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ARTICLE INFO ABSTRACT
Keywords: Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a sub-
MR-only radiotherapy stitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with
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Clinical implementation
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multi-modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions
are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms
are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical imple-
mentation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in
variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the
ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and
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its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key el-
ements crucial for the safe implementation of an MRI-only RT workflow.

Introduction

Synthetic computed tomography (sCT) images generated from
magnetic resonance imaging (MRI) provide the means to deliver radi-
ation therapy (RT) without the geometric uncertainty stemming from
multi-modality image registration [1-3]. Substituting the planning CT
(pCT) by the sCT in an MR-only RT workflow has also the potential to
reduce costs and patient radiation exposure [4], as well as the patient
burden from multiple imaging sessions. The adoption of sCT algorithms
in magnetic resonance guided radiotherapy (MRgRT) is of particular
interest, as the ability to generate a sCT directly from the image-of-the-
day would accelerate the introduction of ultra-hypofractionated treat-
ments, significantly improving spatial dose accuracy [5,6].

Several methods for sCT generation, ranging from the simplest bulk-
density override to more complex deep learning (DL) algorithms, have
been proposed and evaluated so far, but only a handful are currently
used clinically.

Implementation of an MR-only RT workflow is a multi-step process
that, apart from demonstrating equal or improved patient outcomes
when compared to routine RT workflows, must also ensure safe use and
sustainability of the sCT solution [7,8]. With no consensus on image
quality and dosimetric performance evaluation metrics provided by the
international community, each hospital has resorted to developing its
own implementation procedure with ad-hoc quality assurance (QA)
protocols. Moreover, the lack of consensus also hampers the stand-
ardisation of products marketed by industrial partners.

As a first step to overcome these issues, a group of expert developers
(research and commercial) and clinical users with expertise in managing
sCT solutions gathered in the ESTRO Physics Workshop 2022 with the
topic “Next generation MR-guided radiotherapy: Al applications for
planning and image guidance” to discuss about the experiences of
developing or integrating artificial intelligence (AI)-based sCT solutions
into the clinic. The objective of this position paper is to present the
participants’ perspective on the topic by identifying key elements to be
considered during the development and clinical commissioning pro-
cesses: these identified elements aim to be eligible for standardisation.

This paper is divided into three sections. The first, oriented towards
technical developers, is dedicated to the aspects to be considered for the
development and validation of sCT solutions prior to clinical imple-
mentation. The second, oriented towards clinical users, gives an over-
view of the aspects to be included in the QA process for a safe
implementation and application of an MRI-only RT workflow. In this
part, the main differences between a cone-beam CT- and MR-Linac
workflow have been highlighted. The focus is set on photon-based RT,
without discussing the so-far limited applications to electron, proton and
ion beam RT. Finally, suggestions to the vendors are provided in the
third section.

Technical development of sCT
Data curation

The performance of any DL-based sCT model is influenced by the
training data utilised in its development. The initial trade-off is choosing
between the goal of creating an accurate site- and machine-specific sCT
model or compromising accuracy to achieve generalizability. The pref-
erable approach is the site-specific one, as the ultimate objective is to
generate a sCT with high accuracy in both dose and patient positioning
metrics. Therefore, the development of a sCT model requires training
data that accurately represents the clinical cohort for which the model is
intended to be used (e.g. male pelvis without hip implants). This can

include - but is certainly not limited to — the appropriate range of the
patients’ age, height, gender, body mass index, etc. The model should
then not be applied for patients outside of such ranges. In general, suf-
ficient data heterogeneity is required to ensure model robustness, but
the interpretation of the term heterogeneity will depend on the model’s
clinical intent. While restricting to a site-specific approach, it will be still
necessary to ensure that a sufficient amount of data from different MR
scanners is retrieved. It is advisable to include in the training set as much
variation of patients’ anatomy as possible for the given site, especially
when diverse clinical situations are considered, such as prior surgical
procedure, potential presence or absence of stents [9,10], or tumour
properties in terms of location, size, and impact on deformation of
surrounding healthy tissue.

Compared to models with strict exclusion criteria, a larger hetero-
geneity of the training data and therefore wider applicability of the
model require a larger training set, leading to a more complex neural
network. Exclusion criteria could involve the presence of imaging ar-
tefacts or abnormal anatomies in the MR image, which could be detected
by visual inspection [11], or an insufficient field-of-view for the patient
size. However, artefacts or abnormalities that have a quantifiable and
negligible impact on dose calculation, such as post-operative swelling or
artefacts at the edge of the MRI field of view contralateral to the treated
volume, may still be included in the training set. If paired data is
required, a time consideration between CT and MR acquisition is
important. The latter is site-specific and ranges from times as short as
half an hour for physiological movements in the abdominal region [12]
up to a day or two for slowly-changing anatomies in the head and neck
area [13] or beyond for the brain [14]. If the time difference extends
beyond the time scale of the anatomical changes in the investigated site,
one may consider excluding this data or reducing its weight during a
paired training process.

The amount of data required for optimal training can be addressed by
the analysis of training and validation learning curves through the
different epochs. Boulanger et al. [15] summarised in their compre-
hensive review the performance of different sCT solutions published
between 2010 and 2021, as a function of tumour location and the
number of patients included in the studies. The authors concluded on the
need to increase the variety of data collected to favour the model
robustness, and mentioned data augmentation as a mandatory step in
case of a low number of samples collected. This was recently confirmed
by Farjam et al. [16], who showed an improvement of CT to sCT image
similarity using data augmentation starting from a training cohort of 20
prostate patients. Analogous approaches including data augmentation
are also reported in literature [17-19].

Boulanger et al. [15] concluded that at least 10 patients should be
included in the training set, which seems to be a rather low number in
view of the capacity to collect large cohorts today, highlighting the
moderate complexity of the task. However, the amount of data remains
the main factor that influences the quality of a network; therefore
valuable training sets, while being site-dependent, should include a
minimum of 20 to 40 patients [15]. If the number of patients is limited,
different approaches have been proposed to extend training sets: artifi-
cial expansion with data augmentation techniques [13,20], expansion
without patient data transfer from hospitals through federated learning
[21] and expansions based on previously trained models using transfer
learning [22]. While the last two methods are promising, they still have
a limited use in the sCT research community. On the other hand, data
augmentation strategies have already been applied and can be divided
into two categories: methods transforming the original data by applying
several image manipulation techniques and methods aiming to create
new artificial data using generative models [23]. In the first case, the
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manipulations range from simple affine transformations (e.g. trans-
lation, rotation, flipping, scaling, cropping and shearing, or any com-
bination of these operations) to more complex transformations that alter
intensity pixel values to change image characteristics such as brightness,
contrast, saturation and noise, allowing the network to be more robust to
changes in the scanner device or imaging protocols. Other categories of
manipulation methods include erasing transformation and elastic
transformations. The generation of synthetic MRIs used for the training
phase is another possible approach, which is not widely used in the
literature yet.

In conclusion, to facilitate a secure clinical implementation and
application, it is highly recommended to provide a detailed report on the
characteristics of the training cohort, encompassing any data augmen-
tation. Current efforts are proceeding towards the definition of a model
fact sheet [24]. This practice is essential for a comprehensive under-
standing of the model’s limits of applicability.

Data pre-processing and training process

Image pre-processing can be employed on MR images within the
training data to enhance the generalisability of the developed models
across varying levels of image quality. This process also serves to
compensate for the presence of artefacts that could significantly impact
the images.

Image pre-processing methods can include bias field correction,
spatial resampling, geometric fidelity corrections, image registration if
paired data are required and histogram equalisation or MR intensity
normalisation. Intensity clipping can also be applied to remove outlier
values, mostly corresponding to noise. It is recommended to include
such steps since they have demonstrated the possibility of implementing
robust sCT models, capable of handling and processing heterogeneous
datasets coming from different institutions [25,26].

Another essential step is related to data partitioning, essential to
ensure an unbiased evaluation of the network generalisability.
Conventionally, images are separated into 3 datasets: training, valida-
tion, and test sets.

The training set represents the main source of data on which the
network is trained. The training is commonly performed with a loss
function based on image similarity metrics, discussed in a later section.
The validation set is used to evaluate the intermediate performance of
the neural network and optimise the network hyperparameters, while
the test set represents an independent image set to provide an unbiased
evaluation of the network performance. Ideally, an independent
external test set should be considered in the process of evaluating the
performance of the final model, to assess its generalisability to data that
is often (slightly) different in terms of image quality. The division of data
into training/validation/testing in the ratios 70 %/15 %/15 %, 80 %/10
%/10 % and 60 %,/20 %/20 % is most frequently observed in connection
with sCT generation [18,26].

To ensure robustness, especially with limited datasets, advanced
learning strategies are recommended. This includes the K-fold cross-
validation scheme, which divides the training and validation samples
into K groups of equal size and then uses K-1 folds to train the network
and the remaining samples to assess the network performance. The
average of the performance metrics and its associated standard devia-
tion are thus reported as the performance scores of the model trained
with the full data set. The choice of the different folds becomes crucial
when the training set is heterogeneous, containing images acquired on
different imaging devices or using various image parameters. While
more advanced methods like nested cross-validation exist, they remain
unexplored in the field of sCT generation [27,28]. Recently, ensemble
methods that combine the predictions from multiple learning algorithms
to achieve better performance than using a single neural network, have
been implemented [29-31].
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Hardware requirements

The development of DL-based models requires the availability of
computational resources capable of very high throughput parallel
computing. Graphics Processing Units (GPUs) are therefore preferred
over Central Processing Units (CPU) in this context, mainly because they
have higher Arithmetic and Logic Units (ALU), which allows for more
operations to be calculated [32]. They also offer the opportunity to
handle large data sets, due to their design incorporating wider buses and
higher memory clock rates as compared to CPUs, which makes them the
preferred choice specially to train 3D networks. Three major charac-
teristics must therefore be taken into account when choosing GPUs: (1)
the floating-point operations per second, accounting for the computa-
tional speed of the system under consideration, (2) the memory band-
width in GB/s, characterising the amount of data that can be read or
stored in the memory per unit of time, and (3) the Random Access
Memory (RAM) expressed in GB, representing the quantity of data that
can be temporarily stored. In general, the higher the value, the better the
performance of the GPU. However, the recommended amount of RAM
for machine learning depends on the size and complexity of the datasets
and models of interest. Several authors have reported computing times
on different computing architectures. As an example, on an Nvidia
Quadro RTX6000 (24 GB GDDR6) GPU card, the training computation
times for 39 patients of a U-Net, GAN, and Pix2Pix were respectively 17,
57 and 39 h. The sCT generation computation time (per MRI scan) were
respectively 9, 9, and 5 s [33].

Network selection

Data requirements and learning strategies differ with network se-
lection. Methods classified as generator-only models aim to translate one
image domain (MR) to another one (CT), predominantly by minimising
an intensity-based voxel-wise loss function, requiring accurately
spatially registered CT/MRI data pairs for training. Generator-only
networks have been demonstrated in the cranial region and they were
the first architectures generating high quality sCT images [34].
Regardless of the network, it should be noted that the common training
approach of minimising an intensity-based voxel-wise loss function
leads to optimising the image metrics, while more clinically relevant
endpoints should be taken into account, such as the dose metrics and the
patient positioning performances. Image-metric optimization is how-
ever the current widely accepted approach, due to the high degree of
automation in the computation and the reduced computational burden.

In 2014, Generative Adversarial Network (GAN) architectures were
first proposed aiming to expand the applicability of sCT to extra-cranial
locations [35]. In a GAN, two models are trained at the same time: a
generative model G maps the domain end-to-end, and a discriminative
model D estimates the probability of a sample coming from the training
data versus G’s output. D’s objective is to distinguish fake images
generated by G from real user-provided images in the learning stage.
GAN:S, like generative-only networks, require paired CT-MR for training
and validation, although they have been shown to be robust to
misregistration errors and mitigate CT-MR misalignments if imple-
mented with dedicated loss function such as Mutual Information
[15,36]. The most flexible architecture in terms of input data prepara-
tion is the CycleGAN architecture. Using a bi-directional cost function, it
seeks to define the bijective transformation from one domain to another
one, thus allowing the use of unmatched data.

Each of these architectures has disadvantages and advantages in
terms of image quality with some experiences in literature that reported
ad-hoc comparisons [37,38].

Finally, recent studies from 2023 proposed novel emerging tech-
niques for sCT generation based on residual vision transformers [13] and
diffusion probabilistic models [39-41]. The latter have the goal of
creating sCT images starting from pure noise images, with the main
drawback lying in the time generation.
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Quality evaluation of a sCT image generator

Image metrics

The generated sCT can be compared to the pCT to assess the simi-
larity between the voxel values in the two images. These similarity
metrics can be computed with a high degree of automation, among other
applications, during the loss function minimization and immediately
after the network training is completed, thus allowing a direct com-
parison between studies performed at different institutions. An exten-
sive set of quantitative metrics can be found in literature [15,42].

The Mean Absolute Error (MAE) has been widely reported in the
literature for sCT evaluation [43]. Despite its voxel-wise difference
highly penalises spatial inaccuracies resulting from sCT to CT registra-
tion and may average out large differences in small volumes (e.g bone)
with small differences in large volumes (e.g. soft tissue), reporting this
metric is crucial for future studies to enable a first and fast sCT quality
evaluation.

A second metric is the Mean Error (ME), which presents the advan-
tage to be more clinically relevant than the MAE, since it correlates more
with beam attenuation, providing information on eventual systematic
errors in Hounsfield units (HU) prediction [43]. However, it is less
representative of the quality of the sCT due to the potential compensa-
tion from positive and negative differences.

An overview of recent results for MAE and ME is provided in Sup-
plementary materials (Table 1S [100-161]). Inclusion criteria for the
data included in the table were: “synthetic CT” or “pseudo CT” or “sCT”
or “pCT” in the title, date range 2021-2023, including DL methods,
including at least “MAE” or “ME” as quantitative metrics. Reviews were
excluded. Reported MAE for Head and Neck has the highest values
(median of 83 from available values in Table 1S) whereas Pelvis has the
lowest (median of 34 from available values in Table 1S). For the two
most common anatomical sites where sCT has been clinically imple-
mented, ME ranges from —6 to +1 and from —15 to 7 for Brain and
Pelvis, respectively.

The Dice Similarity Coefficient (DSC) has been used to quantify the
overlap between CT and sCT given volumes. Despite its wide applica-
tion, DSC presents the limitation of penalising small objects and dis-
regarding the shape of the evaluated volume [44]. The use of various
thresholds to obtain the evaluation volumes increases the metric un-
certainty, which should be thus computed with caution and not for
direct sCT quality evaluation. Such a metric, initially proposed to eval-
uate the performance of automatic segmentation algorithms, is not the
most appropriate in this context.

Other quantitative metrics include: Peak Signal-to-Noise Ratio
(PSNR) [42] and Structural Similarity Index Measure (SSIM) [42,45].

In general, studies aiming for quantitative evaluation and allowing
comparison to previous and upcoming research should include as many
from the previously reported metrics as possible and at least one among
MAE and ME.

Dose metrics

The dose calculated on the electron density map derived from the
sCT can be compared to the pCT to assess differences in the target
coverage and OAR sparing. These metrics generally require some degree
of manual input and the comparison among different studies is
complicated by the large variety of technical parameters such as irra-
diation techniques, dose prescriptions, target volumes and locations,
dose calculation algorithms and HU to electron density calibrations.
Nonetheless, dose endpoints have a greater interpretability and provide
quantitative parameters to define clinically relevant thresholds and
limits. Therefore, whenever available, dose metrics should always be
reported along with image metrics [43].

Gamma indices, quantifying the similarity between dose maps, are
generally the most used and reported metrics. 3D global gamma indices
with 10 % and 90 % dose thresholds, to respectively analyse the low and
high dose regions, are commonly found in literature [12,26]. Tight
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criteria (e.g., 1 %/1mm) allow to highlight minimal dose differences and
they can be crucial in the identification of local inaccuracies.

The results of the gamma analysis can be heavily influenced by the
technical parameters such as the comparison modality (global or local),
the dose threshold and the dimensionality evaluation (2D or 3D). Dose
Volume Histogram (DVH) point differences have been used as comple-
mentary dosimetry quality markers, although several factors, such as
segmentation inaccuracies can result in DVH differences [42]. To
overcome the dependence on potential contour geometrical differences
when calculating DVH parameters (e.g. D2%) on the CT (contours CT-
based) or the sCT (contours MR-based) [42], the volumes encom-
passed by clinically relevant isodoses (e.g. 90 % isodose) of the CT and
sCT can be derived and compared through DSC to achieve a more robust
comparison. A good balance between clinical impact and dose precision
should be identified and contextualised for each study.

Patient positioning performances

Lastly, the sCT-based patient setup accuracy must be evaluated,
especially when the treatment is administered on an Image Guided
Radiotherapy (IGRT) linear accelerator with CBCT or kV-kV patient
positioning. The uncertainties in image matching can be evaluated with
approaches used in other contexts of assessing IGRT positioning accu-
racy [46-48]. For brain treatments several authors reported differences
in translation within +/-2 mm [49-51] and maximum rotation of 0.7°
when the positioning was based on CBCT [50,51]. If Digitally Recon-
structed Radiograph (DRR) and kV imaging were used, the authors re-
ported lower differences [50,52]. For the pelvis, a maximum mean
deviation of 0.28 mm in the three directions was achieved based on a
rigid fusion of CT or sCT and CBCT [53]. For head-and-neck, maximum
deviations of +/-3mm when rigidly matching CT or sCT derived DRR to
the daily planar kV images were reported [54,55]. In general, it could be
observed that the most recent sCT developments achieve matching
quality to CBCT or kV-kV within the commonly adopted target volume
margins [56].

Technical challenges

The actions outlined in the previous subsections share technical
challenges that may impact the overall output quality and interpret-
ability of the generated sCT. These challenges result in limitations of the
sCT generator that should be carefully evaluated and integrated into the
QA program discussed in the following section. While the limitations
should be taken into account for the QA process, the research field is
advancing and recent developments are expected to overcome the cur-
rent technical limitations. The challenges can include, but are certainly
not limited to, the following points:

@ Limitations of MR imaging for bone-air interfaces, particularly
challenging in regions such as the sinus cavities. Novel Ultrashort
Echo Time (UTE) MR sequences may allow dedicated capability in
bone imaging [57-59].

@ Difference in terms of MR scanners and acquisition protocols be-
tween the training data and input data used in clinical routine. The
risks should be mitigated by the manufacturer providing the appli-
cability limitations of the software. Future advancements may
involve expanding training datasets without patient data transfer
through federated learning [21] or tuning datasets to specific scan-
ners and sequences using transfer learning [22].

@ Registration uncertainties between the MR and CT in the training
data and absence of a real ground truth for paired MR-CT datasets.
Novel approaches to mitigate the misalignment have been proposed
[60] and networks not requiring paired data such as CycleGAN have
been demonstrated [12,25,61,62].

@ Potential network hallucinations, producing an output sCT that
cannot be verified in absence of a planning CT, e.g. in presence of
unexpected metal implants without MR contrast. The generation of
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sCT with multiple independent networks has been proposed to
identify hallucinations, which may differ across networks leading to
a potential error recognition [10];

@ The absence of standardised datasets makes it challenging to quan-
titatively determine the superiority of a specific model. Initiatives
like Gold Atlas [63] and SynthRAD [64] are promoted to address this
issue and encourage further benchmarking efforts.

QA program
Several studies have investigated the challenges and potential pitfalls

of an MRI-only workflow [8,65-67], leading to the identification of
significant issues summarised in Table 1. A QA program must tackle

Table 1
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these issues through identifying potential failure modes and establishing
additional safeguards where needed. The main components of a QA
program for the safe clinical implementation of a sCT are described in
this section.

Risk analysis

A prospective risk analysis should be performed to highlight poten-
tial failure modes. Apart from technical failures, the questions ‘How to
recognize if a patient QA fails?’ and ‘What to do if a patient QA fails?’ are of
particular interest. These issues should be discussed within the depart-
ment following the Health Failure Mode and Effects Analysis (FMEA)
methodology or equivalent. Table 2S5, in the Supplementary materials,

Possible issues encountered at different steps of an RT workflow, key questions highlighting potential risks, and associated suggestions when implementing sCT into

clinical RT workflow.

RT workflow step

Issue description

Key Questions

General suggestions for implementation

Patient scheduling Administrative personnel in charge of booking CT @ Are the personnel aware to schedule MR
and MR imaging sessions need to be in instead of CT?
communication with other staff to rebook sessions @ If sCT is not generated or does not meet
when necessary. the QA criteria, are the personnel aware

to schedule a planning CT?

MR acquisition Geometric distortion can arise from the tissue- @ Are RT specific MR protocols available?
dependent chemical shift and susceptibility @ Does the sCT image generation software
differences, from gradient field nonlinearity and require specific sequences?
from the static field inhomogeneity. Together with @ Are doctors or only technicians required
the presence of metal implants and MR-related during MR acquisition?
artefacts these can lead to: @ Are technicians allowed to edit sequence
@ inaccurate target delineation, parameters? If yes, which?

@ improper restoration of the external contour, and @ To which department belongs the

@ erroneous electron density map. simulation MRI? Who is responsible for
performing quality controls? (RT or
Radiology department)

Patient The patients must be scanned in treatment position, @ How is patient positioning done for RT
immobilisation using routine immobilisation devices when possible. simulation?

Additionally, it must be considered that these devices =~ @ Are MR safe patient positioning devices

may not be visible in MR and, hence, in the sCT available and are these increasing the

reconstruction. coils to patient distance?

@ Are lasers for positioning required and
available at MR and does the staff at the
MR know how to operate them?

@ Is MR safe tattoo equipment required and
available?

@ Is RT staff required during MR
acquisition?

sCT generation This step provides the highest measure of risk. The @® When in the process is the sCT
use of sCT introduces additional issues based on the generated?
interpretation of images, the impact of segmentation =~ @ Who is responsible for the quality of the
and density assignments on dose calculation, and sCT? Is the staff trained to judge the
bone segmentation affecting DRR accuracy [8]. quality of the scan?

@ What procedure to follow if quality is
insufficient?

@ Is there a procedure to include the RT
fixation devices in the sCT?

Delineation & Transferability of the sCT from MR console (or the @ Is the DICOM connectivity ensured for

treatment cloud if web-based solution is used) to the TPS is transfer to TPS?
planning necessary for registration between image modalities. =~ @ Can the sCT be registered to secondary
images like PET or functional MRI?
Identification of artefacts caused by air bubbles, @ If using multiple sequences, is the
stents, dental implants, post-op swelling, etc. that intrinsic registration between sCT and
may affect the contouring procedure because of the additional MRI good or did the patient
proximity to the target volume. move in between sequences?

@ Does the staff need to be aware they are
working on a sCT?

@ Are all relevant anatomical structures
and target volumes visible for
delineation?

Treatment & Relevant for IGRT-Linac RT workflows. The quality @ Is the DICOM connectivity ensured for

image-guidance of the images used for online registration is crucial transfer between TPS and Linac console?
for correct patient positioning. Bone and gold @ Does the staff need to be aware they are
markers can be affected or not visible in the DRRs. working on a sCT?

@ Are anatomical or artificial markers for

image guidance properly visible?

Personnel need clarity on the group of patients
eligible for MR-only workflows as well as use of clear
communication channels between departments to
allow quick scheduling of CT if needed.

Internal guidelines on allowed image sequences and
their acquisition parameters should be in place. If the
developed sCT model has only been trained on fixed
parameters, then those should be restricted. Scanner
gradient non-linearity correction should be turned
on, contrary to the MRI from the Radiology
department.Routine MR QA must be performed,
particularly a daily geometric distortion check using
a large diameter phantom (>30 cm) [162,163] is
advised. Clear responsibilities for each personnel
group must be stated.

The immobilisation devices must be MR safe and of
proper size to avoid collision with coils or the
machine. The use of a flat couch is advised.MR safe
markers can be placed on the mask and support
devices to correctly localise the immobilisation
system in the TPS. Use of coil bridges to avoid
distorting the body contours is advised.

Automatic sanity checks of sCT quality should be
done either provided by the vendors or tailored if the
sCT was developed in-house.Use of a complementary
methodology for generating synthetic scans [10]
would aid image quality control and/or HU
assignment check.

A DICOM header check to verify the required DICOM
parameters could ease transferability between
systems and registration procedures.Gathered
information on artefact types, sizes and their
influence in contouring and dose computation during
commissioning can be used to establish local
guidelines for sCT visual inspection and training of
staff.Registration issues due to movement between
image sessions can be mitigated by good patient
preparation. Likewise, staff training on assessment of
registration quality between sCT and MRI used for
contouring is advised.Finally, a need for dose
planning guidelines tailored to sCT (e.g. density
override) should be assessed.

Performing comparison analysis between sCT/sDRR
and CT/DRR to assess matching ability to the IGRT
CBCT or kV-kV images [71,83] will help identify
special routines for correct identification of markers.
Proper staff training to mitigate miss-identification of
markers.
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gives an example of a risk analysis tool focused on potential detriment to
the patient. To capture as many risks as possible throughout the entire
MR-only RT chain, it is important that all involved disciplines are rep-
resented, i.e., MR and CT personnel, medical physicists, radiation on-
cologists, RTTs, radiologists, radiographers, data managers, and
administrative personnel in charge of booking imaging sessions.

Required machine QA

Performing MR QA for the use of MR in RT according to any pub-
lished guideline [68-71] is a minimum requirement for the MR acqui-
sitions to be suitable for sCT generation. Focus on geometric accuracy
and image consistency of the whole scan e.g., large field of view, is
necessary. These may be performed with vendor-provided QA software
although complementary in-house checks can always be added if
deemed necessary. A practical aspect is to define whether the radiology
department or the RT department is responsible for machine QA. Both
scenarios can be feasible, but good communication is crucial, and the
minimum requirements of both departments should be satisfied.

As for QA on MR-Linac systems, only recently the first consensus
expert opinion was published [72], however, some vendor specific ex-
periences on the QA and clinical implementation are also available in
the literature [73,74]. QA frequency and tolerance levels for on-board
MR scanners may be more demanding compared to MR simulators due
to the machine design i.e., interaction of MR with the integrated Linac
(and vice versa), and the higher imaging burden that adaptive RT may
require. BO-field homogeneity and gradient non-linearity tests are
mandatory requirements. Uniformity and SNR of the body and surface
coils should be performed monthly, whereas MR distortion as a function
of different gantry angle positions should be performed on a yearly basis
[70,75]. Faraday cage shields should also be tested regularly as small
hardware damages may affect image quality.

MR imaging of RT specific devices

Some aspects to consider during the clinical commissioning of an MR
scanner for sCT generation include ensuring the accurate restoration of
the patient body contour for dose calculation, visibility of patient fixa-
tion devices or surrogates, and identification of external or internal IGRT
markers. Strategies to correctly identify the couchtop position [76] or
internal markers [77] have been reported in literature and should be
implemented in the RT workflow if such systems are used. Designing a
retrospective study analysing paired sCT-CT images can contribute to
refine and ensure the accuracy of the RT workflow involving these
systems.

Comprehensive workflow testing

The implementation of an end-to-end phantom-based testing as
classically performed for RT workflows [78] is not applicable to MR-
only RT due to the patient-specific generation of Relative Electron
Density (RED) maps with DL algorithms. The closest approach could be
performing a comprehensive workflow testing, which not only verifies
the connectivity of all steps in the treatment chain but also ensures
communication between personnel in case a deviation from routine is
detected. The steps to check can differ between institutions as they
should be based on the outcome of the risk analysis. General key points
to test are:

@ Transfer of sCT DICOM data into the TPS; ensure correct sCT DICOM
header to avoid misinterpretation when transferred from the MR
console or PACS into the TPS [49,65].

@ Visual inspection of sCT for anatomic anomalies; ensure that coil
positioning does not alter the patient body contour; ensure that tissue
distortion due to metal implants, and body contour mishaps due to
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patient movement during MR acquisition, are within tolerance to not
affect dose calculation [51].

@ Fixation markers or other immobilisation devices; ensure their visi-
bility or a surrogate for these on at least one MR sequence of the MR
protocol if they are not discernible on the sCT [79].

@ Auto-contouring tools compatibility; ensure that the generated con-
tours on the sCT are within the tolerance levels established for CT
auto-contouring [13].

@ Dose calculation and optimisation algorithms; perform dose com-
parison study between sCT and CT following the dose metrics dis-
cussed above, and ensure use of appropriate dose matrix voxel size in
relation to sCT and CT voxel size [80]. The internal test cohort must
summarise as far as possible all the configurations that will be
encountered in the clinic, in terms of image quality, patient popu-
lation and clinical situations.

@ Image quality of the generated DRR; ensure that the rendering of
skeletal tissue is accurate enough for kV/kV matching, and ensure
correct location of internal markers if routinely used [65,81].

@ Independent dose calculation tools and plan verification (e.g. EPID
measurements); ensure that sCT gamma pass rates are within the
tolerance levels established for pCT.

@ Third party sub-systems (e.g. optical surface guidance); ensure that
the body contour from the sCT is of enough quality to be used for
surface guidance.

@ CBCT or kV/kV match at the treatment room; performing off-line
sCT-CBCT and sCT DRR-kV/kV matching following the patient-
position metrics discussed above [82].

A dummy run consisting of images from an anonymized patient is a
simple and effective approach to evaluate some of these steps. A com-
plementary comparative retrospective study involving a few patients
can be designed to evaluate those steps that require establishing QA
acceptance criteria.

Verification of accurate assignment of the RED, respectively HU, on
the sCT should ideally be included in the comprehensive workflow
testing. This is currently difficult due to the unavailability of commercial
phantoms from which a sCT can be generated. Published studies have
resorted to develop in-house anthropomorphic phantoms or phantoms
with inserts of different materials visible on MRI [83,84] for multi-
modality evaluation covering only certain aspects of the comprehen-
sive workflow testing. Other reported solutions rely on modifications of
commercially available phantoms, such as the Lucy 3D QA phantom
with MRI visible silicon insert [85] or the adapted RUBY phantom with
multi-modality QA insert [86]. Worth of note is that a sCT was not
generated in any of these studies. Instead, they employed a CT or bulk
overrides where the dosimetric evaluation was performed using either
radiochromic films or ionization chambers. The studies focused on the
geometrical accuracy of the MR-only workflow.

Patient specific QA

The lack of commercial tools for performing MR-only patient specific
QA (PSQA) is another reason that has hindered the widespread imple-
mentation of sCT in the clinic. In general, the PSQA process could range
from a first visual assessment to the comparison of the sCT HU values
based on population-based distributions, to dose recalculations on in-
dependent RED maps or to more complex approaches depending
whether the treatment is performed on an MR-Linac or an IGRT-Linac.

For MR-only with IGRT-Linac workflows, the first-day-of-treatment
CBCT can be used to verify the dosimetric calculation [87,88] pro-
vided that the combined uncertainty from factors like HU deviations,
limited field-of-view, and streaking artefacts is kept within the recom-
mended 5 % global uncertainty for RT workflows [89] or the CBCT could
be converted into an independent sCT [43,90]. Suggested methods for
implementation of PSQA protocols that require in-house scripting and
therefore may be time consuming, are application of population-based
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calibration curves [87,88,91] preferably for each CBCT scanner, and
bulk density method where patient specific HU-to-density curves are
applied [92]. CBCT image quality enhancement with DL may become
the best tool for performing PSQA as suggested by published research
[10], thus enabling double sCT comparison. The metrics for dose eval-
uation discussed in Section “Quality evaluation of a sCT image gener-
ator” can be used to establish site-specific acceptance criteria through
comparison studies between pCT, sCT and CBCT images [91,93]. It is at
the discretion of every centre to apply PSQA on the first treatment
fraction of all patients or only on those where the visual inspection of the
sCT yielded suspicious artefacts. In the near future, commercial tools
will open the possibility for faster PSQA enabling adaptive RT as it may
be performed on every treatment session.

For MR-linac workflows, the PSQA currently relies on the possibility
to use the pCT. In the consensus paper by Tanadini-Lang et al. [72], the
necessity to perform visual checks of newly generated RED maps during
the plan adaptation process for each individual patient is suggested.
Alternatively, the dose calculation can be verified on an independent
RED map generated through bulk overrides [94] or with an independent
sCT generator [10]. In parallel, an automated comparison of plan pa-
rameters between plan of the day and pre-treatment plan calculated on
the pCT is advisable. As more robust sCT are adopted by MR-linac sys-
tems and the pCT is no longer needed, the challenge will be to design a
fast on-line PSQA performed on the sCT of the day in parallel to other
tasks. Tools like APART, an in-house MATLAB based tool developed by
Rippke et al [95] may be taken as a basis for on-line PSQA. Likewise,
Tang et al [7] have introduced a step in the workflow where the plan-of-
the-day is compared to a sCT generated from the planning imaging
session in a maximum of 400 s.

An overview of the potential PSQA approaches for dose calculation is
reported in Table 2.

QA role in software sustainability

Long-term requirements for QA management of sCT generators will
become essential to maintain the accuracy of dose calculations over
time. Because uncertainty in the sCT images can arise from a variety of
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sources such as hardware or software upgrades and variations in image
acquisition protocols, it is important to perform periodic re-validations
of the sCT generator to ensure that the uncertainty remains within
acceptable limits over time [89]. Unfortunately, the few publications
from centres that have implemented an MR-only workflow do not
discuss QA for sustainability. Performing checks of the sCT against
actual CT scans after each hardware and software update should be a
minimum requirement, achievable by performing phantom measure-
ments (if available) or a restricted number of actual patient studies to
ascertain that RED/HU values and geometric accuracy remain within
tolerance levels. Image metrics and dose computation on the sCT
generated before and after the upgrade can be performed to evaluate
whether the MR sequence required for sCT generation remains
unaffected.

Suggestions to vendors

At the time of writing, four CE/FDA-approved sCT software are
available in the market: syngo RT Image Suite (Siemens Healthineers,
Erlangen, Germany), MR-Box (Therapanacea, Paris, France), MRI
Planner (Spectronic Medical, Helsingborg, Sweden) and MRCAT (Phi-
lips, Amsterdam, Netherlands). A direct comparison between the former
three solutions concluded that despite strengths and weaknesses of each
of the approaches, all sCT generators are suitable for clinical use [96].
Clinical applicability was also reported for the latter [97]. While the
dose calculation and IGRT positioning outcomes show negligible dif-
ferences among the four commercial sCT software, the user should be
aware of significant workflow differences if the MR sequence required
for sCT generation is the diagnostic sequence adopted for contouring or
if a separate dedicated sequence is required. Furthermore, there may be
slight workflow differences based on whether the sCT software is inte-
grated into the MR scanner console (with the MR scanner and sCT
software from the same vendor) or if it necessitates an external server
(involving different vendors).

To achieve wider adoption of MR-only RT workflows, the vendor
community is encouraged to provide the following:

Table 2
Patient specific quality assurance methods for dose calculation on sCT.
Method Input data required Valuable aspects Shortcomings
Dose recalculation on CBCT 1. sCT @ A real and not sCT modality (CBCT) of the patientis @ PSQA can be performed only once the patient is on
before delivery of the first 2. CBCT used for dose calculation. the couch for the first fraction.
fraction 3. RT plan @ PSQA exploits data that is routinely acquired within =~ @ May have restricted applicability due to the limited
the RT workflow. field of view and CBCT artefacts.
@ The quality of the CBCT can be enhanced with DLto @ Inaccuracy of dose calculation on CBCT due to HU
obtain an independent CBCT-based sCT. calibration.
@ Not applicable to MR-Linac or IGRT based on kV-kV
imaging.
Dose recalculation on bulk 1. sCT @ PSQA can be performed during the planning stage if =~ @ Dose calculation accuracy depends on the choice of
densities 2. CBCT or MR using MR as input. the assigned bulk densities.
3. RT plan @ Applicable to MR-Linac or IGRT based on kV-kV @ No availability of auto-contouring algorithms on MR
4. Contours of the structures imaging. or CBCT for the structures that require bulk density
for bulk density @ The procedure can be automatized with auto- assignment (fat, air, bone, soft tissue, lung).
assignment contouring of the bulk structures.
Dose recalculation on 1. Primary sCT @ MR data falling outside the range of the training data @ Distortions or artefacts in the MR data propagate to
independent sCT 2. Independent sCT leads to different network hallucinations in the two both the primary and independent sCT.
3. RT plan sCTs, thus identifying potential outliers. @ Requirement of two independent software for sCT
@ Applicable to MR-Linac or IGRT based on kV-kV/ generation.
CBCT imaging.
@ The procedure can be automated.
Dose recalculation on 1. sCT @ Closest approach to classical end-to-end testing. @ Dedicated hardware must be developed for PSQA
patient-specific phantom 2. Patient specific phantom @ Direct dose measurement. with considerable time requirement.
3. RT plan @ Not a standardised approach.
4. Film or chamber @ Not applicable for daily PSQA.
measurements
Dose recalculation on a 1. sCT @ Gold standard for dose calculation. @ Fall-back approach to the classical workflow, the
planning CT 2. CT @ Applicable to cases for which the sCT has insufficient patient will not be treated with MR-only workflow.
3. RT plan quality or other PSQA methods fail. @® A CT must have been previously acquired.
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@ Detailed description of the sCT algorithm (user manual, white pa-
pers, published studies).

@ If the sCT is Al-based, a description of the training database would
help setting tolerance values for the clinical quality controls such as
range of patient weights, heights, age, clinical situations (e.g. pres-
ence of operated patients in the case of cranial tumours), input MRI
sequences, magnetic field, CT protocols, ranges of MR/CT parame-
ters, use of RED or HU maps for training, etc.

@ Methods to reduce artefacts (craniotomy screws, dental implants,
and prostheses).

@ Flexibility to choose the size of FOV and automatic exclusion of FOV
areas with low MR signal.

@ Dedicated MR protocols for SBRT that guarantee an increased
geometrical accuracy.

@ DICOM tags that allow tracing back the algorithm version used, and
source MR images employed to generate the sCT.

Anthropomorphic phantoms for QA and end-to-end testing are
lacking which poses a challenge for many clinics, as they need to fulfil
various requirements, including ensuring dosimetric equivalence con-
ditions. Materials with both CT and MR contrast that remain stable over
time are crucial as well as easy incorporation of 1D, 2D or 3D dosimeters
in internal structures of interest should be considered. Compatibility
with MR-linacs simulating internal organ kinematics at certain treat-
ment sites would also be appreciated.

Finally, automated software is needed for dose performance QA, e.g.
ability to use CBCT for dose comparison or availability of a second in-
dependent sCT generator. Likewise, for patient positioning in IGRT-
Linac, the ability to register online MRI to CBCT would be helpful.

Looking into the future, the use of additional MR sequences for sCT
training would be highly beneficial as the contouring could be per-
formed on the same MR image used to generate sCT, avoiding the
introduction of uncertainties due to patient motion during the MR im-
aging session in between sequences.

Discussion

The expected benefits of incorporating MR-only RT into IGRT-Linac
and MR-Linac workflows have been extensively discussed in the litera-
ture [15,43], serving as primary motivation for the fast development of
DL-based sCT solutions seen in recent years.

However, only a limited number of prospective studies on sCT clin-
ical implementation can be found in the literature [96,97]. The lack of
consensus on sCT clinical commissioning and QA was highlighted as the
main hindrance for wide-spread usage of sCT during the discussions held
at the ESTRO Physics Workshop 2022. This work revised the full process
ranging from research and development to routine clinical use,
involving several consecutive phases: (i) development and training of a
sCT generator algorithm, (ii) validation on an independent retrospective
cohort, (iii) clinical validation in a prospective study, (iv) rollout of a
software product, (v) implementation in the clinical workflows with
dedicated commissioning and (vi) periodic quality assurance.

Technical developers working on phases (i-ii), are encouraged to use
Table 1S for benchmarking of new sCT solutions and as template to
standardise the reporting of such metrics in any future work. This will
facilitate reaching consensus values and establishing acceptance criteria
per anatomy site. The requirements detailed in Section “Technical
development of sCT” of this work do not distinguish between whether
the solution is in-house or commercially developed. However, addi-
tional requirements on network architecture may be necessary for in-
house algorithms to align with the recently introduced Medical Device
Regulation [98]. Further studies will be required to assess the overall
impact of MDR on academic research and sCT development [99].

Clinical staff involved in phases (iii, v—vi) may find in Tables 1, 25
and 2 a template to tackle sCT implementation and QA development.
The issues discussed in Table 1 concern staff awareness which should be
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considered key for a seamless MR-only RT workflow. Table 2S, on the
other hand, exposes elements that if covered by routine QA will ensure
safe and sustainable use of the sCT. Section “QA program” not only
serves as a starting point for clinical implementation but also raises
awareness of the limitations (e.g., complete end-to-end testing and
PSQA) that the clinical community faces. The methods described in
Table 2 are examples on how some clinics have overcome some of the
PSQA limitations. However, it is clear from the list of shortcomings that
there are still challenges that need resolving. Therefore, it is important
to encourage vendors to develop tools for QA that can facilitate devel-
opment of robust protocols.

Information on MR-only workflow implementation provided by the
clinical community in the form of prospective studies is still too sparse to
be able to conduct analyses on the overall benefits of exchanging the
pCT for the sCT. This work is reserved for the future, when harmo-
nisation of evaluation metrics and implementation processes are adop-
ted by the developer and clinical communities. For MRI-only workflows
to be effectively implemented in clinical practice, it is essential to
develop QA software capable of analysing a sCT image and providing
prompt and tangible feedback on its reliability. This should involve a set
of tests designed to examine the sCT without the corresponding pCT.
Having companies working in this direction is crucial to make these
systems increasingly integrable with clinical practice.

Conclusion

This paper summarises the challenges and opportunities faced by
development and clinical implementation of Al-based sCT solutions as
discussed during the ESTRO Physics Workshop 2022. The data presented
and discussed in the current paper gives an insight to the current posi-
tion of the research and clinical fields, highlighting elements that would
lead to the harmonisation of these processes. We encourage focusing
future efforts on developing international guidelines for clinical imple-
mentation of sCT and the associated quality assurance, which was
beyond the scope of the current work; however, it represents a logical
extension thereof.
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