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PERIODIC ORBITS AND NON-EXISTENCE OF C! FIRST
INTEGRALS FOR ANALYTIC DIFFERENTIAL SYSTEMS
EXHIBITING A ZERO-HOPF BIFURCATION IN R*

JAUME LLIBRE AND RENHAO TIAN

ABSTRACT. In this paper we investigate the zero-Hopf bifurcation of a four dimen-
sional analytic differential system. We prove that at most five periodic orbits bifurcate
from the zero-Hopf equilibrium using the averaging theory of first order and give a
specific example to illustrate this conclusion. Moreover we prove the non-existence
of C* first integrals in a neighbourhood of these periodic orbits.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

In an n-dimensional analytic autonomous system, there always exist analytic first
integrals near a regular point (and there are n — 1 functionally independent analytic
first integrals). However, in general, this is not the case in a neighbourhood of an
equilibrium point. The existence of analytic first integrals near them depends on the
resonance of the eigenvalues of the linearized system at equilibrium. For details, see
the book [11].

Recently Yagasaki [9, 10] studied the analytic non-integrability of three-dimensional
analytic differential systems at a zero-Hopf equilibrium. A zero-Hopf equilibrium of
an n-dimensional autonomous differential system is an equilibrium that has a pair of
purely imaginary eigenvalues and the rest are all zero eigenvalues.

Motivated by the works of Yagasaki in [9, 10] Llibre and Zhang [6] studied the dy-
namics in a neighbourhood of a zero-Hopf equilibrium in R3. They obtained sufficient
conditions for the existence of two periodic orbits bifurcating from the zero-Hopf equi-
librium and proved the non-existence of C' first integrals in a neighbourhood of these
periodic orbits.

In 2021 Llibre and Tian [4] studied a four-dimensional hyperchaotic system depend-
ing on six parameters. They characterized the values of the parameters for which their
equilibria are zero-Hopf equilibria and obtain the sufficient conditions for the existence
of four periodic orbits bifurcating from these zero-Hopf equilibria.

Inspired by the works [4, 6], we consider the following analytic differential system
in R* which has a zero-Hopf bifurcation at the equilibrium localized at the origin of
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coordinates
& =ea1z — (W + ew1)y + €azz + cazw + a4x2 + asxy + agxrz + arwx + a8y2
+ agyz + a1owy + a11z2 + apwz + a13w2 + h.o.t.,
U =(w + ewi)x + b1y + €baz + ebzw + baz? + bszy + bz + bywz + bgy?
+ byyz + biowy + b112% + biowz + b13w2 + h.o.t.,
z =ecox + €c1y + €coz + ec3w + 64332 + ¢csxY + cgxz + crwx + csy2
+ coyz + crowy + 01122 + clowz + 013w2 + h.o.t.,
w =edpx + ed1y + edoz + edsw + dya? + dsxy + dgrz + drwx + dgy2
+ dyyz + diowy + d11z2 + dipwz + d13w2 + h.o.t.,
where w > 0.

For the differential system (1) we study the periodic orbits bifurcating from the
zero-Hopf equilibrium when the parameter ¢ crosses the zero value.

The conclusions are summarized in the following theorem.

Theorem 1. For the differential system (1) the following statements hold.

(a) For |e| > 0 sufficiently small, at most five periodic orbits can bifurcate from
the zero-Hopf equilibrium point localized at the origin of coordinates using the
first order averaged function. Morever, there are systems (1) for which this
zero-Hopf bifurcation exhibits the five periodic orbits [see Example 2].

(b) For |e| > 0 system (1) has two types of periodic orbits bifurcating from the zero-
Hopf equilibrium, Ty : (x1(t,€),y1(t,€), 21(t, €), w1 (t,€)) and Toe = (z2(t, ), ya(t, €),
zo(t,€),wa(t,€)). There are Z; € R, W; € R/{0}, i = 1,2,3, given in (14) and
appendiz, such that (z1(0,¢),41(0,¢), 21(0,¢),w1(0,¢€)) = (O(e?),0(e®),eZ; +
0(62),€WZ‘ + 0(82)) Morever, Zf c1oWi + 2¢112Z; + co + 2d13W; + diaZ; +
dz # 0, system (1) has no C! first integrals in a neighbourhood of T'1.. And
there are R; € R/{0}, Z;, W; € R, j = 4,5, given in (16) and appendiz,
such that (x2(t,€),ya(t, €), 22(t, ), wa(t, €)) = e(R; cos(wt), R; sin(wt), Z;, W;)+
O(e%). Morever, if A1 j, A2 and X3 j, the eigenvalues of Jacobian matriz
D, (g(Rj, Z;,W,)) defined in (12), are not an integer multiple of v/—1/e, then
the system has no C first integrals in a neighbourhood of T'a..

Example 2. The following particular system (1)
T =ecxr —y+wr+xz+yz,

Y =ey +x +yz,

2
z':—3€w—55z—x2+wz+w2, (2)
w:—55w—5€z+w2+z2—5wz—5w2,

has five periodic orbits bifurcating from the zero-Hopf equilibrium. Morever, the system
has no C* first integrals in the neighbourhood of these five periodic orbits.

We numerically simulate the five periodic orbits of system (2) (as shown in Figure
1), where we take the parameter ¢ = 1/25000. Note that we are studying a four-
dimensional system, but we can only draw three-dimensional images. So we consider
the projection of these periodic orbits in (z,y,w) space.
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F1GURE 1. The periodic orbits of Example 2 computed numerically with
the initial conditions given in statement (b) of Theorem 1 with ¢ =
1,/25000.

The periodic orbit 'y : (z1(¢,€),y1(t,€), z1(t, €), w1 (t,€)) and T's : (x2(t,€), y2(t, €),
zo(t,€), wa(t,e)) of system (2) have been obtained with the initial conditions (z1(0,¢),
Y (07 6)7 21(07 5)7 w1(07 5)) = (2\/567 0,0, _25) and (332 (07 5)7 y2(07 5)7 22(07 5)7 w2(07 5)) =
(L;/i&?, 0, %E, %5), respectively.

The periOdiC orbit I‘3 : ($3(ta 5)7 y3(t> 5)7 Z3(t7 6)7 w3(t7 5))a [y (l‘4(t, 5)? y4(t> 5)7 Z4(t, 5)a
wy(t,e)) and T's : (w5(t,€),y5(t,€), 25(t,€), w5 (¢, €)) of system (2) have been obtained
with the initial conditions (z3(0,¢),y3(0,¢), 23(0,¢),w3(0,¢)) = (35002, €3, 6.11887¢,

— 7.30628¢), (24(0,¢),y4(0,¢), 24(0,¢),w4(0,€)) = (3500e2,3,0.993874¢, —1.44142¢)
and (z5(0,¢),y5(0,¢), 25(0, ), ws(0,€)) = (4000e2, 3, 32.8873¢, 4.7477¢), respectively.

To prove the existence of periodic orbits, we utilize the first order averaging theory.
For proving the non-existence of the C! first integrals near these periodic orbits, we
employ the method of Llibre and Valls [5], which has been improved by Llibre and
Zhang in [6] computing the characteristic multipliers of the variational equation along
a periodic orbit in a relatively easy way.
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This paper is organized as follows: We summarize the averaging theory of first order
and some basic results on the C'' non-integrability in section 2 that will be used for
proving our main results. In section 3 we prove our Theorem 1 and Example 2.

2. PRELIMINARY RESULTS

2.1. Averaging theory. In this section we summarize the results on the averaging
theory of first order for computing periodic orbits. The following result is widely used,
and its proof can be found in [8].

Theorem 3. Consider the following differential system
x = eG(t,x) + 2R(t, x,¢), (t,x,¢) € [0,00) x Q x (—&p,€0), (3)

where Q is an open subset of R™, G(t,x), R(t,x,¢) are C? functions T-periodic in t,
and g9 > 0 is a small real constant. The first averaged function is

1 T
_ T/o G(L,x)di

Ifa € Q is a zero of the averaged function g(x) such that the Jacobian det ( g(a )
then the differential system (3) has a T-periodic solution x(t,e) such that x(O,a)
as e — 0.

2.2. C' non-integrability. The following result goes back to Poincaré. Consider the
following differential system

x=1f(x), x€Q (4)
where f € C1 and € is an open subset of R”. Assume that system (4) has a T-periodic

orbit x(t). Define the variational differential system of (4) along the periodic orbit x(t)
as

z = Dxf(x(t))z, (5)
where z is an n X n matrix. Let &(t) be the fundamental solution matrix of system (5)
satisfying ®(0) = id,xn. Then the characteristic multipliers of the periodic orbit x(t)
are the eigenvalues of the matrix @(7T). Note that 1 is always a characteristic multiplier
whose the eigenvector is tangent to the periodic orbit. For details, see [5].

Next we give the following theorem derived from Poincaré [7] and its proof can be

found in [5].

Theorem 4. If 1 is a characteristic multiplier of a periodic orbit T' of system (4) having
multiplicity one, then the differential system (4) has no C' first integrals defined in a
neighbourhood of T'.

The following result obtained by Llibre and Zhang [6] provides a relatively easy way
to compute the characteristic multipliers.

Theorem 5. Consider the differential system (3) under the assumptions of Theorem 3,
such that system (3) has a T-periodic solution x.(t) such that x.(0) — a when ¢ — 0.
Let &(t,e) be the fundamental solution matriz of the variational system

z=¢cD, (G(tv X) + ER(t¢ X, 5)) |x:x8(t)zy (6)
such that ®(0,e) = Idyxn. Then &(T,e) — exp(eDxg(a)T) when e — 0.
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Combining Theorem 4 and 5, we have the following remark.

Remark 6. We emphasize that working with the averaged function we have eliminated
the characteristic multiplier 1 of the variational equation associated with the periodic
orbit. So in order to prove that there is no C! first integral near the periodic orbit, we
only need to check that the eigenvalues of the matrix Dxg(a) in Theorem 3 are not an
integer multiple of 2/—1/(Te).

3. PROOF OF OUR MAIN RESULT

Proof of Theorem 1. For studying the periodic orbits of system (1) bifurcating from the
zero-Hopf equilibrium (0, 0, 0, 0), we perform the rescaling (z,y, z,w) = (e X,eY,eZ, eW).
Being ¢ > 0 a small parameter, then system (1) becomes
X=—wY +e(-Yw +a1X 4+ a2Z + azsW + asX? + a5 XY 4+ a6 X Z + a;WX
+agY? + agY Z + argWY + a11 2% 4 a1osW Z + azW?),
YV =wX +e(Xwi +01Y + b2 Z + bsW + by X2 + bs XY + 06X Z + by WX
+ 08Y? +bgY Z + bigWY + b1 Z% 4 biasW Z + bisW?),
Z =e(coX + 1Y + cZ + csW + ey X? + s XY + c6XZ + et WX
+&Y? + Y Z + cioWY + e11 Z% + c1oW Z + ¢13W3),
W =e(doX + d\Y + doZ + dsW + dy X2 + ds XY + de X Z + dyW X
+dgY? + dogY Z + dyoWY +d1 Z2 + dioW Z + di3W?).

Then we write system (7) in cylindrical coordinates via the change of variables
(X,Y,Z, W) = (Rcosf,Rsinf, Z, W) and system (7) becomes

R =¢ (a2 c0s0Z + az cos OW + a1 cos 022 + a1 cos OW Z + ay5 cos 0?2
+ by sin0Z + by sin OW + byz sin OW? + bio sin OW Z + byy sin 027
+ (a1 cos® 0 + a7 cos® OW + aq sin 6 cos OW + ag cos® 07

+ ag sin 6 cos 07 + by sin® 6 + byg sin® OW + by sin 0 cos 6

+ by sin® 07 + bg sin 6 cos QZ)R + (a4 cos® 0 + as sin 6 cos® 0

+ agsin? 0 cos 0 + bg sin® 0 + by sin 6 cos? 6 + bs sin 0 cos 9) R2> ,

0 =w+ %5( — aq3sin ow? — azsin W — a19sin W Z — aq sin 022 (8)
— agsin0Z + by3 cos oW? + b3 cos OW + b1 cos OW Z + byq cos 02>

+ by cosbZ + ( —aysinfcosf — ag sin? OW — a7 sin @ cos OW

— agsin®0Z — agsin b cos 8Z + by sin 6 cos 6 + by cos® OW

+ byo sin 0 cos W + bg cos® 0Z + by sin 0 cos 0Z + wy sin? 0

+ wy cos? 9)R + ( — agsin® 0 — ay sin 6 cos® 6 — a5 sin’ 0 cos 6

+ by cos® 0 + by sin 6 cos? 6 + bg sin? 6 cos 0) R2> ,
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A :5(02Z +esW + e1sW? + c1oWZ + e 2% + (61 sin @ + cg cos 6
+ c1o8in W + ¢7 cos OW + cgsin 07 + cg cos HZ)R + (Cg sin? 6
+ ¢4 cos? 0 + c5 sin 6 cos 9) RQ),
W za(ng +dsW 4 c13W?2 + dysWZ + di1 Z2 + (d1 sin @ + dg cos 6
+ dyg sin QW + dy cos OW + dgsin 0 Z + dg cos HZ)R + (dg sin? 6
+ dy cos?® 0 + ds sin 0 cos 9) RQ).

Taking the variable 6§ as the new time, system (8) becomes (dR/df,dZ/df,dW/d6).
Due to w > 0 this system is well-defined in a neighbourhood of the origin. So we have
the differential system

2—? —ew ! (ag cos0Z + as cos OW + aj1 cos 022 + a19 cos OW Z
+ a3 cos OW? + by sin 0Z + bz sin OW + byg sin OW 2
+ biesin W Z + by1 sin 0 2% + (a1 cos® 0 + ay cos® OW
+ aq0sin 0 cos W + ag cos® 0Z + ag sin 6 cos 07 + by sin® 0
+ byo sin? OW + b7 sin 0 cos OW + by sin® 0Z + bg sin 6 cos 0Z)R
+ ((a4 cos® 0 + as sin 0 cos? 0 + ag sin? 6 cos O + bg sin® 6
+ by sin 6 cos? @ + b sin® 0 cos ) R2> + 0(£?)
:=eG1(0,R, Z,W) + O(£?), o)
% —ew ! (cs sin? OR? + ¢4 cos? OR? + ¢5sinf cosOR? + ¢1 sin R
4+ cgcosOR + c1gsin ORW + c7 cos ORW + cogsinORZ
+cgcoSORZ + c1sW?2 + c1oaWZ + esW + enn Z% + c2Z)
=eG2(0, R, Z,W) + O(£?),
aw -1 2 D2 2 g2 : 2 :
¥l =ew™ " (dgsin® OR* + d4 cos® OR” + d5 sinf cos 0R” + dy sin R

4+ dycosOR + digsin O RW + d7 cos ORW + dgsin O RZ
+dg cos ORZ + dyzsW? + d1oW Z + dsW + dy1 Z% + da Z)
:=eG3(0, R, Z,W) + O(£?).

Note that the differential system (9) is written in the normal form (3) for applying the
first order averaging theory, where x = (R, Z, W), t = 6 and T' = 2w. Then we can
compute the first averaged function.

g(Rv Zv W) = (gl(R’ Z’ W)7g2(R7 Z7 W)vQS(Ra Zv W))

2 10
_ / (G1(6, R, Z, W), G2(6, R, Z, W), G3(6, R, Z,W)) df (10)
0
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and we get
) ) — 2w :
92(R, Z, W) = (ca + 68)R2 +2W (c13W —|—20122 +c3) + 21172 + 26227 )
w
g (R A W) (d4 + dS)RQ + QW(dl?;W +dioZ + d3) + anz2 +2dy7
3\, 4, = |

2w

Morever the Jacobian matrix of the averaged function g(R, Z, W) is

D,(g(R,Z,W)) =

arW+aeZ+a1+bioW+bg Z+by R(ag+bg) R(ar+b10)
2w 2w 2w (12)
(catcs)R c12W42c11Z+co 2c13W4c12Z+c3
w w w
(d4+ds)R dioWH2d11 Z+ds 2d13W+di12Z4-d3
w w w

Next we prove that the averaged function g(R, Z, W) has at most five non-zero zeros.
For the function g1 (R, Z, W) we consider two cases R =0 and R # 0.

First, we assume that R = 0. Applying the Grébner basis technique, we can compute
a basis Grobner of the ideal A of C[Z, W] generated by the two polynomials g2(0, Z, W)
and ¢3(0, Z, W). Using Mathematica we calculated that the ideal has nine generators,

two of them are
a1 =(cady — cad3)(c11da — cadi))W + (¢31d3 + c11(c13ds — cradada + 2c3diada
— cadyzdy — 2c3dsdyy — cadsdiz) + di1(c3di1 — c3(ciada + cadia)
+ ca(—ci3da + 2c12d3 + c2di3)))W? + (2¢],d3das + c11(cadiy
+ c13(2dad1a — 2d3di1) — di3(2c3din + cadia)) + clpdsdi
+ c13d11(2¢c3d11 — cadi2) — ci2(c1zdadin + diz(cr1ds + c3din)
+ di3(c11da — 2c2d11)))W? + (cl3dd) + dis(clidis — cracridiz + ciodin)
+ ci3(c11(diy — 2di1dys) — cradiydia)) W
:=DoW + CoW? + BoW? + AgW*

and
ag =
(c11di — c13d1))W? + (c11ds — c3din)W + Z((errdia — cr2din)W + ciida — cadiy ).

In fact, we do not consider the case of W = 0, because if W = 0, from g2(0,0,2) = 0
and ¢3(0,0,Z7) = 0 in equation (11) one gets Z(c11Z + ¢2) = 0 and Z(d11Z + d2) =0,
respectively. If codi; — c11ds = 0 then Z can be any non-zero value. Consequently,
the determinant of Jacobian matrix D, (g(O, A 0)) is zero, and the averaging theory
does not provide any information about the possible periodic orbits bifurcating from
the equilibrium (0,0, 0) of the differential system (dR/6,dZ/6,dW/6).
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For convenience, we define

b BCo By Dy, Gy B}
07 642 2143 24, "° T 34, 942

If Eg —|—F5’ < 0and AygDg # 0 we can find three non-zero real zeros from a; = 0, named
W1, Wy and W3. Morever, we have

1:+\/E0+\/E2+F3 \/EO,/E2+F3,
34
~1++/-3 \/
W2:_3AO + \/EO+,/E2+F3 \/EO— E2+F3, (
B —1—\/ \/_
R \/E B2+ FB 4 +2 i/EO—\/EngFS’.

From as = 0, the Z; corresponding to each W; can be found, ¢ = 1,2, 3. Their expres-
sions are very complex, to avoid reading trouble, we place them in the appendix.

Now we study the zeros with R # 0 of the averaged function g(R, Z, W). Then, from
g1(R, Z, W) =0 we get arW +agZ + a1 +bioW +bgZ +b; = 0. In the same way, using
the Grobner basis techniques, we can get a basis Grobner of the ideal B of C[R, Z, W]
generated by the three polynomials arW + a¢Z + a1 + bioW + bgZ + b1, g2(R, Z, W)
and g3(R, Z,W). Using Mathematica we calculated that the ideal has six generators,
three of which are

b; :<(a1 + bl)(—(a1 + bl)(clg(d4 + dg) — (C4 + Cs)d13) + a7(—C4d3 — cgds3

+ c3(dy + dg)) + bio(—cads — cgds + c3(dy + d8)))> + (a7(a1612d4

+ ayciads + ag(—cqds — cgds + c3(dy + dg)) — ajcadia — ajcgdia — boeyds
— bycgds + bocady + biciady + bycadg + biciads 4 2b1g(cada + cgda

— c2(dy + dg)) — brcadia — bicgdi2) + bio((a1 + b1)(c12(ds + dg)

— (4 + cg)d12) + ag(—cads — cgds + c3(dy + dg)) + bg(—cads — csds

+ c3(ds + dg))) — 2(a1 + b1)(as + by)(c13(da + dg) — (ca + cg)d13)

+ a%(&;dg + cgdy — Cg(d4 + ds)) + b%0(04d2 + cgdy — 02(d4 + dg)))Z (15)

+ <a7((a6 +bg)(c12(ds + dg) — (c4 + cg)d12) — 2b10(c11(da + ds)
— (c4 + cg)d11)) + bio(ae + bo)(c12(ds + dg) — (c4 + cg)d12)
— (a6 + bo)*(c13(da + ds) — (ca + c8)da3) + az((ca + cg)dn
— enr(ds + ds)) + By (1 + es)dut — 11 (dy + d)) ) 22
=Ch + B1Z + A, Z2,
by =(a7 + bio)W + (ag + byg)Z + a1 + by,
by =(dy + dg) R? + 2d13W? + 2d1oW Z + 2d3W + 2d11 Z° + 2dy Z.
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If Ay # 0 and B% —4A1C7 > 0 we can find two real zeros from b; = 0, named Z4
and Z5. Morever, we have

—By ++/B? —4A,C —By — \/B? —4A,C
7, = 1+ 2A11 1 17 Zs — 1 2A11 161 (16)
Substituting one of their two zeros into by = 0 we obtain a unique solution for W.
Then substituting Z and W in bs = 0 we obtain at most one positive value for R. We
also put the expression of Wy, W5 and R4, Rs in the appendix. This proves half of
statement (a) of Theorem 1. To complete the proof we will provide the Example 2 for
showing that the five periodic orbit can be reached.

As can see from the proof of statement (a), the averaged function provides two types
of zeros, denoted (0, Z;, W;) and (R;, Z;, W;). We assume that these zeros are simple
zeros, i.e. that the Jacobian det(Dxg) of these zeros is not zero.

The zero (0, Z;, W;) of the averaged function g(R,Z, W) provide a periodic orbit
(R(0,¢),Z(0,e),W(8,¢)) of system (9) satisfying the initial condition:

(R(0,), Z(0,), W(0,¢)) = (0, Wi, Zi) + O(e).

This periodic orbit provides the periodic orbit (R(¢,¢),0(t,€), Z(t,e), W(t,€)) of system
(8) that satisfies the initial condition

(R(0,¢),60(0,¢), Z(0,e), W(0,¢)) = (O(e),0(¢), Wi + O(e), Z; + O(g)).

Returning to cartesian coordinates (X,Y, Z, W), we have the periodic orbit (X (¢, ¢),
Y(t,e), Z(t,e), W(t,e)) such that

(X(0,¢),Y(0,¢), Z(0,e), W (0,¢)) = (O(e), O(e*), W; + O(e), Z; + O(e)).

Finally rescaling back to (z, y, z, w) we obtain the periodic orbit I'i. : (z(t,¢),y(t,€), 2(t, €),
w(t,e)) such that

(2(0,€),5(0,2), 2(0,¢), w(0,2)) = (O(?), O(¢?),eW; + O(e?), £ Z; + O(e?)).
The zero (Rj, Zj, W;) of the averaged function g(R, Z, W) provide a periodic orbit
(R(0,¢),Z(0,¢e), W(0, )) of system (9) satisfying the initial condition:
R(ng) ( )7W(075)) = (Rj7ijzj) +O(€)
The periodic orbit (R(6,¢), Z(0,¢), W (6,¢)) in the differential system (8) becomes
(R(t,€),0(t,e), Z(t,€), W(t €)) = (Rj,wt, Zj, Wj) + O(e).

And the periodic orbit (R(t,¢),0(t,¢), Z(t,e), W(t,e)) in the differential system (7) is
(X(t,e),Y(t,e),Z(t,e), W(t,e)) = (R cos(wt), R; sin(wt), Z;, W;) + O(e).
Finally the periodic orbit (X (t,¢),Y (t,€), Z(t,e), W(t,¢)) in the differential system (1)

is
Do : (x(t,€),y(t,€), 2(t, €), w(t,€)) = e (R cos(wt), R; sin(wt), Z;, W;) + O(e).

This proves half of statement (b). Next we study the non-existence of the C* first
integral in the neighbourhood of I'j. and I's..

According to Remark 6, we know that if A1 ;j, A2 j and A3 ;, the eigenvalues of Jacobian
matrix Dyg(Rj, Z;, W;), are distinct from an integer multiple of \/—1/¢, the system
has no C' first integrals in a neighbourhood of I's.. Of course, a similar conclusion
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holds for I';.. But we have a simpler way to check the non-existence of the C! first
integral in the neighbourhood of T'y.

Next we prove that if the zeros (0,Z;, W;) are simple zeros and satisfy cjoW; +
2c11Z; + ¢ + 2d13W; + di2Z; + d3 # 0, then there is no C' first integral near their
corresponding periodic orbits. In fact, at (0, Z;, W;), we have

D, (g(0,Z;, Wy)) =

arWitasZi+a14+b1oWi+bo Z;4-by 0 0
2w
0 c12Wit2c11Zi+co 2c13Witci12Zi+c3
w w
0 d1oWi+2dy11 Zi+do  2d13Wi+di2Z;+d3
w w

and det (Dw (g(O, Zi, Wl))) = 0. One can easily see that one of the eigenvalues of matrix
D, (g(O7 Z;, VV,)) is (a7W; + agZ; + a1 + bioW; + bgZ; + b1)/(2w), and the other two
eigenvalues are the zeros of a real quadratic polynomial. Therefore, either the two
eigenvalues are real numbers, or they are two conjugate complex numbers (through
simple calculations, we can know that their real parts are (c1oW; + 2¢11Z; + c2 +
2d13W; + d19Z; + dg)/w). According to Remark 6, if we want to prove that there is no
C! first integral near the periodic orbit provided by the zero (0, Z;, W;) of the averaged
function, we must ensure that all eigenvalues of matrix D, (g(O, Zi,Wi)) are not an
integer multiple of 27i/(Te) = i/e. Obviously when c19W; + 2¢11Z; + co + 2d13W; +
di12Z; + ds # 0, matrix D, (g(O, Z;, WZ)) has either three real eigenvalues or one real
eigenvalue and two conjugate complex eigenvalues. In both cases they cannot be an
integer multiple of /—1/e.

This proves statement (b) of Theorem 1. O

Proof of Example 2. Taking w = a1 = ag = a7 = ag = by = bg = ¢c19 = ¢c13 = dy =
di1 =1, ¢c3 = =3, co = do = d3 = dio = dis = —5 and other coefficients being
zero, system (1) becomes system (2). Obviously the origin of system (2) is a zero-Hopf
equilibrium point when ¢ = 0.

Next we prove that system (2) indeed has five periodic orbits bifurcating from the
zero-Hopf equilibrium point. We can compute the first averaged function (11) and we
obtain

1
g(R’ Z7 W) = (gl(R7 Z7 W)uQ?(Rﬂ Z7 W)ag3(R7 Z7 W)) = (§R(W+2Z+2)7

2 2

R R
—?+W2+W(Z—3)—5Z,?—5W2—5W(Z+1)+X2+(Z—5)Z).

Solving the equation g1 (R, Z, W) = g2(R, Z,W) = g3(R, Z,W) = 0 and requiring R >
0, |R|+|Z|+|W| # 0, we get five solutions (Ry, Z1, W1) = (2v/5,0, —2), (Ra, Zo, Wa) =
(16v/2/7, —18/7,22/7), (R, Z3, W3) ~ (0, 6.11887, —7.30628), (Ra, Z3, W) ~
(0,0.993874, —1.44142) and (Rs, Zs, W) ~ (0, 32.8873, 4.7477).
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We verify that they are simple, i.e. the determinant of the Jacobian matrix of the
function g(R, Z, W) at these zeros is non-zero. Indeed,

det (D(g(R1, Z1,Wh))) =180, det (D(g(Rz, Z2, Wa))) = —4608/49,
det (D(g(Rs3, Z3, W3))) = 145.463, det (D(g(R4, Zs, Wys))) = —10.3414,
det (D(g(Rs, Z5, W5))) = —50905.1.

This shows that these five zeros are all simple and that they provide five periodic orbits
of system (2).

Next we prove that there is no C! first integral near these five periodic orbits. We
denote \;; as the j-th eigenvalue of matrix D(g(R;, Z;, W;)), then through some calcu-
lations, we can get

A1~ 13454, Ao & —2.72702 + 2.437674i, Mg ~ —2.72702 — 2.43767;
Aot & —22.6309, Ao ~ —1.39884 + 1.482794, Ao ~ —1.39884 — 1.48279;;

A31 ~ 23.3659, A32 = 3.46573, A3z =~ 1.79629;
)\41 ~ —4.01809, )\42 ~ 2.02151, )\43 ~ 1.27316;
A5t = —223.448, M52 = 36.2611, A3 = 6.28266;

According to Remark 6 there is no C! first integral near the five periodic orbits. This
ends the proof. O

4. APPENDIX

In the last section, we summarize the expressions for Z1, Zs, Z3, W4, W5, R4 and Rj.

Z :(3A0(§/E0— FS+ B+ i/\/FO?’JrEngEO) — By)
(3A0(d11(013(§/E0 R+ B+ \/ VE + B} + Eo) +c3)
_cn(dlg(\S/Eo_ VE + B3 + %/Mmo) +ds))

+ Bo(endia — ewgdin) ) / (340 (340 (dy (012(3/ EBo—\[F} + B2
+ {’/\/F§+E§+EO) + ¢2) —cu(du({’/Eo—,/FngEg
+ \/ VES + B} + Fo) + d2)) + Bo(enndia — enndin)) )

2By

Z=(~ 220 5TI(VE - VD) B - R 1 B+ 3VEI(VE + V)

i/\/m+Eo) (di1(cs + écm( — 2500 - 3m(f— ﬁ)’
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By & B+ 3vTT(/E + VD) )\ R + B + )
—en(ds + dlg(—Q—BO—SF\f rﬁo_w
+a¢\f+«%¢¢ﬁn4#+Eo )/ (s(en(aa
+6d12(—2AB;’—3\/?1(\/§—ﬁ)\/E0—\/m
-aﬁww+w-V¢m+m+%.mﬂ_@

Lo~ 231 (Wa- VD) - R+ B
+3ﬁ(\/§+ﬁ)\/\/M+Eo)))

23:( 2B“+3F(W+F\/EO—,/F3+E2 3V-1(v3 - v-1)

VA B B+ he(~ 222 5vm1(va 4 V)
i’/Eo—\/M—Sﬁ(ﬁ—ﬁ)i/\/erEo))—
cn(d3+1d13(—2—&’+3ﬁ(\/§+ﬁ \B/Eo—m
4rff¢ﬁmmhﬂm@
+6d12(—21foo+3ﬁ(\/§+ﬁ)\/Eo—\/m
—Sﬁf—\fi’/\/mﬂ% +di(— e

~ zen( - QBO+3FW+F\/EO—\/m
—3v-1 ﬁ—ﬁ\/\/erEo

W, = — (a6 + by) (\/m Bi) + 2a14; + 2A1b1

241 (a7 + bio)

W — ((IG + bg) (\/ B2 4A.C + Bl) —2a141 — 2A1b1

B 241 (a7 + bio)
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1
Ri = o (A7 (2400 (B~ 4401 = B1) + i (B1 = \/ B — 4101
~ 2Aud3((a6 + by) (v/BE — 4A1C1 — B1) + 2a1 A1 + 241b1)

a7 + big
d12(\/m — Bl) ((a6 + 69) (\/m - Bl) +2a1 41 + 214151)
- a7 + bio
+ d13((a6 + bg) (\/m - Bl) + 2&1A1 + 2A1b1)2>)é
(a7 + bio)? ’

1 _ / /
R5 = m( — Al 2(2A1d2( B% —4A.Cq + Bl) + dn(Bl + B% — 4A101)2

B 2A1d3((a6 + bg) (\/ B% —4A.Cq + Bl) +2a1 A1 + 2Albl)

a7 + byg
B d12(\/m+ B1) ((ae + bg) (\/m — Bl) —2a1A] — 2A1b1)
a7 + big
 —diz((as + by) (VB — 4A1C1 + B1) +2a1 A; + 2A1b1)2));
(a7 + b1o)? '
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