c
2
23xr + b223c11c

2
22xr)/(2c13c22

(
−a222c23 + a22a23c22 − b222c23 + b22b23c22

)
)),

yr = −((2a21a24c
2
22 − 2a22a24c21c22 + 2b21b24c

2
22 − 2b22b24c21c22 + a221c

2
22xl − 2a21a22c21c22xl + a222c

2
21

xl + b221c
2
22xl − 2b21b22c21c22xl + b222c

2
21xl + a221c

2
22xr − a222c

2
21xr + b221c

2
22xr − b222c

2
21xr)/(2c22(a21

a22c22 − a222c21 + b21b22c22 − b222c21))).

By substituting these expressions of yu and yr in E′
2 = 0 and E′

4 = 0 we obtain two quadratic equations
with the independent variables xr and xl. According to Bézout theorem, we know that the discontinuous
piecewise differential system (4) has at most four 3D-limit cycles of type T2.
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Subcase 2.2. If c22 = 0 and c12c23 ̸= 0, then from E5 = 0 and E7 = 0 we get zu = zd and xr = xl by
replacing them in E1 = 0 and E3 = 0 we get

yr =
c12yu − c11xl + c13zd

c12
, yl =

c12yd − c11xl + c13zd
c12

.

Replacing yr and yl in the remaining equations Ej = 0 with j = 2, 4, 6, 8 we get new quadratic equations
E′

j = 0 with j = 2, 4, 6, 8. We have

E′
8 = (yd − yu)

(
2c12xl(a21a22 + b21b22)− 2c11xl

(
a222 + b222

)
+ c12(2a22a24 + 2b22b24 + yd(a

2
22 + b222)

+a222yu + b222yu) + 2c13zd
(
a222 + b222

) )
= 0.

Since yu ̸= yd, the unique solution of the equation E′
8 = 0 with respect to yd is yd =

c11
c12

xl−
a22a24 + b22b24

a222 + b222
−

a21a22 + b21b22
a222 + b222

xl −
c13
c12

zd. After replacing yd in E′
j = 0 with j = 2, 4, 6 we get new equations E′′

j = 0 with

j = 2, 4, 6. Solving E′′
6 = 0 with respect to yu where

E′′
6 = (c12xl(a21a22 + b21b22)− c11xl

(
a222 + b222

)
+ c12

(
a22a24 + b22b24 + yu

(
a222 + b222

))
+ c13zd(

a222 + b222
)
)(−c12xl(a21a22 + b21b22) + c11xl

(
a222 + b222

)
+ c12(a22a24 + b22b24 + yu(a

2
22

+b222) + 2a22a23zd + 2b22b23zd)− c13zd
(
a222 + b222

)
) = 0.

we get yu =
c11
c12

xl −
a22a24 + b22b24

a222 + b222
− a21a22 + b21b22

a222 + b222
xl −

c13
c12

zd as the unique solution. Then by Bézout

Theorem the quadratic system formed by E′′
2 = 0 and E′′

4 = 0 can have at most four real solutions.
Consequently in this case we can find at most four 3D-limit cycles of type T2 for the discontinuous piecewise
differential system (4).

Subcase 2.3. If c12 = c22 = 0, then from E5 = E7 = 0 we get zu = zd and xr = xl, by replacing them
in E1 = 0 and E3 = 0 we get E = E1 = E3 = c11xl − c13zd. Then a new system of five equations E = 0,
E2 = 0, E4 = 0, E6 = 0 and E8 = 0 and six unknowns (xl, yl, yr, yd, zd, yu) is obtained. So we cannot have
3D-limit cycles.

Subcase 2.4. If c22 ̸= 0 and c12 = c13 = 0, the equations E1 = 0 and E3 = 0 becomes E1 = c11xl = 0
and E3 = c11xr = 0. If c11 = 0 system (10) becomes a system of six equations with eight unknowns, then
we cannot have 3D-limit cycles. If c11 ̸= 0 and due to the fact that xl, xr > 0, then system (10) has no
solutions.

Subcase 2.5. If c12 ̸= 0 and c22 = c23 = 0, the equation E5 ≡ 0 and system (10) becomes a system of
seven equations with eight unknowns that can not provide any 3D-limit cycles.

Subcase 2.6. If c12c22 ̸= 0 then c23 =
c13c22
c12

, from E1 = E3 = 0 we get

yd = (c11xl + c12yl − c13zd)/c12, yu = (c11xr + c12yr − c13zu)/c12,

by replacing them in E5 = 0 and E7 = 0 we find xl = xr and yl = yr which is a contradiction with the
assumption of the theorem. Then no 3D-limit cycles.

Consequently the maximum number of 3D-limit cycles of type T2 for the discontinuous piecewise
differential system (4) separated by Γ is at most four.

By providing a discontinuous piecewise differential system in R3 separated by Γ and constructed by
3D-centers with precisely four limit cycles of type T2, we can now guarantee that the upper bound obtained
is reached. We consider the first 3D-center

ẋ ≈ −421.382x− 124.801y − 210.115z + 225.766,

ẏ ≈ 775.318x+ 228.516y + 378.809z − 406.025,

ż ≈ 828.85x+ 214.044y + 192.866z − 178.943,

(10)
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which has

H11(x, y, z) ≈ 75.139x+ 42.4413y − 1.5z + 173.489,

H12(x, y, z) = (0.7x+ 0.4y + 1.7z − 2.)2 + (−6.x− 1.55y − 1.4z + 1.3)2,

as two independent first integrals defined in R1, and the 3D-center

ẋ ≈ −87.1281x− 14.7292y − 33.6255z − 8.03317,

ẏ ≈ 245.848x+ 66.4952y + 92.7775z − 35.8364,

ż ≈ 47.0065x− 21.5974y + 20.633z + 73.6542,

(11)

in R2, having

H21(x, y, z) ≈ 63.6263x+ 19.416y + 16.3863z + 0.8,

H22(x, y, z) ≈ (−2.80146x− 1.43607y − 1.z + 2.)2 + (−4.96673x− 1.03907y − 1.9z + 0.01)2,

as two independent first integrals in R2. Then the four solutions of system (9) satisfying xij , zik > 0,
Xil ̸= Xir and Xiu ̸= Xid with i = 1, 2, 3, 4, j = r, l and k = u, d that provide the intersection points with
Γ of the four 3D-limit cycles of type T2 for the discontinuous piecewise differential system (10)-(11) are

(x1r, y1r, x1l, y1l, y1d, z1d, y1u, z1u) ≈ (3.11249,−9.05624, 1.97147,−8.48574,−4.71924, 2.78076,

−2.8636, 4.6364),

(x2r, y2r, x2l, y2l, y2d, z2d, y2u, z2u) ≈ (3.60217,−9.30109, 1.48179,−8.24089,−5.38473, 2.11527,

−2.19811, 5.30189),

(x3r, y3r, x3l, y3l, y3d, z3d, y3u, z3u) ≈ (3.92854,−9.46427, 1.15542,−8.07771,−5.84482, 1.65518,

−1.73803, 5.76197),

(x4r, y4r, x4l, y4l, y4d, z4d, y4u, z4u) ≈ (4.19155,−9.59577, 0.892413,−7.94621,−6.21922, 1.28078,

−1.36362, 6.13638).

This establishes the four 3D-limit cycles of type T2 for the discontinuous piecewise differential system
separated by Γ and produced by the 3D-centers (10) and (11), see Figure 3. ■

Proof. [Proof of statement (c) of Theorem 1] From statement (a) of Theorem 1 we know that one is the
maximum number of 3D-limit cycles of the discontinuous piecewise differential system (4) of type T1, and
in the statement (b) of the same theorem we showed that four is the maximum number of 3D-limit cycles
of type T2 for the same system. Therefore the upper bound number of 3D-limit cycles for discontinuous
piecewise differential system (4) of types T1 and T2 simultaneously is at most five.

Here we provide a discontinuous piecewise differential system of the form (4) separated by Γ and
formed by 3D-centers that has exactly one 3D-limit cycle of type T1 and three 3D-limit cycles of type T2.
In region R1 we consider the differential system

ẋ ≈ −445.784x− 128.3y − 211.z + 229.47,

ẏ ≈ 291.36x+ 81.044y + 124.12z − 138.2,

ż ≈ 1369.36x+ 337.878y + 364.74z − 469.3,

(12)

with the independent first integrals

H11(x, y, z) ≈ 20.x+ 40.y − 2z + 321.,

H12(x, y, z) = (0.8x+ 0.49y + 1.7z − 1.5)2 + (−6.2x− 1.5y − 1.5z + 2)2,

and in the region R2 we consider

ẋ ≈ 17374.6x+ 4910.16y − 10140.8z − 6942.8,

ẏ ≈ −11661.3x− 3188.89y + 6843.63z + 4490.63,

ż ≈ 23791.9x+ 5870.45y − 14185.7z − 8153.83,

(13)
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having

H21(x, y, z) ≈ 20.x+ 40.y + 5z + 321.,

H22(x, y, z) ≈ (−12.9244x− 13.6695y + 4.02816z + 21.0513)2 + (−23.4506x− 2.8862y

+15z + 3.43746)2,

as two independent first integrals. Now the three solutions of system (9) representing the intersection points
of the three 3D-limit cycles of type T2 for the discontinuous piecewise differential system (12)-(13) with Γ,
satisfying xij , zik > 0, Xil ̸= Xir and Xiu ̸= Xid with i = 1, 2, 3, j = r, l and k = u, d are

(x1r, y1r, x1l, y1l, y1d, z1d, y1u, z1u) ≈ (3.49769,−8.24885, 0.94326,−6.97163,−5.12609, 1.37391,

−1.27637, 5.22363),

(x2r, y2r, x2l, y2l, y2d, z2d, y2u, z2u) ≈ (3.608,−7.804, 0.551484,−6.27574,−5.19707, 0.802926,

−0.60935, 5.39065),

(x3r, y3r, x3l, y3l, y3d, z3d, y3u, z3u) ≈ (3.682,−7.341, 0.196025,−5.59801,−5.21476, 0.285236,

0.00437844, 5.50438),

and the unique solution of system (6) representing the two intersection points of the unique 3D-limit cycle
of type T1 for the discontinuous piecewise differential system (12)-(13) with Γ, satisfying x4r, z4u > 0 is

(x4r, y4r, y4u, z4u) ≈ (3.73181,−6.8659, 0.582336, 5.58234).

This proves the existence of four 3D-limit cycles of types T1 and T2 for the discontinuous piecewise
differential system separated by Γ and formed by the 3D-centers (10) and (11), see Figure 3. This example
completes the proof of Theorem 1. ■

3. Proof of Theorem 2

In this section we have to provide the maximum number of 3D-limit cycles of type T3, or T2 and T3

simultaneously, of the discontinuous piecewise differential system (5) separated by Σ and formed by 3D-
centers.

Proof. [Proof of statement (a) of Theorem 2] In order to obtain 3D-limit cycle of type T3 which intersects
the separation surface Σ in three points Xr = (xr, yr, 0), Xl = (xl, yl, 0) and Xu = (0, yu, zu), where
xl < 0 < xr and zu > 0, it is necessary that these points satisfy the following system having yu, zu, xi, and
yi with i = r, l as the variables.

E1 = Hr1(xr, yr, 0)−Hr1(0, yu, zu) = 0,

E2 = Hr2(xr, yr, 0)−Hr2(0, yu, zu) = 0,

E3 = Hl1(0, yu, zu)−Hl1(xl, yl, 0) = 0,

E4 = Hl2(0, yu, zu)−Hl2(xl, yl, 0) = 0,

E5 = Hd1(xr, yr, 0)−Hd1(xl, yl, 0) = 0,

E6 = Hd2(xr, yr, 0)−Hd2(xl, yl, 0) = 0,

(14)

or equivalently

E1 = cr2yu − cr1xr − cr2yr + cr3zu = 0,

E2 = (ar4 + ar2yu + ar3zu)
2 − (ar4 + ar1xr + ar2yr)

2 − (br4 + br1xr + br2yr)
2 + (br4 + br2yu + br3zu)

2 = 0,

E3 = cl2yu − cl1xl − cl2yl + cl3zu = 0,

E4 = (al4 + al2yu + al3zu)
2 − (al4 + al1xl + al2yl)

2 − (bl4 + bl1xl + bl2yl)
2 + (bl4 + bl2yu + bl3zu)

2 = 0,

E5 = cd1xl − cd1xr + cd2yl − cd2yr = 0,

E6 = (ad4 + ad1xl + ad2yl)
2 + (bd4 + bd1xl + bd2yl)

2 − (ad4 + ad1xr + ad2yr)
2 − (bd4 + bd1xr + bd2yr)

2 = 0.
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Since the equations E1 = 0, E3 = 0 and E5 = 0 are linear, we have to study these two cases cd1(cl3cr2 −
cl2cr3) ̸= 0 or cd1(cl3cr2 − cl2cr3) = 0.

Case 1. By assuming that cd1(cl3cr2 − cl2cr3) ̸= 0 and solving the system of equations E1 = 0, E3 = 0
and E5 = 0 for the variables yu, zu and xr, we get

yu = (cd1cl3cr1xl − cd1cl1xl − cd1cl2cr3yl + cd2cl3cr1yl + cd1cl3cr2yr − cd2cl3cr1yr)/(cd1(cl3cr2 − cl2cr3),

zu = (cd1cl1cr2xl − cd1cl2xl + cd1cl2cr2yl − cd2cl2cr1yl − cd1cl2cr2yr + cd2cl2cr1yr)/(cd1(cl3cr2 − cl2cr3),

xr = (cd1xl + cd2yl − cd2yr)/cd1.

After replacing yu, zu and xr in the remaining equations Ej = 0 for j = 2, 4, 6 we obtain new expressions
that we denote by E′

j = 0 for j = 2, 4, 6. We do not provide the large explicit expressions of the equations

E′
j = 0 for j = 2, 4, 6 that will need several pages to write them. We remark that the two equations E′

2 = 0

and E′
4 = 0 are quadratic while E′

6 = 0 is linear. By solving the equation E′
6 = 0 for the variable xl that

we substitute in the equations E′
2 = 0 and E′

4 = 0, we obtain two quadratic equations namely E′′
2 = 0 and

E′′
4 = 0 in the variables yr and yl. Then based on the Bézout Theorem, there exists at most four 3D-limit

cycles of type T3 for the discontinuous piecewise differential system (5) separated by Σ and formed by
3D-centers.

Case 2. If we consider cd1(cl3cr2−cl2cr3) = 0, we find these three subcases cd1 = 0 and cl3cr2−cl2cr3 ̸=
0, or cd1 ̸= 0 and cl3cr2 − cl2cr3 = 0, or cd1 = 0 and cl3cr2 − cl2cr3 = 0.

Subcase 2.1. If cd1 = 0 and cl3cr2 − cl2cr3 ̸= 0, we get yl = yr from the equation E5 = 0. Solving
E1 = 0 and E3 = 0 gives

yr =
cl1cr3xl − cl3cr1xr − cl2cr3yu + cl3cr2yu

cl3cr2 − cl2cr3
, zu =

cl1cr2xl − cl2cr1xr
cl3cr2 − cl2cr3

,

by replacing yr and zu in Ej = 0 we get new system of equations E′
j = 0 with j = 2, 4, 6, where

E′
6 = (xl − xr)

(
xl(−cl2cr3(a

2
d1 + b2d1) + cl3cr2

(
a2d1 + b2d1

)
+ 2cl1cr3(ad1ad2 + bd1bd2)) + cl3xr(cr2

(a2d1 + b2d1)− 2cr1(ad1ad2 + bd1bd2))− cl2cr3xr
(
a2d1 + b2d1

)
+ 2(cl3cr2 − cl2cr3)(ad1ad4 + bd1

bd4 + ad1ad2yu + bd1bd2yu)
)
= 0.

Since xr ̸= xl, the unique solution of the equation E′
6 = 0 with respect to yu is

yu =
cl1xl
cl2

− 2(ad1ad4 + bd1bd4) + xl
(
a2d1 + b2d1

)
+ xr

(
a2d1 + b2d1

)

2(ad1ad2 + bd1bd2)
+

cl2cl3cr1xr − cl1cl3cr2xl
cl2(cl3cr2 − cl2cr3)

,

when cl2(ad1ad2 + bd1bd2) ̸= 0. Then after replacing yu in E′
2 = 0 and E′

4 = 0 we obtain a new quadratic
system of equations E′′

2 = 0 and E′′
4 = 0, which implies that system (6) has at most four real solutions.

Thus at most four 3D-limit cycles of type T3 for the discontinuous piecewise differential system (5). For
the case cl2(ad1ad2 + bd1bd2) = 0 we notice that the discontinuous piecewise differential system (5) has at
most four 3D-limit cycles of type T3.

Subcase 2.2. If cd1 ̸= 0 and cl3cr2 − cl2cr3 = 0 we have three different subcases.

2.2.1. If cr2 ̸= 0 and cl3 =
cl2cr3
cr2

, we get

xr = xl +
cd2
cd1

(yl − yr), yu = (cd1cr1xl + cd2cr1yl + cd1cr2yr − cd2cr1yr − cd1cr3zu)/(cd1cr2),

after solving the equations E1 = 0 and E5 = 0. By replacing xr and yu in E3 = 0 we distinguish two
different cases cl2cr1 − cl1cr2 = 0 or cl2cr1 − cl1cr2 ̸= 0.

2.2.1.1. If cl2cr1 − cl1cr2 = 0, i.e. cl1 =
cl2cr1
cr2

. Since yl ̸= yr, E3 = cl2(yl − yr)(cd2cr1 − cd1cr2) = 0

has no solution or infinitely many solutions. Then there are no 3D-limit cycles.
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2.2.1.2. If cl2cr1 − cl1cr2 ̸= 0, and from E′
3 = 0 we get xl =

cl2(cd1cr2 − cd2cr1)

cd1(cl2cr1 − cl1cr2)
(yl − yr). By replacing

xl in Ej = 0 we get new quadratic equations E′
j = 0 with j = 2, 4, 6, where

E′
6 = (yl − yr)

(
2cd1(cl2cr1 − cl1cr2)(−cd2(ad1ad4 + bd1bd4) + ad2ad4cd1 + bd2bd4cd1) + yl(cd2

(
a2d1 + b2d1

)

(−2cd1cl2cr2 + cd2cl1cr2 + cd2cl2cr1) + 2ad1ad2cd1cl2(cd1cr2 − cd2cr1) + a2d2c
2
d1(cl2cr1 − cl1cr2) + 2

bd1bd2cd1cl2(cd1cr2 − cd2cr1) + b2d2c
2
d1(cl2cr1 − cl1cr2)) + yr(−cd2

(
a2d1 + b2d1

)
(−2cd1cl2cr2 + cd2cl1

cr2 + cd2cl2cr1) + 2ad1ad2cd1cr2(cd2cl1 − cd1cl2) + a2d2c
2
d1(cl2cr1 − cl1cr2) + 2bd1bd2cd1cr2(cd2cl1

−cd1cl2) + b2d2c
2
d1(cl2cr1 − cl1cr2))

)
= 0.

Due to the fact Xr ̸= Xl we know that yr ̸= yl, then we can get the linear expression of one of the unknown
variables yr, or yl from E′

6 = 0. By replacing the linear expression of the finding variable in E′
2 = 0 and

E′
4 = 0 we will get a quadratic system of two equations with two variables with at most four real solutions.

So there are at most four 3D-limit cycles of type T3 for the discontinuous piecewise differential system (5).
2.2.2. If cr2 = cl2 = 0 and cr3 ̸= 0, from E1 = 0 and E5 = 0 we get

zu =
cr1
cr3

xr, xl = xr +
cd2
cd1

(yr − yl),

by replacing zu and xr in the remaining equations, and from E3 = 0 we get yl = (cd1(cl1cr3 −
cl3cr1)xr)/(cd2cl1cr3) + yr because if cd2 = 0 and cl1 ̸= 0, or cl1 = 0 and cd2 ̸= 0, or cd2 = 0 and
cl1 = 0 the equations E3 = 0 becomes either xr(cl3cr1 − cl1cr3), or cl3cr1xr, or cl3zu, respectively. In all
these cases 0 is the unique solution of E3 = 0, which contradicts the assumption of the theorem. Now by
replacing yl in the even equations Ej = 0 we find a new quadratic system of equations named by E′

j = 0
with j = 2, 4, 6, where

E′
6 = xr(cl3cr1 − cl1cr3)

(
cl1cr3xr(c

2
d2(a

2
d1 + b2d1)− c2d1(a

2
d2 + b2d2)) + cl3cr1xr(c

2
d2(a

2
d1 + b2d1)− 2cd1cd2

(ad1ad2 + bd1bd2) + c2d1(a
2
d2 + b2d2)) + 2cd2cl1cr3(cd2(ad1ad4 + bd1bd4 + ad1ad2yr + bd1bd2yr)− cd1

(ad2ad4 + bd2bd4 + yr(a
2
d2 + b2d2)))

)
= 0.

From the equation E′
6 = 0 we can get the linear expression of one of the unknown variables xr, or yr. By

replacing the linear expression of the finding variable in E′
2 = 0 and E′

4 = 0 we will obtain a quadratic
system of two equations with two variables with at most four real solutions. So there are at most four
3D-limit cycles of type T3 for the discontinuous piecewise differential system (5).

2.2.3. If cr2 = cr3 = 0 and cl2 ̸= 0 or if cr2 = cl2 = cr3 = 0, under these conditions the equation
E1 = 0 becomes E1 = cr1xr = 0, that implies either xr = 0 for cr1 ̸= 0 that is a contradiction with the
assumption of the theorem, or cr1 = 0 and then we have infinitely many solutions.

Subcase 2.3. If cd1 = 0 and cl3cr2 − cl2cr3 = 0, we have two subcases

2.3.1. If cr2 ̸= 0 then cl3 =
cl2cr3
cr2

, we get yl = yr from E5 = 0. Substituting yl in E1 = 0 and E3 = 0,

then if cl1 = 0 we have E1 = xrcr1 = 0, which implies either xr = 0 for cr1 ̸= 0 which is a contradiction
with the assumption of the theorem, or cr1 = 0, then system (14) has infinitely many solutions.

If cl1 ̸= 0, then solving E1 = 0 and E3 = 0 we get

yr =
cr2yu − cr1xr + cr3zu

cr2
, xl =

cl2cr1xr
cl1cr2

.

Replacing yr and xl in Ej = 0, we get new quadratic equations E′
j = 0 with j = 2, 4, 6, where we give only

the expression E′
6 = 0 which is the simplest one

E′
6 = xr

(
cr1xr(cl2(a

2
d1 + b2d1)− 2cl1(ad1ad2 + bd1bd2)) + cl1cr2xr(a

2
d1 + b2d1) + 2cl1(cr2(ad1ad4

+bd1bd4 + ad1ad2yu + bd1bd2yu) + cr3zu(ad1ad2 + bd1bd2))
)
= 0.
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Since xr ̸= 0, in this equation we distinguish the two following cases
2.3.1.1. If cl1cr3(ad1ad2 + bd1bd2) ̸= 0 the unique solution of E′

6 = 0 with respect to zu is

zu = −(cr1xr
(
cl2

(
a2d1 + b2d1

)
− 2cl1(ad1ad2 + bd1bd2)

)
+ cl1cr2xr

(
a2d1 + b2d1

)
+ 2cl1cr2

(ad1ad4 + bd1bd4 + ad1ad2yu + bd1bd2yu))/(2cl1cr3(ad1ad2 + bd1bd2)),

after replacing zu in E′
2 = 0 and E′

4 = 0 we get a quadratic system of equations E′′
2 = 0 and E′′

4 = 0 that
can have at most four real solutions. Thus the discontinuous piecewise differential system (5) can have at
most four 3D-limit cycles of type T3.

2.3.1.2. If cl1cr3(ad1ad2 + bd1bd2) = 0 we have many subcases.
If cl1 = 0 and cr3(ad1ad2 + bd1bd2) ̸= 0 the equation E′

6 = 0 becomes cl2cr1
(
a2d1 + b2d1

)
xr = 0, that

implies either xr = 0 for cl2cr1
(
a2d1 + b2d1

)
̸= 0 that is a contradiction with the assumption of the theorem,

or cl2cr1
(
a2d1 + b2d1

)
= 0, and then we have infinitely many solutions.

If cr3 = 0 and cl1(ad1ad2 + bd1bd2) ̸= 0 under these conditions we get

yu = −(2cl1cr2(ad1ad4 + bd1bd4) + cr1xr(cl2(a
2
d1 + b2d1)− 2cl1(ad1ad2 + bd1bd2)) + cl1cr2xr

(a2d1 + b2d1))/(2cl1cr2(ad1ad2 + bd1bd2)),

after replacing yu in E′
2 = 0 and E′

4 = 0 we get a quadratic system of equations E′′
2 = 0 and E′′

4 = 0 that
can have at most four real solutions. Thus the discontinuous piecewise differential system (5) can have at
most four 3D-limit cycles of type T3.

If cr3cl1 ̸= 0 and ad1ad2 + bd1bd2 = 0 then ad2 = −(bd1bd2)/ad1 if ad1 ̸= 0 (If ad1 = 0 then bd1bd2 = 0
in both cases bd1 = 0 or bd2 = 0 the system (14) has infinitely many solutions). For cl1cr2 + cl2cr1 ̸= 0 the
equation E′

6 = −2cl2cr1(ad1ad4 + bd1bd4) = 0 which means there are infinitely many solutions of system
(14). If cl1cr2 + cl2cr1 ̸= 0 we get xr = −2cl1cr2(ad1ad4 + bd1bd4)/(

(
a2d1 + b2d1

)
(cl1cr2 + cl2cr1)) by solving

the equation E′
6 = 0. Then after replacing xr in E′

2 = 0 and E′
4 = 0 we get a quadratic system of equations

E′′
2 = 0 and E′′

4 = 0 that can have at most four real solutions. Consequently the discontinuous piecewise
differential system (5) can have at most four 3D-limit cycles of type T3.

2.3.2. If cr2 = 0 then cl2cr3 = 0, which implies cl2 = 0 or cr3 = 0 in both cases system (5) has
infinitely many solutions. Thus the discontinuous piecewise differential system (5) has no limit cycles.

Consequently the maximum number of 3D-limit cycles of type T3 for the discontinuous piecewise
differential system (5) separated by Σ is at most four.

Now we verify that this upper bound is reached. In the region Rr, we consider the 3D-center

ẋ ≈ 271.405x− 3.34397y − 249.703z + 33.4397,

ẏ ≈ −524.593x+ 6.54954y + 481.651z − 65.4954,

ż ≈ 503.536x− 22.2316y − 277.955z + 222.316,

(15)

and we consider the following 3D-center

ẋ ≈ 17.0601x+ 40.0748y − 48.9849z + 1.57584,

ẏ ≈ 35.5255x+ 37.0185y − 34.6504z + 5.66785,

ż ≈ 53.7525x+ 57.1489y − 54.0786z + 8.51736,

(16)

in the region Rl. In the region Rd we consider

ẋ ≈ −9.41978x− 11.0591y − 19.3411z + 13.386,

ẏ ≈ −3.83949x− 4.50483y − 7.8807z + 5.45179,

ż ≈ 7.76689x+ 6.99384y + 13.9246z − 7.81658.

(17)

The differential system (15) has two independent first integrals defined in Rr given by

Hr1(x, y, z) ≈ 35.8085x+ 18.622y + 0.1z + 0.214711,

Hr2(x, y, z) = (0.2x− 0.2y + 2.1z + 2)2 + (5x− 0.2y − 3z + 2)2,
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and the differential system (16) has the following two independent first integrals in Rl

Hl1(x, y, z) ≈ x+ 29.1772y − 19.6009z − 5,

Hl2(x, y, z) ≈ (1.0669x+ 0.532235y − 0.2z + 0.2)2 + (−0.880266x− 1.70412y + 2z − 0.1)2.

Finally in Rd two independent first integrals of the differential system (17) are

Hd1(x, y, z) ≈ −60.5234x+ 148.892y + 0.2z + 5,

Hd2(x, y, z) ≈ (−0.00997777x− 0.200281y − 0.2z + 0.3)2 + (−0.204347x− 0.114304y − 0.3z + 0.1)2.

The four solutions of system (14) that provide the intersection points of the four 3D-limit cycles of type T3

for the discontinuous piecewise differential system (15)-(16)-(17) with Σ, satisfying xir, ziu > 0 and xil < 0
with i = 1, 2, 3, 4 are

(x1r, y1r, y1u, z1u, x1l, y1l) ≈ (0.433032, 0.283484, 1.69163, 1.19163,−1.21924, 1.10962) ,

(x2r, y2r, y2u, z2u, x2l, y2l) ≈ (0.836428, 0.581786, 2.75671, 1.75671,−1.58126, 1.79063) ,

(x3r, y3r, y3u, z3u, x3l, y3l) ≈ (1.14474, 0.927628, 3.66268, 2.16268,−1.84819, 2.4241) ,

(x4r, y4r, y4u, z4u, x4l, y4l) ≈ (1.40588, 1.29706, 4.49566, 2.49566,−2.06795, 3.03397) .

This proves the existence of the four 3D-limit cycles of type T3 for the discontinuous differential system
separated by Σ and formed by the 3D-centers (15), (16) and (17), see Figure 5. ■

Proof. [Proof of statement (b) of Theorem 2] In the statement (a) of Theorem 2 we proved that four is
the maximum number of 3D-limit cycles for the discontinuous piecewise differential system (5) in each of
type T3 and from the proof of Theorem 1 also there are at most four 3D-limit cycles of type T2. Then we
know that the upper bound for the number of 3D-limit cycles for the discontinuous piecewise differential
system (5) of type T2 and T3 simultaneously is at most eight.

Now to complete the proof of statement (b) Theorem 2. We must give an example with exactly eight
3D-limit cycles, four from each type. In the region Rr we consider the differential system

ẋ ≈ −1189.8x− 362.1y − 370.164z + 587.326,

ẏ ≈ 3316.4x+ 900.249y + 372.358z − 1124.77,

ż ≈ 2349.12x+ 641.944y + 289.547z − 816.754.

(18)

In the left region Rl we consider the differential system

ẋ ≈ −485.793x− 336.105y − 386.782z + 571.602,

ẏ ≈ 3052.22x− 1689.63y + 2176.27z − 12924.7,

ż ≈ 3051.17x− 1690.36y + 2175.43z − 12923.4,

(19)

and in the region Rd we consider the system

ẋ ≈ −84.1147x− 125.494y − 69.4585z − 777.228,

ẏ ≈ 90.3947x+ 75.8781y + 36.5198z + 372.176,

ż ≈ 222.352x+ 60.4018y + 8.2366z − 75.6165.

(20)

The differential system (18) has

Hr1(x, y, z) ≈ −10x+ 61.3844y − 91.7249z + 627.189,

Hr2(x, y, z) = (−6x− 1.6y − 0.5z + 1.9)2 + (0.8x+ 0.5y + 1.8z − 1.6)2,

as two independent first integrals defined on Rr. For the differential system (19)

Hl1(x, y, z) ≈ 0.1x+ 46y − 46z + 369,

Hl2(x, y, z) ≈ 64(x− 0.634489y + 0.707606z − 4.43318)2 + (1.5x+ 2.62081y + 1.3z + 2.12173)2,
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are two independent first integrals in Rl. In Rd two independent first integrals of the differential system
(20) are

Hd1(x, y, z) ≈ 23x+ 46y − 10z + 369,

Hd2(x, y, z) ≈ (2.5x+ y + 0.3z + 1.66891)2 + (0.394982x+ 1.63185y + z + 11.8345)2.

The four solutions of system (9) satisfying xij , zik > 0, Xil ̸= Xir and Xiu ̸= Xid with i = 1, 2, 3, 4, j = r, l
and k = u, d are

(x1r, y1r, x1l, y1l, y1d, z1d, y1u, z1u) ≈ (3.69845,−8.84922, 1.48945,−7.74472,−3.86958, 3.13042,
−2.0397, 4.9603),

(x2r, y2r, x2l, y2l, y2d, z2d, y2u, z2u) ≈ (3.88748,−8.44374, 0.986067,−6.99303,−4.61913, , 1.88087,
−0.755096, 5.7449),

(x3r, y3r, x3l, y3l, y3d, z3d, y3u, z3u) ≈ (4.00795,−8.00398, 0.551249,−6.27562,−4.98698, 1.01302,
0.147807, 6.14781),

(x4r, y4r, x4l, y4l, y4d, z4d, y4u, z4u) ≈ (4.08912,−7.54456, 0.155737,−5.57787,−5.22022, 0.279781,
0.916095, 6.4161).

These four solutions provide the four 3D-limit cycles of type T3 for the discontinuous piecewise differential
system (18)-(19)-(20) separated by Σ. Now The four solutions of system (14) satisfying xir, ziu > 0 and
xil < 0 with i = 5, 6, 7, 8 are

(x5r, y5r, y5u, z5u, x5l, y5l) ≈ (4.14392,−7.07196, 1.60816, 6.60816,−0.290098,−5.44015),

(x6r, y6r, y6u, z6u, x6l, y6l) ≈ (4.17943,−6.58971, 2.24918, 6.74918,−0.712536,−5.45239),

(x7r, y7r, y7u, z7u, x7l, y7l) ≈ (4.20003,−6.10002, 2.85281, 6.85281,−1.10956,−5.47514),

(x8r, y8r, y8u, z8u, x8l, y8l) ≈ (4.20865,−5.60433, 3.4274, 6.9274,−1.49172,−5.5),

where these four solutions provide the four 3D-limit cycles of type T2 for the discontinuous piecewise dif-
ferential system (18)-(19)-(20) separated by Σ, see Figure 6. This example completes the proof of Theorem
2. ■
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