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A B S T R A C T   

Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a sub
stitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with 
multi-modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions 
are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms 
are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical imple
mentation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in 
variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the 
ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and 
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its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key el
ements crucial for the safe implementation of an MRI-only RT workflow.   

Introduction 

Synthetic computed tomography (sCT) images generated from 
magnetic resonance imaging (MRI) provide the means to deliver radi
ation therapy (RT) without the geometric uncertainty stemming from 
multi-modality image registration [1–3]. Substituting the planning CT 
(pCT) by the sCT in an MR-only RT workflow has also the potential to 
reduce costs and patient radiation exposure [4], as well as the patient 
burden from multiple imaging sessions. The adoption of sCT algorithms 
in magnetic resonance guided radiotherapy (MRgRT) is of particular 
interest, as the ability to generate a sCT directly from the image-of-the- 
day would accelerate the introduction of ultra-hypofractionated treat
ments, significantly improving spatial dose accuracy [5,6]. 

Several methods for sCT generation, ranging from the simplest bulk- 
density override to more complex deep learning (DL) algorithms, have 
been proposed and evaluated so far, but only a handful are currently 
used clinically. 

Implementation of an MR-only RT workflow is a multi-step process 
that, apart from demonstrating equal or improved patient outcomes 
when compared to routine RT workflows, must also ensure safe use and 
sustainability of the sCT solution [7,8]. With no consensus on image 
quality and dosimetric performance evaluation metrics provided by the 
international community, each hospital has resorted to developing its 
own implementation procedure with ad-hoc quality assurance (QA) 
protocols. Moreover, the lack of consensus also hampers the stand
ardisation of products marketed by industrial partners. 

As a first step to overcome these issues, a group of expert developers 
(research and commercial) and clinical users with expertise in managing 
sCT solutions gathered in the ESTRO Physics Workshop 2022 with the 
topic “Next generation MR-guided radiotherapy: AI applications for 
planning and image guidance” to discuss about the experiences of 
developing or integrating artificial intelligence (AI)-based sCT solutions 
into the clinic. The objective of this position paper is to present the 
participants’ perspective on the topic by identifying key elements to be 
considered during the development and clinical commissioning pro
cesses: these identified elements aim to be eligible for standardisation. 

This paper is divided into three sections. The first, oriented towards 
technical developers, is dedicated to the aspects to be considered for the 
development and validation of sCT solutions prior to clinical imple
mentation. The second, oriented towards clinical users, gives an over
view of the aspects to be included in the QA process for a safe 
implementation and application of an MRI-only RT workflow. In this 
part, the main differences between a cone-beam CT- and MR-Linac 
workflow have been highlighted. The focus is set on photon-based RT, 
without discussing the so-far limited applications to electron, proton and 
ion beam RT. Finally, suggestions to the vendors are provided in the 
third section. 

Technical development of sCT 

Data curation 

The performance of any DL-based sCT model is influenced by the 
training data utilised in its development. The initial trade-off is choosing 
between the goal of creating an accurate site- and machine-specific sCT 
model or compromising accuracy to achieve generalizability. The pref
erable approach is the site-specific one, as the ultimate objective is to 
generate a sCT with high accuracy in both dose and patient positioning 
metrics. Therefore, the development of a sCT model requires training 
data that accurately represents the clinical cohort for which the model is 
intended to be used (e.g. male pelvis without hip implants). This can 

include – but is certainly not limited to – the appropriate range of the 
patients’ age, height, gender, body mass index, etc. The model should 
then not be applied for patients outside of such ranges. In general, suf
ficient data heterogeneity is required to ensure model robustness, but 
the interpretation of the term heterogeneity will depend on the model’s 
clinical intent. While restricting to a site-specific approach, it will be still 
necessary to ensure that a sufficient amount of data from different MR 
scanners is retrieved. It is advisable to include in the training set as much 
variation of patients’ anatomy as possible for the given site, especially 
when diverse clinical situations are considered, such as prior surgical 
procedure, potential presence or absence of stents [9,10], or tumour 
properties in terms of location, size, and impact on deformation of 
surrounding healthy tissue. 

Compared to models with strict exclusion criteria, a larger hetero
geneity of the training data and therefore wider applicability of the 
model require a larger training set, leading to a more complex neural 
network. Exclusion criteria could involve the presence of imaging ar
tefacts or abnormal anatomies in the MR image, which could be detected 
by visual inspection [11], or an insufficient field-of-view for the patient 
size. However, artefacts or abnormalities that have a quantifiable and 
negligible impact on dose calculation, such as post-operative swelling or 
artefacts at the edge of the MRI field of view contralateral to the treated 
volume, may still be included in the training set. If paired data is 
required, a time consideration between CT and MR acquisition is 
important. The latter is site-specific and ranges from times as short as 
half an hour for physiological movements in the abdominal region [12] 
up to a day or two for slowly-changing anatomies in the head and neck 
area [13] or beyond for the brain [14]. If the time difference extends 
beyond the time scale of the anatomical changes in the investigated site, 
one may consider excluding this data or reducing its weight during a 
paired training process. 

The amount of data required for optimal training can be addressed by 
the analysis of training and validation learning curves through the 
different epochs. Boulanger et al. [15] summarised in their compre
hensive review the performance of different sCT solutions published 
between 2010 and 2021, as a function of tumour location and the 
number of patients included in the studies. The authors concluded on the 
need to increase the variety of data collected to favour the model 
robustness, and mentioned data augmentation as a mandatory step in 
case of a low number of samples collected. This was recently confirmed 
by Farjam et al. [16], who showed an improvement of CT to sCT image 
similarity using data augmentation starting from a training cohort of 20 
prostate patients. Analogous approaches including data augmentation 
are also reported in literature [17–19]. 

Boulanger et al. [15] concluded that at least 10 patients should be 
included in the training set, which seems to be a rather low number in 
view of the capacity to collect large cohorts today, highlighting the 
moderate complexity of the task. However, the amount of data remains 
the main factor that influences the quality of a network; therefore 
valuable training sets, while being site-dependent, should include a 
minimum of 20 to 40 patients [15]. If the number of patients is limited, 
different approaches have been proposed to extend training sets: artifi
cial expansion with data augmentation techniques [13,20], expansion 
without patient data transfer from hospitals through federated learning 
[21] and expansions based on previously trained models using transfer 
learning [22]. While the last two methods are promising, they still have 
a limited use in the sCT research community. On the other hand, data 
augmentation strategies have already been applied and can be divided 
into two categories: methods transforming the original data by applying 
several image manipulation techniques and methods aiming to create 
new artificial data using generative models [23]. In the first case, the 
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manipulations range from simple affine transformations (e.g. trans
lation, rotation, flipping, scaling, cropping and shearing, or any com
bination of these operations) to more complex transformations that alter 
intensity pixel values to change image characteristics such as brightness, 
contrast, saturation and noise, allowing the network to be more robust to 
changes in the scanner device or imaging protocols. Other categories of 
manipulation methods include erasing transformation and elastic 
transformations. The generation of synthetic MRIs used for the training 
phase is another possible approach, which is not widely used in the 
literature yet. 

In conclusion, to facilitate a secure clinical implementation and 
application, it is highly recommended to provide a detailed report on the 
characteristics of the training cohort, encompassing any data augmen
tation. Current efforts are proceeding towards the definition of a model 
fact sheet [24]. This practice is essential for a comprehensive under
standing of the model’s limits of applicability. 

Data pre-processing and training process 

Image pre-processing can be employed on MR images within the 
training data to enhance the generalisability of the developed models 
across varying levels of image quality. This process also serves to 
compensate for the presence of artefacts that could significantly impact 
the images. 

Image pre-processing methods can include bias field correction, 
spatial resampling, geometric fidelity corrections, image registration if 
paired data are required and histogram equalisation or MR intensity 
normalisation. Intensity clipping can also be applied to remove outlier 
values, mostly corresponding to noise. It is recommended to include 
such steps since they have demonstrated the possibility of implementing 
robust sCT models, capable of handling and processing heterogeneous 
datasets coming from different institutions [25,26]. 

Another essential step is related to data partitioning, essential to 
ensure an unbiased evaluation of the network generalisability. 
Conventionally, images are separated into 3 datasets: training, valida
tion, and test sets. 

The training set represents the main source of data on which the 
network is trained. The training is commonly performed with a loss 
function based on image similarity metrics, discussed in a later section. 
The validation set is used to evaluate the intermediate performance of 
the neural network and optimise the network hyperparameters, while 
the test set represents an independent image set to provide an unbiased 
evaluation of the network performance. Ideally, an independent 
external test set should be considered in the process of evaluating the 
performance of the final model, to assess its generalisability to data that 
is often (slightly) different in terms of image quality. The division of data 
into training/validation/testing in the ratios 70 %/15 %/15 %, 80 %/10 
%/10 % and 60 %/20 %/20 % is most frequently observed in connection 
with sCT generation [18,26]. 

To ensure robustness, especially with limited datasets, advanced 
learning strategies are recommended. This includes the K-fold cross- 
validation scheme, which divides the training and validation samples 
into K groups of equal size and then uses K-1 folds to train the network 
and the remaining samples to assess the network performance. The 
average of the performance metrics and its associated standard devia
tion are thus reported as the performance scores of the model trained 
with the full data set. The choice of the different folds becomes crucial 
when the training set is heterogeneous, containing images acquired on 
different imaging devices or using various image parameters. While 
more advanced methods like nested cross-validation exist, they remain 
unexplored in the field of sCT generation [27,28]. Recently, ensemble 
methods that combine the predictions from multiple learning algorithms 
to achieve better performance than using a single neural network, have 
been implemented [29–31]. 

Hardware requirements 

The development of DL-based models requires the availability of 
computational resources capable of very high throughput parallel 
computing. Graphics Processing Units (GPUs) are therefore preferred 
over Central Processing Units (CPU) in this context, mainly because they 
have higher Arithmetic and Logic Units (ALU), which allows for more 
operations to be calculated [32]. They also offer the opportunity to 
handle large data sets, due to their design incorporating wider buses and 
higher memory clock rates as compared to CPUs, which makes them the 
preferred choice specially to train 3D networks. Three major charac
teristics must therefore be taken into account when choosing GPUs: (1) 
the floating-point operations per second, accounting for the computa
tional speed of the system under consideration, (2) the memory band
width in GB/s, characterising the amount of data that can be read or 
stored in the memory per unit of time, and (3) the Random Access 
Memory (RAM) expressed in GB, representing the quantity of data that 
can be temporarily stored. In general, the higher the value, the better the 
performance of the GPU. However, the recommended amount of RAM 
for machine learning depends on the size and complexity of the datasets 
and models of interest. Several authors have reported computing times 
on different computing architectures. As an example, on an Nvidia 
Quadro RTX6000 (24 GB GDDR6) GPU card, the training computation 
times for 39 patients of a U-Net, GAN, and Pix2Pix were respectively 17, 
57 and 39 h. The sCT generation computation time (per MRI scan) were 
respectively 9, 9, and 5 s [33]. 

Network selection 

Data requirements and learning strategies differ with network se
lection. Methods classified as generator-only models aim to translate one 
image domain (MR) to another one (CT), predominantly by minimising 
an intensity-based voxel-wise loss function, requiring accurately 
spatially registered CT/MRI data pairs for training. Generator-only 
networks have been demonstrated in the cranial region and they were 
the first architectures generating high quality sCT images [34]. 
Regardless of the network, it should be noted that the common training 
approach of minimising an intensity-based voxel-wise loss function 
leads to optimising the image metrics, while more clinically relevant 
endpoints should be taken into account, such as the dose metrics and the 
patient positioning performances. Image-metric optimization is how
ever the current widely accepted approach, due to the high degree of 
automation in the computation and the reduced computational burden. 

In 2014, Generative Adversarial Network (GAN) architectures were 
first proposed aiming to expand the applicability of sCT to extra-cranial 
locations [35]. In a GAN, two models are trained at the same time: a 
generative model G maps the domain end-to-end, and a discriminative 
model D estimates the probability of a sample coming from the training 
data versus G’s output. D’s objective is to distinguish fake images 
generated by G from real user-provided images in the learning stage. 
GANs, like generative-only networks, require paired CT-MR for training 
and validation, although they have been shown to be robust to 
misregistration errors and mitigate CT-MR misalignments if imple
mented with dedicated loss function such as Mutual Information 
[15,36]. The most flexible architecture in terms of input data prepara
tion is the CycleGAN architecture. Using a bi-directional cost function, it 
seeks to define the bijective transformation from one domain to another 
one, thus allowing the use of unmatched data. 

Each of these architectures has disadvantages and advantages in 
terms of image quality with some experiences in literature that reported 
ad-hoc comparisons [37,38]. 

Finally, recent studies from 2023 proposed novel emerging tech
niques for sCT generation based on residual vision transformers [13] and 
diffusion probabilistic models [39–41]. The latter have the goal of 
creating sCT images starting from pure noise images, with the main 
drawback lying in the time generation. 
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Quality evaluation of a sCT image generator 

Image metrics 
The generated sCT can be compared to the pCT to assess the simi

larity between the voxel values in the two images. These similarity 
metrics can be computed with a high degree of automation, among other 
applications, during the loss function minimization and immediately 
after the network training is completed, thus allowing a direct com
parison between studies performed at different institutions. An exten
sive set of quantitative metrics can be found in literature [15,42]. 

The Mean Absolute Error (MAE) has been widely reported in the 
literature for sCT evaluation [43]. Despite its voxel-wise difference 
highly penalises spatial inaccuracies resulting from sCT to CT registra
tion and may average out large differences in small volumes (e.g bone) 
with small differences in large volumes (e.g. soft tissue), reporting this 
metric is crucial for future studies to enable a first and fast sCT quality 
evaluation. 

A second metric is the Mean Error (ME), which presents the advan
tage to be more clinically relevant than the MAE, since it correlates more 
with beam attenuation, providing information on eventual systematic 
errors in Hounsfield units (HU) prediction [43]. However, it is less 
representative of the quality of the sCT due to the potential compensa
tion from positive and negative differences. 

An overview of recent results for MAE and ME is provided in Sup
plementary materials (Table 1S [100–161]). Inclusion criteria for the 
data included in the table were: “synthetic CT” or “pseudo CT” or “sCT” 
or “pCT” in the title, date range 2021–2023, including DL methods, 
including at least “MAE” or “ME” as quantitative metrics. Reviews were 
excluded. Reported MAE for Head and Neck has the highest values 
(median of 83 from available values in Table 1S) whereas Pelvis has the 
lowest (median of 34 from available values in Table 1S). For the two 
most common anatomical sites where sCT has been clinically imple
mented, ME ranges from − 6 to +1 and from − 15 to 7 for Brain and 
Pelvis, respectively. 

The Dice Similarity Coefficient (DSC) has been used to quantify the 
overlap between CT and sCT given volumes. Despite its wide applica
tion, DSC presents the limitation of penalising small objects and dis
regarding the shape of the evaluated volume [44]. The use of various 
thresholds to obtain the evaluation volumes increases the metric un
certainty, which should be thus computed with caution and not for 
direct sCT quality evaluation. Such a metric, initially proposed to eval
uate the performance of automatic segmentation algorithms, is not the 
most appropriate in this context. 

Other quantitative metrics include: Peak Signal-to-Noise Ratio 
(PSNR) [42] and Structural Similarity Index Measure (SSIM) [42,45]. 

In general, studies aiming for quantitative evaluation and allowing 
comparison to previous and upcoming research should include as many 
from the previously reported metrics as possible and at least one among 
MAE and ME. 

Dose metrics 
The dose calculated on the electron density map derived from the 

sCT can be compared to the pCT to assess differences in the target 
coverage and OAR sparing. These metrics generally require some degree 
of manual input and the comparison among different studies is 
complicated by the large variety of technical parameters such as irra
diation techniques, dose prescriptions, target volumes and locations, 
dose calculation algorithms and HU to electron density calibrations. 
Nonetheless, dose endpoints have a greater interpretability and provide 
quantitative parameters to define clinically relevant thresholds and 
limits. Therefore, whenever available, dose metrics should always be 
reported along with image metrics [43]. 

Gamma indices, quantifying the similarity between dose maps, are 
generally the most used and reported metrics. 3D global gamma indices 
with 10 % and 90 % dose thresholds, to respectively analyse the low and 
high dose regions, are commonly found in literature [12,26]. Tight 

criteria (e.g., 1 %/1mm) allow to highlight minimal dose differences and 
they can be crucial in the identification of local inaccuracies. 

The results of the gamma analysis can be heavily influenced by the 
technical parameters such as the comparison modality (global or local), 
the dose threshold and the dimensionality evaluation (2D or 3D). Dose 
Volume Histogram (DVH) point differences have been used as comple
mentary dosimetry quality markers, although several factors, such as 
segmentation inaccuracies can result in DVH differences [42]. To 
overcome the dependence on potential contour geometrical differences 
when calculating DVH parameters (e.g. D2%) on the CT (contours CT- 
based) or the sCT (contours MR-based) [42], the volumes encom
passed by clinically relevant isodoses (e.g. 90 % isodose) of the CT and 
sCT can be derived and compared through DSC to achieve a more robust 
comparison. A good balance between clinical impact and dose precision 
should be identified and contextualised for each study. 

Patient positioning performances 
Lastly, the sCT-based patient setup accuracy must be evaluated, 

especially when the treatment is administered on an Image Guided 
Radiotherapy (IGRT) linear accelerator with CBCT or kV-kV patient 
positioning. The uncertainties in image matching can be evaluated with 
approaches used in other contexts of assessing IGRT positioning accu
racy [46–48]. For brain treatments several authors reported differences 
in translation within +/-2 mm [49–51] and maximum rotation of 0.7◦

when the positioning was based on CBCT [50,51]. If Digitally Recon
structed Radiograph (DRR) and kV imaging were used, the authors re
ported lower differences [50,52]. For the pelvis, a maximum mean 
deviation of 0.28 mm in the three directions was achieved based on a 
rigid fusion of CT or sCT and CBCT [53]. For head-and-neck, maximum 
deviations of +/-3mm when rigidly matching CT or sCT derived DRR to 
the daily planar kV images were reported [54,55]. In general, it could be 
observed that the most recent sCT developments achieve matching 
quality to CBCT or kV-kV within the commonly adopted target volume 
margins [56]. 

Technical challenges 

The actions outlined in the previous subsections share technical 
challenges that may impact the overall output quality and interpret
ability of the generated sCT. These challenges result in limitations of the 
sCT generator that should be carefully evaluated and integrated into the 
QA program discussed in the following section. While the limitations 
should be taken into account for the QA process, the research field is 
advancing and recent developments are expected to overcome the cur
rent technical limitations. The challenges can include, but are certainly 
not limited to, the following points:  

● Limitations of MR imaging for bone-air interfaces, particularly 
challenging in regions such as the sinus cavities. Novel Ultrashort 
Echo Time (UTE) MR sequences may allow dedicated capability in 
bone imaging [57–59]. 

● Difference in terms of MR scanners and acquisition protocols be
tween the training data and input data used in clinical routine. The 
risks should be mitigated by the manufacturer providing the appli
cability limitations of the software. Future advancements may 
involve expanding training datasets without patient data transfer 
through federated learning [21] or tuning datasets to specific scan
ners and sequences using transfer learning [22].  

● Registration uncertainties between the MR and CT in the training 
data and absence of a real ground truth for paired MR-CT datasets. 
Novel approaches to mitigate the misalignment have been proposed 
[60] and networks not requiring paired data such as CycleGAN have 
been demonstrated [12,25,61,62].  

● Potential network hallucinations, producing an output sCT that 
cannot be verified in absence of a planning CT, e.g. in presence of 
unexpected metal implants without MR contrast. The generation of 
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sCT with multiple independent networks has been proposed to 
identify hallucinations, which may differ across networks leading to 
a potential error recognition [10]; 

● The absence of standardised datasets makes it challenging to quan
titatively determine the superiority of a specific model. Initiatives 
like Gold Atlas [63] and SynthRAD [64] are promoted to address this 
issue and encourage further benchmarking efforts. 

QA program 

Several studies have investigated the challenges and potential pitfalls 
of an MRI-only workflow [8,65–67], leading to the identification of 
significant issues summarised in Table 1. A QA program must tackle 

these issues through identifying potential failure modes and establishing 
additional safeguards where needed. The main components of a QA 
program for the safe clinical implementation of a sCT are described in 
this section. 

Risk analysis 

A prospective risk analysis should be performed to highlight poten
tial failure modes. Apart from technical failures, the questions ‘How to 
recognize if a patient QA fails?’ and ‘What to do if a patient QA fails?’ are of 
particular interest. These issues should be discussed within the depart
ment following the Health Failure Mode and Effects Analysis (FMEA) 
methodology or equivalent. Table 2S, in the Supplementary materials, 

Table 1 
Possible issues encountered at different steps of an RT workflow, key questions highlighting potential risks, and associated suggestions when implementing sCT into 
clinical RT workflow.  

RT workflow step Issue description Key Questions General suggestions for implementation 

Patient scheduling Administrative personnel in charge of booking CT 
and MR imaging sessions need to be in 
communication with other staff to rebook sessions 
when necessary.  

● Are the personnel aware to schedule MR 
instead of CT?  

● If sCT is not generated or does not meet 
the QA criteria, are the personnel aware 
to schedule a planning CT? 

Personnel need clarity on the group of patients 
eligible for MR-only workflows as well as use of clear 
communication channels between departments to 
allow quick scheduling of CT if needed. 

MR acquisition Geometric distortion can arise from the tissue- 
dependent chemical shift and susceptibility 
differences, from gradient field nonlinearity and 
from the static field inhomogeneity. Together with 
the presence of metal implants and MR-related 
artefacts these can lead to:  
● inaccurate target delineation,  
● improper restoration of the external contour, and  
● erroneous electron density map.  

● Are RT specific MR protocols available?  
● Does the sCT image generation software 

require specific sequences?  
● Are doctors or only technicians required 

during MR acquisition?  
● Are technicians allowed to edit sequence 

parameters? If yes, which?  
● To which department belongs the 

simulation MRI? Who is responsible for 
performing quality controls? (RT or 
Radiology department) 

Internal guidelines on allowed image sequences and 
their acquisition parameters should be in place. If the 
developed sCT model has only been trained on fixed 
parameters, then those should be restricted. Scanner 
gradient non-linearity correction should be turned 
on, contrary to the MRI from the Radiology 
department.Routine MR QA must be performed, 
particularly a daily geometric distortion check using 
a large diameter phantom (>30 cm) [162,163] is 
advised. Clear responsibilities for each personnel 
group must be stated. 

Patient 
immobilisation 

The patients must be scanned in treatment position, 
using routine immobilisation devices when possible. 
Additionally, it must be considered that these devices 
may not be visible in MR and, hence, in the sCT 
reconstruction.  

● How is patient positioning done for RT 
simulation?  

● Are MR safe patient positioning devices 
available and are these increasing the 
coils to patient distance?  

● Are lasers for positioning required and 
available at MR and does the staff at the 
MR know how to operate them?  

● Is MR safe tattoo equipment required and 
available?  

● Is RT staff required during MR 
acquisition? 

The immobilisation devices must be MR safe and of 
proper size to avoid collision with coils or the 
machine. The use of a flat couch is advised.MR safe 
markers can be placed on the mask and support 
devices to correctly localise the immobilisation 
system in the TPS. Use of coil bridges to avoid 
distorting the body contours is advised. 

sCT generation This step provides the highest measure of risk. The 
use of sCT introduces additional issues based on the 
interpretation of images, the impact of segmentation 
and density assignments on dose calculation, and 
bone segmentation affecting DRR accuracy [8].  

● When in the process is the sCT 
generated?  

● Who is responsible for the quality of the 
sCT? Is the staff trained to judge the 
quality of the scan?  

● What procedure to follow if quality is 
insufficient?  

● Is there a procedure to include the RT 
fixation devices in the sCT? 

Automatic sanity checks of sCT quality should be 
done either provided by the vendors or tailored if the 
sCT was developed in-house.Use of a complementary 
methodology for generating synthetic scans [10] 
would aid image quality control and/or HU 
assignment check. 

Delineation & 
treatment 
planning 

Transferability of the sCT from MR console (or the 
cloud if web-based solution is used) to the TPS is 
necessary for registration between image modalities.  

Identification of artefacts caused by air bubbles, 
stents, dental implants, post-op swelling, etc. that 
may affect the contouring procedure because of the 
proximity to the target volume.  

● Is the DICOM connectivity ensured for 
transfer to TPS?  

● Can the sCT be registered to secondary 
images like PET or functional MRI?  

● If using multiple sequences, is the 
intrinsic registration between sCT and 
additional MRI good or did the patient 
move in between sequences?  

● Does the staff need to be aware they are 
working on a sCT?  

● Are all relevant anatomical structures 
and target volumes visible for 
delineation? 

A DICOM header check to verify the required DICOM 
parameters could ease transferability between 
systems and registration procedures.Gathered 
information on artefact types, sizes and their 
influence in contouring and dose computation during 
commissioning can be used to establish local 
guidelines for sCT visual inspection and training of 
staff.Registration issues due to movement between 
image sessions can be mitigated by good patient 
preparation. Likewise, staff training on assessment of 
registration quality between sCT and MRI used for 
contouring is advised.Finally, a need for dose 
planning guidelines tailored to sCT (e.g. density 
override) should be assessed. 

Treatment & 
image-guidance 

Relevant for IGRT-Linac RT workflows. The quality 
of the images used for online registration is crucial 
for correct patient positioning. Bone and gold 
markers can be affected or not visible in the DRRs.  

● Is the DICOM connectivity ensured for 
transfer between TPS and Linac console?  

● Does the staff need to be aware they are 
working on a sCT?  

● Are anatomical or artificial markers for 
image guidance properly visible? 

Performing comparison analysis between sCT/sDRR 
and CT/DRR to assess matching ability to the IGRT 
CBCT or kV-kV images [71,83] will help identify 
special routines for correct identification of markers. 
Proper staff training to mitigate miss-identification of 
markers.  
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gives an example of a risk analysis tool focused on potential detriment to 
the patient. To capture as many risks as possible throughout the entire 
MR-only RT chain, it is important that all involved disciplines are rep
resented, i.e., MR and CT personnel, medical physicists, radiation on
cologists, RTTs, radiologists, radiographers, data managers, and 
administrative personnel in charge of booking imaging sessions. 

Required machine QA 

Performing MR QA for the use of MR in RT according to any pub
lished guideline [68–71] is a minimum requirement for the MR acqui
sitions to be suitable for sCT generation. Focus on geometric accuracy 
and image consistency of the whole scan e.g., large field of view, is 
necessary. These may be performed with vendor-provided QA software 
although complementary in-house checks can always be added if 
deemed necessary. A practical aspect is to define whether the radiology 
department or the RT department is responsible for machine QA. Both 
scenarios can be feasible, but good communication is crucial, and the 
minimum requirements of both departments should be satisfied. 

As for QA on MR-Linac systems, only recently the first consensus 
expert opinion was published [72], however, some vendor specific ex
periences on the QA and clinical implementation are also available in 
the literature [73,74]. QA frequency and tolerance levels for on-board 
MR scanners may be more demanding compared to MR simulators due 
to the machine design i.e., interaction of MR with the integrated Linac 
(and vice versa), and the higher imaging burden that adaptive RT may 
require. B0-field homogeneity and gradient non-linearity tests are 
mandatory requirements. Uniformity and SNR of the body and surface 
coils should be performed monthly, whereas MR distortion as a function 
of different gantry angle positions should be performed on a yearly basis 
[70,75]. Faraday cage shields should also be tested regularly as small 
hardware damages may affect image quality. 

MR imaging of RT specific devices 

Some aspects to consider during the clinical commissioning of an MR 
scanner for sCT generation include ensuring the accurate restoration of 
the patient body contour for dose calculation, visibility of patient fixa
tion devices or surrogates, and identification of external or internal IGRT 
markers. Strategies to correctly identify the couchtop position [76] or 
internal markers [77] have been reported in literature and should be 
implemented in the RT workflow if such systems are used. Designing a 
retrospective study analysing paired sCT-CT images can contribute to 
refine and ensure the accuracy of the RT workflow involving these 
systems. 

Comprehensive workflow testing 

The implementation of an end-to-end phantom-based testing as 
classically performed for RT workflows [78] is not applicable to MR- 
only RT due to the patient-specific generation of Relative Electron 
Density (RED) maps with DL algorithms. The closest approach could be 
performing a comprehensive workflow testing, which not only verifies 
the connectivity of all steps in the treatment chain but also ensures 
communication between personnel in case a deviation from routine is 
detected. The steps to check can differ between institutions as they 
should be based on the outcome of the risk analysis. General key points 
to test are:  

● Transfer of sCT DICOM data into the TPS; ensure correct sCT DICOM 
header to avoid misinterpretation when transferred from the MR 
console or PACS into the TPS [49,65].  

● Visual inspection of sCT for anatomic anomalies; ensure that coil 
positioning does not alter the patient body contour; ensure that tissue 
distortion due to metal implants, and body contour mishaps due to 

patient movement during MR acquisition, are within tolerance to not 
affect dose calculation [51]. 

● Fixation markers or other immobilisation devices; ensure their visi
bility or a surrogate for these on at least one MR sequence of the MR 
protocol if they are not discernible on the sCT [79]. 

● Auto-contouring tools compatibility; ensure that the generated con
tours on the sCT are within the tolerance levels established for CT 
auto-contouring [13]. 

● Dose calculation and optimisation algorithms; perform dose com
parison study between sCT and CT following the dose metrics dis
cussed above, and ensure use of appropriate dose matrix voxel size in 
relation to sCT and CT voxel size [80]. The internal test cohort must 
summarise as far as possible all the configurations that will be 
encountered in the clinic, in terms of image quality, patient popu
lation and clinical situations.  

● Image quality of the generated DRR; ensure that the rendering of 
skeletal tissue is accurate enough for kV/kV matching, and ensure 
correct location of internal markers if routinely used [65,81].  

● Independent dose calculation tools and plan verification (e.g. EPID 
measurements); ensure that sCT gamma pass rates are within the 
tolerance levels established for pCT.  

● Third party sub-systems (e.g. optical surface guidance); ensure that 
the body contour from the sCT is of enough quality to be used for 
surface guidance.  

● CBCT or kV/kV match at the treatment room; performing off-line 
sCT-CBCT and sCT DRR-kV/kV matching following the patient- 
position metrics discussed above [82]. 

A dummy run consisting of images from an anonymized patient is a 
simple and effective approach to evaluate some of these steps. A com
plementary comparative retrospective study involving a few patients 
can be designed to evaluate those steps that require establishing QA 
acceptance criteria. 

Verification of accurate assignment of the RED, respectively HU, on 
the sCT should ideally be included in the comprehensive workflow 
testing. This is currently difficult due to the unavailability of commercial 
phantoms from which a sCT can be generated. Published studies have 
resorted to develop in-house anthropomorphic phantoms or phantoms 
with inserts of different materials visible on MRI [83,84] for multi- 
modality evaluation covering only certain aspects of the comprehen
sive workflow testing. Other reported solutions rely on modifications of 
commercially available phantoms, such as the Lucy 3D QA phantom 
with MRI visible silicon insert [85] or the adapted RUBY phantom with 
multi-modality QA insert [86]. Worth of note is that a sCT was not 
generated in any of these studies. Instead, they employed a CT or bulk 
overrides where the dosimetric evaluation was performed using either 
radiochromic films or ionization chambers. The studies focused on the 
geometrical accuracy of the MR-only workflow. 

Patient specific QA 

The lack of commercial tools for performing MR-only patient specific 
QA (PSQA) is another reason that has hindered the widespread imple
mentation of sCT in the clinic. In general, the PSQA process could range 
from a first visual assessment to the comparison of the sCT HU values 
based on population-based distributions, to dose recalculations on in
dependent RED maps or to more complex approaches depending 
whether the treatment is performed on an MR-Linac or an IGRT-Linac. 

For MR-only with IGRT-Linac workflows, the first-day-of-treatment 
CBCT can be used to verify the dosimetric calculation [87,88] pro
vided that the combined uncertainty from factors like HU deviations, 
limited field-of-view, and streaking artefacts is kept within the recom
mended 5 % global uncertainty for RT workflows [89] or the CBCT could 
be converted into an independent sCT [43,90]. Suggested methods for 
implementation of PSQA protocols that require in-house scripting and 
therefore may be time consuming, are application of population-based 
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calibration curves [87,88,91] preferably for each CBCT scanner, and 
bulk density method where patient specific HU-to-density curves are 
applied [92]. CBCT image quality enhancement with DL may become 
the best tool for performing PSQA as suggested by published research 
[10], thus enabling double sCT comparison. The metrics for dose eval
uation discussed in Section “Quality evaluation of a sCT image gener
ator” can be used to establish site-specific acceptance criteria through 
comparison studies between pCT, sCT and CBCT images [91,93]. It is at 
the discretion of every centre to apply PSQA on the first treatment 
fraction of all patients or only on those where the visual inspection of the 
sCT yielded suspicious artefacts. In the near future, commercial tools 
will open the possibility for faster PSQA enabling adaptive RT as it may 
be performed on every treatment session. 

For MR-linac workflows, the PSQA currently relies on the possibility 
to use the pCT. In the consensus paper by Tanadini-Lang et al. [72], the 
necessity to perform visual checks of newly generated RED maps during 
the plan adaptation process for each individual patient is suggested. 
Alternatively, the dose calculation can be verified on an independent 
RED map generated through bulk overrides [94] or with an independent 
sCT generator [10]. In parallel, an automated comparison of plan pa
rameters between plan of the day and pre-treatment plan calculated on 
the pCT is advisable. As more robust sCT are adopted by MR-linac sys
tems and the pCT is no longer needed, the challenge will be to design a 
fast on-line PSQA performed on the sCT of the day in parallel to other 
tasks. Tools like APART, an in-house MATLAB based tool developed by 
Rippke et al [95] may be taken as a basis for on-line PSQA. Likewise, 
Tang et al [7] have introduced a step in the workflow where the plan-of- 
the-day is compared to a sCT generated from the planning imaging 
session in a maximum of 400 s. 

An overview of the potential PSQA approaches for dose calculation is 
reported in Table 2. 

QA role in software sustainability 

Long-term requirements for QA management of sCT generators will 
become essential to maintain the accuracy of dose calculations over 
time. Because uncertainty in the sCT images can arise from a variety of 

sources such as hardware or software upgrades and variations in image 
acquisition protocols, it is important to perform periodic re-validations 
of the sCT generator to ensure that the uncertainty remains within 
acceptable limits over time [89]. Unfortunately, the few publications 
from centres that have implemented an MR-only workflow do not 
discuss QA for sustainability. Performing checks of the sCT against 
actual CT scans after each hardware and software update should be a 
minimum requirement, achievable by performing phantom measure
ments (if available) or a restricted number of actual patient studies to 
ascertain that RED/HU values and geometric accuracy remain within 
tolerance levels. Image metrics and dose computation on the sCT 
generated before and after the upgrade can be performed to evaluate 
whether the MR sequence required for sCT generation remains 
unaffected. 

Suggestions to vendors 

At the time of writing, four CE/FDA-approved sCT software are 
available in the market: syngo RT Image Suite (Siemens Healthineers, 
Erlangen, Germany), MR-Box (Therapanacea, Paris, France), MRI 
Planner (Spectronic Medical, Helsingborg, Sweden) and MRCAT (Phi
lips, Amsterdam, Netherlands). A direct comparison between the former 
three solutions concluded that despite strengths and weaknesses of each 
of the approaches, all sCT generators are suitable for clinical use [96]. 
Clinical applicability was also reported for the latter [97]. While the 
dose calculation and IGRT positioning outcomes show negligible dif
ferences among the four commercial sCT software, the user should be 
aware of significant workflow differences if the MR sequence required 
for sCT generation is the diagnostic sequence adopted for contouring or 
if a separate dedicated sequence is required. Furthermore, there may be 
slight workflow differences based on whether the sCT software is inte
grated into the MR scanner console (with the MR scanner and sCT 
software from the same vendor) or if it necessitates an external server 
(involving different vendors). 

To achieve wider adoption of MR-only RT workflows, the vendor 
community is encouraged to provide the following: 

Table 2 
Patient specific quality assurance methods for dose calculation on sCT.  

Method Input data required Valuable aspects Shortcomings 

Dose recalculation on CBCT 
before delivery of the first 
fraction  

1. sCT  
2. CBCT  
3. RT plan  

● A real and not sCT modality (CBCT) of the patient is 
used for dose calculation.  

● PSQA exploits data that is routinely acquired within 
the RT workflow.  

● The quality of the CBCT can be enhanced with DL to 
obtain an independent CBCT-based sCT.  

● PSQA can be performed only once the patient is on 
the couch for the first fraction.  

● May have restricted applicability due to the limited 
field of view and CBCT artefacts.  

● Inaccuracy of dose calculation on CBCT due to HU 
calibration.  

● Not applicable to MR-Linac or IGRT based on kV-kV 
imaging. 

Dose recalculation on bulk 
densities  

1. sCT  
2. CBCT or MR  
3. RT plan  
4. Contours of the structures 

for bulk density 
assignment  

● PSQA can be performed during the planning stage if 
using MR as input.  

● Applicable to MR-Linac or IGRT based on kV-kV 
imaging.  

● The procedure can be automatized with auto- 
contouring of the bulk structures.  

● Dose calculation accuracy depends on the choice of 
the assigned bulk densities.  

● No availability of auto-contouring algorithms on MR 
or CBCT for the structures that require bulk density 
assignment (fat, air, bone, soft tissue, lung). 

Dose recalculation on 
independent sCT  

1. Primary sCT  
2. Independent sCT  
3. RT plan  

● MR data falling outside the range of the training data 
leads to different network hallucinations in the two 
sCTs, thus identifying potential outliers.  

● Applicable to MR-Linac or IGRT based on kV-kV/ 
CBCT imaging.  

● The procedure can be automated.  

● Distortions or artefacts in the MR data propagate to 
both the primary and independent sCT.  

● Requirement of two independent software for sCT 
generation. 

Dose recalculation on 
patient-specific phantom  

1. sCT  
2. Patient specific phantom  
3. RT plan  
4. Film or chamber 

measurements  

● Closest approach to classical end-to-end testing.  
● Direct dose measurement.  

● Dedicated hardware must be developed for PSQA 
with considerable time requirement.  

● Not a standardised approach.  
● Not applicable for daily PSQA. 

Dose recalculation on a 
planning CT  

1. sCT  
2. CT  
3. RT plan  

● Gold standard for dose calculation.  
● Applicable to cases for which the sCT has insufficient 

quality or other PSQA methods fail.  

● Fall-back approach to the classical workflow, the 
patient will not be treated with MR-only workflow.  

● A CT must have been previously acquired.  
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● Detailed description of the sCT algorithm (user manual, white pa
pers, published studies).  

● If the sCT is AI-based, a description of the training database would 
help setting tolerance values for the clinical quality controls such as 
range of patient weights, heights, age, clinical situations (e.g. pres
ence of operated patients in the case of cranial tumours), input MRI 
sequences, magnetic field, CT protocols, ranges of MR/CT parame
ters, use of RED or HU maps for training, etc.  

● Methods to reduce artefacts (craniotomy screws, dental implants, 
and prostheses).  

● Flexibility to choose the size of FOV and automatic exclusion of FOV 
areas with low MR signal.  

● Dedicated MR protocols for SBRT that guarantee an increased 
geometrical accuracy.  

● DICOM tags that allow tracing back the algorithm version used, and 
source MR images employed to generate the sCT. 

Anthropomorphic phantoms for QA and end-to-end testing are 
lacking which poses a challenge for many clinics, as they need to fulfil 
various requirements, including ensuring dosimetric equivalence con
ditions. Materials with both CT and MR contrast that remain stable over 
time are crucial as well as easy incorporation of 1D, 2D or 3D dosimeters 
in internal structures of interest should be considered. Compatibility 
with MR-linacs simulating internal organ kinematics at certain treat
ment sites would also be appreciated. 

Finally, automated software is needed for dose performance QA, e.g. 
ability to use CBCT for dose comparison or availability of a second in
dependent sCT generator. Likewise, for patient positioning in IGRT- 
Linac, the ability to register online MRI to CBCT would be helpful. 

Looking into the future, the use of additional MR sequences for sCT 
training would be highly beneficial as the contouring could be per
formed on the same MR image used to generate sCT, avoiding the 
introduction of uncertainties due to patient motion during the MR im
aging session in between sequences. 

Discussion 

The expected benefits of incorporating MR-only RT into IGRT-Linac 
and MR-Linac workflows have been extensively discussed in the litera
ture [15,43], serving as primary motivation for the fast development of 
DL-based sCT solutions seen in recent years. 

However, only a limited number of prospective studies on sCT clin
ical implementation can be found in the literature [96,97]. The lack of 
consensus on sCT clinical commissioning and QA was highlighted as the 
main hindrance for wide-spread usage of sCT during the discussions held 
at the ESTRO Physics Workshop 2022. This work revised the full process 
ranging from research and development to routine clinical use, 
involving several consecutive phases: (i) development and training of a 
sCT generator algorithm, (ii) validation on an independent retrospective 
cohort, (iii) clinical validation in a prospective study, (iv) rollout of a 
software product, (v) implementation in the clinical workflows with 
dedicated commissioning and (vi) periodic quality assurance. 

Technical developers working on phases (i-ii), are encouraged to use 
Table 1S for benchmarking of new sCT solutions and as template to 
standardise the reporting of such metrics in any future work. This will 
facilitate reaching consensus values and establishing acceptance criteria 
per anatomy site. The requirements detailed in Section “Technical 
development of sCT” of this work do not distinguish between whether 
the solution is in-house or commercially developed. However, addi
tional requirements on network architecture may be necessary for in- 
house algorithms to align with the recently introduced Medical Device 
Regulation [98]. Further studies will be required to assess the overall 
impact of MDR on academic research and sCT development [99]. 

Clinical staff involved in phases (iii, v–vi) may find in Tables 1, 2S 
and 2 a template to tackle sCT implementation and QA development. 
The issues discussed in Table 1 concern staff awareness which should be 

considered key for a seamless MR-only RT workflow. Table 2S, on the 
other hand, exposes elements that if covered by routine QA will ensure 
safe and sustainable use of the sCT. Section “QA program” not only 
serves as a starting point for clinical implementation but also raises 
awareness of the limitations (e.g., complete end-to-end testing and 
PSQA) that the clinical community faces. The methods described in 
Table 2 are examples on how some clinics have overcome some of the 
PSQA limitations. However, it is clear from the list of shortcomings that 
there are still challenges that need resolving. Therefore, it is important 
to encourage vendors to develop tools for QA that can facilitate devel
opment of robust protocols. 

Information on MR-only workflow implementation provided by the 
clinical community in the form of prospective studies is still too sparse to 
be able to conduct analyses on the overall benefits of exchanging the 
pCT for the sCT. This work is reserved for the future, when harmo
nisation of evaluation metrics and implementation processes are adop
ted by the developer and clinical communities. For MRI-only workflows 
to be effectively implemented in clinical practice, it is essential to 
develop QA software capable of analysing a sCT image and providing 
prompt and tangible feedback on its reliability. This should involve a set 
of tests designed to examine the sCT without the corresponding pCT. 
Having companies working in this direction is crucial to make these 
systems increasingly integrable with clinical practice. 

Conclusion 

This paper summarises the challenges and opportunities faced by 
development and clinical implementation of AI-based sCT solutions as 
discussed during the ESTRO Physics Workshop 2022. The data presented 
and discussed in the current paper gives an insight to the current posi
tion of the research and clinical fields, highlighting elements that would 
lead to the harmonisation of these processes. We encourage focusing 
future efforts on developing international guidelines for clinical imple
mentation of sCT and the associated quality assurance, which was 
beyond the scope of the current work; however, it represents a logical 
extension thereof. 
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[114] Zimmermann L, Knäusl B, Stock M, Lütgendorf-Caucig C, Georg D, Kuess P. An 
MRI sequence independent convolutional neural network for synthetic head CT 
generation in proton therapy. Z Med Phys 2022;32:218–27. https://doi.org/ 
10.1016/j.zemedi.2021.10.003. 

[115] Koerkamp MLG, de Hond YJM, Maspero M, Kontaxis C, Mandija S, Vasmel JE, 
et al. Synthetic CT for single-fraction neoadjuvant partial breast irradiation on an 
MRI-linac. Phys Med Biol 2021;66:085010. https://doi.org/10.1088/1361-6560/ 
abf1ba. 

[116] Lenkowicz J, Votta C, Nardini M, Quaranta F, Catucci F, Boldrini L, et al. A deep 
learning approach to generate synthetic CT in low field MR-guided radiotherapy 
for lung cases. Radiother Oncol 2022;176:31–8. https://doi.org/10.1016/j. 
radonc.2022.08.028. 

[117] Olberg S, Zhang H, Kennedy WR, Chun J, Rodriguez V, Zoberi I, et al. Synthetic 
CT reconstruction using a deep spatial pyramid convolutional framework for MR- 
only breast radiotherapy. Med Phys 2019;46:4135–47. https://doi.org/10.1002/ 
mp.13716. 

[118] Chen S, Peng Y, Qin A, Liu Y, Zhao C, Deng X, et al. MR-based synthetic CT image 
for intensity-modulated proton treatment planning of nasopharyngeal carcinoma 
patients. Acta Oncol 2022;61:1417–24. https://doi.org/10.1080/ 
0284186X.2022.2140017. 

[119] Dinkla AM, Florkow MC, Maspero M, Savenije MHF, Zijlstra F, Doornaert PAH, 
et al. Dosimetric evaluation of synthetic CT for head and neck radiotherapy 
generated by a patch-based three-dimensional convolutional neural network. Med 
Phys 2019;46:4095–104. https://doi.org/10.1002/mp.13663. 

[120] Klages P, Benslimane I, Riyahi S, Jiang J, Hunt M, Deasy JO, et al. Patch-based 
generative adversarial neural network models for head and neck MR-only 
planning. Med Phys 2020;47:626–42. https://doi.org/10.1002/mp.13927. 
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