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Abstract
Accurate classification of genetic variants is crucial for clinical decision-making in hereditary cancer. In Spain, genetic diagnostic lab-
oratories have traditionally approached this task independently due to the lack of a dedicated resource. Here we present SpadaHC, 
a web-based database for sharing variants in hereditary cancer genes in the Spanish population. SpadaHC is implemented using a 
three-tier architecture consisting of a relational database, a web tool and a bioinformatics pipeline. Contributing laboratories can share 
variant classifications and variants from individuals in Variant Calling Format (VCF) format. The platform supports open and restricted 
access, flexible dataset submissions, automatic pseudo-anonymization, VCF quality control, variant normalization and liftover between 
genome builds. Users can flexibly explore and search data, receive automatic discrepancy notifications and access SpadaHC popula-
tion frequencies based on many criteria. In February 2024, SpadaHC included 18 laboratory members, storing 1.17 million variants from 
4306 patients and 16 343 laboratory classifications. In the first analysis of the shared data, we identified 84 genetic variants with clini-
cally relevant discrepancies in their classifications and addressed them through a three-phase resolution strategy. This work highlights 
the importance of data sharing to promote consistency in variant classifications among laboratories, so patients and family members 
can benefit from more accurate clinical management.

Database URL: https://spadahc.ciberisciii.es/

Graphical Abstract

Overview of SpadaHC and its main views. (A) List of existing variants in SpadaHC (in the image, search for the ATM gene). The ‘Expert Cl.’ column shows 
the classification made by a group of experts; the ‘Lab Cl.’ column shows a summary of the classifications made by the laboratories. (B) Allele frequency 
of a variant in the SpadaHC population according to clinical suspicion and sex. (C) Classifications provided by the laboratories for a variant. (D) List of 
patients carrying a variant. (E) Histogram showing the coverage and frequency (allele balance) with which the variant was detected in carrier patients.
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Introduction
The accurate classification of genetic variants is key to enable 
informed clinical decision-making and to advance the under-
standing of hereditary cancer. The guidelines laid down by 
the American College of Medical Genetics and Genomics 
(ACMG) and the Association of Molecular Pathology (AMP) 
provided a structured framework to categorize variants as 
benign (B), likely benign (LB), of uncertain significance (VUS), 
likely pathogenic (LP) or pathogenic (P) (1). In particular, the 
detection of likely pathogenic or pathogenic variants in clini-
cally actionable genes is essential for the clinical management 
of the patients and their relatives. It allows for the indi-
vidualization of cancer risk assessment, the establishment of 
specific surveillance measures, the use of appropriate targeted 
treatments and reproductive counseling. However, classify-
ing variants can be challenging, as it requires collecting data 
from multiple sources. This process typically involves obtain-
ing population frequencies from public databases, reviewing 
functional and case-control studies reported in the scientific 
literature, running in silico predictors and analyzing familial 
phenotypes and co-segregation.

Some of the issues associated with classification of vari-
ants are the disparities in the application of classification 
guidelines, which are frequently updated, or the use of pri-
vate variant evidence to apply these rules (2, 3). These issues 
can cause differences in variant classification between lab-
oratories, leading to inequalities in patient counseling and 
management, since genetic testing outcomes directly impact 
clinical decisions for patients. Interestingly, a significant obsta-
cle to improving the uniformity of variant classification is the 
isolation of variant data within individual laboratories. In this 
context, data sharing is essential for achieving concordance 
of variant classification among laboratories (4). Professional 
organizations, such as the ACMG, have included the concept 
of variant sharing in their best-practice guidelines (5). Sharing 
data from multiple patients improves the evidence for genetic 
disease causality, increasing the statistical power of analyses 
and contributing to a more robust interpretation of variants 
supported by group consensus.

The need for collaborative initiatives on variant classi-
fication has also been underlined by projects from several 
countries such as CanVIG-UK in UK (6), MOLGENIS in 
the Netherlands (7), COGR in Canada (8, 9), Shariant in 
Australia (10) or MGeND in Japan (11). These initiatives 
highlighted the power of pooling data from diverse sources 
to enhance the accuracy and consistency of genetic vari-
ant classification. For example, the Canadian Open Genetics 
Repository (COGR) resolved 51.9% of variant classification 
discrepancies across 12 laboratories according to their two-
tier model, while the Shariant platform did so for 42.9% 
of their medically significant discrepancies between 11 Aus-
tralian laboratories (3, 10).

In Spain, laboratories have rarely shared variant data and 
classifications due to the lack of a dedicated resource. To 
promote data sharing, collaboration, improvement and con-
cordance of variant classifications, we launched SpadaHC 
(SPAnish variant DAtabase for Hereditary Cancer), a national 
platform that enables Spanish genetic diagnostic laboratories 
to share variant classifications and patient variants in hered-
itary cancer genes. SpadaHC is the result of a nationwide 
effort promoted by the Biomedical Research Networking Cen-
ter (CIBER) through the Oncology area (CIBERONC), with 

the participation of the Spanish Society of Human Genetics 
(AEGH), the Spanish Society of Medical Oncology (SEOM) 
and 18 genetic diagnostic laboratories. The data shared in 
SpadaHC allowed us to identify clinically relevant discrep-
ancies between Spanish laboratories, and we implemented a 
three-phase methodology to address these discrepancies.

Results
SpadaHC is a database for sharing genetic variants in hered-
itary cancer genes in the Spanish population. Spanish genetic 
diagnostic laboratories can submit two types of datasets 
(Graphical Abstract): (i) variant classifications through an 
Excel file, and (ii) variants of individuals [Variant Calling 
Format (VCF) files] along with basic clinical information of 
patients in Excel format. SpadaHC checks the submitted data, 
processes them through a bioinformatics pipeline, integrates 
them into the database and displays them on the SpadaHC 
website. This allows users to access the classifications pro-
vided by each laboratory and population frequencies based 
on multiple criteria.

Available data
SpadaHC v1.62.0 (March 2024) included 57 datasets of clas-
sifications and 6 datasets of individual’s variants submitted 
by 18 Spanish laboratories. In total, SpadaHC stored 1.17 
million variants in 225 genes from 4306 patients with hered-
itary cancer suspicion. The Spanish laboratories had shared 
16 343 classifications through datasets of variant classifica-
tions. In sum, SpadaHC managed 21 397 unique variants, 
with 10 671 of the unique variants being classified by one or 
more laboratories.

Features
Open and restricted access
SpadaHC contains open data, available to any user, and 
restricted data, available to registered users from Spanish lab-
oratories or external researchers with granted access for spe-
cific projects. Unregistered users can only access de-identified 
genetic variant data, including population frequencies based 
on clinical suspicion of hereditary cancer, sex or laboratory. 
Registered users can also access personal data: the variants 
of an individual, cancer history, pseudo-anonymized identi-
fiers and the classifications provided by the laboratories. This 
authorization approach enables SpadaHC to protect personal 
data while making the remaining information accessible to 
any user.

Flexible dataset submission format
Registered users with specific permissions can submit two 
types of datasets: variant classifications and variants of indi-
viduals. SpadaHC assesses that submitted Excel files fulfill the 
exact expected format. However, SpadaHC implements exten-
sive flexibility to deal with these formats. Instead of requiring 
a single specific Excel format for all laboratories, SpadaHC 
requires a custom format for each laboratory (Supplemen-
tary File S1). This allows for adaptation to the format that 
is already being generated in the laboratory’s diagnostic rou-
tine. Consequently, the order of columns, column names and 
expected values may vary across laboratories, but SpadaHC 
will process and normalize them later.
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Automatic identifier pseudo-anonymization
To maintain patient confidentiality, SpadaHC automatically 
pseudo-anonymizes individual and family identifiers provided 
by laboratories. Only registered users can access the pseudo-
anonymized identifiers. The correspondence between the orig-
inal identifier and the pseudo-anonymized one is stored in an 
internal database table that is accessible only to the adminis-
trators. In situations where re-identification of the patient is 
necessary due to a real and concrete danger to the safety or 
health of a person or group of people, or to ensure adequate 
healthcare, the ethics committee of the patient’s center must 
approve the re-identification of the patient.

VCF quality control
SpadaHC pipeline implements hard filters for each submitted 
VCF. Specifically, it excludes variants with FILTER field dif-
ferent from PASS, genotype equal to 0/0, allele balance lower 
than 0.2 or depth coverage lower than the custom threshold 
defined by the submitter (minimum is 10). Variants outside 
the gene panel regions file are also filtered out.

SpadaHC conducts various tests afterwards to verify the 
quality of the VCF data entered into the database. Specifi-
cally, SpadaHC detects whether a sample has far more vari-
ants than expected (noisy sample), far less variants than 
expected (empty sample), shares a high number of variants 
with another variant (duplicated sample) or in silico predic-
tor estimates a kinship relationship with another sample in 
SpadaHC (see Methods). Noisy, empty or duplicated samples 
are not inserted into the database. Samples with a kinship rela-
tionship are entered into the database, but only one sample 
from each group of related samples is included in the allele 
frequency calculation.

Variant normalization
Accurate normalization of variant names is essential for pro-
cessing and integrating coherent data into the database. Dele-
tions and insertions can be annotated at multiple locations 
when they appear within repeated regions. SpadaHC nor-
malizes all submitted variants as follows. Genomic positions 
are left-normalized, meaning that the most 5′ representa-
tion is used when referring to DNA. However, the coding 
DNA HGVS nomenclature follows 3′ normalization (12), a 
format commonly used by the clinical community. There-
fore, SpadaHC uses right-normalized coding DNA HGVS 
nomenclature, and in silico predictors are computed after this 
normalization.

Liftover between genome builds
SpadaHC supports exploring variants in both GRCh37 and 
GRCh38 genome assemblies. To date, all submitted variants in 
SpadaHC were called using the GRCh37 assembly. SpadaHC 
obtains the GRCh38 coordinates by, first, calling CrossMap 
to lift over genome coordinates and, second, checking that 
the genomic reference base remains the same at the lifted over 
position. If any of the two steps fails, the variant will not have 
representation on GRCh38 assembly.

Search and explore data
SpadaHC allows exploring data with flexibility. The initial 
search option (Supplementary Figure S1) enables querying 
variants by gene symbol, coding DNA HGVS name, variant 

genomic definition and chromosomal region in the GRCh37 
or GRCh38 genome assemblies. Moreover, queried variants 
can be restricted to a certain group of individuals by any 
combination of criteria including sex, clinical suspicion, sub-
mitter laboratory, gene panel, sequencing platform, aligner 
and variant caller used to generate the corresponding VCF file 
(Supplementary Figure S2).

The search action results in an adjustable, rich and 
user-friendly table of variants with up to 38 annotation 
columns (Graphical Abstract A). Specifically, users can access 
variant genomic definition, RefSeq transcript version, cod-
ing DNA and protein HGVS names, consequence pre-
dicted by VEP, expert group and laboratory classifications, 
weekly updated ClinVar classification, exon or intron num-
ber, amino acid change, SpadaHC allele frequency including 
allele count and allele number, gnomAD allele frequencies, 
REVEL/SIFT/PolyPhen-2 pathogenicity prediction, SpliceAI 
and MaxEntScan splicing prediction and co-located known 
variants. The table can be sorted and filtered by any number 
of columns, unfolded to access annotation in other transcripts 
(Supplementary Figure S3) and downloaded into an Excel file.

Variant classifications
SpadaHC provides access to variant classifications from three 
sources: submitting laboratories, the ClinVar database and 
expert groups. By clicking on any laboratory classification, 
SpadaHC displays details such as classification date, reason-
ing and, interestingly, the submitter’s name and email contact 
so that questions about the classification can be addressed 
(Graphical Abstract C). The ClinVar Classification field shows 
the weekly updated classification from ClinVar along with 
the level of assessment. Clicking on the ClinVar classification 
opens a new tab to the variant classification page in ClinVar. 
Finally, the expert group classification shows the classifica-
tion given by a particular group of experts, namely Spanish 
researchers and clinicians engaged in the study of a gene or 
clinical suspicion, as exemplified by the work published by 
Feliubadaló et al. (13). Clicking on the expert group classi-
fication will show the details submitted by the expert group 
(Supplementary Figure S4).

Automatic discrepancy notification
Registered users can receive notifications via email when new 
classifications are added or updated on variants of their inter-
est (Supplementary Figure S5). Users can flexibly define which 
are their variants of interest, that is, any variant that their 
laboratory classified in a certain way or is located within a 
user-defined list of genes. Users can also define the events that 
trigger the notifications, specifically, when variants of inter-
est are newly classified into a user-defined group by any other 
laboratory or by ClinVar. These preferences are stored in the 
SpadaHC database. Consequently, upon the submission of a 
new laboratory classification to SpadaHC or the updating of 
a ClinVar classification, SpadaHC automatically checks the 
user preferences and sends a customized email, which lists the 
variants of interest.

Variant frequencies
The SpadaHC variant details view displays allele frequencies 
aggregated by clinical suspicion, sex and submitter laboratory 
(Graphical Abstract B). Furthermore, when querying vari-
ants using the main search option, SpadaHC will also present 
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frequencies based on any VCF-related metadata field, such 
as clinical suspicion, sex, submitter laboratory, gene panel, 
sequencing platform, aligner and variant caller.

Variant details and individual view
The variant details view shows all the data available in 
SpadaHC for a specific variant (Supplementary Figure S6). In 
addition to the allele frequency tables mentioned above, the 
view provides a list of variant carriers (Graphical Abstract E) 
along with histograms of depth and allele balance (Graphical 
Abstract D). Registered users can click on any of the carriers 
and a new patient view will open with all the individual’s vari-
ants. The variant details view also provides other data such as 
laboratory, expert group and ClinVar classifications, context 
of the genome reference sequence, PubMed annotation (14), 
links to the variant in the Beacon Network (https://beacon-
network.org) and VarSome (15), and the links to explore the 
genomic region in Ensembl (16) and UCSC browser (17). Both 
the variant details and individual views can be easily shared 
with other users via their URL.

Use of SpadaHC to resolve classification 
discrepancies
In version 1.21.0 of SpadaHC (July 2023), laboratories had 
submitted classifications for 10 035 unique variants. Of these, 
2469 were classified by at least two laboratories. Out of the 
2469 variants with multiple classifications, 1697 (68.7%) 
had full consensus (Figure 1 A). While 31.3% and 16.4% 
showed discrepancies according to the five-tier and three-
tier models (9), respectively, only 84 variants (3.4%) showed 
clinically significant discrepancies according to the two-tier 
model. To address the latter clinically relevant discrepan-
cies, we implemented a three-phase strategy (see Methods, 
Figure 1 B). In the first phase, laboratories made a total 
of 93 variant revisions, with 51 out of 84 (60.7%) vari-
ant discrepancies being resolved. The remaining 33 variants 
with discrepancies were addressed in Phase 2, during which 
15 (45.4%) were resolved after 52 revisions by the labo-
ratories. In the third phase, laboratories resolved 14 vari-
ants with discrepancies (77.8%) through email and remote 
meeting discussions. Only four variants remained discordant 
after concluding the discrepancy resolution process (Sup-
plementary Table S1): NM_003002.4:c.148C > G in SDHD, 
NM_032043.3:c.2990_2993del in BRIP1, NM_000551.
4:c.376 G > A in VHL and NM_058216.3:c.965 + 5 G > A in 
RAD51C.

Discussion
Variant classification is a complex task that requires collecting 
data from various sources. Since no dedicated resource existed 
in Spain, genetic diagnostic laboratories typically approached 
this task independently. Here we present SpadaHC, a ded-
icated resource for sharing genetic variants in hereditary 
cancer genes and their interpretation among Spanish genetic 
diagnostic laboratories.

Since its release in 18 May 2023, laboratory members 
have integrated SpadaHC, with another 12 in the process of 
joining. The participation of numerous Spanish laboratories 
has resulted in a significant contribution of data, includ-
ing 1.17 million variants from 4306 patients and 16 343 

variant classifications. This data sharing effort is valuable 
for improving knowledge of these variants in the Spanish 
population.

SpadaHC implements features for collecting, analyzing, 
annotating and exploring genetic variants. The platform offers 
open and restricted access, where only registered users can 
access personal and laboratory classification data, while the 
rest is public to any user. Furthermore, the flexible dataset 
submission system allows SpadaHC to adapt to the specific 
format of each laboratory while maintaining a strict parsing 
process. It is important to note that in the event a labora-
tory necessitates a new customized format, no changes to the 
code are required. This is because the format is defined in a 
JavaScript Object Notation field in the database. In addition, 
the user interface enables users to explore genetic variants 
in a variety of ways, benefiting from the ability to filter and 
sort by any number of criteria in the 38-column main table. 
Additionally, by receiving automatic notifications when a vari-
ant of interest is classified, users have an efficient tool to 
quickly track clinically relevant changes that may result in 
modifications to the patient’s clinical management. Further-
more, variant frequencies calculated from patients included 
in SpadaHC provide a useful resource for understanding how 
frequencies differ between sexes and/or clinical suspicions. 
Having the allele count for each variant can aid in identifying 
variants of interest, as enrichment in cases is a crucial factor 
in indicating variant pathogenicity.

The laboratory, ClinVar and expert group classifications 
are of particular interest to users. These classifications are 
summarized in just a few pixels and can be filtered or sorted 
as needed (Graphical Abstract A). Additional details can be 
obtained by clicking on any classification. The detailed view 
of laboratory classifications includes access to the email of 
the variant classification submitter, which facilitates cooper-
ation between laboratories. Additionally, the weekly update 
of ClinVar classifications was a requirement in the design of 
SpadaHC in order to make it useful; otherwise, users may 
ignore this field when it became outdated.

SpadaHC was developed considering the FAIR (Find-
able, Accessible, Interoperable, Reusable) principles (18). All 
datasets and individuals submitted to SpadaHC are assigned 
with a unique persistent identifier, and datasets of variants 
of individuals contain rich metadata. These features result 
in better findability. For its part, the use of the HTTPS 
protocol along with the authorization system benefits accessi-
bility while protecting the personal data from unauthorized 
users. Regarding interoperability, SpadaHC uses standard-
ized notations such as HGVS variant nomenclature and Ref-
Seq transcript references. Additionally, SpadaHC supports 
the standard VCF as input, and employs specific controlled 
vocabulary, the MedGen ontology, when referring to clinical 
suspicions. Finally, the rich metadata, including provenance 
information, along with the documentation available on the 
SpadaHC site, contributes to better reusability.

Some limitations in SpadaHC should be noted. The plat-
form needs the laboratories to actively submit the variants 
and classifications. Instead, the ideal approach would be 
having the same laboratory management information sys-
tem (LIMS) (19) in all laboratories and implementing a 
feature to automatically submit the found variants and clas-
sifications to SpadaHC. This way, data would be more 
quickly available in SpadaHC while limiting human errors on 

https://beacon-network.org
https://beacon-network.org
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Figure 1. (A) Variants with multiple classifications in SpadaHC v1.21.0 and degree of discrepancy according to the five-tier, three-tier and two-tier models. 
(B) Number of variants with clinically relevant discrepancies according to the two-tier model after each phase of the resolution strategy.

dataset submissions. Of course, this approach would require 
significant time and monetary resources, especially consider-
ing the challenge of involving many hospitals under different 
management and switching to a new LIMS in a demanding 
diagnostics routine context. Another limitation in SpadaHC is 
the heterogeneity of the submitted VCFs between laboratories. 
Each laboratory has its own diagnostics protocol, including 
aspects such as sequencing platform, gene panel or variant 
caller. Ideally, laboratories should submit the original sequenc-
ing files obtained from equal sequencing platforms and gene 
panels. This would allow SpadaHC to apply the same bioin-
formatics pipeline to all samples from the original files. Again, 
this approach would require significant resources and pro-
found adaptation in the way genetic diagnostic laboratories 
operate. However, the aim of SpadaHC was not to force lab-
oratories to undertake major changes, but to exploit existing 
laboratory data by adapting SpadaHC to their formats and 
characteristics. In any case, since SpadaHC requires rich meta-
data in the submission of datasets of variants of individuals 
(see Methods), users can flexibly restrict the data to explore 
a particular subset of patients according to different criteria. 
For instance, users can query variants called using a particular 
gene panel, aligner and variant caller.

Use of SpadaHC to resolve classification 
discrepancies
Sharing data in SpadaHC allowed us to identify variants with 
discrepancies in their classifications. In particular, we identi-
fied clinically significant differences in 84 variants according 
to the two-tier model (9). Discrepancies across laboratories 
can be explained for multiple reasons. Spanish laboratories 
apply the classification guidelines independently, not always 
using gene-specific ones, and frequently work with evidence 
from their own patients. Also, many laboratories do not share 
most of their data with other laboratories or international 
databases. Additionally, evidence and classification guidelines 
may vary over time, favoring discrepancy in classifications 
made far in time, as previously suggested (20).

The aim of our three-phase strategy was to resolve the 84 
clinically significant discrepancies in a cost-effective manner 
while minimizing the workload of the laboratories. To achieve 
this, we employed criteria from previous discrepancy resolu-
tion initiatives, including COGR (9), Shariant (10), CanVIG-
UK (6) and the All of Us Research Program (AoURP) (21). Our 
approach followed more specially the cost-effective methodol-
ogy presented by the AoURP, which prioritized reassessment 
by the laboratory with the oldest classification or the labo-
ratory with an outlier classification. However, our strategy 
differs from the latter in several ways, including the order in 
which we applied the criteria, the scope of the outlier and old-
est criteria and the use of email groups to discuss the most 
complicated variants in our third and final phase. Overall, the 
participating laboratories carried out 145 revisions using our 
discrepancy resolution strategy. This contrasts with the 285 
revisions that would have been required if a brute-force strat-
egy, where laboratories would have re-analyzed all discrepant 
variants, had been used.

Eighty out of the initial 84 (95.2%) discrepancies were 
resolved after Phase 3. This percentage is higher when com-
pared to similar previous studies such as COGR, which 
resolved 51.9% and 81.2% of discrepancies according to the 
two-tier model in different works (3, 22), or Shariant, which 
resolved 42.9% of medically significant discrepancies (23). 
The percentage is also slightly lower than the work performed 
by the AoURP which resolved all discrepancies (21). In any 
case, the rate of discrepancy resolution may depend on sev-
eral aspects such as the number of discrepant variants and 
the methodology used to address them. Also, these rates may 
depend on the genes in which variants are located. Some 
genes accumulate more knowledge on their associated risks, 
have clinically calibrated functional assays, a very specific 
or penetrant phenotype or possess gene-specific guidelines. 
Classifying variants on those genes is less prone to subjec-
tivity and discrepancies can be addressed more easily. In our 
work, classification of four variants remained discordant, 
mostly due to different weight assigned to the same
evidence.
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Future directions
Beacon network
The Beacon Network is an international collaborative effort 
aimed at creating a standardized infrastructure for sharing 
genomic variant data across disparate databases. In its first 
version, this initiative allows individual databases to imple-
ment a ‘beacon’ that responds with a simple ‘yes’ or ‘no’ when 
queried about the presence of a specific genetic variant within 
their dataset, without disclosing any sensitive information. 
We plan to join the Beacon Network in the future, so any 
researcher using this will be able to know if a particular vari-
ant is stored in SpadaHC, which will also result in better 
findability according to the FAIR principles.

Automated ClinVar submission
ClinVar is a reference repository for data on the inter-
pretation of variants observed in clinical testing. We plan 
to implement in SpadaHC automated ClinVar submissions 
through the ClinVar submission API upon submitter labora-
tory approval. This automation may accelerate and increase 
the number of submissions to ClinVar from Spanish labora-
tories, while reducing the likelihood of submission errors or
omissions.

Methods
Implementation
SpadaHC is a web-based database that follows a three-tier 
architecture consisting of a web server, a database server and 
a computation server. The web server is implemented using 
the model-template-views (MTV) architectural pattern sup-
ported by Django v3.2.5. Authorizations and invitations are 
managed using Django invitations v1.9.3 and Django allauth 
v0.45. The database server stores a PostgreSQL v14.4 rela-
tional database. The computation server runs a bioinformatics 
pipeline to verify, standardize and annotate genetic variants 
shared by laboratories. The pipeline is implemented using R 
v4.1.2, Variant Effect Predictor (VEP) v104 for GRCh37.p13 
and GRCh38.p13 assemblies (24), Bioconductor v3.14 (25), 
bedtools v2.26.0 (26), bcftools v1.14 (27), vcftools v0.1.16 
(28), SpliceAI v1.3.1 (29), REVEL v1.3 (30), CrossMap 
v0.5.4 (31), MaxEntScan (32, 33), gnomAD v2.1.1 (34) and 
weekly updated ClinVar classifications (35). SpadaHC can be 
accessed at https://spadahc.ciberisciii.es/ and the web code is 
publicly available in the Figshare repository (https://doi.org/
10.6084/m9.figshare.25311124.v1).

The data privacy of patients is assured by a number of 
mechanisms. Only registered users have access to sensitive 
data, which is controlled by requiring a username and pass-
word. Furthermore, the web server has a demilitarized zone 
(DMZ) configuration and multiple Apache security modules. 
Firewalls have also been established at different levels through 
the architecture. Additionally, a number of security mea-
sures have been implemented in the web code, including 
cross-site scripting (XSS) protection, cross-site request forgery 
(CSRF) protection, SQL injection protection, clickjacking 
protection and the limitation of the size of files that can be 
uploaded to limit denial of service (DOS) attacks. Finally, the 
automatic identifier pseudo-anonymization, as explained in 
Features, ensures that patients cannot be identified through 
their identifiers.

Laboratory and user registration
In order to participate in SpadaHC, Spanish laboratories are 
required to sign a data transfer agreement (DTA) contract 
together with CIBER. Additionally, those laboratories aim-
ing to submit datasets with variants of individuals (VCFs) 
are asked to obtain a favorable evaluation from their ethics 
committee and required to get a signed informed consent of 
patients. Once the DTA is signed, the principal investigator of 
the group sends a document requesting the registration of a 
list of laboratory members. The SpadaHC management team 
reviews the request and sends an invitation to each requested 
user. This is done via email, which contains a unique link. The 
link is only valid for one use and has an expiry date.

Researchers and groups based abroad can also register 
by sending a request with a short project proposal through 
the SpadaHC website. Subsequently, the SpadaHC advisory 
board and steering committee review the request and, if 
approved, the SpadaHC management team sends an invita-
tion to the users who requested to join.

Dataset submission
Registered users with the appropriate permissions can submit 
two types of datasets to SpadaHC: variant classifications and 
variants of individuals. To submit a dataset of variant classifi-
cations, users must upload an Excel file containing the defini-
tion of the variant, including the genomic or cDNA position 
and transcript reference, classification, date of classification 
and reasoning. For variants that have already been classi-
fied by the submitted laboratory in SpadaHC, the most recent 
classification is shown based on the date of classification. To 
submit a dataset of variants of individuals, users must upload 
VCF files containing the variants, one per individual, along 
with basic clinical information of the patients in Excel format. 
The VCFs of a dataset must be homogeneous, meaning they 
must be generated using the same sequencing platform, read 
type, panel version, genome version, aligner and variant caller. 
This information is also submitted to SpadaHC to provide 
the dataset with rich metadata. The Excel file must include 
an individual identifier, sex and at least a clinical suspicion of 
hereditary cancer. Optionally, it may also include family iden-
tifier, cancer history, birth date and deceased status. SpadaHC 
supports several variant callers including VarScan2, Strelka2, 
GATK HaplotypeCaller, GATK UnifiedGenotyper, Torrent 
Variant Caller, VarDict and DNAscope. When referring to 
clinical suspicion of hereditary cancer, laboratories must use 
terms from the MedGen ontology (36), whose genetic dis-
ease terms are explicitly permitted by ClinVar. All datasets 
and individuals submitted to SpadaHC are labeled with a 
unique persistent identifier. Each dataset submission, either 
variant classifications or variants of individuals, results in a 
new incremental version of the database.

SpadaHC pseudo-anonymizes individual and family iden-
tifiers during the submission process. The new code is ran-
domly generated using 36 uppercase alphanumeric characters. 
The code is six and five characters long for individuals and 
families, respectively.

Allele frequency calculation
The allele frequency shown in SpadaHC (AF) is the result of 
dividing the allele count (AC) by the allele number (AN). The 
AN for a specific variant is calculated considering only the 

https://spadahc.ciberisciii.es/
https://doi.org/10.6084/m9.figshare.25311124.v1
https://doi.org/10.6084/m9.figshare.25311124.v1
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individuals having the corresponding genomic position cov-
ered, as indicated in the regions of interest file provided by 
the submitting laboratory. Also, when two or more individ-
uals are related, either because they share the same family 
identifier or because the in silico prediction estimated a kin-
ship relationship, only one individual is considered for AF 
calculation.

Noisy, empty, duplicate and kinship tests
SpadaHC performs tests to detect whether a sample from 
a dataset of variants of individuals is noisy, empty, dupli-
cated or has a kinship relationship with another sample in 
SpadaHC. To detect noisy samples, which are those with an 
unexpected high number of variants, we apply Tukey’s fences 
upper threshold (k = 5) to the distribution of the number of 
variants in each sample. Similarly, to detect empty samples, 
which are those with an unexpected low number of variants, 
we apply Tukey’s fences lower threshold (k = 4) to the same 
distribution. In addition, two samples are considered dupli-
cates if the mean of p1 and p2 is greater than 0.9, where p1 
is the percentage of variants in the first sample that were also 
called in the second sample, and p2 is the percentage of vari-
ants in the second sample that were also called in the first 
sample. Also, kinship relationships are identified (cutoff at 
0.25) using the relatedness statistic described by Manichaikul 
et al. (37) and implemented in VCFtools (28). To ensure con-
sistency, all tests are performed using the intersection of the 
compared regions, as VCFs may have been obtained from 
different targeted panels and may therefore span different 
regions.

Main transcript selection
By default, SpadaHC displays annotations based on the main 
transcript of the gene, although more transcripts can be dis-
played. The selection of the main transcript is made as follows. 
When a variant is annotated on a single gene, the main tran-
script shown is the one that matches the first Locus Reference 
Genomic (LRG) transcript in that gene. If no LRG transcript 
is available for the gene, then the transcript shown is the one 
labeled as Canonical by the Ensembl VEP tool.

When a variant is annotated on multiple genes, the above 
criterion is used to select the candidate transcripts of each 
gene. The main transcript selected to be shown will be the one 
with the most severe consequence of the candidate transcripts.

Use of SpadaHC to resolve classification 
discrepancies
Upon reaching SpadaHC version 1.21.0, we queried the 
database to identify variants with classification discrepancies 
based on the five-tier model (P, LP, VUS, LB, B), three-tier 
model (LP/P, VUS, LB/B) and two-tier model (LP/P being clini-
cally actionable, VUS/LB/B being not) (9). We then focused on 
the 84 variants with classification discrepancies according to 
the two-tier model and implemented a three-phase strategy to 
resolve them. The strategy’s general criterion was to achieve 
a cost-effective balance by minimizing the number of labora-
tories assigned to review each variant. At the end of each of 
the three phases, all designated laboratories resubmitted their 
reviewed classifications, including reasoning, to SpadaHC for 
identification of any remaining discrepancies.

First phase
In the first phase, each variant was assigned to one or more 
laboratories according to the following algorithm:

1. If only two laboratories differed in their classification, 
the laboratory with the oldest classification reviewed its 
classification.

2. If more than two laboratories differed in their classifi-
cation:

a. If a classification was an outlier, the laboratory that 
submitted that classification reviewed its classifica-
tion. A classification was considered an outlier if 
one laboratory classified the variant in one group 
(actionable or non-actionable) and the remaining 
laboratories (at least two) classified it in the other 
group.

b. If two laboratories classified the variant in one 
group (actionable or non-actionable) and the 
remaining laboratories (at least two) classified the 
variant in the other group, one laboratory was ran-
domly selected from the first group to review the 
classification.

3. For the remaining variants, all laboratories were invited 
to review their classifications.

Second phase
Phase 2 addressed variants with clinically relevant discrepan-
cies that were not resolved in Phase 1. The algorithm used in 
this phase was as follows:

1. If a variant was assigned using point 1 (oldest classifica-
tion) or 2 (outlier) in Phase 1, the remaining laboratories 
reviewed their classification.

2. For the variant addressed in Phase 1 via point 3, only 
one laboratory disagreed with the others, and this 
laboratory was assigned to carry out a further review.

Third phase
During Phase 3, we addressed variants that still had discrep-
ancies after Phase 2.

1. For variants classified by up to three laboratories, we 
created an email group for each variant. In this group, 
each laboratory provided their evidence, and a discus-
sion followed until a resolution was reached.

2. For variants classified by four or more laboratories, we 
held two video call meetings with all SpadaHC labo-
ratories (the second one with a guest expert). There, 
the different laboratory members presented the evidence 
on which they based their classifications and, after a 
discussion, each laboratory made its decision.

Supplementary Material
Supplementary material is available at Database online.

Data Availability
SpadaHC is accessible at https://spadahc.ciberisciii.es/. The 
web code of SpadaHC can be found at the Figshare repository 
(https://doi.org/10.6084/m9.figshare.25311124.v1).

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baae055#supplementary-data
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