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Abstract. We study the existence of zero-Hopf bifurcations in the fourth
order ordinary differential equation

....
x = −ẍ− a

...
x − bẋ2 ...x − (1 + x)ẋ called

the hyperjerk memristive system. This system has a line filled with equilibria
and it has a polynomial first integral H. Writing this equation as a first order
differential system in R4 we prove that this system has a zero-Hopf equilibrium
(−1, 0, 0, 0) and from it, bifurcate two cylinders filled with periodic orbits pa-
rameterized by the levels of the first integral. Moreover, the three-dimensional
system obtained restricting the differential system in R4 to the invariant hy-
persurface H = h, exhibits two Hopf bifurcations producing periodic orbits in
the center manifold of that restriction.

1. Introduction and statement of the main results

In [12] the authors introduced a cubic two-parametric fourth order differen-
tial equation system which generalizes the memristive system introduced in [2],
which in its turn generalized the original definition of memristor given in [1].
This equation has a line of equilibria and it has hyperjerk dynamics for some
values of the parameters, in the sense that it involves a fourth order differential
equation. Moreover, it is chaotic for some values of the parameters and there
exist trajectories starting from points in the unstable manifold in a neighborhood
of an unstable equilibrium point [7]. Systems exhibiting this chaotic behaviour
have attracted the interest of many authors see for instance [9, 10, 11]. From the
pioneer work of Chua and Kang in [2] many researches have worked proposing
different memristive systems with different applications in different areas de-
pending on their properties and now it is a very active research subject mainly
because of its applications, see for instance [3, 4, 6, 13, 14, 15, 17, 18, 19].

Writing this cubic two-parametric fourth order differential equation memristive
system introduced in [12] as a first order differential system in R4 we get

(1) ẋ = y, ẏ = z, ż = w, ẇ = −y − z − aw − xy − bz2w,

where a, b are real parameters.
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Valls, Applied Physics A, vol. 130, 903, 2024.
DOI: [10.1007/s00339-024-08073-7]

10.1007/s00339-024-08073-7


2 J. LLIBRE AND C. VALLS

The first main objective is to study the zero-Hopf equilibria and the zero-Hopf
bifurcations of that system. We recall that a zero-Hopf equilibrium of an au-
tonomous differential system is an equilibrium of that system whose Jacobian
matrix evaluated on it has a pair of purely imaginary eigenvalues and the rest of
the eigenvalues are zero. Moreover, a Hopf equilibrium of an autonomous differ-
ential system is an equilibrium of that system whose Jacobian matrix evaluated
on it has a pair of purely imaginary eigenvalues and the rest of the eigenvalues
are real and different from zero.

Theorem 1. The following holds for the differential system (1):

(i) It has a line of equilibria (x, 0, 0, 0) with x ∈ R.
(ii) It has a polynomial first integral H.
(iii) It has no Hopf equilibria.
(iv) It has a unique zero-Hopf equilibrium at (−1, 0, 0, 0) when a = 0 and

b > 0. From this zero-Hopf equilibrium bifurcate two cylinders filled
with periodic orbits parameterized by the levels H = −1/2 + a2h of
the first integral H with a > 0 sufficiently small. The periodic orbits
(x±(t, a), y±(t, a), z±(t, a), w±(t, a)) bifurcating from this equilibrium point
satisfy

(x±(0, a), y±(0, a), z±(0, a), w±(0, a)) = (a±
√
2h− 1, 0, 0, 0) +O(a2).

Moreover, on each level set H = −1/2 + a2h, one periodic orbit is un-
stable and the other is locally asymptotically stable when h ∈ [0, 1/2) and
unstable when h > 1/2.

Theorem 1 is proved in section 2. The main tool for proving it will be the
averaging theory of first order, that will be summarized in Theorem 3 of the
appendix. Statements (i) and (ii) were proved in [5]. In fact the first integral is

H = x+ y + az + w +
1

2
x2 +

b

3
z3.

So, in section 2 we will prove only statements (iii) and (iv).

We also consider the reduced system of dimension three by the restriction to
the hypersurface H = h taking

w = h− x− y − az − 1

2
x2 − b

3
z3,

i.e the differential system

(2) ẋ = y, ẏ = z, ż = h− x− y − az − 1

2
x2 − b

3
z3.

We will study the dynamics of system (2). The non-existence of a Hopf bifur-
cation for system (1) does not imply that the restricted system (2) also does
not have a Hopf bifurcation. In fact we will show that system (2) has two Hopf
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bifurcations. The zero-Hopf equilibrium points of system (2) are the restricted
zero-Hopf equilibrium points of system (1) due to the fact that the equilibrium
points of system (1) are in a straight line filled with equilibria.

Our second main result is the existence of a Hopf bifurcation for system (2).

Theorem 2. The following statements hold for system (2) when h > −1/2.

(i) For a = −
√
1 + 2h, at the equilibrium point p1 = (−1 −

√
1 + 2h, 0, 0)

system (2) has a Hopf bifurcation, that is, system (2) has a center man-
ifold around that equilibrium point and on that center manifold a small
limit cycle appears which is stable if ℓ(p1) < 0 and unstable if ℓ(p1) > 0.
The explicit expression of ℓ(p1) is given in the proof.

(ii) For a =
√
1 + 2h, at the equilibrium point p2 = (−1 +

√
1 + 2h, 0, 0) sys-

tem (2) has a Hopf bifurcation, that is, system (2) has a center manifold
around that equilibrium point and on that center manifold a small limit
cycle appears which is stable if l(p2) < 0 and unstable if ℓ(p2) > 0. The
explicit expression of ℓ(p2) is given in the proof.

The proof of Theorem 2 is given in section 3. The main tool for proving it is
stated in Theorem 4 of the appendix.

2. Proof of Theorem 1

The characteristic polynomial of the linear part of system (1) at the equilibrium
point (−1, 0, 0, 0) is

∆(λ) = λ(1 + x+ λ+ aλ2 + λ3)

Since this polynomial ∆(λ) has always λ = 0 as solution, system (1) has no
Hopf equilibrium points, and so statement (iii) is proved. To have a zero-Hopf
equilibrium point ∆(λ) = 0 must have two zero real eigenvalues and a pair of
purely imaginary eigenvalues. This happens if and only if ∆(λ) = λ2(λ2 + ω2)
with ω > 0. Imposing this condition we get x = −1, a = 0 and ω = 1 Hence
there is a unique zero-Hopf equilibrium point (−1, 0, 0, 0) when a = 0. Note that
the equlibrium point (−1, 0, 0, 0) when a = 0 is a zero-Hopf equilibrium inside a
continuum of equilibria.

We shall use the averaging theory of first order described in Theorem 3 of the
appendix to study it. The first step is to translate the point (−1, 0, 0, 0) to the
origin of coordiantes. We set x = −1 +X, y = Y, z = Z,w = W , and system (1)
becomes

(3) Ẋ = Y, Ẏ = Z, Ż = W, Ẇ = −Z − aW −XY − bWZ2.

The second step is to write the differential system in the normal form for applying
the averaging theory of first order. That is, to write the linear part of system (3)
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when ε = 0 into its real Jordan normal form. Applying the change of variables

X = −X1 + Z1, Y = W1 + Y1, Z = X1, W = −Y1 ,

system (3) in the variables (X1, Y1, Z1,W1) becomes

Ẋ1 = −Y1,

Ẏ1 = X1 − aY1 −X1Y1 −X1W1 + Y1Z1 + Z1W1 − bX2
1Y1,

Ż1 = W1,

Ẇ1 = aY1 +X1Y1 +X1W1 − Y1Z1 − Z1W1 + bX2
1Y1.

(4)

We write the differential system (4) in the cylindrical coordinates (r, θ, Z1,W1)
defined by X1 = r cos θ, Y1 = r sin θ, and we obtain

ṙ = W1Z1 sin θ − r2 cos θ sin2 θ − br3 cos2 θ sin2 θ − rW1 cos θ sin θ

+ r(a− Z1) sin
2 θ,

θ̇ = −1− r cos2 θ sin θ − (a− Z1) cos θ sin θ −W1 cos
2 θ − br2 cos3 θ sin θ

+
1

r
Z1W1 cos θ,

Ż1 = W1,

Ẇ1 = r2 cos θ sin θ + r((a− Z1) sin θ +W1 cos θ)− Z1W1 + br3 cos2 θ sin θ.

(5)

Now we rescale the variables (r, θ, Z1,W1) as follows r = a2R, Z1 = aZ2, W1 =
a2W2 and in this case system (5) becomes

Ṙ = a sin θ(R(Z2 − 1) sin θ + Z2W2)− a2R cos θ sin θ(R sin θ +W2)

− a4bR3 cos2 θ sin2 θ,

θ̇ = 1 +
a cos θ(R(Z2 − 1) sin θ + Z2W2)

R
− a2 cos2 θ(R sin θ +W2)

− a4bR2 cos3 θ sin θ,

Ż2 = aW2,

Ẇ2 = −a(R(Z2 − 1) sin θ + Z2W2) + a2R cos θ(R sin θ +W2)

+ a4bR3 cos2 θ sin θ.

(6)

We take θ as the new independent variable and we obtain

R′ = a sin θ(R(Z2 − 1) sin θ + Z2W2) +O(a2),

Z ′
2 = aW2 +O(a2),

W ′
2 = −a(Z2W2 +R(Z2 − 1) sin θ) +O(a2),

(7)
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where the prime denotes derivative in the new time θ. We write the energy in
the new variables as

H̃ = a3R cos θ + a2W2 +
1

2
a4R2 cos2 θ − a3RZ2 cos θ +

a2

2
Z2

2 +
1

3
a6bR3 cos3 θ

and we restrict the differential system to the energy level H̃ = a2h taking

W2 =
1

6
(6h− 6aR cos θ − 3a2R2 cos2 θ + 6aRZ2 cos θ − 3Z2

2 − 2a4bR3 cos3 θ)

and we get

R′ = aF1(θ, R, Z2) +O(a2), Z ′
2 = aF2(θ, R, Z2) +O(a2),(8)

where

F1(θ, R, Z2) =
1

2
sin θ

(
Z2(2h− Z2

2) + 2R(Z1 − 1)
)
,

F2(θ, R, Z2) =
1

6
(6h− 3Z2

2).

Using the notation of the appendix we have t = θ, T= 2π, x = (R,Z2)
T and

F (θ, R, Z2) =

(
F1(θ, R, Z2)

F2(θ, R, Z2)

)
, f(θ, R, Z2) =

(
f1(θ, R, Z2)

f2(θ, R, Z2)

)
.

It is easy to see that system (8) satisfies all the assumptions of Theorem 3.
Computing the integrals in that theorem we get

f1(R,Z2) =
1

2π

∫ 2π

0

F1(θ, R, Z2) dθ =
1

2
R(Z2 − 1),

f2(R,Z2) =
1

2π

∫ 2π

0

F2(θ, R, Z2) dθ = h− 1

2
Z2

2 .

The system f1(R,Z2) = f2(R,Z2) = 0 for h > 0 has two solutions (R,Z2) =

(0,±
√
2h), which are nonzero and different. We will denote them by (0, Z±).

Moreover, the determinant of the Jacobian matrix at (0, Z−) takes the value

det
∂(f1, f2)

∂(R,Z2)
|(R,Z)=(0,Z−) = −

√
h

2
− h

which is non-zero for h > 0. Moreover the eigenvalues of the Jacobian matrix

∂(f1, f2)

∂(R,Z2)
|(R,Z)=(0,Z−)

are
√
2h and −(1+

√
2h)/2. On the other hand, the determinant of the Jacobian

matrix at (0, Z+) takes the value

det
∂(f1, f2)

∂(R,Z2)
|(R,Z)=(0,Z+) =

√
h

2
− h
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which is non-zero for h ∈ (0, 1/2). Moreover the eigenvalues of the Jacobian
matrix

∂(f1, f2)

∂(R,Z2)
|(R,Z)=(0,Z+)

are −
√
2h and −(1 −

√
2h)/2. The rest of the proof of the theorem follows

immediately from Theorem 3. Indeed, applying Theorem 3 we obtain that for
a sufficiently small and h > 0 the differential system (8) on the energy level
H̃ = a2h has two periodic orbits (R±(θ, a), Z

±
2 (θ, a) such that

(R±(0, a), Z
±
2 (0, a)) → (0,±

√
2h) when a → 0.

The periodic orbit coming from the solution (0,−
√
2h) is unstable, while the pe-

riodic orbit coming from the solution (0,
√
2h) is asymptotically stable. The two

periodic orbits coming from the differential system (8) provide in the differential
system (7) two periodic orbits (R±(θ, a), Z

±
2 (θ, a),W

±
2 (θ, a)) such that

(R±(0, a), Z
±
2 (0, a),W

±
2 (0, a)) → (0,±

√
2h, 0) when a → 0.

Moreover, the two periodic orbits of the differential system (7) in the differential
system (6) become (R±(t, a), θ±(t, a), Z

±
2 (t, a),W

±
2 (t, a)) such that

(R±(0, a), θ±(0, a), Z
±
2 (0, a),W

±
2 (0, a)) → (0, 0,±

√
2h, 0) when a → 0.

The two periodic orbits of the differential system (6) in the differential system
(5) provide the periodic orbits (r±(t, a), θ±(t, a), Z

±
1 (t, a),W

±
1 (t, a)) such that

(r±(0, a), θ±(0, a), Z
±
1 (0, a),W

±
1 (0, a)) = (0, 0, a±

√
2h, 0) +O(a2).

The two periodic orbits of the differential system (5) in the differential system
(4) are the periodic orbits (X±

1 (t, a), Y
±
1 (t, a), Z±

1 (t, a),W
±
1 (t, a)) such that

(X±
1 (0, a), Y

±
1 (0, a), Z±

1 (0, a),W
±
1 (0, a)) = (0, 0, a±

√
2h, 0) +O(a2),

and the two periodic orbits of the differential system (4) in the differential system
(3) are the periodic orbits (X±(t, a), Y±(t, a), Z±(t, a),W±(t, a)) such that

(X±(0, a), Y±(0, a), Z±(0, a),W±(0, a)) = (a±
√
2h, 0, 0, 0) +O(a2).

Finally, the two periodic orbits of the differential system (3) become in the dif-
ferential system (1) the periodic orbits (x±(t, a), y±(t, a), z±(t, a), w±(t, a)) such
that

(x±(0, a), y±(0, a), z±(0, a), w±(0, a)) = (a±
√
2h− 1, 0, 0, 0) +O(a2).

In short, we have two cylinders of periodic orbits in a neighborhood of the equi-
librium point (−1, 0, 0, 0) bifurcating from this point. This completes the proof
of the theorem.
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3. Proof of Theorem 2

First note that system (2) has the two equilibrium points

p1 = (−1−
√
1 + 2h, 0, 0) and p2 = (−1 +

√
1 + 2h, 0, 0),

if h > −1/2. The Jacobian matrix evaluated at p1 has the characteristic poly-
nomial

∆1(h, a) =
√
1 + 2h− λ− aλ2 − λ3 = 0,

and the Jacobian matrix evaluated at p2 has the characteristic polynomial

∆2(h, a) = −
√
1 + 2h− λ− aλ2 − λ3 = 0.

We study both equilibrium points separately.

3.1. The point p1. To have a Hopf equilibrium point we must have that ∆1 =
0 has one real eigenvalue different from zero and a pair of purely imaginary
eigenvalues. This happens if and only if ∆(λ) = (λ− r)(λ2 +ω2) with r ̸= 0 and
ω > 0. Imposing this condition we get a = −

√
1 + 2h, r =

√
1 + 2h and ω = 1

Hence the equilibrium point p1 is a Hopf equilibrium when a = −
√
1 + 2h. We

translate p1 to the origin by setting x = X − 1 −
√
1 + 2h, y = Y, z = Z and

system (2) becomes

(9) Ẋ = Y, Ẏ = Z, Ż =
1

6
(6
√
1 + 2hX − 6Y − 6aZ − 3X2 − 2bZ3).

From system (9) and using the notation of Theorem 4 of the appendix we have

A =




0 1 0
0 0 1√

1 + 2h −1 −a


 , B(x, y) =




0
0

−x1y1


 , C(x, y, z) =




0
0

−2bx1y1z1


 .

The eigenvalues of the matrix A are λ =
√
1 + 2h and ±i. The eigenvector q

satisfying Aq = iq and normalized so that q · q = 1 is

q =
1 + 2h

3 + 6h+ 4h2




1√
1 + 2h
1 + 2h


 .

Note that 3+ 6h+4h2 ̸= 0. The eigenvector p such that ATp = −ip and so that
p · q = 1 is

p =
3 + 6h+ 4h2

2(1 + h)(1 + 2h)



1
0
1


 .
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So we compute

C(q, q, q) = − 2b(1 + 2h)6

(3 + 6h+ 4h2)3



0
0
1


 ,

B(q, q) = B(q, q) = − (1 + 2h)2

(3 + 6h+ 4h2)2



0
0
1


 ,

B(q, A−1B(q, q)) =
(1 + 2h)5/2

(3 + 6h+ 4h2)3



0
0
1


 ,

B(q, (2iId− A)−1B(q, q)) =
(1 + 2h)3

(3 + 6h+ 4h2)3(3 + 2h− 6i)



0
0
1


 .

Then, from (12) of the appendix, the first Liapunov coefficient is

ℓ(p1) = − 1

12(1 + h)(5 + 2h)(3 + 6h+ 4h2)2
(
30b+ 312bh+ 1320bh2 + 2880bh3

+ 3360bh4 + 1920bh5 + 384bh6 + (30 + 12h)(1 + 2h)3/2 − (1 + 2h)5/2
)
.

Hence if ℓ(p1) > 0 there is a supercritical Hopf bifurcation at the equilibrium
p1 for a = −

√
1 + 2h. More precisely, on the center manifold of the equilibrium

point p1 there is a stable strong focus without any period orbit around p1 for
a > −

√
1 + 2h, and a unstable strong focus for a < −

√
1 + 2h with a small

unstable limit cycle surrounding p1. For a = −
√
1 + 2h it is a stable weak focus

of order 1.

On the other hand if ℓ(p1) < 0 there is a subcritical Hopf bifurcation at the
equilibrium p1 for a = −

√
1 + 2h. More precisely, on the center manifold the

equilibrium point p1 is an unstable strong focus without any period orbit around
p1 for a < −

√
1 + 2h, and a stable strong focus for a > −

√
1 + 2h with a small

stable limit cycle surrounding p1. For a = −
√
1 + 2h it is a unstable weak focus

of order 1.

3.2. The point p2. To have a Hopf equilibrium point we must have that ∆ =
0 has one real eigenvalue different from zero and a pair of purely imaginary
eigenvalues. This happens if and only if ∆2(λ) = (λ − r)(λ2 + ω2) with r ̸= 0
and ω > 0. Imposing this condition we get a =

√
1 + 2h, r = −

√
1 + 2h and

ω = 1 Hence, the equilibrium point p2 is a Hopf equilibrium when a =
√
1 + 2h.

We translate p2 to the origin by setting x = X − 1 +
√
1 + 2h, y = Y, z = Z and
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system (2) becomes

(10) Ẋ = Y, Ẏ = Z, Ż = −1

6
(6
√
1 + 2hX + 6Y + 6aZ + 3X2 + 2bZ3)

From system (10) and using the notation of Theorem 4 in the appendix we have

A =




0 1 0
0 0 1

−
√
1 + 2h −1 −a


 , B(x, y) =




0
0

−x1y1


 , C(x, y, z) =




0
0

−2bx1y1z1




The eigenvalues of the matrix A are λ = −
√
1 + 2h and ±i. The eigenvector q

satisfying Aq = iq and normalized so that q · q = 1 is

q =
1 + 2h

3 + 6h+ 4h2

(
1

−
√
1 + 2h

)
.

Note that 3+ 6h+4h2 ̸= 0. The eigenvector p such that ATp = −ip and so that
p · q = 1 is

p =
3 + 6h+ 4h2

2(1 + h)(1 + 2h)



1
0
1


 .

So we have the following equations for (12)

C(q, q, q) = − 2b(1 + 2h)6

(3 + 6h+ 4h2)3



0
0
1


 ,

B(q, q) = B(q, q) = − (1 + 2h)2

(3 + 6h+ 4h2)2



0
0
1


 ,

B(q, A−1B(q, q)) = − (1 + 2h)5/2

(3 + 6h+ 4h2)3



0
0
1


 ,

B(q, (2iId− A)−1B(q, q)) = − (1 + 2h)3

(3 + 6h+ 4h2)3(3
√
1 + 2h+ 6i)



0
0
1


 .

Then the first liapunov coefficient is (see (12)

ℓ(p2) = − 1

12(1 + h)(5 + 2h)(3 + 6h+ 4h2)2
(
30b+ 312bh+ 1320bh2 + 2880bh3

+ 3360bh4 + 1920bh5 + 384bh6 − (30 + 12h)(1 + 2h)3/2 + (1 + 2h)5/2
)
.

Hence if ℓ(p2) > 0 there is a supercritical Hopf bifurcation at the equilibrium
p2 for a =

√
1 + 2h at the equilibrium point p2. More precisely, on the center

manifold the equilibrium point p2 is a stable strong focus without any period
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orbit around p2 for a >
√
1 + 2h, and a unstable strong focus for a <

√
1 + 2h

with a small unstable limit cycle surrounding p2. For a =
√
1 + 2h it is a stable

weak focus of order 1.

On the other hand if ℓ(p2) < 0 there is a subcritical Hopf bifurcation at the
equilibrium p2 for a =

√
1 + 2h. More precisely, on the center manifold the

equilibrium point p2 is a unstable strong focus without any period orbit around
p2 for a <

√
1 + 2h, and a stable strong focus for a >

√
1 + 2h with a small

stable limit cycle surrounding p2. For a =
√
1 + 2h it is a unstable weak focus

of order 1.

appendix

The next result is proved in Theorems 11.5 and 11.6 of [16].

Theorem 3. Consider the initial value problem

(11) ẋ = εF (t, x) + ε2G(t, x, ε) with x(0) = x0,

where ε is a small parameter, F : R+
0 ×D → Rn being D ⊂ Rn and G : R+

0 ×D×
(0, ε0] → Rn. Moreover we assume that F,DxF,DxxF,G,DxG are continuous
and bounded by a constant independent of ε in R+

0 × D for ε ∈ (0, ε0] and are
periodic in the variable t of period T (independent of ε). Consider now the initial
value problem, called the averaged value problem,

ẏ = εf(y) with y(0) = x0, where f(y) =
1

T

∫ T

0

F (t, y) dt.

The following statements hold.

(1) For t ∈ [0, 1/ε] we have x(t) = y(t) +O(ε)
(2) If p is an equilibrium point of the averaged problem such that det(Dyf(p)) ̸=

0, then there exists a periodic solution x(t, ε) of period T of system (11)
such that x(0, ε) = p+O(ε)

(3) The periodic solution x(t, ε) is locally asymptotically stable if all the eigen-
values of Dyf(p) have negative real part and it is unstable if there exists
at least one eigenvalue of Dyf(p) with positive real part.

The following theorem is given in [8, pp 177-180].

Theorem 4. Let ẋ = F (x) be a differential system having an equilibrium point
x0. Write

F (x) = Ax+
1

2
B(x, x) +

1

3!
C(x, x, x) +O(|x|4)

Assume that A has a pair of purely imaginary eigenvalues ±λi. Let q the eigen-
vector of A corresponding to the eigenvalue λi normalized so that q ·q = 1, where
q is the conjugate vector of q and the dot is the usual inner product in Rn. Let
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p be the vector satisfying ATp = −λip satisfying p · q = 1. Then the Liapunov
coefficient of that system at x0 is given by

(12)
1

2λ
Re

(
p ·C(q, q, q)−2p ·B(q, A−1B(q, q))+p ·B(q, (2λiId−A)−1B(q, q))

)
,

where Re(z) denotes the real part of a complex number z, and Id is the 6 × 6
identity matrix.

(1) If the Liapunov coefficient (12) is negative (supercritical Hopf bifurca-
tion), the point x0 is a weak focus of the system restricted to the center
manifold of x0 and a small stable limit cycle emerges from x0.

(2) If the Liapunov coefficient (12) is positive (subcritical Hopf bifurcation),
the point x0 is a weak focus of the system restricted to the center manifold
of x0 and a small unstable limit cycle emerges from x0.
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