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Abstract
1.	 Human-transformed residuals, especially those derived from human waste (dumps), 

farmland, and livestock are involved in the emergence of antibiotic-resistant bacte-
ria (ARB) in the environment. Wildlife can act as vectors of ARB dispersal through 
different environments, but also as sentinels to detect the early spread and deter-
mine ARB sources. The development of integrated monitoring programmes focused 
on wildlife would help to anticipate the risks of ARB to humans and livestock.

2.	 We used the yellow-legged gull (Larus michahellis) as a model species to inves-
tigate and monitor the spatial patterns of ARB dispersal across an extensive 
farmland region located in northeastern Spain (Lleida). By integrating GPS track-
ing data and ARB clinical testing for 26 individuals within a network analysis 
framework, we modelled the risk of spatial pathogen spread through faeces dur-
ing the bacteria-transmission latency period (16 days after sample collection). 
Additionally, we created a connectivity network to determine the main sources 
of ARB in the area, focusing on three main habitats of special risk for infection: 
dumps, livestock facilities, and irrigation ponds.

3.	 Seven individuals were infected by Escherichia coli, with one also co-infected with 
Listeria monocytogenes and Salmonella spp. Potential pathogen dispersal distances 
ranged from 1.13 km to 23.13 km from the breeding colony. Our network analyses 
revealed 54 main nodes (i.e. high-risk habitats recurrently visited by tracked gulls) 
and 1182 links among them. Our findings revealed a high degree of connectivity 
between the breeding area, located in a shallow lake, and nearby dumps, high-
lighting them as significant contributors to ARB dispersal.
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1  |  INTRODUC TION

Antimicrobials play a pivotal role in preventing and treating diseases 
in humans, as well as domestic and livestock animals. However, the 
excessive utilisation of antimicrobial agents, coupled with environ-
mental pollution arising from antibiotic residues, poses a substantial 
global threat to humans, as bacteria can become resistant to certain 
antimicrobials (Ferri et al., 2017; He et al., 2020).

Antimicrobial resistance is defined as the inability or reduced 
ability of an antimicrobial agent to inhibit bacterial growth, which, 
in the case of a pathogenic organism, can lead to therapy failure. 
In fact, the prevalence of antibiotic-resistant bacteria (ARB) in the 
environment is considered a major global health challenge that has 
impaired our capacity to treat infections, leading to an increase 
in health treatment costs (Hernando-Amado et  al.,  2019; Murray 
et  al.,  2022). At the same time, ARB has played a critical role in 
agriculture and farming through health impacts on food produc-
tion and domestic livestock, with significant economic repercus-
sions (Vittecoq et  al.,  2016; World Health Organization,  2021). 
Unfortunately, understanding the dynamics of ARB dispersal in the 
environment is challenging due to the wide range of ARB mecha-
nisms and the horizontal transfer of resistant genes between differ-
ent bacteria (Vittecoq et al., 2016). Programmes, frameworks, and 
strategies designed to effectively monitor ARB dynamics and assess 
their potential risks to wildlife and human health and interests are 
therefore essential within a One Health framework.

Antibiotic-resistant bacteria are mainly generated in environ-
ments that present high levels of antibiotic residues, biocides or pol-
lutants, often associated with waste management installations such 
as landfills or water treatment plants (Wu et al., 2017). Residuals de-
rived from food-producing environments (e.g. fertilisers, effluents, 
untreated irrigation water) are involved in the emergence of ARB 
due to the presence of high levels of antibiotics (Iwu et al., 2020; 
Lopes et al., 2022). However, the role of farmland environments in 
the emergence, selection, and circulation of ARB has received less 
attention compared with other humanised ecosystems, such as 
cities, landfills, or wastewater treatment plants (Iwu et  al.,  2020; 
Koutsoumanis et  al.,  2021; Martín-Vélez, Navarro, et  al.,  2024). 

In farmland, ARB dispersal can be enhanced by the transmission 
of pathogens from wildlife to domestic animals and vice versa 
(Hayek, 2022; Kilpatrick et al., 2009).

Wildlife species adapted to exploit anthropogenic resources 
are more likely to harbour ARB. This makes them potential vectors 
for the dispersal of ARB in the environment, affecting both hu-
mans and livestock (Martín-Vélez, Navarro, et  al.,  2024; Vittecoq 
et al., 2016). Dispersal within farmland and livestock environments 
can occur through faecal deposition in surface irrigation waters 
(Moré et  al.,  2017; Reed et  al.,  2003) or inside livestock installa-
tions (Lee et  al.,  2022). Nonetheless, aside from being commonly 
considered ‘evil’, the wildlife involved in the dispersal of ARB can 
also be regarded as ‘allies’ since they can complement ongoing ARB 
surveillance programmes (focused on monitoring ground and sur-
face water, residues, and fertilised soils that can be sources of ARB; 
Koutsoumanis et  al.,  2021), and can be used as sentinels of ARB 
exposure (Martín-Maldonado et al., 2022). Identifying pathogen dy-
namics using wildlife as sentinel species may provide early warning 
signals to assess and anticipate the risks of ARB to humans, livestock, 
and crops (Furness et al., 2017; Martín-Vélez, Navarro, et al., 2024). 
Ultimately, this approach would facilitate the development of rec-
ommendations to mitigate the risk of dissemination, with a particular 
focus on identifying spread routes that have gained priority in public 
health monitoring schemes (Koutsoumanis et al., 2021).

Among wildlife inhabiting human-modified environments, oppor-
tunistic gulls could serve as both evils and allies to advise and mon-
itor, respectively, the circulation of ARB in the environment. Gulls 
are adapted to exploit a high diversity of food resources present in 
landfills, water treatment plants, farmland, and livestock areas, often 
being exposed to the same bacteria and antibiotic residuals as hu-
mans (Zhang et al., 2015). As a consequence, most of these seabirds 
have high rates of antibiotic-resistant pathogens such as Escherichia 
coli, Campylobacter jejuni, or Listeria monocytogenes, among others 
(Bonnedahl et  al., 2009; Stedt et  al., 2014; Martín-Vélez, Navarro, 
et al., 2024; Navarro et al., 2019; Vergara et al., 2017). Although the 
sources and prevalence of ARB are well studied in gulls (Zeballos-
Gross et al., 2021), the pathways of ARB spread in the environment, 
their role as early sentinels and their spatial patterns while infected 

4.	 Synthesis and applications: The integration of GPS data, pathogen testing and net-
work analyses can shed further light on pathogen dynamics by creating spatial 
risk maps and identifying ARB sources. In combination with complementary mo-
lecular epidemiology techniques within a One Health framework, our approach 
can emerge as an important tool for monitoring ARB dynamics within highly 
human-transformed ecosystems. This may empower managers for the develop-
ment of targeted ARB monitoring programmes and effective mitigation strate-
gies, ultimately improving both animal and public health.

K E Y W O R D S
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 13652664, 2024, 11, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2664.14787 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [01/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  2811MARTÍN-­VÉLEZ et al.

are comparatively less known (Swift et  al., 2019). To establish the 
role of opportunistic gulls as both sentinels and vectors of ARB, 
comprehensive epidemiological and mobility analyses are needed. 
These analyses will help to determine the origin of ARB carried by 
gulls, assessing whether they pose a risk to humanised environments 
(Martín-Vélez, Navarro, et  al.,  2024; Plaza-Rodríguez et  al.,  2021), 
and to select habitats most at risk that can be further studied in de-
tail for surveillance programmes.

In this study, we fill this gap of knowledge by integrating the re-
cently developed bio-logging technology, such as miniaturised GPS 
tracking devices that send information in near-real time, within spa-
tial and network analyses, as a means for studying animal movements 
and connectivity, and their potential implications in ARB dynamics 
in highly modified agricultural landscape. Bio-logging has emerged 
as a powerful tool for tracking animal movements with unprece-
dented spatial and temporal resolution (McDuie et al., 2022; Nathan 
et al., 2022). Complementary, network analysis plays a crucial role 
in quantifying connectivity between habitats (Bastille-Rousseau 
et  al.,  2018) and can be applied within pathogen epidemiology to 
determine sources (e.g. dumps, irrigation ponds, livestock facilities 
in our case) and sinks (e.g. natural areas) of ARB in the environment 
(Saucedo & Tien, 2022).

Given their high mobility across diverse habitats and frequent in-
teractions with sources of ARB (Martín-Vélez, Navarro, et al., 2024), 
we selected yellow-legged gulls (Larus michahellis) as a model spe-
cies to exemplify how this opportunistic species can be used as both 

a sentinel and vector species of ARB in agriculture landscapes. In 
particular, we combined GPS tracking information, network analy-
ses, and ARB diagnosis for a yellow-legged gull population inhabiting 
an extensive agricultural and populated area in northeastern Spain 
(Lleida). This novel integrated approach can be an important tool to 
monitor ARB dynamics in the environment using gulls at the indi-
vidual level (Arnold et al., 2016). Specifically, we aim to (1) identify 
the main pathogenic bacteria transmitted by yellow-legged gulls, (2) 
determine the role of gulls as sentinels through network analysis, 
and (3) assess the sensitive habitats with the highest risk of potential 
ARB transmission. Given the utilisation of interconnected habitats 
and resources identified as sources of ARB, we predict the presence 
of yellow-legged gulls infected by ARB. Owing to their high and 
diverse spatial mobility, we also predict that ARB-infected yellow-
legged individual gulls contribute to ARB transmission through the 
recurrent use of sensitive habitats.

2  |  MATERIAL S AND METHODS

2.1  |  Fieldwork procedures

The study was conducted at Ivars i Vila-sana shallow lake (Catalonia, 
northeastern Spain, Figure 1a), a Natura 2000 site (ES5130018), that 
hosts a yellow-legged gull breeding colony of about 30–40 pairs. 
Ivars shallow lake is surrounded by farmland habitats, including 

F I G U R E  1  (a) Location of the study area (Ivars i Vila-sana shallow lake, Lleida, NE Spain) within Europe. (b) Dispersal kernel for E. coli 
through faecal excreta and distribution of the potential spread area (in light green). Coloured points indicate the placement of sensitive areas 
for dispersal (livestock farms, industrial areas, and irrigation ponds). Image credits: Martí Franch.
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both irrigated and dryland herbaceous crops and orchards, small 
and medium-sized towns, dozens of small irrigation ponds, a high 
density of livestock farms (Díez De Los Ríos et al., 2021), and small 
garbage dumps. During the incubation period (April) of 2022, 2023, 
and 2024, we captured 26 (six in 2022, 15 in 2023, and 5 in 2024) 
breeding adults (more than 4 years old) at the nest using a walk-in 
wire mesh trap. All fieldwork was approved by the Ethics Committee 
of CSIC, in accordance with Spanish and EU legislation on the pro-
tection of animals used for scientific purposes (reference numbers: 
410910008014, SF0151/22).

Upon capture, we kept each yellow-legged gull in an individual 
box (never used before) and then collected faeces from the floor of 
the box with two sterile swabs after 10 min. Faecal samples were 
stored in Cary-Blair transport medium at 2–8°C and analysed within 
24 h at the laboratories of the Agència de Salut Pública de Barcelona 
(ASPB). We tagged all sampled yellow-legged gulls with GPS devices 
(OrniTtrack-15 solar-powered GPS-GSM/GPRS tracker, Ornitela, 
Lithuania) which recorded their position at 5-min intervals outside 
the breeding colony and every 30 min when individuals were in the 
colony. We fitted the GPS devices to each of the 26 yellow-legged 
gulls using a wing Teflon ribbon harness fixed with a reef knot in 
the tracheal pit, an attachment method used with large gulls (see 
Thaxter et al., 2014). GPS devices and harnesses weighed less than 
1.8% of the body mass of the birds (20 g for the GPS device ver-
sus 1046 ± 122 g [mean ± SD] for the tracked gulls), less than the 3% 
threshold suggested to have a negative effect on seabirds (Passos 
et al., 2010; Phillips et al., 2003). During handling, we covered the 
head of each gull with a hood to reduce stress. All fieldwork was 
approved by the Ethics Committee of CSIC (REF: 28-04-15-237) and 
the Catalonia Government (REF: AC/059-23, SF/0068/23) in accor-
dance with Spanish and EU legislation on the protection of animals 
used for scientific purposes.

2.2  |  Pathogen detection and antibiotic 
susceptibility testing

All 26 swab-sampled gulls were tested for the presence of extended-
spectrum beta-lactamase- (ESBL), AmpC- and carbapenemase-
producing E. coli strains, Campylobacter spp., Salmonella spp., 
pathogenic Yersinia enterocolitica and Listeria monocytogenes. 
Subsequently, we classified each individual as either infected or 
not infected according to whether or not, respectively, the pres-
ence of any pathogen was detected. We further analysed the ESBL-
producing E. coli and Salmonella spp. strains in order to establish 
whether the strains were susceptible or resistant to the antimicro-
bials tested. E. coli strains were obtained on CHROMID® CARBA 
SMART agar plates (bioMérieux Industries, Marcy l'Etoile, France). 
As stated in Decision 2020/1729/EU, to determine if ESBL-, AmpC- 
and/or carbapenemase-producing E. coli have been isolated, mini-
mum inhibitory concentration (MIC) determinations with different 
antimicrobials are required. According to the WHO (2024), the types 
of highest priority critically important antimicrobials in Spain are 

cephalosporins (3rd, 4th generation), quinolones, polymyxins, and 
phosphonic acid derivatives. If resistance to cefotaxime, ceftazi-
dime, or meropenem is observed using EUVSEC3 plates (Sensititre, 
Thermo Fisher Diagnostic, Vantaa, Finland), MIC determination of 
antimicrobials using EUVSEC2 plates (Sensititre, Thermo Fisher 
Diagnostic, Vantaa, Finland) has to be conducted. All E. coli strains 
found in this study were resistant to cefotaxime and ceftazidime, 
and therefore MIC for the antimicrobials were determined using 
both EUVSEC3 and EUVSEC2 plates (Sensititre, Thermo Fisher 
Diagnostic, Vantaa, Finland). See Supporting Information for further 
details.

2.3  |  GPS analysis

In addition to the parameters extracted directly from the GPS de-
vices (date, time, latitude, longitude, and instantaneous speed), we 
also calculated additional variables from consecutive GPS positions 
(Harversine distance – spherical distance between geographic coor-
dinates of GPS fixes), backward time difference between GPS posi-
tions and trajectory speed (km·h−1). The accumulated distance per 
individual during their foraging trips beyond the breeding area was 
also estimated (Table S1). We considered a foraging trip as the time 
from when an individual left the perimeter of the breeding area (i.e. 
the shallow lake) until it returned for incubating. We delimited the 
perimeter of the lake by overlapping the GPS database with the cor-
responding polygon of Ivars shallow lake from SIOSE land use 2014 
(Instituto Geográfico Nacional, 2014).

2.4  |  ARB connectivity network analyses

To determine the nodes of the ARB connectivity network, we first 
identified the specific locations that the 26 tagged yellow-legged 
gulls actively used (speed data less than 10 km·h−1; López-Calderón 
et al., 2023; Martín-Vélez et al., 2020) outside of the lake with rel-
evance to ARB spread (livestock farms, dumps, and to lesser extent, 
irrigation ponds). In total, 54 sites that met our criteria were identi-
fied (Table 1). The centroid of each site was determined using Google 
Earth under visual inspection and a buffer of 200 metres was applied 
to create polygons that correspond to nodes in the connectivity net-
work. Once the nodes were identified, we created the links by filter-
ing the trajectories in the GPS dataset, beginning in the first node 
with speed <10 km·h−1 and ending in a different node with speed 
<10 km·h−1. Therefore, we defined a directed network weighted by 
the total number of trajectories in each link between nodes.

To test centrality and node importance, we calculated two met-
rics at the node level: (1) betweenness (as a measure to determine 
centrality by establishing the shortest path between two nodes) and 
(2) degree (the number of links joining a node; Table 1). Similarly, two 
metrics were calculated at the network level: (1) diameter (number 
of links from the longest path from one node to another) and (2) 
density (the probability that two neighbouring nodes are themselves 
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TA B L E  1  Details of the 54 sites selected by yellow-legged gulls around Ivars shallow lake (Lleida), listing node number (used for 
trajectories coding, see Table S2), habitat type (dump, irrigation pond, or livestock farm), coordinates, betweenness and degree (as 
measurements of centrality).

Habitat type Node number Latitude Longitude Betweenness centrality Degree

Dump 1 41.818 0.769 0 2

2 41.669 1.159 76 7

3 41.659 0.951 255 11

4 41.676 0.907 54 3

Irrigation pond 5 41.764 0.723 0 3

6 41.764 0.867 0 3

7 41.758 0.869 108 7

8 41.764 0.976 146.33 10

9 41.764 0.98 279.7 4

10 41.754 0.87 0 3

11 41.736 0.951 195.6 8

12 41.744 1.034 73.7 7

13 41.818 1.142 0 5

14 41.818 1.207 296.8 9

15 41.806 1.206 0 4

16 41.789 1.181 110 13

17 41.634 0.809 0 2

18 41.618 0.792 54 4

19 41.571 0.96 53 3

20 41.614 1.038 56.5 2

21 41.621 0.851 53 2

22 41.616 0.857 53 2

23 41.657 0.989 208 4

24 41.691 0.988 0 4

25 41.718 0.999 61.8 2

26 41.698 0.971 33.7 6

27 41.702 0.977 0 6

28 41.705 0.964 0 2

29 41.669 0.875 0 2

30 41.666 0.844 0 2

31 41.686 0.936 0 2

32 41.733 0.822 105 4

33 41.731 0.944 217.33 2

34 41.746 1.033 0 3

35 41.744 1.039 52.2 5

36 41.671 1.029 0 2

37 41.694 1.068 0 2

38 41.603 0.972 14 3

39 41.574 0.946 0 2

40 41.671 0.986 42 2

41 41.612 0.865 0 2

42 41.531 0.762 26.5 2

(Continues)
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neighbours of another node) (Table 1). Diameter reflects the speed 
of movement through the network (in this case an indicator of ARB 
spread), while density measures heterogeneity of movement paths 
(Cerecedo-Iglesias et  al.,  2023). All connectivity metrics were cal-
culated with the R package igraph (Csardi & Nepusz, 2006) and vi-
sualisation was carried out in ArcMap 10.8. We also determined the 
nodes that were used by infected gulls within the shedding time of 
16 days (e.g. the time range that a gull can be an effective vector) 
for ARB transmission to identify potential sites of ARB sources con-
nected to the lake. We quantified the general connectivity between 
habitat types as the cumulative trajectories for those links connect-
ing the same habitats. In this way, we created an undirected network 
with four nodes (i.e. habitat types) and 13 links.

2.5  |  Pathogen risk map

To model the spatial spread risk maps, we selected GPS points 
from all infected yellow-legged gulls up to 16 days after sample 
collection (Table S1), as this is the time range that a gull can still 
spread high concentrations of ARB through their faeces (Franklin 
et al., 2020; Martín-Vélez, Navarro, et al., 2024). We then estab-
lished a defecation rate of once per 3.1 h (± 1 h) based on previ-
ous studies with gulls (Portnoy, 1990) and calculated the dispersal 
distance (Haversine distance) from the release point (t0) of the in-
dividual to the GPS position (t1) occupied 3.1 h later, according to 
the estimated excretion rate of 1 defecation every 3.1 h (Table S1). 
To test for sensitivity in defecation rate while calculating dispersal 
distances, we calculated dispersal distances for individuals with 
a defecation rate ±1 h over the mean estimate used (range 2.1–
4.1 h), as this represents the standard deviation reported in pre-
vious literature (Portnoy, 1990). Finally, we generated a spatially 
explicit spread risk map for the breeding gulls that were infected 
based on kernel density maps in QGIS 3.26.1 (in UTM coordinates 
to calculate densities in points per km2) (Figure 1b). We considered 

a 10-m pixel resolution and a neighbouring area of 300 m (as the 
mean dispersal distance between two consecutive points of 
tagged gulls was 330 m according to our GPS data). We extracted 
the contours from the generated kernels and overlapped them 
with sensitive habitats (irrigation ponds, livestock facilities, in-
dustrial urban areas) based on SIOSE 2014 classification and then 
assigned a score for habitat contribution based on the raw values 
of the density kernel. To construct density kernel maps, we did 
not account for spatial autocorrelation to minimise the extent of 
the area generated by the kernel function (Fleming et al., 2015). 
We also generated contours (same procedure as above) for all GPS 
data points from the infected individuals to determine the poten-
tial area for pathogen spread.

3  |  RESULTS

3.1  |  Antibiotic-resistant bacteria detected

The results obtained showed that cefotaxime, ampicillin, cefepime, 
and ceftazidime were the most common types of antimicrobial re-
sistance detected (detection in all infected individuals; 6/6), followed 
by ciprofloxacin (5/6), nalidixic acid (4/6), tetracycline (4/6), trimetho-
prim (4/6), sulfamethoxazole (4/6), chloramphenicol (2/6), azithro-
mycin (1/6) and ertapenem (1/6) (Table 2). All isolated strains were 
susceptible to cefoxitin, colistin, tigecycline, amikacin, meropenem, 
gentamicin, imipenem, and temocillin and are considered multidrug-
resistant strains as they were resistant to three or more different 
classes of antimicrobials. The six strains isolated showed different 
antimicrobial susceptibility (Table 2). Considering all results obtained, 
for all strains the phenotype was compatible with ESBL-producing E. 
coli. Pathogenic Yersinia enterocolitica was not detected, and only one 
yellow-legged gull was simultaneously infected by E. coli, Salmonella 
infantis, and Listeria monocytogenes. The Salmonella spp. strain was 
further assessed for its resistance profile, and it was found to be 

Habitat type Node number Latitude Longitude Betweenness centrality Degree

Livestock farm 43 41.765 0.707 53 3

44 41.751 0.983 6.3 2

45 41.734 0.829 0.5 5

46 41.746 0.853 0 4

47 41.738 0.815 0 2

48 41.742 0.955 220.3 4

49 41.778 1.05 0 2

50 41.727 1.032 0 2

51 41.709 0.914 0 2

52 41.698 0.988 20.3 3

53 41.736 0.708 0 2

54 41.553 0.809 0 3

Ivars shallow lake 41.682 0.948 2746.3 88

TA B L E  1  (Continued)
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resistant to nalidixic acid, ciprofloxacin, tetracycline, and tigecycline, 
while it was susceptible to the rest of the antimicrobials tested.

3.2  |  ARB connectivity network

The spatial network derived from the movement of GPS-tracked 
gulls included 54 nodes (4 dumps, 38 ponds, and 12 livestock 
farms; Table 1), representing potential ARB sources (and one main 

node which was the breeding colony), and 1182 trajectories dis-
tributed across 147 unique links or “edges” (Table  S1). Infected 
individuals visited 15 of the nodes during the time of infection 
(Figure 2). At the network level, diameter was 29 and density was 
0.05. At the node level, Ivars shallow lake had the greatest values 
of betweenness and degree (2746 and 88, respectively; Table 1), fol-
lowed by node 3 (dump) and nodes 9 and 14 (two irrigation ponds). 
At the habitat level, Ivars shallow lake was highly connected with 
dumps (Figure 3).

TA B L E  2  Antimicrobial resistance profiles for the six E. coli strains isolated from yellow-legged gulls.

Stains FOT AMP FEP TAZ CIP NAL TET TMP SMX CHL AZI ETP

22_10180

22_10181

22_10183

23_06988

23_08791

23_08792

Note: Resistant (red), susceptible (blue). Antimicrobials: Cefotaxime (FOT), ampicillin (AMP), cefepime (FEP), ceftazidime (TAZ), ciprofloxacin (CIP), 
nalidixic acid (NAL), tetracycline (TET), trimethoprim (TMP), sulfamethoxazole (SMX), chloramphenicol (CHL), azithromycin (AZI), and ertapenem 
(ETP).

F I G U R E  2  Spatial connectivity of yellow-legged gull trajectories between ARB sources (dumps, irrigation ponds, and livestock farms in 
different colours) and Ivars shallow lake, based on GPS tracking data from 26 tagged individuals in 2022, 2023, and 2024 during the 16-day 
shedding time of ARB. Line width and colour of the arrows reflect the strength of the links in terms of number of trajectories (see Table S1 
for full details). Nodes used by infected individuals are highlighted in purple.
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3.3  |  ARB spread risk map

Our model indicated that excreta was deposited by infected individ-
uals on average 1.13 ± 0.05 km from the breeding colony (Figures 1b 
and 4), with a median distance of 0.46 km ± 0.01 and a maximum of 
23.13 km (Figure 4). The potential dispersal area of infected individu-
als covered a total of 455.71 km2, but 29.29 km2 fell within the area 
where faecal deposition is expected (Figure 1b). Habitats sensitive 
to ARB corresponded to 3% (2% irrigation ponds, 0.8% livestock 

facilities, and 0.2% industrial areas) of the total area covered by the 
faecal deposition range (Figure 1b). The remaining 97% was consid-
ered less sensitive (although herbaceous crops, representing 82% of 
this area, are susceptible to ARB dissemination).

4  |  DISCUSSION

Our study reveals the ability of yellow-legged gulls to carry and spread 
ARB in highly human-transformed environments such as agricultural 
landscapes. Gulls acted as vectors of ARB as they showed a high preva-
lence of antibiotic-resistant strains of E. coli and connected various 
anthropogenic sources of ARB (especially dumps) throughout the en-
vironment. Gulls also emerged as effective sentinels of ARB circulation 
in the environment. The prompt detection of ARB infection in gulls can 
serve as an early warning signal for managers, enabling them to activate 
proactive measures and implement corrective actions to prevent the 
spread of ARB in the environment. This can be achieved through the 
development of integrated surveillance programmes that identify and 
address early sources of ARB. Understanding individual movement pat-
terns becomes crucial when examining the spatial distribution of patho-
gen spread, and these methods can be extended to other systems.

4.1  |  Gulls as allies: Pathogen prevalence and 
antibiotic resistance

The yellow-legged gull has adapted to exploit a wide range of 
resources and habitats available in both natural and human-
transformed marine and terrestrial environments (Russo et al., 2021; 
Vez-Garzón et  al.,  2023; Vidal et  al.,  1998), including agricultural 
landscapes (Almeida et al., 2023; Garthe et al., 2022; Navarro et al., 
2017). This highly plastic behaviour makes this species susceptible to 
acquiring a wide array of microorganisms associated with the diverse 
range of exploited resources (Martín-Vélez, Navarro, et  al.,  2024; 
Moré et al., 2017; Vergara et al., 2017). These organisms included 
antibiotic-resistant strains of E. coli and other pathogenic bacteria, 

F I G U R E  3  Habitat connectivity based 
on gull trajectories between Ivars shallow 
lake and ARB sources in habitats (dumps, 
irrigation ponds, and livestock farms). Line 
width and colour of the arrows reflect 
the strength of the links in terms of the 
number of trajectories.

F I G U R E  4  Potential pathogen dissemination distances (in 
km) by infected yellow-legged gull individuals breeding in Ivars 
shallow lake (Lleida, NE Spain). Solid orange line depicts potential 
dissemination distances by infected individuals modelled for a 3.1 h 
fixed defecation rate and 1 h (2.1 h-low intervals and 4.1 h-high 
interval) variation range (with dashed lines). Dashed orange line 
shows the mean distance.
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such as Listeria monocytogenes or Salmonella spp. in lower prevalence. 
Listeriosis, caused by L. monocytogenes, is a rare disease considered 
one of the leading food-borne illnesses (Koutsoumanis et al., 2021). 
The presence of Salmonella enterica, with a higher prevalence rate of 
17%, has been reported in a previous study in Spain, which used a 
larger sample size and more extensive testing than the present study 
(Migura-Garcia et al., 2017). Here, we only found one coinfection of 
S. infantis with E. coli and L. monocytogenes, and its presence in gulls 
is related to human food sources, such as dumps (see below; Humski 
et al., 2022). Future studies should utilise larger sample sizes to de-
tect additional pathogenic bacteria, rarer than E. coli, transmitted by 
yellow-legged gulls (Benskin et al., 2009).

The prevalence of ESBL-producing E. coli in gulls differs be-
tween regions and habitats, as observed in a previous study that 
examined antimicrobial resistance patterns in E. coli from vari-
ous gull species sampled in different European countries (Stedt 
et al., 2014). Our study found a prevalence of 26.9%, which was 
lower than that of previous studies, which reported prevalence 
rates of 40%–50% for the yellow-legged gull (Russo et al., 2021; 
Vergara et al., 2017), but higher than that of other studies carried 
out for this species in nearby areas like Barcelona city, which had 
a prevalence rate of 14% (Martín-Vélez, Navarro, et al., 2024). The 
E. coli strains isolated in the present study showed high resistance 
to β-lactam antimicrobials, with 100% resistance to cefotaxime, 
cefepime, ceftazidime, and ampicillin. A previous study reported 
a similar prevalence of ESBL-producing E. coli from yellow-legged 
gulls sampled near our study area, where β-lactams-quinolones-
tetracycline-sulfamethoxazole/trimethoprim was the most com-
mon multi-resistance phenotype detected (Alcalá et al., 2016). It 
is important to note that quinolones and third-generation cepha-
losporins are categorised as highest priority critically important 
antimicrobials in human medicine (WHO, 2024) and that all strains 
isolated in our study, except for one, were resistant to these 
antimicrobials.

4.2  |  Gulls as allies: Connectivity between ARB 
sources

By studying spatial connectivity, we improved our understanding 
of how ARB sources are linked within the environment through 
gull movements. Network level metrics showed a high speed for 
potential ARB dissemination through the network (high diameter 
values). Values reported here were five times greater than those 
in other connectivity studies based on GPS bird movements 
(Cerecedo-Iglesias et al., 2023). Density (an indicator of heteroge-
neous networks) showed high heterogeneity (high values), indicat-
ing that the network presents nodes with more relevance in the 
network than others. This heterogeneous network shape with one 
central node and several secondary nodes is in line with previ-
ous literature (Cerecedo-Iglesias et al., 2023; Rhodes et al., 2006). 
The heterogeneity of the network was driven by the central-
place behaviour of gulls while incubating, with Ivars shallow lake 

representing the central node exhibiting the highest connection 
with the remaining nodes (high betweenness and degree). Ivars 
shallow lake may also act as a buffer or sink that prevents rapid 
ARB dissemination between sensitive habitats. The application 
of network analyses with GPS data (with a greater number of 
tagged individuals) is an important approach for understanding 
pathogen dynamics in other systems (Sánchez-Cano et al., 2024). 
Management measures should prioritise main ARB sources in the 
study area, but also to maintain the ecosystem health of the lake 
itself as it is an important sink of ARB.

Besides Ivars shallow lake as a central node, dumps were the 
most connected habitat with the lake as sources of ARB. More pre-
cisely, a single dump (node 3) close to the breeding colony (2.7 km 
distance) determined the main number of links with the lake and 
other habitats (high betweenness and degree; Table S2). Dumps are 
key sites driving the spatial movement patterns of gulls in the area. 
In fact, it is a common habitat used by gulls that have been infected 
by E. coli and other pathogens (e.g. Salmonella spp., Listeria monocyto-
genes), which may be the source of ARB prevalence in gulls (Ahlstrom 
et al., 2019). Efficient waste management directives to close open 
landfills and prevent access from birds in combination with deter-
rence techniques would reduce the ARB infection rate in wildlife 
(Martín-Vélez, Cano-Povedano, et al., 2024).

To a lesser extent than dumps, some irrigation ponds and live-
stock farms were common foraging and resting sites for gulls that 
maintained network connectivity and may represent sources of 
ARB. However, irrigation ponds and livestock farms may act as both 
sources and sinks of ARB, which increases their importance for 
public health and the food chain (Jadeja & Worrich, 2022). Across 
Europe, ARB levels vary by country depending on their national vet-
erinary antimicrobial usage, with Spain exhibiting one of the highest 
values in Europe (Munk et al., 2018). Within Spain the distribution of 
ARB is also unequal, with the highest concentrations of ARB located 
in Lleida province (where our study was conducted; De la Torre 
et  al.,  2012), which is probably related to the high concentration 
of intensive pig farms in Catalonia (Díez De Los Ríos et al., 2021). 
Identifying sources and spread routes would help to develop sur-
veillance protocols of ARB centred on monitoring ground and sur-
face water, residues, and fertilised soils that can be sources of ARB 
(Koutsoumanis et al., 2021).

4.3  |  Gulls as evils: Sensitive habitats and spatial 
patterns of ARB

Potential pathogen spread was mostly concentrated within a 1 km 
radius of Ivars shallow lake, but with a maximum distance of 23 km. 
Other studies on the dissemination of ARB by gulls showed dispersal 
distances of 5 km during the breeding period of yellow-legged gulls 
in southern Spain (Navarro et al., 2019), but which may reach 50 km, 
or even more than 100 km, in large cities such as Barcelona (Martín-
Vélez, Navarro, et al., 2024). ARB dispersal during the breeding pe-
riod limits the potential risk area to the surroundings of the breeding 
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area due to the natural behaviour of gulls during incubation (Arizaga 
et al., 2014) and the high availability of food sources in the vicinity. 
However, movement patterns are more frequent within the same 
area, so gulls can perform several visits to the same sensitive sites, 
increasing the probability of potential ARB transmission (Devarajan 
et al., 2015). Future studies may consider non-breeding periods dur-
ing ARB shedding time to account for long-distance dissemination 
patterns.

Irrigation ponds showed more susceptibility than industrial 
and livestock facilities to potential ARB dissemination. Antibiotic-
resistance bacteria are especially relevant in aquatic environments 
because they provide a suitable environment for microbial prolifera-
tion and horizontal gene transfer (Amato et al., 2021). Water surfaces 
can also act as a sink for pollutants from terrestrial surroundings 
(Lopes et al., 2022). In the case of irrigation ponds, there might be a 
public health problem involved, as ARB present in irrigation ponds 
(and new strains brought by gulls and other birds) can enter the food 
chain by contaminating cultivated vegetables and fruits in the area 
(Amato et al., 2021). Livestock facilities and industrial areas can also 
have implications for the food chain and the potential transfer to hu-
mans at the final stage through food consumption or direct contact 
with animals (Van Gompel et al., 2019). In our study, the probability 
of transmission to those sensitive habitats was apparently low and 
concentrated within a small radius from the shallow lake constrained 
by the breeding behaviour of GPS-tracked gulls. Finally, we did not 
consider farm landscapes (the dominant habitat in the area) as sus-
ceptible to ARB dissemination (i.e. to have low risk), although most 
of the crops are annually fertilised with animal manure (Jadeja & 
Worrich, 2022; Thanner et al., 2016).

4.4  |  Implications for ARB management

The role of gulls as sentinels of ARB has been reported in previ-
ous studies (Zeballos-Gross et al., 2021). However, the application 
of GPS data to study spatial patterns of ARB dispersal has received 
less attention (but see Ahlstrom et al., 2021; Martín-Vélez, Navarro, 
et al., 2024). Analytical data combined with movements from tagged 
individuals help to track antibiotic resistance and to determine pri-
orities when allocating resources to prevent ARB dissemination in 
the environment. Network analyses provide information related to 
specific nodes (ARB sources) to focus and predict which other sites 
are more likely to be sinks for ARB dissemination. The risk of ARB 
dispersal through human-transformed environments and the poten-
tial contamination of sensitive habitats requires specific surveillance 
protocols, improved monitoring implementation, and the introduc-
tion of regulatory thresholds (Jadeja & Worrich, 2022). In farmland 
like the study area, the monitoring of ARB and other antimicrobials 
in ground and surface water, including wastewater and agricultural 
soils, is important for understanding the role played by antimicrobial 
residues present in the environment (Official Journal of the European 
Union,  2023). An integrated monitoring program combined with 
data sharing, awareness of ARB risks to the agronomy sector, and 

the use of sustainable fertilisers are recommended (Official Journal 
of the European Union, 2023). In conclusion, the combination of GPS 
movement data, network analyses, and pathogen determination to 
create spatial risk maps and networks for ARB sources can become 
an important tool for managing human-transformed ecosystems and 
improving animal health and public health through a One Health 
approach.
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