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Abstract

Accurate classification of genetic variants is crucial for clinical decision-making in hereditary cancer. In Spain, genetic diagnostic lab-
oratories have traditionally approached this task independently due to the lack of a dedicated resource. Here we present SpadaHC,
a web-based database for sharing variants in hereditary cancer genes in the Spanish population. SpadaHC is implemented using a
three-tier architecture consisting of a relational database, a web tool and a bioinformatics pipeline. Contributing laboratories can share
variant classifications and variants from individuals in Variant Calling Format (VCF) format. The platform supports open and restricted
access, flexible dataset submissions, automatic pseudo-anonymization, VCF quality control, variant normalization and liftover between
genome builds. Users can flexibly explore and search data, receive automatic discrepancy notifications and access SpadaHC popula-
tion frequencies based on many criteria. In February 2024, SpadaHC included 18 laboratory members, storing 1.17 million variants from
4306 patients and 16 343 laboratory classifications. In the first analysis of the shared data, we identified 84 genetic variants with clini-
cally relevant discrepancies in their classifications and addressed them through a three-phase resolution strategy. This work highlights
the importance of data sharing to promote consistency in variant classifications among laboratories, so patients and family members
can benefit from more accurate clinical management.

Database URL.: https://spadahc.ciberisciii.es/
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Overview of SpadaHC and its main views. (A) List of existing variants in SpadaHC (in the image, search for the ATM gene). The ‘Expert CI’ column shows
the classification made by a group of experts; the ‘Lab CI’ column shows a summary of the classifications made by the laboratories. (B) Allele frequency
of a variant in the SpadaHC population according to clinical suspicion and sex. (C) Classifications provided by the laboratories for a variant. (D) List of
patients carrying a variant. (E) Histogram showing the coverage and frequency (allele balance) with which the variant was detected in carrier patients.
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Introduction

The accurate classification of genetic variants is key to enable
informed clinical decision-making and to advance the under-
standing of hereditary cancer. The guidelines laid down by
the American College of Medical Genetics and Genomics
(ACMG) and the Association of Molecular Pathology (AMP)
provided a structured framework to categorize variants as
benign (B), likely benign (LB), of uncertain significance (VUS),
likely pathogenic (LP) or pathogenic (P) (1). In particular, the
detection of likely pathogenic or pathogenic variants in clini-
cally actionable genes is essential for the clinical management
of the patients and their relatives. It allows for the indi-
vidualization of cancer risk assessment, the establishment of
specific surveillance measures, the use of appropriate targeted
treatments and reproductive counseling. However, classify-
ing variants can be challenging, as it requires collecting data
from multiple sources. This process typically involves obtain-
ing population frequencies from public databases, reviewing
functional and case-control studies reported in the scientific
literature, running in silico predictors and analyzing familial
phenotypes and co-segregation.

Some of the issues associated with classification of vari-
ants are the disparities in the application of classification
guidelines, which are frequently updated, or the use of pri-
vate variant evidence to apply these rules (2, 3). These issues
can cause differences in variant classification between lab-
oratories, leading to inequalities in patient counseling and
management, since genetic testing outcomes directly impact
clinical decisions for patients. Interestingly, a significant obsta-
cle to improving the uniformity of variant classification is the
isolation of variant data within individual laboratories. In this
context, data sharing is essential for achieving concordance
of variant classification among laboratories (4). Professional
organizations, such as the ACMG, have included the concept
of variant sharing in their best-practice guidelines (5). Sharing
data from multiple patients improves the evidence for genetic
disease causality, increasing the statistical power of analyses
and contributing to a more robust interpretation of variants
supported by group consensus.

The need for collaborative initiatives on variant classi-
fication has also been underlined by projects from several
countries such as CanVIG-UK in UK (6), MOLGENIS in
the Netherlands (7), COGR in Canada (8, 9), Shariant in
Australia (10) or MGeND in Japan (11). These initiatives
highlighted the power of pooling data from diverse sources
to enhance the accuracy and consistency of genetic vari-
ant classification. For example, the Canadian Open Genetics
Repository (COGR) resolved 51.9% of variant classification
discrepancies across 12 laboratories according to their two-
tier model, while the Shariant platform did so for 42.9%
of their medically significant discrepancies between 11 Aus-
tralian laboratories (3, 10).

In Spain, laboratories have rarely shared variant data and
classifications due to the lack of a dedicated resource. To
promote data sharing, collaboration, improvement and con-
cordance of variant classifications, we launched SpadaHC
(SPAnish variant DAtabase for Hereditary Cancer), a national
platform that enables Spanish genetic diagnostic laboratories
to share variant classifications and patient variants in hered-
itary cancer genes. SpadaHC is the result of a nationwide
effort promoted by the Biomedical Research Networking Cen-
ter (CIBER) through the Oncology area (CIBERONC), with

the participation of the Spanish Society of Human Genetics
(AEGH), the Spanish Society of Medical Oncology (SEOM)
and 18 genetic diagnostic laboratories. The data shared in
SpadaHC allowed us to identify clinically relevant discrep-
ancies between Spanish laboratories, and we implemented a
three-phase methodology to address these discrepancies.

Results

SpadaHC is a database for sharing genetic variants in hered-
itary cancer genes in the Spanish population. Spanish genetic
diagnostic laboratories can submit two types of datasets
(Graphical Abstract): (i) variant classifications through an
Excel file, and (ii) variants of individuals [Variant Calling
Format (VCF) files] along with basic clinical information of
patients in Excel format. SpadaHC checks the submitted data,
processes them through a bioinformatics pipeline, integrates
them into the database and displays them on the SpadaHC
website. This allows users to access the classifications pro-
vided by each laboratory and population frequencies based
on multiple criteria.

Available data

SpadaHC v1.62.0 (March 2024) included 57 datasets of clas-
sifications and 6 datasets of individual’s variants submitted
by 18 Spanish laboratories. In total, SpadaHC stored 1.17
million variants in 225 genes from 4306 patients with hered-
itary cancer suspicion. The Spanish laboratories had shared
16 343 classifications through datasets of variant classifica-
tions. In sum, SpadaHC managed 21397 unique variants,
with 10 671 of the unique variants being classified by one or
more laboratories.

Features
Open and restricted access

SpadaHC contains open data, available to any user, and
restricted data, available to registered users from Spanish lab-
oratories or external researchers with granted access for spe-
cific projects. Unregistered users can only access de-identified
genetic variant data, including population frequencies based
on clinical suspicion of hereditary cancer, sex or laboratory.
Registered users can also access personal data: the variants
of an individual, cancer history, pseudo-anonymized identi-
fiers and the classifications provided by the laboratories. This
authorization approach enables SpadaHC to protect personal
data while making the remaining information accessible to
any user.

Flexible dataset submission format

Registered users with specific permissions can submit two
types of datasets: variant classifications and variants of indi-
viduals. SpadaHC assesses that submitted Excel files fulfill the
exact expected format. However, SpadaHC implements exten-
sive flexibility to deal with these formats. Instead of requiring
a single specific Excel format for all laboratories, SpadaHC
requires a custom format for each laboratory (Supplemen-
tary File S1). This allows for adaptation to the format that
is already being generated in the laboratory’s diagnostic rou-
tine. Consequently, the order of columns, column names and
expected values may vary across laboratories, but SpadaHC
will process and normalize them later.



Automatic identifier pseudo-anonymization

To maintain patient confidentiality, SpadaHC automatically
pseudo-anonymizes individual and family identifiers provided
by laboratories. Only registered users can access the pseudo-
anonymized identifiers. The correspondence between the orig-
inal identifier and the pseudo-anonymized one is stored in an
internal database table that is accessible only to the adminis-
trators. In situations where re-identification of the patient is
necessary due to a real and concrete danger to the safety or
health of a person or group of people, or to ensure adequate
healthcare, the ethics committee of the patient’s center must
approve the re-identification of the patient.

VCEF quality control

SpadaHC pipeline implements hard filters for each submitted
VCE. Specifically, it excludes variants with FILTER field dif-
ferent from PASS, genotype equal to 0/0, allele balance lower
than 0.2 or depth coverage lower than the custom threshold
defined by the submitter (minimum is 10). Variants outside
the gene panel regions file are also filtered out.

SpadaHC conducts various tests afterwards to verify the
quality of the VCF data entered into the database. Specifi-
cally, SpadaHC detects whether a sample has far more vari-
ants than expected (noisy sample), far less variants than
expected (empty sample), shares a high number of variants
with another variant (duplicated sample) or in silico predic-
tor estimates a kinship relationship with another sample in
SpadaHC (see Methods). Noisy, empty or duplicated samples
are not inserted into the database. Samples with a kinship rela-
tionship are entered into the database, but only one sample
from each group of related samples is included in the allele
frequency calculation.

Variant normalization

Accurate normalization of variant names is essential for pro-
cessing and integrating coherent data into the database. Dele-
tions and insertions can be annotated at multiple locations
when they appear within repeated regions. SpadaHC nor-
malizes all submitted variants as follows. Genomic positions
are left-normalized, meaning that the most 5’ representa-
tion is used when referring to DNA. However, the coding
DNA HGVS nomenclature follows 3’ normalization (12), a
format commonly used by the clinical community. There-
fore, SpadaHC uses right-normalized coding DNA HGVS
nomenclature, and iz silico predictors are computed after this
normalization.

Liftover between genome builds

SpadaHC supports exploring variants in both GRCh37 and
GRCh38 genome assemblies. To date, all submitted variants in
SpadaHC were called using the GRCh37 assembly. SpadaHC
obtains the GRCh38 coordinates by, first, calling CrossMap
to lift over genome coordinates and, second, checking that
the genomic reference base remains the same at the lifted over
position. If any of the two steps fails, the variant will not have
representation on GRCh38 assembly.

Search and explore data

SpadaHC allows exploring data with flexibility. The initial
search option (Supplementary Figure S1) enables querying
variants by gene symbol, coding DNA HGVS name, variant
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genomic definition and chromosomal region in the GRCh37
or GRCh38 genome assemblies. Moreover, queried variants
can be restricted to a certain group of individuals by any
combination of criteria including sex, clinical suspicion, sub-
mitter laboratory, gene panel, sequencing platform, aligner
and variant caller used to generate the corresponding VCF file
(Supplementary Figure S2).

The search action results in an adjustable, rich and
user-friendly table of variants with up to 38 annotation
columns (Graphical Abstract A). Specifically, users can access
variant genomic definition, RefSeq transcript version, cod-
ing DNA and protein HGVS names, consequence pre-
dicted by VEP, expert group and laboratory classifications,
weekly updated ClinVar classification, exon or intron num-
ber, amino acid change, SpadaHC allele frequency including
allele count and allele number, gnomAD allele frequencies,
REVEL/SIFT/PolyPhen-2 pathogenicity prediction, SpliceAl
and MaxEntScan splicing prediction and co-located known
variants. The table can be sorted and filtered by any number
of columns, unfolded to access annotation in other transcripts
(Supplementary Figure S3) and downloaded into an Excel file.

Variant classifications

SpadaHC provides access to variant classifications from three
sources: submitting laboratories, the ClinVar database and
expert groups. By clicking on any laboratory classification,
SpadaHC displays details such as classification date, reason-
ing and, interestingly, the submitter’s name and email contact
so that questions about the classification can be addressed
(Graphical Abstract C). The ClinVar Classification field shows
the weekly updated classification from ClinVar along with
the level of assessment. Clicking on the ClinVar classification
opens a new tab to the variant classification page in ClinVar.
Finally, the expert group classification shows the classifica-
tion given by a particular group of experts, namely Spanish
researchers and clinicians engaged in the study of a gene or
clinical suspicion, as exemplified by the work published by
Feliubadalé6 et al. (13). Clicking on the expert group classi-
fication will show the details submitted by the expert group
(Supplementary Figure S4).

Automatic discrepancy notification

Registered users can receive notifications via email when new
classifications are added or updated on variants of their inter-
est (Supplementary Figure S5). Users can flexibly define which
are their variants of interest, that is, any variant that their
laboratory classified in a certain way or is located within a
user-defined list of genes. Users can also define the events that
trigger the notifications, specifically, when variants of inter-
est are newly classified into a user-defined group by any other
laboratory or by ClinVar. These preferences are stored in the
SpadaHC database. Consequently, upon the submission of a
new laboratory classification to SpadaHC or the updating of
a ClinVar classification, SpadaHC automatically checks the
user preferences and sends a customized email, which lists the
variants of interest.

Variant frequencies

The SpadaHC variant details view displays allele frequencies
aggregated by clinical suspicion, sex and submitter laboratory
(Graphical Abstract B). Furthermore, when querying vari-
ants using the main search option, SpadaHC will also present
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frequencies based on any VCF-related metadata field, such
as clinical suspicion, sex, submitter laboratory, gene panel,
sequencing platform, aligner and variant caller.

Variant details and individual view

The variant details view shows all the data available in
SpadaHC for a specific variant (Supplementary Figure S6). In
addition to the allele frequency tables mentioned above, the
view provides a list of variant carriers (Graphical Abstract E)
along with histograms of depth and allele balance (Graphical
Abstract D). Registered users can click on any of the carriers
and a new patient view will open with all the individual’s vari-
ants. The variant details view also provides other data such as
laboratory, expert group and ClinVar classifications, context
of the genome reference sequence, PubMed annotation (14),
links to the variant in the Beacon Network (https://beacon-
network.org) and VarSome (15), and the links to explore the
genomic region in Ensembl (16) and UCSC browser (17). Both
the variant details and individual views can be easily shared
with other users via their URL.

Use of SpadaHC to resolve classification
discrepancies

In version 1.21.0 of SpadaHC (July 2023), laboratories had
submitted classifications for 10 035 unique variants. Of these,
2469 were classified by at least two laboratories. Out of the
2469 variants with multiple classifications, 1697 (68.7%)
had full consensus (Figure 1 A). While 31.3% and 16.4%
showed discrepancies according to the five-tier and three-
tier models (9), respectively, only 84 variants (3.4%) showed
clinically significant discrepancies according to the two-tier
model. To address the latter clinically relevant discrepan-
cies, we implemented a three-phase strategy (see Methods,
Figure 1 B). In the first phase, laboratories made a total
of 93 variant revisions, with 51 out of 84 (60.7%) vari-
ant discrepancies being resolved. The remaining 33 variants
with discrepancies were addressed in Phase 2, during which
15 (45.4%) were resolved after 52 revisions by the labo-
ratories. In the third phase, laboratories resolved 14 vari-
ants with discrepancies (77.8%) through email and remote
meeting discussions. Only four variants remained discordant
after concluding the discrepancy resolution process (Sup-
plementary Table S1): NM_003002.4:c.148C>G in SDHD,
NM_032043.3:¢.2990_2993del in BRIP1, NM_000551.
4:¢.376 G>A in VHL and NM_058216.3:c.965+5G>A in
RADSI1C.

Discussion

Variant classification is a complex task that requires collecting
data from various sources. Since no dedicated resource existed
in Spain, genetic diagnostic laboratories typically approached
this task independently. Here we present SpadaHC, a ded-
icated resource for sharing genetic variants in hereditary
cancer genes and their interpretation among Spanish genetic
diagnostic laboratories.

Since its release in 18 May 2023, laboratory members
have integrated SpadaHC, with another 12 in the process of
joining. The participation of numerous Spanish laboratories
has resulted in a significant contribution of data, includ-
ing 1.17 million variants from 4306 patients and 16343

variant classifications. This data sharing effort is valuable
for improving knowledge of these variants in the Spanish
population.

SpadaHC implements features for collecting, analyzing,
annotating and exploring genetic variants. The platform offers
open and restricted access, where only registered users can
access personal and laboratory classification data, while the
rest is public to any user. Furthermore, the flexible dataset
submission system allows SpadaHC to adapt to the specific
format of each laboratory while maintaining a strict parsing
process. It is important to note that in the event a labora-
tory necessitates a new customized format, no changes to the
code are required. This is because the format is defined in a
JavaScript Object Notation field in the database. In addition,
the user interface enables users to explore genetic variants
in a variety of ways, benefiting from the ability to filter and
sort by any number of criteria in the 38-column main table.
Additionally, by receiving automatic notifications when a vari-
ant of interest is classified, users have an efficient tool to
quickly track clinically relevant changes that may result in
modifications to the patient’s clinical management. Further-
more, variant frequencies calculated from patients included
in SpadaHC provide a useful resource for understanding how
frequencies differ between sexes and/or clinical suspicions.
Having the allele count for each variant can aid in identifying
variants of interest, as enrichment in cases is a crucial factor
in indicating variant pathogenicity.

The laboratory, ClinVar and expert group classifications
are of particular interest to users. These classifications are
summarized in just a few pixels and can be filtered or sorted
as needed (Graphical Abstract A). Additional details can be
obtained by clicking on any classification. The detailed view
of laboratory classifications includes access to the email of
the variant classification submitter, which facilitates cooper-
ation between laboratories. Additionally, the weekly update
of ClinVar classifications was a requirement in the design of
SpadaHC in order to make it useful; otherwise, users may
ignore this field when it became outdated.

SpadaHC was developed considering the FAIR (Find-
able, Accessible, Interoperable, Reusable) principles (18). All
datasets and individuals submitted to SpadaHC are assigned
with a unique persistent identifier, and datasets of variants
of individuals contain rich metadata. These features result
in better findability. For its part, the use of the HTTPS
protocol along with the authorization system benefits accessi-
bility while protecting the personal data from unauthorized
users. Regarding interoperability, SpadaHC uses standard-
ized notations such as HGVS variant nomenclature and Ref-
Seq transcript references. Additionally, SpadaHC supports
the standard VCF as input, and employs specific controlled
vocabulary, the MedGen ontology, when referring to clinical
suspicions. Finally, the rich metadata, including provenance
information, along with the documentation available on the
SpadaHC site, contributes to better reusability.

Some limitations in SpadaHC should be noted. The plat-
form needs the laboratories to actively submit the variants
and classifications. Instead, the ideal approach would be
having the same laboratory management information sys-
tem (LIMS) (19) in all laboratories and implementing a
feature to automatically submit the found variants and clas-
sifications to SpadaHC. This way, data would be more
quickly available in SpadaHC while limiting human errors on
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Figure 1. (A) Variants with multiple classifications in SpadaHC v1.21.0 and degree of discrepancy according to the five-tier, three-tier and two-tier models.
(B) Number of variants with clinically relevant discrepancies according to the two-tier model after each phase of the resolution strategy.

dataset submissions. Of course, this approach would require
significant time and monetary resources, especially consider-
ing the challenge of involving many hospitals under different
management and switching to a new LIMS in a demanding
diagnostics routine context. Another limitation in SpadaHC is
the heterogeneity of the submitted VCFs between laboratories.
Each laboratory has its own diagnostics protocol, including
aspects such as sequencing platform, gene panel or variant
caller. Ideally, laboratories should submit the original sequenc-
ing files obtained from equal sequencing platforms and gene
panels. This would allow SpadaHC to apply the same bioin-
formatics pipeline to all samples from the original files. Again,
this approach would require significant resources and pro-
found adaptation in the way genetic diagnostic laboratories
operate. However, the aim of SpadaHC was not to force lab-
oratories to undertake major changes, but to exploit existing
laboratory data by adapting SpadaHC to their formats and
characteristics. In any case, since SpadaHC requires rich meta-
data in the submission of datasets of variants of individuals
(see Methods), users can flexibly restrict the data to explore
a particular subset of patients according to different criteria.
For instance, users can query variants called using a particular
gene panel, aligner and variant caller.

Use of SpadaHC to resolve classification
discrepancies

Sharing data in SpadaHC allowed us to identify variants with
discrepancies in their classifications. In particular, we identi-
fied clinically significant differences in 84 variants according
to the two-tier model (9). Discrepancies across laboratories
can be explained for multiple reasons. Spanish laboratories
apply the classification guidelines independently, not always
using gene-specific ones, and frequently work with evidence
from their own patients. Also, many laboratories do not share
most of their data with other laboratories or international
databases. Additionally, evidence and classification guidelines
may vary over time, favoring discrepancy in classifications
made far in time, as previously suggested (20).

The aim of our three-phase strategy was to resolve the 84
clinically significant discrepancies in a cost-effective manner
while minimizing the workload of the laboratories. To achieve
this, we employed criteria from previous discrepancy resolu-
tion initiatives, including COGR (9), Shariant (10), CanVIG-
UK (6) and the All of Us Research Program (AoURP) (21). Our
approach followed more specially the cost-effective methodol-
ogy presented by the AoURP, which prioritized reassessment
by the laboratory with the oldest classification or the labo-
ratory with an outlier classification. However, our strategy
differs from the latter in several ways, including the order in
which we applied the criteria, the scope of the outlier and old-
est criteria and the use of email groups to discuss the most
complicated variants in our third and final phase. Overall, the
participating laboratories carried out 145 revisions using our
discrepancy resolution strategy. This contrasts with the 285
revisions that would have been required if a brute-force strat-
egy, where laboratories would have re-analyzed all discrepant
variants, had been used.

Eighty out of the initial 84 (95.2%) discrepancies were
resolved after Phase 3. This percentage is higher when com-
pared to similar previous studies such as COGR, which
resolved 51.9% and 81.2% of discrepancies according to the
two-tier model in different works (3, 22), or Shariant, which
resolved 42.9% of medically significant discrepancies (23).
The percentage is also slightly lower than the work performed
by the AoURP which resolved all discrepancies (21). In any
case, the rate of discrepancy resolution may depend on sev-
eral aspects such as the number of discrepant variants and
the methodology used to address them. Also, these rates may
depend on the genes in which variants are located. Some
genes accumulate more knowledge on their associated risks,
have clinically calibrated functional assays, a very specific
or penetrant phenotype or possess gene-specific guidelines.
Classifying variants on those genes is less prone to subjec-
tivity and discrepancies can be addressed more easily. In our
work, classification of four variants remained discordant,
mostly due to different weight assigned to the same
evidence.
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Future directions
Beacon network

The Beacon Network is an international collaborative effort
aimed at creating a standardized infrastructure for sharing
genomic variant data across disparate databases. In its first
version, this initiative allows individual databases to imple-
ment a ‘beacon’ that responds with a simple ‘yes’ or ‘no’ when
queried about the presence of a specific genetic variant within
their dataset, without disclosing any sensitive information.
We plan to join the Beacon Network in the future, so any
researcher using this will be able to know if a particular vari-
ant is stored in SpadaHC, which will also result in better
findability according to the FAIR principles.

Automated ClinVar submission

ClinVar is a reference repository for data on the inter-
pretation of variants observed in clinical testing. We plan
to implement in SpadaHC automated ClinVar submissions
through the ClinVar submission API upon submitter labora-
tory approval. This automation may accelerate and increase
the number of submissions to ClinVar from Spanish labora-
tories, while reducing the likelihood of submission errors or
omissions.

Methods
Implementation

SpadaHC is a web-based database that follows a three-tier
architecture consisting of a web server, a database server and
a computation server. The web server is implemented using
the model-template-views (MTV) architectural pattern sup-
ported by Django v3.2.5. Authorizations and invitations are
managed using Django invitations v1.9.3 and Django allauth
v0.45. The database server stores a PostgreSQL v14.4 rela-
tional database. The computation server runs a bioinformatics
pipeline to verify, standardize and annotate genetic variants
shared by laboratories. The pipeline is implemented using R
v4.1.2, Variant Effect Predictor (VEP) v104 for GRCh37.p13
and GRCh38.p13 assemblies (24), Bioconductor v3.14 (25),
bedtools v2.26.0 (26), bcftools v1.14 (27), vcftools v0.1.16
(28), SpliceAI v1.3.1 (29), REVEL v1.3 (30), CrossMap
v0.5.4 (31), MaxEntScan (32, 33), gnomAD v2.1.1 (34) and
weekly updated ClinVar classifications (35). SpadaHC can be
accessed at https://spadahc.ciberisciii.es/ and the web code is
publicly available in the Figshare repository (https://doi.org/
10.6084/m9.figshare.25311124.v1).

The data privacy of patients is assured by a number of
mechanisms. Only registered users have access to sensitive
data, which is controlled by requiring a username and pass-
word. Furthermore, the web server has a demilitarized zone
(DMZ) configuration and multiple Apache security modules.
Firewalls have also been established at different levels through
the architecture. Additionally, a number of security mea-
sures have been implemented in the web code, including
cross-site scripting (XSS) protection, cross-site request forgery
(CSRF) protection, SQL injection protection, clickjacking
protection and the limitation of the size of files that can be
uploaded to limit denial of service (DOS) attacks. Finally, the
automatic identifier pseudo-anonymization, as explained in
Features, ensures that patients cannot be identified through
their identifiers.

Laboratory and user registration

In order to participate in SpadaHC, Spanish laboratories are
required to sign a data transfer agreement (DTA) contract
together with CIBER. Additionally, those laboratories aim-
ing to submit datasets with variants of individuals (VCFs)
are asked to obtain a favorable evaluation from their ethics
committee and required to get a signed informed consent of
patients. Once the DTA is signed, the principal investigator of
the group sends a document requesting the registration of a
list of laboratory members. The SpadaHC management team
reviews the request and sends an invitation to each requested
user. This is done via email, which contains a unique link. The
link is only valid for one use and has an expiry date.

Researchers and groups based abroad can also register
by sending a request with a short project proposal through
the SpadaHC website. Subsequently, the SpadaHC advisory
board and steering committee review the request and, if
approved, the SpadaHC management team sends an invita-
tion to the users who requested to join.

Dataset submission

Registered users with the appropriate permissions can submit
two types of datasets to SpadaHC: variant classifications and
variants of individuals. To submit a dataset of variant classifi-
cations, users must upload an Excel file containing the defini-
tion of the variant, including the genomic or cDNA position
and transcript reference, classification, date of classification
and reasoning. For variants that have already been classi-
fied by the submitted laboratory in SpadaHC, the most recent
classification is shown based on the date of classification. To
submit a dataset of variants of individuals, users must upload
VCEF files containing the variants, one per individual, along
with basic clinical information of the patients in Excel format.
The VCFs of a dataset must be homogeneous, meaning they
must be generated using the same sequencing platform, read
type, panel version, genome version, aligner and variant caller.
This information is also submitted to SpadaHC to provide
the dataset with rich metadata. The Excel file must include
an individual identifier, sex and at least a clinical suspicion of
hereditary cancer. Optionally, it may also include family iden-
tifier, cancer history, birth date and deceased status. SpadaHC
supports several variant callers including VarScan2, Strelka2,
GATK HaplotypeCaller, GATK UnifiedGenotyper, Torrent
Variant Caller, VarDict and DNAscope. When referring to
clinical suspicion of hereditary cancer, laboratories must use
terms from the MedGen ontology (36), whose genetic dis-
ease terms are explicitly permitted by ClinVar. All datasets
and individuals submitted to SpadaHC are labeled with a
unique persistent identifier. Each dataset submission, either
variant classifications or variants of individuals, results in a
new incremental version of the database.

SpadaHC pseudo-anonymizes individual and family iden-
tifiers during the submission process. The new code is ran-
domly generated using 36 uppercase alphanumeric characters.
The code is six and five characters long for individuals and
families, respectively.

Allele frequency calculation

The allele frequency shown in SpadaHC (AF) is the result of
dividing the allele count (AC) by the allele number (AN). The
AN for a specific variant is calculated considering only the
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individuals having the corresponding genomic position cov-
ered, as indicated in the regions of interest file provided by
the submitting laboratory. Also, when two or more individ-
uals are related, either because they share the same family
identifier or because the in silico prediction estimated a kin-
ship relationship, only one individual is considered for AF
calculation.

Noisy, empty, duplicate and kinship tests

SpadaHC performs tests to detect whether a sample from
a dataset of variants of individuals is noisy, empty, dupli-
cated or has a kinship relationship with another sample in
SpadaHC. To detect noisy samples, which are those with an
unexpected high number of variants, we apply Tukey’s fences
upper threshold (k=35) to the distribution of the number of
variants in each sample. Similarly, to detect empty samples,
which are those with an unexpected low number of variants,
we apply Tukey’s fences lower threshold (k=4) to the same
distribution. In addition, two samples are considered dupli-
cates if the mean of p1 and p2 is greater than 0.9, where p1
is the percentage of variants in the first sample that were also
called in the second sample, and p2 is the percentage of vari-
ants in the second sample that were also called in the first
sample. Also, kinship relationships are identified (cutoff at
0.25) using the relatedness statistic described by Manichaikul
et al. (37) and implemented in VCFtools (28). To ensure con-
sistency, all tests are performed using the intersection of the
compared regions, as VCFs may have been obtained from
different targeted panels and may therefore span different
regions.

Main transcript selection

By default, SpadaHC displays annotations based on the main
transcript of the gene, although more transcripts can be dis-
played. The selection of the main transcript is made as follows.
When a variant is annotated on a single gene, the main tran-
script shown is the one that matches the first Locus Reference
Genomic (LRG) transcript in that gene. If no LRG transcript
is available for the gene, then the transcript shown is the one
labeled as Canonical by the Ensembl VEP tool.

When a variant is annotated on multiple genes, the above
criterion is used to select the candidate transcripts of each
gene. The main transcript selected to be shown will be the one
with the most severe consequence of the candidate transcripts.

Use of SpadaHC to resolve classification
discrepancies

Upon reaching SpadaHC version 1.21.0, we queried the
database to identify variants with classification discrepancies
based on the five-tier model (P, LP, VUS, LB, B), three-tier
model (LP/P, VUS, LB/B) and two-tier model (LP/P being clini-
cally actionable, VUS/LB/B being not) (9). We then focused on
the 84 variants with classification discrepancies according to
the two-tier model and implemented a three-phase strategy to
resolve them. The strategy’s general criterion was to achieve
a cost-effective balance by minimizing the number of labora-
tories assigned to review each variant. At the end of each of
the three phases, all designated laboratories resubmitted their
reviewed classifications, including reasoning, to SpadaHC for
identification of any remaining discrepancies.
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First phase

In the first phase, each variant was assigned to one or more
laboratories according to the following algorithm:

1. If only two laboratories differed in their classification,
the laboratory with the oldest classification reviewed its
classification.

2. If more than two laboratories differed in their classifi-
cation:

a. Ifaclassification was an outlier, the laboratory that
submitted that classification reviewed its classifica-
tion. A classification was considered an outlier if
one laboratory classified the variant in one group
(actionable or non-actionable) and the remaining
laboratories (at least two) classified it in the other
group.

b. If two laboratories classified the variant in one
group (actionable or non-actionable) and the
remaining laboratories (at least two) classified the
variant in the other group, one laboratory was ran-
domly selected from the first group to review the
classification.

3. For the remaining variants, all laboratories were invited
to review their classifications.

Second phase

Phase 2 addressed variants with clinically relevant discrepan-
cies that were not resolved in Phase 1. The algorithm used in
this phase was as follows:

1. If a variant was assigned using point 1 (oldest classifica-
tion) or 2 (outlier) in Phase 1, the remaining laboratories
reviewed their classification.

2. For the variant addressed in Phase 1 via point 3, only
one laboratory disagreed with the others, and this
laboratory was assigned to carry out a further review.

Third phase

During Phase 3, we addressed variants that still had discrep-
ancies after Phase 2.

1. For variants classified by up to three laboratories, we
created an email group for each variant. In this group,
each laboratory provided their evidence, and a discus-
sion followed until a resolution was reached.

2. For variants classified by four or more laboratories, we
held two video call meetings with all SpadaHC labo-
ratories (the second one with a guest expert). There,
the different laboratory members presented the evidence
on which they based their classifications and, after a
discussion, each laboratory made its decision.

Supplementary Material

Supplementary material is available at Database online.

Data Availability

SpadaHC is accessible at https://spadahc.ciberisciii.es/. The
web code of SpadaHC can be found at the Figshare repository
(https://doi.org/10.6084/m9.figshare.25311124.v1).
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