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Abstract. We study the number of limit cycles that a planar polynomial

vector field can have as a function of its number m of monomials. We prove

that the number of limit cycles increases at least quadratically with m and we
provide good lower bounds for m ⩽ 10.

1. Introduction and statement of the main results

In his address to the International Congress of Mathematicians in Paris 1900,
David Hilbert raised his famous list of problems for the 20th century [8], with the
16th problem being divided in two parts. In the first part motivated by Harnack’s
Curve Theorem [22], Hilbert asks from a description of the relative positions of the
ovals of the algebraic curves satisfying Harnack’s upper bound.

In the second part, motivated by finding an analogous to Harnack’s result,
Hilbert asks for the maximum number and relative position of limit cycles of planar
polynomial vector fields. More precisely, given a planar polynomial vector field X,
let π(X) denote its number of limit cycles (i.e. isolated periodic orbits), where the
value infinity is also admitted. Let also Xn be the family of the planar polynomial
vector fields X = (P,Q) of degree n (i.e. max{degP,degQ} = n). The Hilbert
number H(n) ∈ Z⩾0 ∪ {∞} is given by

H(n) = sup{π(X) : X ∈ Xn}.
The second part of Hilbert’s 16th problem consists in providing an upper bound
for H(n), as a function of n, and a description of the relative position of such limit
cycles. This problem is still open and is also part of Smale’s list of problems for the
21th century [38]. In his own words: except for the Riemann hypothesis it seems to
be the most elusive of Hilbert’s problems. Despite the many attempts, no progress
was made in finding upper bounds for H(n). So far it is not even known if H(2) is
finite or not. While it has not been possible to find upper bounds for H(n), there
has been success in obtaining lower bounds. It is known that H(n) increases at
least as fast as O(n2 lnn). See [12, 21]. In fact, it was even conjectured in 1988
by Lloyd that H(n) is of order O(n3), see [27]. For lower values of n, as far as we
know, at this moment the best lower bounds are H(2) ⩾ 4 [10, 39], H(3) ⩾ 13 [26]
and H(4) ⩾ 28 [33]. For more lower bounds, we refer to [21,33].

In this paper we study a variant of Hilbert’s 16th problem. Instead of looking at
the number of limit cycles as a function of the degree of X, we look it as a function
of the number of monomials.
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We now provide a precise statements of our main results. Given a planar poly-
nomial vector field X = (P,Q), we say that X has m monomials if the sum of the
number of monomials of P and Q is equal to m. Let Mm be the family of planar
polynomial vector fields with m monomials, independently of its degree. We define
the Hilbert monomial number HM (m) ∈ Z⩾0 ∪ {∞} as

HM (m) = sup{π(X) : X ∈ Mm}.
So far very little is known about HM (m). It follows from Buzzi et al [9] that
HM (m) = 0 for m ∈ {1, 2, 3}, HM (m) ⩾ m − 3 for m ⩾ 4 and that there is a
sequence of positive integer numbers mk → ∞, such that HM (mk) ⩾ N(mk), with
N(m) of order O(m lnm). This second lower bound follows from the results of

Álvarez and collaborators [1] obtained for Liénard type vector fields and it can be
seen that it can also be obtained from the lower bound of type O(n2 lnn) of H(n).

In our first main result we improve these general lower bounds proving that
HM (m) increases at least with order O(m2).

Theorem 1. If m ⩾ 9, then HM (m) ⩾ 1
2m

2 − 3m− 8.

As we will see, our proof is based on the study of some Abelian integrals and it
is self-contained.

We remark that the main goal of the above result is only to show the quadratic
growth of HM (m). For small m the given lower bound is not good at all. For
instance the result shows that HM (10) ⩾ 12 while in our next result we prove that
HM (10) ⩾ 32. In fact, as we will see, Theorem 1 is a corollary of the sharper result
given in Proposition 1: for any non-negative integer numbers n and r, there are
planar polynomial vector fields with n+ r + 4 monomials and at least 2n(r + 1) +
n
(
1 + (−1)r

)
limit cycles. Next we will study in more detail better lower bounds

of HM (m) for m ≤ 10.
It follows among the series of papers about the limit cycles of cubic Liénard

systems of Dumortier and Li that HM (6) ⩾ 4 [15] and HM (7) ⩾ 5 [16]. Also, it
follows from Chow et al [11, Sect. 4.2] that HM (5) ⩾ 3. In recent years Bréhard et
al [6, Chap. 6] and [7, Sect. 7] developed a computed assisted method to study the
zeros of Abelian integrals. With this method they provided a computed assisted
proof of the existence of a quartic vector field with at least 24 limit cycles. Since
this vector field has only nine momonials, it follows that HM (9) ⩾ 24. As far as
we known, these are the only specific lower bounds known for small values of m.
In our second main result we obtain better lower bounds for values of 4 ⩽ m ⩽ 10.
For m = 9, we replicate the known lower bound HM (9) ⩾ 24 with a direct proof.
For a summary of the previous and new lower bounds, see Table 1.

Theorem 2. If m ∈ {4, 5, 6}, then HM (m) ⩾ 12. Moreover, HM (7) ⩾ 16,
HM (8) ⩾ 20, HM (9) ⩾ 24, and HM (10) ⩾ 32.

To illustrate some of the vector fields involved in the proof of the above theorem
we show the two families of vector fields that we have used to prove thatHM (4) ⩾ 12
and HM (9) ⩾ 24. They are

(1) ẋ = α1x
g11yg12 − β1x

h11yh12 , ẏ = α2x
g21yg22 − β2x

h21yh22 ,

for some αi, βi ∈ R and gij , hij ∈ Z>0, and

(2) ẋ = y − y3 +
5∑

k=0

(−1)kx2(5−k)+1

(
y

ak

)2mk

, ẏ = x,
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with ai > 0, mi ∈ Z>0 and 1 ≪ m1 ≪ · · · ≪ m5, respectively. Notice that they
have respectively 4 and 9 monomials, and we will show that there are values of the
parameters with at least 12 and 24 limit cycles, respectively. The first one (1) is
constructed from a so called Planar-S system studied at [4,5] and having three limit
cycles. That planar-S system is exactly of the form (1), but with exponents gij ,
hij ∈ R, and it is only defined in the first quadrant. As we will see, by perturbing
these exponents (to transform them into rational numbers) and after some suitable
changes of variables and time we will arrive to a new system of the form (1) that
has at last three limit cycles in each quadrant, providing the desired lower bound.
The second one (2) is studied by using Abelian integrals.

Table 1. Summary of the lower bounds of the Hilbert monomial
numbers. Recall that HM (m) = 0 for m ⩽ 3.

Monomials New lower bounds Previous lower bounds
4 12 1
5 12 3
6 12 4
7 16 5
8 20 5
9 24 24
10 32 24

m ⩾ 11 1
2m

2 − 3m− 8 m− 3
Asymptotic O(m2) O(m lnm)

We remark that in the third column of Table 1, the lower bound HM (10) ⩾ 24
follows from the fact that in the previous known lower bound HM (9) ⩾ 24, all the
limit cycles have odd multiplicity and thus are persistent under small perturbations.
Similarly the two lower bounds in the second column for m = 5 and 6 follow from
the one obtained from m = 4. It is natural to believe that these two lower bounds
could be improved, but until now, we have not been able to do it.

It is curious to observe that if we address to a similar question but for planar
polynomial vector fields written in complex coordinates, that is the ones given by
ż = F (z, z̄), where F is a polynomial with m monomials, a totally different result
happens. On the one hand, these vector fields with m = 1 or m = 2 have at most
0, or 1 limit cycle, respectively [2]. On the other hand, when m = 3 (or higher)
there is no upper bound for the number of limit cycles [20].

The idea of looking for the number of monomials instead of the degree of poly-
nomials goes back to Descartes and his rule of signs, which states that if p : R → R
is a polynomial with m nonzero monomials, independently of its degree, then p has
at most m− 1 positive real roots, counting with multiplicity. In particular, it also
follows that p has at most 2m−1 distinct real roots (m−1 positive, m−1 negative
and eventually the root x = 0, which can be of any multiplicity). Moreover, there
are attempts to extended Descartes’ rule of signs to the multiple variable case, such
as the Kouchnirenko’s conjecture (nowadays known to be false). For more details,
we refer to Problems 28 and 29 of [19].

Furthermore in more recent developments on real algebraic geometry, Harnack’s
Curve Theorem is replaced by an upper bound depending solely on the number of
integer points contained in the interior of the Newton polygon of the given real
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polynomial [25, 29], which in turn is related to the monomials of the polynomial.
Moreover, it has also been shown by Mikhalkin [29] that this upper bound is also
related to the connected components of the complement of the amoeba associated
to the polynomial. For more details we refer to the survey of Mikhalkin [30] and the
book of Itenberg et al [23]. For applications of such techniques of algebraic geometry
to polynomial vector fields, we refer to Itenberg and Shustin [24]. For applications
of the relation between a polynomial vector fields and its Newton polygon, we refer
to Dalbelo et al [14] and the references therein.

Sprott [40] brought also applied the idea of looking to the number of monomi-
als to the field of qualitative theory of ordinary differential equations by seeking
for the simplest polynomial vector field in R3 exhibiting chaos. By simple Sprott
means with as few monomials as possible. In his own words: the simplicity refers
to the algebraic representation rather than to the physical process described by the
equations. In particular, Sprott was able to find nineteen different quadratic vector
fields defined on R3 exhibiting chaos and with either five monomials being two of
them nonlinear, or six monomials being one of them nonlinear. Nowadays such qua-
dratic vector fields are known as Sprott A, Sprott B,. . . , Sprott S. For a qualitative
study on some Sprott systems, we refer to [31] and references therein. Later Sprott
[41] was able to find a simpler chaotic system, with five monomials being only one
nonlinear. From this point of view it is interesting to observe that the celebrated
Lorenz [28] and Rössler [35] systems are also quadratic, have seven monomials and,
respectively, two or one of them are nonlinear.

Following this notion of simple vector field, Gasull [19] asks in his 8th problem
for the minimal m0 ∈ N such that HM (m0) > m0, i.e. for the simplest vector
field with more limit cycles than monomials. On that time it was known that
4 ⩽ m0 ⩽ 9 due to the cubic vector field of Li et al [26], with 9 monomials and 13
limit cycles. From Theorem 2 it now follows that m0 = 4. As we will see in the
proof that HM (4) ⩾ 12, a system proving that m0 = 4 is one of the form (1), but
the approach used in the proof only shows the existence of an example and it does
not provide neither explicit exponents nor explicit parameters. On the other hand,
a very simple explicit example showing that HM (4) ⩾ 4 is

(3) ẋ = ax2y5 − ay, ẏ = x3y2 − x,

with a = −(1 + ε) and ε > 0 small enough. It has a limit cycle surrounding each
one of the four critical points (±1,±1) born via an Andronov-Hopf bifurcation, see
the end of the proof of Theorem 2.

While preparing a first version of this paper we thought that the first wanderings
about the question of relating the number of limit cycles with the number of mono-
mials were introduced in 2021 paper [9], but this is not true. To the best of our
knowledge the first authors to address this type of questions were Boros, Hofbauer
and coauthors, see the 2019 papers [4, 5]. In fact, in a recent 2024 meeting they
comment this fact to the first author and also that their approach could be used to
get good lower bounds for HM (4). We thank very much them for their suggestion
that have leaded us to improve the lower bounds of a previous version of Theorem 2.

The approach of counting the monomials of a vector field instead of its degree
can be seen both as a strength or a weakness. This is so, because for instance affine
changes of variables change the number of monomials, but keep the degree. It is
a weakness, because in most cases the number of monomials increases but it is a
strength because occasionally it can go down. A similar situation happens with the
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degree by using birational transformations, together with time reparametrizations.
In any case, it is an interesting point of view to try to go inside the study of the
number of limit cycles of natural families of vector fields.

Applications of this approach can be seen in the field of Chemical reaction net-
work (CRN) [18], specially under the hypothesis of mass action kinetics (MAK)
[42]. Roughly speaking, CRN models the behavior of real-world chemical systems,
while MAK is the assumption that the rate of a chemical reaction is directly pro-
portional to the product of the activities or concentrations of the reactants. For
example, this means that given a chemical reaction A + 2B → C, the rate of oc-
currence of the reaction is given by r(cA, cB) = αcAc

2
B , where cA and cB are the

concentrations of the chemicals A and B and α ∈ R is a constant. Therefore, given
a system of interrelated chemical reactions, its dynamics is molded by a polynomial
system of differential equations in which each monomial represents a reaction. For
an introduction of the topic, we refer to Müller and Regensburger [32]. For other
applications we refer to [17, Chapter 7].

To fix a simple example with a limit cycle when m = 4, we recall the Higgins-
Seklov model of glicolysis, see [37]. In adimensional form it writes as

ẋ = 1− xy2, ẏ = axy2 − ay,

where a is a real positive parameter.
This paper is organized as follows. In next section we include some preliminaries

about the well-known Poincaré–Pontryagin Theorem. Theorems 1 and 2 are proved
in Section 3. The work ends with a small section with further thoughts.

2. The Poincaré–Pontryagin Theorem

Given a polynomial (resp. analytic or smooth) functionH : R2 → R, we associate
the planar polynomial (resp. analytic or smooth) vector field X = (P,Q) given by

P (x, y) = −∂H

∂y
(x, y), Q(x, y) =

∂H

∂x
(x, y).

In this case we say thatX is Hamiltonian and thatH is its Hamiltonian function. In
particular, observe that H is a first integral of X. Suppose that X has a continuum
of periodic orbits

A = {γh : h ∈ (a, b)} ⊂ {(x, y) ∈ R2 : H(x, y) ∈ (a, b)},

with γh depending continuously on h. See Figure 1(a). A maximal set with this
property is called a period annulus.

Let Xε = (Pε, Qε) be a perturbation of X given by

Pε(x, y) = P (x, y) + εf(x, y), Qε(x, y) = Q(x, y) + εg(x, y),

with f , g : R2 → R real polynomials and |ε| small. Let σ ⊂ A be a segment that
is transversal to every periodic orbit γh ⊂ A of the unperturbed vector field X.
Given h ∈ (a, b) and ε ̸= 0 small, let γ(h, ε) be the piece of orbit of the perturbed
vector field Xε between the starting point h on σ and the next intersection point
P (h, ε) with σ. See Figure 1(b). Let d(h, ε) = P (h, ε)−h be the displacement map
associated to the perturbation Xε. As usual, observe that γ(h, ε) is a periodic orbit
of Xε (resp. limit cycle) if, and only if, (h, ε) is a zero (resp. isolated zero) of the
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γh3
γh2γh1

A

(a)

A

h

σ P (h, ε)

γ(h, ε)

(b)

Figure 1. Illustration of a continuum of periodic orbits and a
displacement map.

displacement map. Moreover, given h ∈ (a, b) we associate to γh the line integral

(4) I(h) =

∮

γh

f dy − g dx,

known as Abelian Integral.

Theorem 3 (Poincaré–Pontryagin). Let Xε, d(h, ε) and I(h) be as above. Then

(5) d(h, ε) = εI(h) + ε2φ(h, ε),

where φ(h, ε) is analytic and uniformly bounded for (h, ε) in a neighborhood of
(h, 0), h ∈ (a, b).

For a proof of Theorem 3, see Christopher et al [13, p. 143]. It follows from (5)
that if I is well defined on (h1, h2) and I(h1)I(h2) < 0, then for |ε| > 0 small enough
γ(h1, ε) and γ(h2, ε) bound, together with two segments of σ, a positive or negative
invariant region of Xε. See Figure 2. Hence, it follows from the Poincaré-Bendixson

γ(h1, ε)

γ(h2, ε)A

I(h1) > 0 and I(h2) < 0

γ(h1, ε)

γ(h2, ε)A

I(h1) < 0 and I(h2) > 0

Figure 2. Illustration of the positive and negative invariant regions.

Theorem that Xε has at least one limit cycle between γ(h1, ε) and γ(h2, ε). There-
fore, we have the following well-known corollary.

Corollary 1. Let Xε and I(h) be as above. If I is well defined on (h1, h2) and
I(h1)I(h2) < 0, then there is ε0 > 0 such that Xε has at least one limit cycle
between γh1

and γh2
, for 0 < |ε| < ε0.
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Remark 1. Let I(h) be as in (4). It follows from Green’s Theorem that if γh is
positively oriented then

I(h) =

∫∫

Γh

∂f

∂x
+

∂g

∂y
dxdy,

where Γh ⊂ R2 is the interior region bounded by γh.

3. Proof of the main results

Lemma 1. Given r ∈ Z⩾0, let Xr = (P,Qr) be the planar polynomial vector field
given by,

(6) P (x, y) = P (y) = y − y3, Qr(x, y) = Qr(x) = x
r∏

k=−r

(x− k).

Then the following statements hold.

(i) Xr is Hamiltonian
(ii) Xr has r + 3 monomials
(iii) Xr has r + 1 centers on each of the lines y = ±1 and r centers on the line

y = 0.

Proof. Statements (i) and (ii) follow directly from (6). Hence, we focus on state-
ment (iii). Observe that the singularities of Xr on the lines y = ±1 are given by
(j,±1), with j ∈ {−r, . . . , r}. The Jacobian matrix at these singularities is given
by,

DX(j,±1) =

(
0 −2

Q′
r(j) 0

)
.

Hence,

(7) detDX(j,±1) = 2Q′
r(j) = 2(−1)r−j

r∏

k=−r
k ̸=j

|j − k|.

SinceXr is Hamiltonian, it follows from (7) that (j,±1) is either a hyperbolic saddle
or a center, with the later occurring if, and only if, detDX(j,±1) > 0. Thus, we
get from (7) that (j,±1) is a center if, and only if, j ≡ r mod 2. Therefore, either
with r even or odd, it is easy to see that we have exactly r + 1 centers in each of
the lines y = ±1. The study of the critical points on the line y = 0 is similar. □

Proposition 1. Given r ∈ Z⩾0, let P (y) and Qr(x) be given by (6). Then given
n ⩾ 1, there is a polynomial Rn : R2 → R with n + 1 monomials and ε0 > 0 such
that the perturbed system Xn,r = (Pn, Qr) given by

Pn(x, y) = P (y) + εRn(x, y), Qr(x, y) = Qr(x),

has at least

2n(r + 1) + n
(
1 + (−1)r

)

limit cycles, for 0 < |ε| < ε0. In particular, Xn,r has n+ r + 4 monomials.

Proof. Let pk = (xk,−1), k ∈ {1, . . . , r+1}, and pk = (xk, 1), k ∈ {r+2, . . . , 2r+2},
be the centers of Xr such that xi < xj for i < j ⩽ r+1 and xi > xj for i > j ⩾ r+2.
See Figure 3. Let Ak be the period annulus associated to pk and let γk

0 , γ
k
1 , . . . , γ

k
n

be fixed periodic orbits in Ak, k ∈ {1, . . . , 2r + 2}, such that γk
i−1 ⊂ Γk

i , where Γk
i



8 ARMENGOL GASULL AND PAULO SANTANA

x

y

y = a1

y = −a1

p1
γ1
0

γ1
1

p2

γ2
0

γ2
1

p3
γ3
0

γ3
1

p4 γ4
0

γ4
1

p5
γ5
0

γ5
1

p6 γ6
0

γ6
1

Figure 3. Illustration of pk and γk
i , for r = 2 and n = 1.

is the open interior region bounded by γk
i , i ∈ {1, . . . , n}. See Figure 3. Observe

that each γk
i is positively oriented, i ∈ {0, . . . , n}, k ∈ {1, . . . , 2r + 2}. Let

αk
i = sup{|y| : (x, y) ∈ Γk

i },
i ∈ {0, . . . , n}, k ∈ {1, . . . , 2r + 2}. Observe that αk

n > · · · > αk
0 > 0, for each

k ∈ {1, . . . , 2r + 2}. Observe also that we can choose γk
0 , γ

k
1 , . . . , γ

k
n such that for

each i ∈ {1, . . . , n} there is ai > 0 satisfying αk
i−1 < ai < αk

i , k ∈ {1, . . . , 2r + 2}.
See Figure 3. Given a polynomial R : R2 → R and a periodic orbit γ of Xr, set

I(R, γ) =

∫∫

Γ

∂R

∂x
(x, y) dxdy,

where Γ is the interior region bounded by γ. It follows from Remark 1 that if γ
is positively oriented, then I(R, γ) is the Abelian integral of the perturbed vector
field

Pn(x, y) = P (y) + εR(x, y), Qr(x, y) = Qr(x),

associated to γ. Let R0(x) = x2n+1 and observe that I(R0, γ
k
i ) > 0 for every

i ∈ {0, . . . , n} and k ∈ {1, . . . , 2r + 2}. Given m1 ⩾ 1 let,

R1(x, y) = R1(x, y;m1) = x2n+1 − x2n−1

(
y

a1

)2m1

.

We claim that there is m1 ⩾ 1 big enough such that I(R1, γ
k
0 ) > 0 and I(R1, γ

k
1 ) <

0, for every k ∈ {1, . . . , 2r + 2}. Indeed, first observe that if y ∈ R is such that
|y| < a1, then

(8) lim
m1→∞

(
y

a1

)2m1

= 0.
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Hence, it follows from (8), from the compactness of Γk
0 (i.e. the topological closure

of Γk
0) and from the fact that αk

0 < a1 that

(9) lim
m1→∞

x2n−2

(
y

a1

)2m1

= 0,

uniformly in (x, y) ∈ Γk
0 , k ∈ {1, . . . , 2r + 2}. Thus we have,

lim
m1→∞

I(R1, γ
k
0 ) = lim

m1→∞

∫∫

Γk
0

(2n+ 1)x2n − (2n− 1)x2n−2

(
y

a1

)2m1

dxdy

= I(R0, γ
k
0 )− lim

m1→∞

∫∫

Γk
0

(2n− 1)x2n−2

(
y

a1

)2m1

dxdy

= I(R0, γ
k
0 ) > 0,

for k ∈ {1, . . . , 2r + 2}, with the last equality following from (9). Let

Ωk
i = {(x, y) ∈ Γi : |y| > ai},

and observe that Ωk
i has positive Lebesgue measure, i ∈ {1, . . . , n}. See the gray-

shaded area in Figure 3. Hence, it follows that

lim
m1→∞

∫∫

Γk
1

x2n−2

(
y

a1

)2m1

dxdy ⩾ lim
m1→∞

∫∫

Ωk
1

x2n−2

(
y

a1

)2m1

dxdy = +∞.

Therefore,

lim
m1→∞

I(R1, γ
k
1 ) = lim

m1→∞

∫∫

Γk
1

(2n+ 1)x2n − (2n− 1)x2n−2

(
y

a1

)2m1

dxdy

⩽ I(R0, γ
k
1 )− lim

m1→∞

∫∫

Ωk
1

(2n− 1)x2n−2

(
y

a1

)2m1

dxdy

= −∞.

This proves the claim. That is, there is m1 ⩾ 1 big enough such that

(10) I(R1, γ
k
0 ) > 0, I(R1, γ

k
1 ) < 0,

for every k ∈ {1, . . . , 2r + 2}. From now on, we fix m1 ∈ N big enough such that
(10) is satisfied. It follows from the proof of Lemma 1 that if r is even, then

pk1 = pr/2+1, pk2 = p3r/2+2

lie on the line x = 0. See Figure 3. We claim that we can choose γ
kj

−1 ⊂ Γ
kj

0 such

that I(R1, γ
kj

−1) < 0, j ∈ {1, 2}. Indeed, let
(11) b

kj

0 = inf{|y| : (x, y) ∈ Γ
kj

0 },
and observe that b

kj

0 > 0, j ∈ {1, 2}. Observe also that

(12)
∂R1

∂x
(x, y) < 0 ⇔ x2 <

2n− 1

2n+ 1

(
y

a1

)2m1

.

Let γ
kj

−1 ⊂ Γ
kj

0 be of small enough amplitude such that

(13) (x, y) ∈ Γ
kj

−1 ⇒ x2 <
2n− 1

2n+ 1

(
b
kj

0

a1

)2m1

,
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where Γ
kj

−1 is the interior region bounded by γ
kj

−1, j ∈ {1, 2}. Observe that it is

possible to choose γ
kj

−1 precisely because pkj lies in the line x = 0 and it is not the
origin, j ∈ {1, 2}. Hence, it follows from (11), (12) and (13) that

∂R1

∂x
(x, y)

∣∣∣∣
Γ
kj
−1

< 0,

and thus we have I(R1, γ
kj

−1) < 0, j ∈ {1, 2}. This proves the claim. Therefore,
it follows that if |ε| > 0 is small enough, then the perturbed vector field X1,r =
(P1, Qr) given by

P1(x, y) = P (y) + εR1(x, y), Qr(x, y) = Qr(x),

has r+5 monomials and at least 2(r+1)+1+ (−1)r limit cycles, being 2(r+1) of
them bifurcating between the orbits γk

0 and γk
1 , k ∈ {1, . . . , 2r + 2} and the other

(possibly) two between γ
kj

0 and γ
kj

−1, j ∈ {1, 2}, when r is even. Similarly, we can
continue this process and obtain moreover another family of 2(r + 1) + 1 + (−1)r

cycles by considering,

R2(x, y) = R2(x, y;m1,m2) = x2n+1 − x2n−1

(
y

a1

)2m1

+ x2n−3

(
y

a2

)2m2

.

Then, for this vector field we have obtained 4(r + 1) + 2(1 + (−1)r) limit cycles.
More precisely, once obtained R1, we can take m2 > m1 big enough such that none
of the previous Abelian integrals changes sign at the same time that I(R2, γ

k
2 ) > 0,

k ∈ {1, . . . , 2r+2}. Then, if r is even, we can choose γ
kj

−2 ⊂ Γ
kj

−1 small enough such

that I(R2, γ
kj

−2) > 0, j ∈ {1, 2}.
Continuing this process, we obtain a perturbation of the form

Rn(x, y) =
n∑

k=0

(−1)kx2(n−k)+1

(
y

ak

)2mk

,

with a0 = 1, m0 = 0 and mk ≫ mk−1, k ∈ {1, . . . , n}, such that the perturbed
vector field Xn,r = (Pn, Qr) given by

Pn(x, y) = P (y) + εRn(x, y), Qr(x, y) = Qr(x),

has n + r + 4 monomials and at least 2n(r + 1) + n
(
1 + (−1)r

)
limit cycles, for

|ε| > 0 small enough. □
Proof of Theorem 1. It follows from Proposition 1 that we have a two-parameter
family of planar polynomial vector fields Xn,r, with r ⩾ 0 and n ⩾ 1, such that

(14) HM (n+ r + 4) ⩾ 2n(r + 1) + n
(
1 + (−1)r

)
⩾ 2n(r + 1).

If we replace m = n+ r + 4 at (14) we obtain,

(15) HM (m) ⩾ 2(m− r − 4)(r + 1).

In order to maximize the leading coefficient of the right-hand side of (15), and
knowing that r must be an integer, we take

(16) r =
1

2
m+

(−1)m − 1

4
.

Replacing (16) at (15) we obtain,

(17) HM (m) ⩾ 1

2
m2 − 3m− 8 +

9

4
(1− (−1)m) ⩾ 1

2
m2 − 3m− 8.
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This finishes the proof. □

Proof of Theorem 2. Let Xn,r be given by Proposition 1. We recall that Xn,r has
n+ r + 4 monomials and at least 2n(r + 1) + n

(
1 + (−1)r

)
limit cycles, for |ε| > 0

small. If we take r = 2 and n = 3 (resp. n = 4) we obtain HM (9) ⩾ 24 (resp.
HM (10) ⩾ 32).

We now focus on the claim that HM (m) ⩾ 12 for m ∈ {4, 5, 6}. Consider the
analytic system defined on the open first quadrant of R2 and given by

(18) ẋ = α1x
g11yg12 − β1x

h11yh12 , ẏ = α2x
g21yg22 − β2x

h21yh22 ,

with αi, βi, gij , hij ∈ R. It follows from Boros and Hofbauer [5, Section 7] that
for some choice of the parameters and exponents, system (18) has at least three
limit cycles of odd multiplicity. In particular, such limit cycles persist under small
perturbations. Therefore, we can take a rational approximation of such exponents
and thus suppose that system (18) can be written as

(19) ẋ = α1x
a1
b1 y

c1
d1 − β1x

a2
b2 y

c2
d2 , ẏ = α2x

a3
b3 y

c3
d3 − β2x

a4
b4 y

c4
d4 ,

with ai, ci ∈ Z and bi, di ∈ Z>0 relatively primes and has yet at least three limit
cycles of odd multiplicity. Let b = 2b1b2b3b4, d = 2d1d2d3d4 and observe that b ⩾ 2
and d ⩾ 2 are even natural numbers. Applying the non-reversible transformation
(x, y) = (ub, vd) we obtain a new vector field given by

u̇ =
1

bub−1

(
α1u

2a1b2b3b4v2c1d2d3d4 − β1u
2b1a2b3b4v2d1c2d3d4

)
,

v̇ =
1

dvd−1

(
α2u

2b1b2a3b4v2d1d2c3d4 − β2u
2b1b2b3a4v2d1d2d3c4

)
.

By using the rescaling of time dt/dτ = bdub−1+2kvd−1+2k, with k ∈ Z>0, we obtain
(20)

u̇ = dvd−1
(
α1u

2(a1b2b3b4+k)v2(c1d2d3d4+k) − β1u
2(b1a2b3b4+k)v2(d1c2d3d4+k)

)
,

v̇ = bub−1
(
α2u

2(b1b2a3b4+k)v2(d1d2c3d4+k) − β2u
2(b1b2b3a4+k)v2(d1d2d3c4+k)

)
.

Observe that (20) is polynomial for k ∈ Z>0 big enough. Moreover, since b ⩾ 2
and d ⩾ 2 are even numbers, it follows that (20) is reversible in relation to the
lines u = 0 and v = 0. Hence, (20) has diffeomorphic copies of (19) at each open
quadrant and thus we obtain HM (4) ⩾ 12. Since each of these limit cycles has odd
multiplicity, it follows that they persist under small perturbations and thus we also
have HM (m) ⩾ 12 for m ∈ {5, 6}.

Finally, we now prove that HM (8) ⩾ 20 and HM (7) ⩾ 16. The proof will
follow by studying the cyclicity of some weak foci. For a general theory of cyclicity
of limit sets, we refer to Roussarie [36, Chapter 2]. For more details about the
cyclicity of weak focus in polynomial vector fields, we refer to Christopher et al
[13, Chapter 1]. For a more computational approach, we refer to Romanovski and
Shafer [34, Chapter 6].

Consider the system with eight monomials

(21) ẋ = a5y
6 + a4y

5 + a3y
4 + a2y

3 + a1xy
2 − a, ẏ = xy − 1,

where a = a1 + · · ·+ a5. It is not hard to see that if aj = a∗j , j = 1, . . . , 5, where

a∗1 = −1, a∗2 = −161

17
, a∗3 =

17

11
, a∗4 = − 6

11
, a∗5 =

7

99
,
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then the point p = (1, 1) is a weak focus of order five, i.e. it is not hyperbolic,
L1 = · · · = L4 = 0 and L5 ̸= 0, where Lj is its jth Lyapunov constant (see
Adronov et al. [3, p. 254]). Moreover, if we calculate the Jacobian matrix of
L1, L2, L3, L4 in relation to a2, a3, a4, a5, at aj = a∗j , j = 2, 3, 4, 5, it can be seen
that

det
∂(L1, L2, L3, L4)

∂(a2, a3, a4, a5)
(a∗2, a

∗
3, a

∗
4, a

∗
5) ̸= 0.

Hence, it follows from Christopher et al [13, Theorem 1.5] that we can choose
aj ≈ a∗j , j ∈ {2, 3, 4, 5}, such that four limit cycles bifurcate from p. Now we move
a1 to perturb the trace of (21) at p and thus to bifurcate a fifth limit cycle (see
Romanovski and Shafer [34, Theorem 6.2.7]). Therefore, for some specific values of
the parameters, system (21) has at least five limit cycles near the point p = (1, 1)
and surrounding it. Thus, similarly to the previous argumentation, we now use the
non-invertible change of variables (x, y) = (u2, v2), followed by the rescaling of time
dt/dτ = 2uv, obtaining the new system

(22) u̇ = a5v
13 + a4v

11 + a3v
9 + a2v

7 + a1u
2v5 − av, v̇ = u3v2 − u.

It has again eight monomials and moreover it has a diffeomorphic copy, in each open
quadrant, of the first open quadrant of (21). In particular, it has 20 limit cycles
for some values of the coefficients and thus HM (8) ⩾ 20. To prove HM (7) ⩾ 16, we
substitute a5 = 0 in (21), obtaining a system with seven mononials. In this system,
if aj = aj , j = 1, . . . , 4, where

a1 = −1, a2 = − 42

109
, a3 =

31

109
, a4 = − 6

109
,

then p = (1, 1) is a weak focus of order four and the proof follows similarly.
For each k = 1, 2, 3 by taking a5 = a4 = .. = ak+1 = 0 and suitable a1, . . . , ak

in (22) we obtain a vector field with k + 3 monomials and at least 4k limit cycles,
with k of them included in each quadrant. These results give less limit cycles that
the examples constructed from the Boros and coauthor’s result when m = 4, 5 and
by taking k = 3 gives a different proof that HM (6) ≥ 12, with the advantage that
this new example is explicit. □

4. Further Thoughts

Regarding the recent developments in the field of algebraic geometry described
in the introduction, it is worthy to ask for a variant of the Hilbert number as
a function of the associated newton polygon of the polynomial vector field. In
particular, as a functions of the number of integer points contained in its interior.
Notably, in the case of a Hamiltonian vector field X associated with a polynomial p,
the Newton polygons N(X) and N(p) coincide, differing only by a translation in
Z2. This observation, combined with the discussion made in the introduction, could
be used for instance to establish a bound on the number of distinct periodic annuli
of X in terms of the number of integer points in N(X). We thank very much
the anonymous reviewers for pointing out such developments and suggesting this
variation of the problem.
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Université de Lyon, Lyon 2019.
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