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Abstract. In this paper we investigate the zero-Hopf bifurcation of a four dimen-
sional analytic differential system. We prove that at most five periodic orbits bifurcate
from the zero-Hopf equilibrium using the averaging theory of first order and give a
specific example to illustrate this conclusion. Moreover we prove the non-existence
of C1 first integrals in a neighbourhood of these periodic orbits.

1. Introduction and statement of the main result

In an n-dimensional analytic autonomous system, there always exist analytic first
integrals near a regular point (and there are n − 1 functionally independent analytic
first integrals). However, in general, this is not the case in a neighbourhood of an
equilibrium point. The existence of analytic first integrals near them depends on the
resonance of the eigenvalues of the linearized system at equilibrium. For details, see
the book [11].

Recently Yagasaki [9, 10] studied the analytic non-integrability of three-dimensional
analytic differential systems at a zero-Hopf equilibrium. A zero-Hopf equilibrium of
an n-dimensional autonomous differential system is an equilibrium that has a pair of
purely imaginary eigenvalues and the rest are all zero eigenvalues.

Motivated by the works of Yagasaki in [9, 10] Llibre and Zhang [6] studied the dy-
namics in a neighbourhood of a zero-Hopf equilibrium in R3. They obtained sufficient
conditions for the existence of two periodic orbits bifurcating from the zero-Hopf equi-
librium and proved the non-existence of C1 first integrals in a neighbourhood of these
periodic orbits.

In 2021 Llibre and Tian [4] studied a four-dimensional hyperchaotic system depend-
ing on six parameters. They characterized the values of the parameters for which their
equilibria are zero-Hopf equilibria and obtain the sufficient conditions for the existence
of four periodic orbits bifurcating from these zero-Hopf equilibria.

Inspired by the works [4, 6], we consider the following analytic differential system
in R4 which has a zero-Hopf bifurcation at the equilibrium localized at the origin of
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coordinates
ẋ =εa1x− (ω + εω1)y + εa2z + εa3w + a4x

2 + a5xy + a6xz + a7wx+ a8y
2

+ a9yz + a10wy + a11z
2 + a12wz + a13w

2 + h.o.t.,
ẏ =(ω + εω1)x+ εb1y + εb2z + εb3w + b4x

2 + b5xy + b6xz + b7wx+ b8y
2

+ b9yz + b10wy + b11z
2 + b12wz + b13w

2 + h.o.t.,
ż =εc0x+ εc1y + εc2z + εc3w + c4x

2 + c5xy + c6xz + c7wx+ c8y
2

+ c9yz + c10wy + c11z
2 + c12wz + c13w

2 + h.o.t.,
ẇ =εd0x+ εd1y + εd2z + εd3w + d4x

2 + d5xy + d6xz + d7wx+ d8y
2

+ d9yz + d10wy + d11z
2 + d12wz + d13w

2 + h.o.t.,

(1)

where ω > 0.
For the differential system (1) we study the periodic orbits bifurcating from the

zero-Hopf equilibrium when the parameter ε crosses the zero value.
The conclusions are summarized in the following theorem.

Theorem 1. For the differential system (1) the following statements hold.

(a) For |ε| > 0 sufficiently small, at most five periodic orbits can bifurcate from
the zero-Hopf equilibrium point localized at the origin of coordinates using the
first order averaged function. Morever, there are systems (1) for which this
zero-Hopf bifurcation exhibits the five periodic orbits [see Example 2].

(b) For |ε| > 0 system (1) has two types of periodic orbits bifurcating from the zero-
Hopf equilibrium, Γ1ε : (x1(t, ε), y1(t, ε), z1(t, ε), w1(t, ε)) and Γ2ε : (x2(t, ε), y2(t, ε),
z2(t, ε), w2(t, ε)). There are Zi ∈ R, Wi ∈ R/{0}, i = 1, 2, 3, given in (14) and
appendix, such that (x1(0, ε), y1(0, ε), z1(0, ε), w1(0, ε)) = (O(ε2), O(ε3), εZi +
O(ε2), εWi + O(ε2)). Morever, if c12Wi + 2c11Zi + c2 + 2d13Wi + d12Zi +
d3 ̸= 0, system (1) has no C1 first integrals in a neighbourhood of Γ1ε. And
there are Rj ∈ R/{0}, Zj ,Wj ∈ R, j = 4, 5, given in (16) and appendix,
such that (x2(t, ε), y2(t, ε), z2(t, ε), w2(t, ε)) = ε(Rj cos(ωt), Rj sin(ωt), Zj ,Wj)+
O(ε2). Morever, if λ1,j, λ2,j and λ3,j, the eigenvalues of Jacobian matrix
Dx(g(Rj , Zj ,Wj)) defined in (12), are not an integer multiple of

√
−1/ε, then

the system has no C1 first integrals in a neighbourhood of Γ2ε.

Example 2. The following particular system (1)
ẋ =εx− y + wx+ xz + yz,

ẏ =εy + x+ yz,

ż =− 3εw − 5εz − x2 + wz + w2,

ẇ =− 5εw − 5εz + x2 + z2 − 5wz − 5w2,

(2)

has five periodic orbits bifurcating from the zero-Hopf equilibrium. Morever, the system
has no C1 first integrals in the neighbourhood of these five periodic orbits.

We numerically simulate the five periodic orbits of system (2) (as shown in Figure
1), where we take the parameter ε = 1/25000. Note that we are studying a four-
dimensional system, but we can only draw three-dimensional images. So we consider
the projection of these periodic orbits in (x, y, w) space.



PERIODIC ORBITS AND C1 FIRST INTEGRALS 3

(a) Periodic orbit Γ1 (b) Periodic orbit Γ2

(c) Periodic orbit Γ3 (d) Periodic orbit Γ4

(e) Periodic orbit Γ5

Figure 1. The periodic orbits of Example 2 computed numerically with
the initial conditions given in statement (b) of Theorem 1 with ε =
1/25000.

The periodic orbit Γ1 : (x1(t, ε), y1(t, ε), z1(t, ε), w1(t, ε)) and Γ2 : (x2(t, ε), y2(t, ε),
z2(t, ε), w2(t, ε)) of system (2) have been obtained with the initial conditions (x1(0, ε),
y1(0, ε), z1(0, ε), w1(0, ε)) = (2

√
5ε, 0, 0,−2ε) and (x2(0, ε), y2(0, ε), z2(0, ε), w2(0, ε)) =

(16
√
2

7 ε, 0, 187 ε,
22
7 ε), respectively.

The periodic orbit Γ3 : (x3(t, ε), y3(t, ε), z3(t, ε), w3(t, ε)), Γ4 : (x4(t, ε), y4(t, ε), z4(t, ε),
w4(t, ε)) and Γ5 : (x5(t, ε), y5(t, ε), z5(t, ε), w5(t, ε)) of system (2) have been obtained
with the initial conditions (x3(0, ε), y3(0, ε), z3(0, ε), w3(0, ε)) = (3500ε2, ε3, 6.11887ε,
− 7.30628ε), (x4(0, ε), y4(0, ε), z4(0, ε), w4(0, ε)) = (3500ε2, ε3, 0.993874ε,−1.44142ε)
and (x5(0, ε), y5(0, ε), z5(0, ε), w5(0, ε)) = (4000ε2, ε3, 32.8873ε, 4.7477ε), respectively.

To prove the existence of periodic orbits, we utilize the first order averaging theory.
For proving the non-existence of the C1 first integrals near these periodic orbits, we
employ the method of Llibre and Valls [5], which has been improved by Llibre and
Zhang in [6] computing the characteristic multipliers of the variational equation along
a periodic orbit in a relatively easy way.
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This paper is organized as follows: We summarize the averaging theory of first order
and some basic results on the C1 non-integrability in section 2 that will be used for
proving our main results. In section 3 we prove our Theorem 1 and Example 2.

2. Preliminary results

2.1. Averaging theory. In this section we summarize the results on the averaging
theory of first order for computing periodic orbits. The following result is widely used,
and its proof can be found in [8].

Theorem 3. Consider the following differential system
ẋ = εG(t,x) + ε2R(t,x, ε), (t,x, ε) ∈ [0,∞)× Ω× (−ε0, ε0), (3)

where Ω is an open subset of Rn, G(t,x), R(t,x, ε) are C2 functions T -periodic in t,
and ε0 > 0 is a small real constant. The first averaged function is

g(x) =
1

T

∫ T

0
G(t,x)dt.

If a ∈ Ω is a zero of the averaged function g(x) such that the Jacobian det
(
Dxg(a)

)
̸= 0,

then the differential system (3) has a T -periodic solution x(t, ε) such that x(0, ε) → a
as ε → 0.

2.2. C1 non-integrability. The following result goes back to Poincaré. Consider the
following differential system

ẋ = f(x), x ∈ Ω (4)
where f ∈ C1 and Ω is an open subset of Rn. Assume that system (4) has a T -periodic
orbit x(t). Define the variational differential system of (4) along the periodic orbit x(t)
as

ż = Dxf(x(t))z, (5)
where z is an n×n matrix. Let Φ(t) be the fundamental solution matrix of system (5)
satisfying Φ(0) = idn×n. Then the characteristic multipliers of the periodic orbit x(t)
are the eigenvalues of the matrix Φ(T ). Note that 1 is always a characteristic multiplier
whose the eigenvector is tangent to the periodic orbit. For details, see [5].

Next we give the following theorem derived from Poincaré [7] and its proof can be
found in [5].

Theorem 4. If 1 is a characteristic multiplier of a periodic orbit Γ of system (4) having
multiplicity one, then the differential system (4) has no C1 first integrals defined in a
neighbourhood of Γ.

The following result obtained by Llibre and Zhang [6] provides a relatively easy way
to compute the characteristic multipliers.

Theorem 5. Consider the differential system (3) under the assumptions of Theorem 3,
such that system (3) has a T -periodic solution xε(t) such that xε(0) → a when ε → 0.
Let Φ(t, ε) be the fundamental solution matrix of the variational system

ż = εDx

(
G(t,x) + εR(t,x, ε)

)
|x=xε(t)z, (6)

such that Φ(0, ε) = Idn×n. Then Φ(T, ε) → exp(εDxg(a)T ) when ε → 0.
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Combining Theorem 4 and 5, we have the following remark.

Remark 6. We emphasize that working with the averaged function we have eliminated
the characteristic multiplier 1 of the variational equation associated with the periodic
orbit. So in order to prove that there is no C1 first integral near the periodic orbit, we
only need to check that the eigenvalues of the matrix Dxg(a) in Theorem 3 are not an
integer multiple of 2π

√
−1/(Tε).

3. proof of our main result

Proof of Theorem 1. For studying the periodic orbits of system (1) bifurcating from the
zero-Hopf equilibrium (0, 0, 0, 0), we perform the rescaling (x, y, z, w) = (εX, εY, εZ, εW ).
Being ε > 0 a small parameter, then system (1) becomes

Ẋ =− ωY + ε(−Y ω1 + a1X + a2Z + a3W + a4X
2 + a5XY + a6XZ + a7WX

+ a8Y
2 + a9Y Z + a10WY + a11Z

2 + a12WZ + a13W
2),

Ẏ =ωX + ε(Xω1 + b1Y + b2Z + b3W + b4X
2 + b5XY + b6XZ + b7WX

+ b8Y
2 + b9Y Z + b10WY + b11Z

2 + b12WZ + b13W
2),

Ż =ε(c0X + c1Y + c2Z + c3W + c4X
2 + c5XY + c6XZ + c7WX

+ c8Y
2 + c9Y Z + c10WY + c11Z

2 + c12WZ + c13W
2),

Ẇ =ε(d0X + d1Y + d2Z + d3W + d4X
2 + d5XY + d6XZ + d7WX

+ d8Y
2 + d9Y Z + d10WY + d11Z

2 + d12WZ + d13W
2).

(7)

Then we write system (7) in cylindrical coordinates via the change of variables
(X,Y, Z,W ) = (R cos θ,R sin θ, Z,W ) and system (7) becomes

Ṙ =ε
(
a2 cos θZ + a3 cos θW + a11 cos θZ

2 + a12 cos θWZ + a13 cos θW
2

+ b2 sin θZ + b3 sin θW + b13 sin θW
2 + b12 sin θWZ + b11 sin θZ

2

+
(
a1 cos

2 θ + a7 cos
2 θW + a10 sin θ cos θW + a6 cos

2 θZ

+ a9 sin θ cos θZ + b1 sin
2 θ + b10 sin

2 θW + b7 sin θ cos θW

+ b9 sin
2 θZ + b6 sin θ cos θZ

)
R+

(
a4 cos

3 θ + a5 sin θ cos
2 θ

+ a8 sin
2 θ cos θ + b8 sin

3 θ + b4 sin θ cos
2 θ + b5 sin

2 θ cos θ
)
R2

)
,

θ̇ =ω +
1

R
ε
(
− a13 sin θW

2 − a3 sin θW − a12 sin θWZ − a11 sin θZ
2

− a2 sin θZ + b13 cos θW
2 + b3 cos θW + b12 cos θWZ + b11 cos θZ

2

+ b2 cos θZ +
(
− a1 sin θ cos θ − a10 sin

2 θW − a7 sin θ cos θW

− a9 sin
2 θZ − a6 sin θ cos θZ + b1 sin θ cos θ + b7 cos

2 θW

+ b10 sin θ cos θW + b6 cos
2 θZ + b9 sin θ cos θZ + ω1 sin

2 θ

+ ω1 cos
2 θ

)
R+

(
− a8 sin

3 θ − a4 sin θ cos
2 θ − a5 sin

2 θ cos θ

+ b4 cos
3 θ + b5 sin θ cos

2 θ + b8 sin
2 θ cos θ

)
R2

)
,

(8)
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Ż =ε
(
c2Z + c3W + c13W

2 + c12WZ + c11Z
2 +

(
c1 sin θ + c0 cos θ

+ c10 sin θW + c7 cos θW + c9 sin θZ + c6 cos θZ
)
R+

(
c8 sin

2 θ

+ c4 cos
2 θ + c5 sin θ cos θ

)
R2

)
,

Ẇ =ε
(
d2Z + d3W + c13W

2 + d12WZ + d11Z
2 +

(
d1 sin θ + d0 cos θ

+ d10 sin θW + d7 cos θW + d9 sin θZ + d6 cos θZ
)
R+

(
d8 sin

2 θ

+ d4 cos
2 θ + d5 sin θ cos θ

)
R2

)
.

Taking the variable θ as the new time, system (8) becomes (dR/dθ, dZ/dθ, dW/dθ).
Due to ω > 0 this system is well-defined in a neighbourhood of the origin. So we have
the differential system

dR

dθ
=εω−1

(
a2 cos θZ + a3 cos θW + a11 cos θZ

2 + a12 cos θWZ

+ a13 cos θW
2 + b2 sin θZ + b3 sin θW + b13 sin θW

2

+ b12 sin θWZ + b11 sin θZ
2 + (a1 cos

2 θ + a7 cos
2 θW

+ a10 sin θ cos θW + a6 cos
2 θZ + a9 sin θ cos θZ + b1 sin

2 θ

+ b10 sin
2 θW + b7 sin θ cos θW + b9 sin

2 θZ + b6 sin θ cos θZ)R

+
(
(a4 cos

3 θ + a5 sin θ cos
2 θ + a8 sin

2 θ cos θ + b8 sin
3 θ

+ b4 sin θ cos
2 θ + b5 sin

2 θ cos θ
)
R2

)
+O(ε2)

:=εG1(θ,R, Z,W ) +O(ε2),

dZ

dθ
=εω−1(c8 sin

2 θR2 + c4 cos
2 θR2 + c5 sin θ cos θR

2 + c1 sin θR

+ c0 cos θR+ c10 sin θRW + c7 cos θRW + c9 sin θRZ

+ c6 cos θRZ + c13W
2 + c12WZ + c3W + c11Z

2 + c2Z)

:=εG2(θ,R, Z,W ) +O(ε2),

dW

dθ
=εω−1(d8 sin

2 θR2 + d4 cos
2 θR2 + d5 sin θ cos θR

2 + d1 sin θR

+ d0 cos θR+ d10 sin θRW + d7 cos θRW + d9 sin θRZ

+ d6 cos θRZ + d13W
2 + d12WZ + d3W + d11Z

2 + d2Z)

:=εG3(θ,R, Z,W ) +O(ε2).

(9)

Note that the differential system (9) is written in the normal form (3) for applying the
first order averaging theory, where x = (R,Z,W ), t = θ and T = 2π. Then we can
compute the first averaged function.

g(R,Z,W ) =
(
g1(R,Z,W ), g2(R,Z,W ), g3(R,Z,W )

)

=

∫ 2π

0

(
G1(θ,R, Z,W ), G2(θ,R, Z,W ), G3(θ,R, Z,W )

)
dθ

(10)
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and we get

g1(R,Z,W ) =
R(a7W + a6Z + a1 + b10W + b9Z + b1)

2ω
,

g2(R,Z,W ) =
(c4 + c8)R

2 + 2W (c13W + c12Z + c3) + 2c11Z
2 + 2c2Z

2ω
,

g3(R,Z,W ) =
(d4 + d8)R

2 + 2W (d13W + d12Z + d3) + 2d11Z
2 + 2d2Z

2ω
.

(11)

Morever the Jacobian matrix of the averaged function g(R,Z,W ) is

Dx

(
g(R,Z,W )

)
=




a7W+a6Z+a1+b10W+b9Z+b1
2ω

R(a6+b9)
2ω

R(a7+b10)
2ω

(c4+c8)R
ω

c12W+2c11Z+c2
ω

2c13W+c12Z+c3
ω

(d4+d8)R
ω

d12W+2d11Z+d2
ω

2d13W+d12Z+d3
ω


 .

(12)

Next we prove that the averaged function g(R,Z,W ) has at most five non-zero zeros.
For the function g1(R,Z,W ) we consider two cases R = 0 and R ̸= 0.

First, we assume that R = 0. Applying the Gröbner basis technique, we can compute
a basis Gröbner of the ideal A of C[Z,W ] generated by the two polynomials g2(0, Z,W )
and g3(0, Z,W ). Using Mathematica we calculated that the ideal has nine generators,
two of them are

a1 =(c3d2 − c2d3)(c11d2 − c2d11)W + (c211d
2
3 + c11(c13d

2
2 − c12d3d2 + 2c3d12d2

− c2d13d2 − 2c3d3d11 − c2d3d12) + d11(c
2
3d11 − c3(c12d2 + c2d12)

+ c2(−c13d2 + 2c12d3 + c2d13)))W
2 + (2c211d3d13 + c11(c3d

2
12

+ c13(2d2d12 − 2d3d11)− d13(2c3d11 + c2d12)) + c212d3d11

+ c13d11(2c3d11 − c2d12)− c12(c13d2d11 + d12(c11d3 + c3d11)

+ d13(c11d2 − 2c2d11)))W
3 + (c213d

2
11 + d13(c

2
11d13 − c12c11d12 + c212d11)

+ c13(c11(d
2
12 − 2d11d13)− c12d11d12))W

4

:=D0W + C0W
2 +B0W

3 +A0W
4

(13)

and
a2 =

(c11d13 − c13d11)W
2 + (c11d3 − c3d11)W + Z

(
(c11d12 − c12d11)W + c11d2 − c2d11

)
.

In fact, we do not consider the case of W = 0, because if W = 0, from g2(0, 0, Z) = 0
and g3(0, 0, Z) = 0 in equation (11) one gets Z(c11Z + c2) = 0 and Z(d11Z + d2) = 0,
respectively. If c2d11 − c11d2 = 0 then Z can be any non-zero value. Consequently,
the determinant of Jacobian matrix Dx

(
g(0, Z, 0)

)
is zero, and the averaging theory

does not provide any information about the possible periodic orbits bifurcating from
the equilibrium (0, 0, 0) of the differential system (dR/θ, dZ/θ, dW/θ).
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For convenience, we define

E0 =
B0C0

6A2
0

− B3
0

27A3
0

− D0

2A0
, F0 =

C0

3A0
− B2

0

9A2
0

.

If E2
0 +F 3

0 < 0 and A0D0 ̸= 0 we can find three non-zero real zeros from a1 = 0, named
W1,W2 and W3. Morever, we have

W1 = − B0

3A0
+

3

√
E0 +

√
E2

0 + F 3
0 +

3

√
E0 −

√
E2

0 + F 3
0 ,

W2 = − B0

3A0
+

−1 +
√
−3

2

3

√
E0 +

√
E2

0 + F 3
0 +

−1−
√
−3

2

3

√
E0 −

√
E2

0 + F 3
0 ,

W3 = − B0

3A0
+

−1−
√
−3

2

3

√
E0 +

√
E2

0 + F 3
0 +

−1 +
√
−3

2

3

√
E0 −

√
E2

0 + F 3
0 .

(14)

From a2 = 0, the Zi corresponding to each Wi can be found, i = 1, 2, 3. Their expres-
sions are very complex, to avoid reading trouble, we place them in the appendix.

Now we study the zeros with R ̸= 0 of the averaged function g(R,Z,W ). Then, from
g1(R,Z,W ) = 0 we get a7W +a6Z+a1+ b10W + b9Z+ b1 = 0. In the same way, using
the Gröbner basis techniques, we can get a basis Gröbner of the ideal B of C[R,Z,W ]
generated by the three polynomials a7W + a6Z + a1 + b10W + b9Z + b1, g2(R,Z,W )
and g3(R,Z,W ). Using Mathematica we calculated that the ideal has six generators,
three of which are

b1 =
(
(a1 + b1)(−(a1 + b1)(c13(d4 + d8)− (c4 + c8)d13) + a7(−c4d3 − c8d3

+ c3(d4 + d8)) + b10(−c4d3 − c8d3 + c3(d4 + d8)))
)
+

(
a7(a1c12d4

+ a1c12d8 + a6(−c4d3 − c8d3 + c3(d4 + d8))− a1c4d12 − a1c8d12 − b9c4d3

− b9c8d3 + b9c3d4 + b1c12d4 + b9c3d8 + b1c12d8 + 2b10(c4d2 + c8d2

− c2(d4 + d8))− b1c4d12 − b1c8d12) + b10((a1 + b1)(c12(d4 + d8)

− (c4 + c8)d12) + a6(−c4d3 − c8d3 + c3(d4 + d8)) + b9(−c4d3 − c8d3

+ c3(d4 + d8)))− 2(a1 + b1)(a6 + b9)(c13(d4 + d8)− (c4 + c8)d13)

+ a27(c4d2 + c8d2 − c2(d4 + d8)) + b210(c4d2 + c8d2 − c2(d4 + d8))
)
Z

+
(
a7((a6 + b9)(c12(d4 + d8)− (c4 + c8)d12)− 2b10(c11(d4 + d8)

− (c4 + c8)d11)) + b10(a6 + b9)(c12(d4 + d8)− (c4 + c8)d12)

− (a6 + b9)
2(c13(d4 + d8)− (c4 + c8)d13) + a27((c4 + c8)d11

− c11(d4 + d8)) + b210((c4 + c8)d11 − c11(d4 + d8))
)
Z2

:=C1 +B1Z +A1Z
2,

b2 =(a7 + b10)W + (a6 + b9)Z + a1 + b1,

b3 =
(
d4 + d8

)
R2 + 2d13W

2 + 2d12WZ + 2d3W + 2d11Z
2 + 2d2Z.

(15)
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If A1 ̸= 0 and B2
1 − 4A1C1 > 0 we can find two real zeros from b1 = 0, named Z4

and Z5. Morever, we have

Z4 =
−B1 +

√
B2

1 − 4A1C1

2A1
, Z5 =

−B1 −
√
B2

1 − 4A1C1

2A1
. (16)

Substituting one of their two zeros into b2 = 0 we obtain a unique solution for W .
Then substituting Z and W in b3 = 0 we obtain at most one positive value for R. We
also put the expression of W4, W5 and R4, R5 in the appendix. This proves half of
statement (a) of Theorem 1. To complete the proof we will provide the Example 2 for
showing that the five periodic orbit can be reached.

As can see from the proof of statement (a), the averaged function provides two types
of zeros, denoted (0, Zi,Wi) and (Rj , Zj ,Wj). We assume that these zeros are simple
zeros, i.e. that the Jacobian det(Dxg) of these zeros is not zero.

The zero (0, Zi,Wi) of the averaged function g(R,Z,W ) provide a periodic orbit
(R(θ, ε), Z(θ, ε),W (θ, ε)) of system (9) satisfying the initial condition:

(R(0, ε), Z(0, ε),W (0, ε)) = (0,Wi, Zi) +O(ε).

This periodic orbit provides the periodic orbit (R(t, ε), θ(t, ε), Z(t, ε),W (t, ε)) of system
(8) that satisfies the initial condition

(R(0, ε), θ(0, ε), Z(0, ε),W (0, ε)) =
(
O(ε), O(ε),Wi +O(ε), Zi +O(ε)

)
.

Returning to cartesian coordinates (X,Y, Z,W ), we have the periodic orbit (X(t, ε),
Y (t, ε), Z(t, ε),W (t, ε)) such that

(X(0, ε), Y (0, ε), Z(0, ε),W (0, ε)) =
(
O(ε), O(ε2),Wi +O(ε), Zi +O(ε)

)
.

Finally rescaling back to (x, y, z, w) we obtain the periodic orbit Γ1ε : (x(t, ε), y(t, ε), z(t, ε),
w(t, ε)) such that

(x(0, ε), y(0, ε), z(0, ε), w(0, ε)) =
(
O(ε2), O(ε3), εWi +O(ε2), εZi +O(ε2)

)
.

The zero (Rj , Zj ,Wj) of the averaged function g(R,Z,W ) provide a periodic orbit
(R(θ, ε), Z(θ, ε),W (θ, ε)) of system (9) satisfying the initial condition:

(R(0, ε), Z(0, ε),W (0, ε)) = (Rj ,Wj , Zj) +O(ε).

The periodic orbit (R(θ, ε), Z(θ, ε),W (θ, ε)) in the differential system (8) becomes
(R(t, ε), θ(t, ε), Z(t, ε),W (t, ε)) = (Rj , ωt, Zj ,Wj) +O(ε).

And the periodic orbit (R(t, ε), θ(t, ε), Z(t, ε),W (t, ε)) in the differential system (7) is
(X(t, ε), Y (t, ε), Z(t, ε),W (t, ε)) = (Rj cos(ωt), Rj sin(ωt), Zj ,Wj) +O(ε).

Finally the periodic orbit (X(t, ε), Y (t, ε), Z(t, ε),W (t, ε)) in the differential system (1)
is

Γ2ε : (x(t, ε), y(t, ε), z(t, ε), w(t, ε)) = ε
(
Rj cos(ωt), Rj sin(ωt), Zj ,Wj

)
+O(ε2).

This proves half of statement (b). Next we study the non-existence of the C1 first
integral in the neighbourhood of Γ1ε and Γ2ε.

According to Remark 6, we know that if λ1,j , λ2,j and λ3,j , the eigenvalues of Jacobian
matrix Dxg(Rj , Zj ,Wj), are distinct from an integer multiple of

√
−1/ε, the system

has no C1 first integrals in a neighbourhood of Γ2ε. Of course, a similar conclusion
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holds for Γ1ε. But we have a simpler way to check the non-existence of the C1 first
integral in the neighbourhood of Γ2ε.

Next we prove that if the zeros (0, Zi,Wi) are simple zeros and satisfy c12Wi +
2c11Zi + c2 + 2d13Wi + d12Zi + d3 ̸= 0, then there is no C1 first integral near their
corresponding periodic orbits. In fact, at (0, Zi,Wi), we have

Dx

(
g(0, Zi,Wi)

)
=




a7Wi+a6Zi+a1+b10Wi+b9Zi+b1
2ω 0 0

0 c12Wi+2c11Zi+c2
ω

2c13Wi+c12Zi+c3
ω

0 d12Wi+2d11Zi+d2
ω

2d13Wi+d12Zi+d3
ω




and det
(
Dx

(
g(0, Zi,Wi)

))
̸= 0. One can easily see that one of the eigenvalues of matrix

Dx

(
g(0, Zi,Wi)

)
is (a7Wi + a6Zi + a1 + b10Wi + b9Zi + b1)/(2ω), and the other two

eigenvalues are the zeros of a real quadratic polynomial. Therefore, either the two
eigenvalues are real numbers, or they are two conjugate complex numbers

(
through

simple calculations, we can know that their real parts are (c12Wi + 2c11Zi + c2 +
2d13Wi + d12Zi + d3)/ω

)
. According to Remark 6, if we want to prove that there is no

C1 first integral near the periodic orbit provided by the zero (0, Zi,Wi) of the averaged
function, we must ensure that all eigenvalues of matrix Dx

(
g(0, Zi,Wi)

)
are not an

integer multiple of 2πi/(Tε) = i/ε. Obviously when c12Wi + 2c11Zi + c2 + 2d13Wi +
d12Zi + d3 ̸= 0, matrix Dx

(
g(0, Zi,Wi)

)
has either three real eigenvalues or one real

eigenvalue and two conjugate complex eigenvalues. In both cases they cannot be an
integer multiple of

√
−1/ε.

This proves statement (b) of Theorem 1. □

Proof of Example 2. Taking ω = a1 = a6 = a7 = a9 = b1 = b9 = c12 = c13 = d4 =
d11 = 1, c3 = −3, c2 = d2 = d3 = d12 = d13 = −5 and other coefficients being
zero, system (1) becomes system (2). Obviously the origin of system (2) is a zero-Hopf
equilibrium point when ε = 0.

Next we prove that system (2) indeed has five periodic orbits bifurcating from the
zero-Hopf equilibrium point. We can compute the first averaged function (11) and we
obtain

g(R,Z,W ) =
(
g1(R,Z,W ), g2(R,Z,W ), g3(R,Z,W )

)
=

(1
2
R(W + 2Z + 2),

− R2

2
+W 2 +W (Z − 3)− 5Z,

R2

2
− 5W 2 − 5W (Z + 1) +X2 + (Z − 5)Z

)
.

Solving the equation g1(R,Z,W ) = g2(R,Z,W ) = g3(R,Z,W ) = 0 and requiring R ≥
0, |R|+ |Z|+ |W | ̸= 0, we get five solutions (R1, Z1,W1) = (2

√
5, 0,−2), (R2, Z2,W2) =

(16
√
2/7,−18/7, 22/7), (R3, Z3,W3) ≈ (0, 6.11887,−7.30628), (R4, Z3,W4) ≈

(0, 0.993874,−1.44142) and (R5, Z5,W5) ≈ (0, 32.8873, 4.7477).
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We verify that they are simple, i.e. the determinant of the Jacobian matrix of the
function g(R,Z,W ) at these zeros is non-zero. Indeed,

det
(
D(g(R1, Z1,W1))

)
= 180, det

(
D(g(R2, Z2,W2))

)
= −4608/49,

det
(
D(g(R3, Z3,W3))

)
= 145.463, det

(
D(g(R4, Z4,W4))

)
= −10.3414,

det
(
D(g(R5, Z5,W5))

)
= −50905.1.

This shows that these five zeros are all simple and that they provide five periodic orbits
of system (2).

Next we prove that there is no C1 first integral near these five periodic orbits. We
denote λij as the j-th eigenvalue of matrix D(g(Ri, Zi,Wi)), then through some calcu-
lations, we can get

λ11 ≈ 13.454, λ12 ≈ −2.72702 + 2.43767i, λ13 ≈ −2.72702− 2.43767i;
λ21 ≈ −22.6309, λ22 ≈ −1.39884 + 1.48279i, λ23 ≈ −1.39884− 1.48279i;
λ31 ≈ 23.3659, λ32 ≈ 3.46573, λ33 ≈ 1.79629;
λ41 ≈ −4.01809, λ42 ≈ 2.02151, λ43 ≈ 1.27316;
λ51 ≈ −223.448, λ52 ≈ 36.2611, λ53 ≈ 6.28266;

According to Remark 6 there is no C1 first integral near the five periodic orbits. This
ends the proof. □

4. appendix

In the last section, we summarize the expressions for Z1, Z2, Z3,W4,W5, R4 and R5.

Z1 =
(
3A0

( 3

√
E0 −

√
F 3
0 + E2

0 +
3

√√
F 3
0 + E2

0 + E0

)
−B0

)

(
3A0

(
d11

(
c13

( 3

√
E0 −

√
F 3
0 + E2

0 +
3

√√
F 3
0 + E2

0 + E0

)
+ c3

)

− c11
(
d13

( 3

√
E0 −

√
F 3
0 + E2

0 +
3

√√
F 3
0 + E2

0 + E0

)
+ d3

))

+B0

(
c11d13 − c13d11

))/(
3A0

(
3A0

(
d11

(
c12

( 3

√
E0 −

√
F 3
0 + E2

0

+
3

√√
F 3
0 + E2

0 + E0

)
+ c2

)
− c11

(
d12

( 3

√
E0 −

√
F 3
0 + E2

0

+
3

√√
F 3
0 + E2

0 + E0

)
+ d2

))
+B0

(
c11d12 − c12d11

)))
,

Z2 =
(
− 2B0

A0
− 3

√
−1

(√
3−

√
−1

) 3

√
E0 −

√
F 3
0 + E2

0 + 3
√
−1

(√
3 +

√
−1

)

3

√√
F 3
0 + E2

0 + E0

)(
d11

(
c3 +

1

6
c13

(
− 2B0

A0
− 3

√
−1

(√
3−

√
−1

)
,
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3

√
E0 −

√
F 3
0 + E2

0 + 3
√
−1

(√
3 +

√
−1

) 3

√√
F 3
0 + E2

0 + E0

))

− c11
(
d3 +

1

6
d13

(
− 2B0

A0
− 3

√
−1

(√
3−

√
−1

) 3

√
E0 −

√
F 3
0 + E2

0

+ 3
√
−1

(√
3 +

√
−1

) 3

√√
F 3
0 + E2

0 + E0

)))/(
6
(
c11

(
d2

+
1

6
d12

(
− 2B0

A0
− 3

√
−1

(√
3−

√
−1

) 3

√
E0 −

√
F 3
0 + E2

0

+ 3
√
−1

(√
3 +

√
−1

) 3

√√
F 3
0 + E2

0 + E0

))
+ d11

(
− c2

− 1

6
c12

(
− 2B0

A0
− 3

√
−1

(√
3−

√
−1

) 3

√
E0 −

√
F 3
0 + E2

0

+ 3
√
−1

(√
3 +

√
−1

) 3

√√
F 3
0 + E2

0 + E0

))))
,

Z3 =
(
− 2B0

A0
+ 3

√
−1

(√
3 +

√
−1

) 3

√
E0 −

√
F 3
0 + E2

0 − 3
√
−1

(√
3−

√
−1

)

3

√√
F 3
0 + E2

0 + E0

)(
d11

(
c3 +

1

6
c13

(
− 2B0

A0
+ 3

√
−1

(√
3 +

√
−1

)

3

√
E0 −

√
F 3
0 + E2

0 − 3
√
−1

(√
3−

√
−1

) 3

√√
F 3
0 + E2

0 + E0

))
−

c11
(
d3 +

1

6
d13

(
− 2B0

A0
+ 3

√
−1

(√
3 +

√
−1

) 3

√
E0 −

√
F 3
0 + E2

0

− 3
√
−1

(√
3−

√
−1

) 3

√√
F 3
0 + E2

0 + E0

)))/(
6
(
c11

(
d2

+
1

6
d12

(
− 2B0

A0
+ 3

√
−1

(√
3 +

√
−1

) 3

√
E0 −

√
F 3
0 + E2

0

− 3
√
−1

(√
3−

√
−1

) 3

√√
F 3
0 + E2

0 + E0

))
+ d11

(
− c2

− 1

6
c12

(
− 2B0

A0
+ 3

√
−1

(√
3 +

√
−1

) 3

√
E0 −

√
F 3
0 + E2

0

− 3
√
−1

(√
3−

√
−1

) 3

√√
F 3
0 + E2

0 + E0

))))
,

W4 = −
(
a6 + b9

)(√
B2

1 − 4A1C1 −B1

)
+ 2a1A1 + 2A1b1

2A1

(
a7 + b10

) ,

W5 =

(
a6 + b9

)(√
B2

1 − 4A1C1 +B1

)
− 2a1A1 − 2A1b1

2A1

(
a7 + b10

) ,
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R4 =
1√

2d4 + 2d8

(
A−2

1

(
2A1d2

(√
B2

1 − 4A1C1 −B1

)
+ d11

(
B1 −

√
B2

1 − 4A1C1

)
2

− 2A1d3
((
a6 + b9

)(√
B2

1 − 4A1C1 −B1

)
+ 2a1A1 + 2A1b1

)

a7 + b10

− d12
(√

B2
1 − 4A1C1 −B1

)((
a6 + b9

)(√
B2

1 − 4A1C1 −B1

)
+ 2a1A1 + 2A1b1

)

a7 + b10

+
d13

((
a6 + b9

)(√
B2

1 − 4A1C1 −B1

)
+ 2a1A1 + 2A1b1

)
2

(
a7 + b10

)
2

)) 1
2
,

R5 =
1√

2d4 + 2d8

(
−A−2

1

(
2A1d2

(√
B2

1 − 4A1C1 +B1

)
+ d11

(
B1 +

√
B2

1 − 4A1C1

)
2

− 2A1d3
((
a6 + b9

)(√
B2

1 − 4A1C1 +B1

)
+ 2a1A1 + 2A1b1

)

a7 + b10

− d12
(√

B2
1 − 4A1C1 +B1

)((
a6 + b9

)(√
B2

1 − 4A1C1 −B1

)
− 2a1A1 − 2A1b1

)

a7 + b10

− −d13
((
a6 + b9

)(√
B2

1 − 4A1C1 +B1

)
+ 2a1A1 + 2A1b1

)
2

(
a7 + b10

)
2

)) 1
2
.
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