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PHASE PORTRAITS OF THE EQUATION i + axi + ba® =0

JAUME LLIBRE! AND CLAUDIA VALLS*?

ABSTRACT. The second-order differential equation # + axd + bz® = 0
with a,b € R has been studied by several authors mainly due to its
applications. Here, for the first time, we classify all its phase portraits
in function of its parameters a and b. This classification is done in
the Poincaré disc in order to control the orbits which scape or come
from infinity. We prove that there are exactly six topologically different
phase portraits in the Poincaré disc of the first order differential system
associated by the second-order differential equation. Additionally we
show that this system is always integrable providing explicitly its first
integrals.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In the book of Ince [7] or in the work of Painleve [12] appeared the second
order ordinary differential equation

&+ axd + bz =0,

with a,b € R. This differential equation is equivalent to the differential
system of first order

=y, v=—axy—bx>. (1)

This differential system arises in many areas of mathematics such as the
analysis of fusion of pellets [3], the theory of univalent functions [4], the
stability of gaseous spheres [8], in the operator of the Yang-Baxter equations
[5, 7, 9], in the description of the motion of a free particle in a space of
constant curvature [15],...

This differential system possesses the Painlevé property and it has been
studied by many authors due to its simple form, it is a Lienard differen-
tial equation and it possesses the algebra sl(3,RR) of Lie point symmetries.
More concretely it is quite nonlinear and belongs to the class of equations of
the form i = 23 f(i/2%) which posses the two Lie point symmetries d; and
t0; — x0, for a general function f and also it has the eight Lie point sym-
metry characteristic of the representative second-order ordinary differential
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equation of maximal symmetry. See, for more details on the mentioned
symmetries [9]

Due to the rich algebraic structure of the differential system (1) and the
fact that many authors have worked with these equations it is somewhat
strange that there are no complete studies of their dynamics. This is the
main goal of this paper and we shall give the complete description of their
phase portraits in the Poincaré disc (i.e. in the compactification of R? adding
the circle S! of the infinity) modulo topological equivalence.

Roughly speaking the Poincaré compactification of a polynomial differ-
ential system consists in extending this system to an analytic system on
the closed disc D? of radius one and centered at the origin, whose interior
is identified with R? and its boundary, the circle S, plays the role of the
infinity. This closed disc is called the Poincaré disc, because the technique
for doing such an extension is due to Poincaré [14]. For details on this com-
pactification see [2, chapter 5], or the summary presented in subsection 2.1.
In fact we shall present the distinct global phase portraits of system (1)
when its parameters a, b varies in R in the Poincaré disc. In this way we can
describe the dynamics of their orbits which come or go to infinity of R2.

A function H: U C R? — R is a first integral of the differential system

(1) if
OH. OH.

Note that if b = 0 then the differential system (1) has a straight line of
singular points, and if b # 0 it has a unique singular point, the origin. We
say that the origin is a center if there exists a neighborhood V' C R? of
the origin such that each orbit of system (1) in V'\ {(0,0)} is periodic. In
this case we define the period annulus of the center as the maximal open
connected set W C R? such that W\ {(0,0)} is filled with periodic orbits of
system (1). When this period annulus is R? we say that the center is global.

The following theorem is our main result.

Theorem 1. The following statements hold for system (1).

(i) It can be transformed via a change of variables and a rescaling of time
(if necessary) into one of the following three families of systems
z=1,9=0;
t=1,y=u;
= Y, y = _xS;
T=y,y= m3;
i =y, y=—xy— oz with § € R\ {0}.
called families (I), (II), (I1I), (IV) and (V'), respectively.
(ii) Family (1) is integrable with the first integral H =y, and its global
phase portrait in the Poincaré disc is topologically equivalent to the
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Figure 1. The six different topological phase portraits of system

(D).

one presented in Figure 1(a). All the orbits of system (1) are straight
lines parallel to the y-axis.

Family (II) is integrable with the first integral H = y—x2//2, and its
global phase portrait in the Poincaré disc is topologically equivalent
to the one presented in Figure 1(b). In particular all orbits of system
(1) come from the endpoint of the positive y-half-axis and end also
in this endpoint.

Family (III) is integrable with the first integral H = y?>+2*/2, and its
global phase portrait in the Poincaré disc is topologically equivalent
to the one presented in Figure 1(c). In particular the origin is a
global center.

Family (IV) is integrable with the first integral H = 3> —2*/2, and its
global phase portrait in the Poincaré disc is topologically equivalent
to the one presented in Figure 1(d).
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(vi) Family (V) is integrable with the first integral
(20(1 = T)z? + 80y)I ~1(26(1 + I)a? + 8oy)' 1 if § < 1/8
H= e% (:Jc2+4y)4 if 6 =1/8,
(62t + 22y + 23;2)\/857_1 g 2arctan Vﬁ%gﬁ if 6 >1/8,

where I' = /1 — 85. Its global phase portrait in the Poincaré disc is
topologically equivalent to the one presented in:

Figure 1(d) if § <0,

Figure 1(e) if § € (0,1/8),

Figure 1(f) if 6 =1/8, and

Figure 1(c) if § > 1/8.

The proof of Theorem 1 is given in the next section where we prove each
of the statements in different subsections. We have included an appendix
with some preliminary results.

2. PROOF OF THEOREM 1

2.1. Proof of Theorem 1(i). Assume first that b = 0, then system (1)
becomes

=y, y=—axy.
If a = 0 then we have the system & = y, ¥ = 0, which correspond to the
family (I).
If a # 0 in the new variables X = —a'/3z, Y = —a!/3y and with the
rescaling of the time dt = Y ds the above system becomes
X' =1, Y =X,
where the prime denotes derivative in the new time s. Note that this is
family (II).
Assume now that b # 0 and @ = 0. Then system (1) becomes
=y, y=0ba’
In the new variables X = y/|blz, Y = /|bly system (1) becomes
X=Y, Y==+X3
with the sign + if b > 0, and the sign — if b < 0. Thus we have families
(III) and (IV), respectively.

Assume now that ba # 0. Setting X = azx, Y = ay, we get
b

X=Y, V=-XY-—X°
a

yielding family (V). This completes the proof of statement (i).
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2.2. Proof of Theorem 1(ii). We study the global phase portraits of fam-
ily (I). Since clearly H = y is a first integral of this system the phase portrait
is formed by straight lines y = constant. Consequently there is a unique pair
of singular points at infinity at the endpoints of the y-axis. Therefore the
first portrait is the one given in Figure 1(a).

2.3. Proof of Theorem 1(iii). We study the global phase portraits of
family (II). It is clear that there are no finite singular points for family (II).
Moreover it is easy to check that H = y — x2/y/2 is a first integral of this
system. Since y = 22/v/2 + h are parabolas symmetric with respect to the
y-axes, it follows that the phase portrait in the Poincaré disc is topologically
equivalent to the one given in Figure 1(b). So at infinity there is only a pair
of singular points. Each of this singular points in the Poincaré sphere is
formed by one elliptic sector and one hyperbolic sector. This completes the
proof of Theorem 1(iii).

2.4. Proof of Theorem 1(iv). We study the global phase portraits of
family (III). The unique singular point is the origin. It is easy to verify
that H = 32 + 2%/2 is a first integral of this system. Since all the curves
y?+12*/2 = h are closed simple curves surrounding the origin, it follows that
the phase portrait in the Poincaré disc is topologically equivalent to the one
given in Figure 1(c). So the phase portrait is a global center.

On the local chart U; family (IIT) becomes

u=—-1- u21)2, 0= —uvd.

Note that there are no singular points in the local chart Uj.

On the local chart Uy family (III) becomes

u:v2+u4, 0 = udv.

The origin (0, 0) is a singular point of the local chart Us. Due to the existence
of a global center this singular point on the Poincaré sphere is formed by
two hyperbolic sectors. This completes the proof of Theorem 1(iv).

2.5. Proof of Theorem 1(v). We study the global phase portraits of fam-
ily IV). It is clear that the unique finite singular point for family (IV) is the
origin. The Jacobian matrix of family (IV) at the origin is

01
(0 o) @
and so the origin is a nilpotent singular point. It follows from Theorem 3.5

of [2] that the origin is a saddle.
It is easy to check that H = y? — 2#/2 is a first integral of system (IV).
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Figure 2. The local phase portraits near the vertical axis: (a) of
system (10), (b) of system (8), (c¢) of system (7), (d) of system (5),
(e) of system (3), i.e. at the origin of the local chart Us of system
(Iv).

On the local chart U; family (IV) becomes
u=1- u202, 0= —uv®.
Note that there are no singular points in the local chart Uj.

On the local chart Uy family (IV) becomes
w=v*—ut, v=—-vdu. (3)

The origin (0,0) is a singular point of the local chart U;. The Jacobian
matrix at the origin is
00
(0 0)- a

Therefore the origin is a degenerate singular point. We need to apply the
blow-up technique. Since the characteristic directions at the origin of the
previous differential system are given by uv? = 0 we remove the direction
u = 0 doing the change of variables u; = u + v, v1 = v. Then system (3)

becomes

: 2 _ 4 2,2
w1 = —v} —uj + 3udvy — 3udv? 4+ upod,

()

. 2 2
01 = —v1(ud — 3ulvy + 3ugvi —v3).
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Now we do a vertical blow-up. To do so, let us = u1, vo = v1/u; and we get
the system

. 202, 2 2 2.2 92 . :
iy = ud(—u2 + v3 + 3udvy — 3ulv? + udvd), Vo = —ugud (6)

Reescaling the independent variable we eliminate the common factor wus
between 19 and 09, and we obtain the differential system

. 2., .2 2 2.2, 2 3 : 3
Ug = ug(—uj + v5 + 3ujzvy — uzv; + uzv;y), UV = —U;. (7)

Again the unique singular point on the straight line vo = 0 is the origin. So,
we need to do another blow-up. Since the characteristic directions at the
origin of the previous system are vous(u3 — 2v3) = 0 we need to remove the
characteristic direction vo = 0 doing the change of variables ug = ug + v
and v3 = vg, the previous system becomes
Uiy = — uj + 3udvs — 2uzv3 — v3 + 3udvs — Yudvi + Juzvi — 3vs
— 3u§v32, + 9u§v§’ — 9u;;v§ + 31135, + ugvg’ — 3u§v§ + 3U3v§’ — vg, (8)
’[)3 = - ’Ug

Doing the vertical blow-up u4y = us, v4 = vs/us, we get that the above
system becomes

ity = —u3(1 — 3vg — 3ugvy + 207 4 Yugv? + v3 + 3uiv] — Jugv}
— QUZUE + 3u4fujl1 — uivi’ + 9uivf§ + ?mivflL — Suivi — 3uivi’
+ujug), (9)
b4 = ui(vg — 1)vg(—1 + 204 + 3ugvy + v — 6ugvs — 3uivd + 3ugv’
+ 6uivs + uivd — 3uiv] — 2uiv] + udv).
Reescaling the independent variable we eliminate the common factor u3
between 14 and 04, and we obtain the differential system
ity = —ug(1 — 3vg — 3ugvy + 207 + Qugv} + v} + 3ujvi — Jugv}
— QUiUi’ + 3U4’U:11 — uiv;} + QUZUZI + 3uivfl1 — 31&1}2 — 3uivi’
+ uivl), (10)
By = (v4 — D)va(=1 + 204 + Bugvy + v] — 6uavi — 3uivi + 3uav}
+ 6ulvs + uiv — 3uiv} — 2uiv] 4+ uiv?).

This system has four singular points on the straight line uy = 0 which are
(0,0), (0,1), (0,—1 ++/2) and (0, —1 — v/2). Computing the eigenvalues of
the Jacobian matrix at these singular points we get that (0,0) is a saddle
(the eigenvalues are 1,—1), (0,1) is a saddle (the eigenvalues are —1,2),
(0, —14+/2) is a stable node (the eigenvalues are —4(3+2v/2), —3—2v/2) and
(0, —1—+/2) is also a stable node (the eigenvalues are —4(3—2v/2), —3+2/2).

Now we start with the blow-down process. The local phase portrait of the
differential system (10) around the vs-axis is shown in Figure 2(a). Then
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the local phase portrait of the differential system (9) around the v4-axis is
exactly the same than in Figure 2(a) but the vs-axis is plenty of singular
points.

Going back to system (8) we obtain that its local phase portrait at the
origin is given in Figure 2(b). Undoing the change of variables (ug,vy) —
(u3,v3) we get the local phase portrait at the origin of system (7) given
in Figure 2(c). Then the local phase portrait of system (6) is the same as
the one given in Figure 2(c) but with the vs-axis filled up with singular
points and the orbits in the half-plane uo < 0 with the orientation reversed.
Undoing the blow-up for going back to the system (5) we get that its local
phase portrait at the origin is the one given in Figure 2(d). Finally, going
back to system (3) we conclude that the phase portrait at the origin of the
local chart Us is provided in Figure 2(e), that is, this local phase portrait is
formed by two elliptic sectors separated by two parabolic sectors.

From subsection 3.2 in order to obtain the global phase portrait in the
Poincaré disc we only need to determine the behaviour of the separatrices of
the hyperbolic sectors of the saddle at the origin of coordinates, i.e. where
they born and where they die. Since the unique singular points of this system
are the origin of coordinates and the endpoints of the y-axis, the mentioned
separatrices must end or start at these singular points, because system (IV)
has no limit cycles due to the existence of a first integral defined in the whole
plane. So the two stable separatrices at the origin start in the infinite pair
of singular points, and the two unstable separatrices of the origin end at the
infinite pair of singular points. These four separatrices are at the boundary
of the two elliptic sectors at infinity. In the two regions outside the closure
of the elliptic sectors there are orbits travelling from one point of the infinity
to the other. See Figure 1(d). This completes the proof of Theorem 1(v).

2.6. Proof of Theorem 1(vi). It is easy to check that the function H
provided in the statement (vi) of Theorem 1 is a first integral of system (V).
Note that when 6 > 1/8 is defined in the whole plane, and when § < 1/8
this first integral together with its inverse cover all the plane. So system
(V) cannot have limit cycles for any § # 0.

It is clear that the unique finite singular point is the origin. The Jacobian
matrix of family (V) at the origin is the same as in (2) and so the origin
is nilpotent. It follows from Theorem 3.5 in [2] that the origin is a saddle
when § < 0, it is formed by the union of an elliptic and a hyperbolic sector
separated by parabolic sectors when 6 € (0,1/8), it is formed by the union
of an elliptic and a hyperbolic sector when § = 1/8, and it is a center when
d > 1/8 due to the existence of the first integral defined locally at the origin.

On the local chart U; family (V) becomes

0=—0—uv—u*? ©=—uvd
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Figure 3. The local phase portraits near the vertical axis: (a) of
system (17), (b) of system (15), (c) of system (13), (d) of system
(12), (e) of system (11), i.e. at the origin of the local chart Us of
system (V) for § € (0,1/8).

Since § # 0 there are no singular points in the local chart U;.

On the local chart Uy family (V) becomes
i =v? +uiv+out, 0 =uw? + sulv. (11)

The origin (0,0) is a singular point of the local chart Us. The Jacobian
matrix at the origin is the same as in (4) and so the origin of U is a
degenerate singular point. We need to apply the blow-up technique. Since
the characteristic directions at the origin of the previous differential system
are given by uv? = 0 we remove the direction © = 0 doing the change of
variables u; = u + v, v = v. Then system (11) becomes

iy = v} +ufvy —urvd + Suf — 30uvy + 36uiv? — dugvd,
: 2 _ .3 3 2,2 3 4 (12)
U1 = wvy — vy + dujvr — 3duivy + 3duvy — dvy.

Now we do a vertical blow-up. To do so, let us = u1, vo = v1/u; and we get
the system

Uiy = —u3(—0ud — ugve — v3 + 30u3ve + ugvs — 36udvs + Susvs), (13)
3

U2 = —Ug5.
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Reescaling the independent variable we eliminate the common factor us
between 1o and vy, and we obtain the differential system

Uiy = —ug(—0ud — ugve — v3 + 30u3va + ugvs — 36udvs + Jusvs),
o (14)
Vo = —U2.

Again the unique singular point on the straight line vo = 0 is the origin. So,
we need to do another blow-up. Since the characteristic directions at the
origin of the previous system are uz(éu% + uov2 +2U§’) = 0 we need to remove
the characteristic direction vy = 0 doing the change of variables ug = ug +vo
and v3 = vg, the previous system becomes

Uiz = du 4 (1 — 38)udvs + (36 — Duzvs — (1 + 6)vi + (96 — 1)ujvi
+ 36udv3 + (2 — 90)uzv3 + (36 — 1)v3 — 96udvs + 9duzvs — 30v3
— du3vs + 30uivs — 36uzv3 + ovl

@3 = —Ug

(15)

Doing the vertical blow-up u4s = us, v4 = vs/us, we get that the above
system becomes

Uty = ui (8 4 (1 — 30)vy — 36uqvy + (36 — 1)v3 + (96 — 1)ugvs
— (14 6)v] + 30ulv + (2 — 96)ugvi — 96u3v3 + (36 — 1)ugv]
— Suivd + 90udv] + 3oudvi — 3oudvi — 36uivd + Suivd)
04 = ui(1 — vg)va(—0 4 (20 — 1)vg + 36ugvy — (14 6)v]
+ (1 — 68)ugvi — 36uiv] + (30 — 1)ugvi + 65uivi + dujvs
— 36uiv] — 20uivi + duivy).
Reescaling the independent variable we eliminate the common factor u3
between 14 and 04, and we obtain the differential system
iy = ug(6 + (1 — 38)vg — 30uqvy + (36 — 1)o7 + (96 — 1ugv]
— (14 6)v3 + 30u3v? + (2 — 98)ugvs — 90uivi + (30 — 1)ugv]
— Sudvd + 90udv] + 3duiv] — 36uiv] — 3ouivd + Suinf)
04 = (1 — vg)vg(—0 + (20 — 1)vyg + 30ugvy — (1 + 6)v3
+ (1 = 68)ugv? — 36uiv? + (30 — 1)ugvi + 65uivi + duivs
— 30ulv] — 20uivi + duivy).
This system has the singular points on the straight line ugy =0
26 — 1+ m>
2(1+49) '

Note that system (17) has four singular points if § < 1/8 and different from
zero. For 0 = 1/8 this system has three singular points p1,p2 and py = p_;
and if 0 > 1/8 this system has only two singular points p1, pa.

b1 = (070)7 D2 = (07 1)7 b+ = (07
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Computing the eigenvalues of the Jacobian matrix at these singular points
we get that p; is a saddle (the eigenvalues are §, —d) and po is a saddle (the
eigenvalues are —1,2). Moreover the Jacobian matrix at the singular point
p+ has the eigenvalues

—20(6+V1—-85—3)+vV1—-8)—1

2(0 +1)2
(V1—86—-3)v1—-386(26+V1—-85—1)
400 +1)2 ‘

It is easy to check that both eigenvalues are negative if 6 < 0 so py is a
stable node when § < 0. If § € (0,1/8) it is a saddle and if § = 1/8 it
is a nilpotent singular point formed by one elliptic sector and one hyper-
bolic sector. Finally the Jacobian matrix at the singular point p_ has the
eigenvalues

26 (0—vV1—-8—3)+v1—-8 +1

2(6 +1)? ’
(VI—85+3)v1—85(—2d++v1—-85+1)
B 4(6 4 1)2 '

When § < 1/8 and different from zero, this eigenvalues are always negative.
So in this case p_ is a stable node.

We start with the blow-down process. If § < 0 the blow-down process is
the same to the blow-down done in system (IV).

Now we study the case § € (0,1/8). The local phase portrait of the
differential system (17) around the v4-axis is shown in Figure 3(a). Then
the local phase portrait of the differential system (16) around the v4-axis is
exactly the same than in Figure 3(a) but the vs-axis is plenty of singular
points.

Going back to system (15) we obtain that its local phase portrait at the
origin is given in Figure 3(b). Undoing the change of variables (ug,vy) —
(us,v3) we get the local phase portrait at the origin of system (14) given
in Figure 3(c). Then the local phase portrait of system (13) is the same
as the one given in Figure 3(c) but with the ve-axis filled up with singular
points and the orbits in the half-plane us < 0 with the orientation reversed.
Undoing the blow-up for going back to the system (12) we get that its local
phase portrait at the origin is the one given in Figure 3(d). Finally, going
back to system (11) we conclude that the phase portrait at the origin of the
local chart Us is provided in Figure 3(e), that is, this local phase portrait
is formed by three hyperbolic sectors and one elliptic sector separated from
the hyperbolic ones by two parabolic ones.

Now we study the case 6 = 1/8. Tt follows the same process as the case
9 € (0,1/8) but at the end we get Figure 3(e) without the parabolic sectors,
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(a) (b) (c)

(d) (e)

Figure 4. The local phase portraits near the vertical axis: (a) of
system (17), (b) of system (15), (c) of system (13), (d) of system
(12), (e) of system (11), i.e. at the origin of the local chart Us of
system (V) for § = 1/8.

that is, the local phase portrait at the origin of the local chart Us is formed
by one elliptic sector and three hyperbolic sectors.

Finally, we consider the case 6 > 1/8. The local phase portrait of the
differential system (17) around the vs-axis is shown in Figure 4(a). Then
the local phase portrait of the differential system (16) around the vy-axis is
exactly the same than in Figure 4(a) but the vy-axis is plenty of singular
points.

Going back to system (15) we obtain that its local phase portrait at the
origin is given in Figure 4(b). Undoing the change of variables (ug,vy) —
(u3,v3) we get the local phase portrait at the origin of system (14) given
in Figure 4(c). Then the local phase portrait of system (13) is the same
as the one given in Figure 4(c¢) but with the ve-axis filled up with singular
points and the orbits in the half-plane uo < 0 with the orientation reversed.
Undoing the blow-up for going back to the system (12) we get that its local
phase portrait at the origin is the one given in Figure 4(d). Finally, going
back to system (11) we conclude that the phase portrait at the origin of the
local chart Us is provided in Figure 4(e), that is, the local phase portrait at
the origin of the local chart Us is formed by two hyperbolic sectors.

The global phase portrait in the Poincaré disc when § < 0 is obtained as
in system (IV).
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When 6 € (0,1/8) the origin O of the local chart V5 has four separatrices,
two at infinity and two in the finite plane. Additionally system (V) has two
separatrices corresponding to the hyperbolic sector at the origin. The two
finite separatrices of O are one stable and one unstable. The stable one can
only start at the origin of coordinates and the unstable one can only end at
the origin of coordinates. On the other hand, the stable separatrix of the
origin of coordinates can only start at O and the unstable separatrix of the
origin of coordinates can only end at O. This is due to the fact that on the
positive z-axis the flow of system (V) goes down and on the negative z-axis
the flow goes up. Due to the existence of the two parabolic sectors at the
origin of coordinates separating the elliptic sector from the hyperbolic one,
the two separatrices of the point O cannot connect with the two separatrices
of the origin of coordinates. Then for this value of § the phase portrait of
the Poincaré disc is topologically equivalent to Figure 1(e).

When § = 1/8 the unique difference with the case § € (0,1/8) is that the
parabolic sectors at the origin of coordinates disappear and consequently the
two finite separatrices of the point O connect with the two finite separatrices

of the origin of coordinates, providing the topological phase portrait given
in Figure 1(f).

Finally when 6 > 1/8 in the Poincaré disc there are only three singular
points: the origin of coordinates which is a center and the two endpoins of
the y-axis having each one only one hyperbolic sector, whose separatrices
are at the line at infinity. The periodic orbits of the center fill up the whole
plane, otherwise if there exist a last periodic orbit since the Poincaré map
in a neighborhood of this last periodic orbit is an analytic function of one
variable, and it is the identity in the bounded region of this last orbit, it must
also be the identity on the unbounded region of this last orbit, consequently
such last periodic orbit cannot exist. In short, the origin of system (V) is
a global center whose global phase portrait is topologically equivalent to
Figure 1(c). This completes the proof of Theorem 1(vi).

3. APPENDIX

3.1. Poincaré compactification. In order to classify the global dynamics
of a polynomial differential system the first crucial step is to characterize
their finite and infinite singular points in the Poincaré compactification. The
second main step for determining the global dynamics in the Poincaré disc of
a polynomial differential system is the characterization of their separatrices.
For the polynomial differential systems in the Poincaré disc it is known
that the separatrices are the infinite orbits, the finite singular points, the
separatrices of the hyperbolic sectors of the finite and infinite singular points,
and the limit cycles.
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If ¥ denotes the set of all separatrices in the Poincaré disc D?, ¥ is a
closed set and the components of D? \ ¥ are called the canonical regions.

We consider the set of all polynomial vector fields in R? of the form
(#,9) = X(z,y) = (P(z,9), Q(z,y)), (18)

where P and @ are real polynomials in the variables = and y of degrees d;
and da, respectively. Take d = max{d,ds}.

Denote by TpS2 be the tangent space to the 2-dimensional sphere
$? = {S = (31,82,83) eR3: S%—i—s%—i—s% = 1}

at the point p. Assume that X is defined in the tangent plane to S? at the
point (0,0, 1) denoted by T(Oyo’l)SQ = R?. Consider the central projection
f: T(070,1)82 — S?. This map defines two copies of X, one in the open
northern hemisphere and the other in the open southern hemisphere. Denote
by X’ the vector field D f o X defined on S? except on its equator S! = {s €
S? : s3 = 0}. Clearly S' is identified to the infinity of R2. If X is a planar
polynomial vector field of degree d, then p(X) is the only analytic extension
of sg_lX/ to S2. The vector field p(X) is called the Poincaré compactification
of the vector field X, for more details see [2, chapter 5].

On the Poincaré sphere S? we use the following six local charts, which are
given by U; = {s €S%: s; >0} and V; = {s € S?: s; <0}, fori=1,2,3,
with the corresponding diffeomorphisms

pi: U= R i Vo R,
defined by ¢i(s) = —¥i(s) = (Sm/Si, sn/si) = (u,v) for m < n and m,n #

i. Thus (u,v) will play different roles in the distinct local charts. The
expressions of the vector field p(X) are

wo=(a(t2) or (L) (1)
wo (e (2 ) (s ) (s D)

(u,0) = (P(u,v), Q(u,v)) in Us.
We note that the expressions of the vector field p(X) in the local chart

(Vi, ;) is equal to the expression in the local chart (U;, ¢;) multiplied by
(—1)41 for i = 1,2,3.

The orthogonal projection under 7(y1,vy2,y3) = (y1,y2) of the closed
northern hemisphere of S? onto the plane s3 = 0 is a closed disc D? of
radius one centered at the origin of coordinates called the Poincaré disc.
Since a copy of the vector field X on the plane R? is in the open northern
hemisphere of S?, the interior of the Poincaré disc D? is identified with R?
and the boundary of D?, the equator S' of S?, is identified with the infinity
of R?. Consequently the phase portrait of the vector field X extended to
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the infinity corresponds to the projection of the phase portrait of the vector
field p(X) on the Poincaré disc D?.

The singular points of p(X) in the Poincaré disc lying on S' are the
infinite singular points of the corresponding vector field X. The singular
points of p(X) in the interior of the Poincaré disc, i.e. on S?\ S, are the
finite singular points. We note that in the local charts U;, Us, Vi and Vs
the infinite singular points have their coordinate v = 0.

For a polynomial vector field (18) if s € S! is an infinite singular point,
then —s € S! is another infinite singular point. Thus the number of infinite
singular points is even and the local phase portrait of one is that of the other
multiplied by (—1)%+1.

3.2. Separatrix skeleton. Given a flow (]D)Q, @) by the separatriz skeleton
we mean the union of all the separatries of the flow together with one orbit
from each one of the canonical regions. Let C; and Cs be the separatrix
skeletons of the flows (D?, ¢1) and (D?, o), respectively. We say that C1 and
Cy are topologically equivalent if there exists a homeomorphism h : D? — D?
which sends orbits to orbits preserving or reversing the direction of all orbits.
From Markus [10], Neumann [11] and Peixoto [13] it follows the next theorem
which shows that is enough to describe the separatrix skeleton in order to
determine the topological equivalence class of a differential system in the
Poincaré disc D?.

Theorem 2 (Markus-Neumann-Peixoto Theorem). Assume that (D?, ¢)
and (D2, ¢2) are two continuous flows with only isolated singular points.
Then these flows are topologically equivalent if and only if their separatrix
skeletons are equivalent.
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