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1. Introduction

Fraissé Theory was introduced in [29] by Fraissé in the context of model theory with
the intent of giving a generic method to construct countable homogeneous structures from
their finitely-generated substructures. Since then, several adaptations of this method
have appeared. These include, but are not limited to, projective Fraissé theory ([35]),
Fraissé theory for metric structures ([60]) and, of late, Fraissé categories ([32,40]). The
overall idea is to build a ‘large object’, called the Fraissé limit, which is unique, univer-
sal, and homogeneous with respect to a class of ‘small sub-objects’, known as the Fraissé
class. All these variations of Fraissé theory have produced interesting results in their
corresponding areas. For example, well-known topological spaces such as the Cantor set,
the pseudo-arc, the Lelek fan or the Menger curve have been expressed as (projective)
Fraissé limits. (See [9,10,35,40].) Similarly, as shown in [40], the Guraril space is the
Fraissé limit of the class of finite dimensional Banach spaces. In graph theory, the count-
able random graph also arises as the Fraissé limit of the class of finite graphs and, in
model theory, Ehrenfeucht-Fraissé-like games can be built using Fraissé classes.

Recently, Fraissé theory has been applied to the field of C*-algebras (for example, in
[25,36,42,56]) and, in that setting, many well known C*-algebras have been constructed
as Fraissé limits. As proof, the Jiang-Su algebra Z —introduced in [37], and which plays
a central role in the classification of simple C*-algebras— can be seen as a Fraissé limit
([42]). Further, as noted in [31], this construction can be used to (re)prove in simpler
ways some of the properties of the algebra, such as its strong self-absorption. Among
other examples, several stably projectionless C*-algebras were also built as Fraissé limits
in [36], and the existence of a universal AF-algebra was proved in [32].

In light of the recent discoveries connecting Fraissé theory and C*-algebras, it is high
time to explore Fraissé categories of (abstract) Cuntz semigroups. First introduced by
Cuntz in [24], the Cuntz semigroup is a powerful invariant for C*-algebras that codifies
how positive elements are compared. In [22], Coward, Elliott and Ivanescu introduced
the category Cu of abstract Cuntz semigroups, or Cu-semigroups for short. This rich
subcategory of positively ordered monoids has been studied extensively (see, among
many others, [2,6-8,13,14,21]) and has yielded new results for C*-algebras, such as the
ones obtained in [3,17,18,26,43,51,53,55,59]. Further, the category Cu allows one to view
the Cuntz semigroup as a continuous functor for C*-algebras.

The aim of this paper is twofold: To develop a general theory of metric-like properties
for (abstract) Cuntz semigroups, and to use such results to introduce a Fraissé theory in
the category Cu, while also giving examples and studying its relations to its C*-algebraic
counterpart.

The first obstruction that one finds when trying to mimic the past approaches is the
general lack of a non-trivial, enriched distance in the Hom-sets of Cu. Although such
a distance does exist for specific Cu-semigroups (and has been exploited successfully in
a number of situations; see [17-19,43,46]), this approach is still too restrictive for our
purposes. Instead, we will compare morphisms in Cu by using finite-set comparison, an
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idea that had appeared implicity in the past (e.g. [19,46]) but that was first given a name
in [15).

Using this notion of comparison, we introduce Cauchy sequences of morphisms
(Definition 3.4) and show that all such sequences converge.

Theorem (3.8). Let S,T be Cu-semigroups. Then any Cauchy sequence (a;); in
Homcy (S, T) converges towards a unique Cu-morphism.

Further, we also develop a comprehensive theory of intertwinings in Cu; see Defini-
tions 3.10/3.13.

Theorem (3.17). Let (S;, 05 ;)ien and (T;,7; ;)ien be two inductive sequences in Cu with
respective limits (S, 0;.00) and (T, T; o0 ). Assume that there exists a two-sided approzimate
intertwining (a;: S; — Ty, Bit Ti — Sy))i-

Then there exists a Cu-isomorphism «: S = T induced by (oy); whose inverse is
induced by (B;);-

Both of the aforementioned theorems generalize all previous results on the subject
and provide a unified picture of the metric-like structure that Cuntz semigroups enjoy.
Moreover, as noted in Paragraph 3.18, the ideas and techniques developed here can
be applied to a vast family of generalizations of the Cuntz semigroup (including, in
particular, all of its refinements considered in the past). We predict that these metric
flavoured statements will play a key role in future classification and structure results for
possibly non-simple C*-algebras.

With all these tools at our disposal, we are able to develop a Fraissé theory for Cu-
semigroups in Part B of Section 3 and obtain the following theorem.

Theorem (5.27). Let ¢ C Cu be a Fraissé category of Cu-semigroups. Then any Fraissé
sequence (S;,0;.5); has a -limit (S, 04 00)i sSuch that

(i) S is unique up to isomorphism, that is, S does not depend on the Fraissé sequence
chosen.
(ii) The set Home(D, S) is nonempty whenever D is countably-based.

Further, assume that ¢ is contained in a category 0 where every c-inductive sequence
has a limit, and where every 0-object is the limit of a c-sequence. If ¢ C 0 satisfies the
almost factorization property, then

(iii) For any C € ¢, any «, B € Homy(C,S) and any finite set F C C, there exists a
0-isomorphism ng: S =4 S such that npoa>~p .

In Part C of Section 3 we study the relations between this theorem and the Fraissé
theory of C*-algebras, while in Section 4 we provide a number of examples, listed below:
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(1) Any dimension Cu-semigroup S, of infinite type is the Fraissé limit of the Fraissé
category s,.

(2) There exists a universal dimension Cu-semigroup S which is the Fraissé limit of the
Fraissé category Sqim.

(3) There exist countably many Fraissé categories e, whose Fraissé limits are simple,
non-stably finite, not weakly purely infinite Cu-semigroups.

(4) The Cu-semigroup Lsc(2N,N)7 where 2N denotes the Cantor set, is the Fraissé limit
of the Fraissé category Kon.

(5) The Cu-semigroup Lsc(P, N), where P denotes the pseudo-arc, is the Fraissé limit
of the Fraissé category Kp.

(6) The Cuntz semigroup of the Jiang-Su algebra is the Fraissé limit of the Fraissé
category Kz.

Some of the notions in this paper and in [50] seem to hint at the right direction to
develop a model theory of Cu-semigroups, similar to the model theory of C*-algebras
from [27,28]. We do not pursue this here, since this is an elaborate task that will be done
elsewhere.

Organization of the paper. Section 2 recalls the categorical Fraissé theory developed
in [40], where the reader can find the definition of Fraissé categories, Fraissé sequences,
and the fact that any Fraissé category admits a unique Fraissé sequence, up to two-sided
approximate intertwining.

We introduce (Cuntz) Fraissé categories and their limit in Section 3. We start by
recalling some preliminaries about the category Cu and the notion of finite-set compar-
ison for Cu-morphisms (Definition 3.2). We show that Cauchy sequences with respect
to finite-set comparison have a unique limit (Theorem 3.8), and we study approximate
intertwinings in the category Cu (Theorem 3.17). Then, we define the ‘Cuntz analogue’
of a Fraissé category (Definition 3.19), a Fraissé sequence (Definition 3.20), and the fact
that any Fraissé category admits a unique Fraissé sequence, up to two-sided approxi-
mate intertwining (Theorem 3.21). Finally, a characterization of Fraissé limits is given
(Theorem 3.27). We finish the section by exploring the relations between Fraissé cate-
gories of C*-algebras and Fraissé categories of Cuntz semigroups. (Part C.)

Section 4 is divided in Parts A-E, which deal with the aforementioned examples. In
Section 5 we define the Thomsen semigroup of a Cu-semigroup (Paragraph 5.2) by using
the generator G of the category Cu. This allows us to define metrics on any Homcy,-set
(Definition 5.8). We then explore the properties and several examples of such metrics
(Examples 5.10-5.14 and Proposition 5.17).

Acknowledgments. This research started when the second author visited the first author
at the Czech Academy of Sciences. They are both grateful to the IMCAS for its hospi-
tality and for providing a great working environment. The first author would also like
to thank W. Kubis for introducing him to Fraissé Theory.

Both authors thank the anonymous referee for their helpful comments.
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2. Preliminaries on Fraissé categories

The aim of this section is to gather the main definitions and results about Fraissé
categories. These differ slightly, but include, the model-theoretical tools originally devel-
oped in [29]. The categorical approach described below has been developed by Kubis,
and we follow his notation and definitions from [40]. (See also [9] and [32].)

As mentioned in the introduction, the core idea of Fraissé theory is to produce ‘large’
objects that are universal and homogeneous in a generic sense —these objects will be
called Fraissé limits— for a given category of ‘small’ objects —these categories will be
called Fraissé categories—.

Definition 2.1. Let ¢ be a small category. We say that ¢ is metric-enriched if

(i) For any A, B € ¢, the set Hom(A, B) is equipped with a metric d(4, p).
(ii) For any aq,as € Hom (A, B) and 8 € Hom (B, (), we have

da,cy(Boar, Boaz) <dap)(ar,as).

(iii) For any a € Hom(A, B) and f1, 82 € Hom (B, C), we have

dia,c)(Broa,Broa) <dsp.c)(br,B2)

Whenever the context is clear, we write d. instead of d(4,p).
Definition 2.2. Let ¢ be a metric-enriched category. We say that ¢

(JEP) satisfies the joint embedding property if, for any A;, As € ¢, there exists B € ¢
such that both Hom(A4;, B) and Hom(As, B) are nonempty.

(NAP) satisfies the near amalgamation property if, for any € > 0, and any c-morphisms
a1 € Hom( (A, B;) and ay € Hom((A, Bs), there exist C' € ¢ and c-morphisms
B1 € Hom(By,C) and B2 € Hom(Bz,C) such that d (81 o a1, f2 0 as) < e.

(SEP) is separable if there exists a countable dominating subcategory s C ¢, that is,
e the set of s-morphisms is countable. (A fortiori, so is the set of s-objects.)
e for any A € ¢ there exists S € s such that Hom.(A4, S) is nonempty.
e for any € > 0 and any c-morphism o: S — A with S € s, there exist T € s and

a € Hom(A,T) and v € Hom,(S,T) such that dc(cvoo,v) < €.

We say that ¢ is a Fraissé category if ¢ satisfies (JEP), (NAP) and (SEP).

Remark 2.3. Note that, despite the term ‘Joint Embedding Property’, (JEP) does not
ask the homomorphisms involved to be embeddings.
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Definition 2.4. Let ¢ be a metric-enriched category. An inductive sequence (Fj, 0; ;)ieN
is called a Fraissé sequence if, for any € > 0 and any c¢-morphism ~;: F; — C, there
exists a c-morphism ~y;: C — F; for some j > i such that dc(o; 5,7 0v) < €.

Theorem 2.5 (cf. [40]). Let ¢ be a Fraissé category. Then ¢ admits a Fraissé sequence
which is unique up to two-sided approximate intertwining.

Let us now recall the notion of Fraissé limits. As stated before, these objects are often
‘large’, in the sense that they do not belong to the Fraissé category ¢ at hand. Instead,
they are built as inductive limits of c-objects. (Particularly, as inductive limits of Fraissé
sequences.)

More concretely, this amounts to the fact that a Fraissé category ¢ need not have
inductive limits. Because of this, one often considers an inclusion of categories of the
form ¢ C 9, where 0 does have inductive limits. However, the category 0 cannot be ‘too’
large, since this inclusion is asked to satisfy the following almost factorization property.

Definition 2.6. Let ¢, 0 be metric-enriched categories such that d has inductive limits and
¢ € 0. We say that the inclusion ¢ C 0 has the almost factorization property if, for any
inductive system (A;,0; ;)ien in ¢ with d-limit (A, 0;,00):, any B € ¢, any d-morphism
B: B — A, and any € > 0, there exist i € N and a ¢-morphism 5.: B — A; such that
do(0i,00 © B, B) < €.

Theorem 2.7 (c¢f. [/0]). Let ¢ be a Fraissé category included in a category 0 which admits
inductive limits, and such that any object in 0 is a limit of a c-sequence. Then, any
Fraissé sequence in ¢ has a 0-limit F' satisfying the following properties:

(i) F is unique up to isomorphism.
(ii) For any D €0, the set Homy (D, F') is nonempty.

If, additionally, ¢ C 0 satisfies the almost factorization property, then

(iii) For any ¢ > 0, any C € ¢, and any ay,as € Homy(C, F), there exists a 0-
isomorphism n: F =5 F such that dy(noai,az) <e.

Remark 2.8. The category of C*-algebras C* is metric-enriched by the usual norm-
distance between *-homomorphisms. Therefore, the definitions given here can be ap-
plied to C* directly (as done in [32]). However, it is more common to compare
*-homomorphisms metrically on finite sets. (See e.g. [56].) For example, (NAP) in
Definition 2.2 gets changed to: for any e, aj,as, and finite set F' C A, there exist *-
homomorphism 81, B2 such that ||81 0 a1 (z) — B2 0 aa(z)| < € for every z € F. A similar
change is done in the third condition of (SEP) and the definition of Fraissé sequence.
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As we will discuss in Remark 3.32, for our purposes it would also be interesting to
study Fraissé categories of C*-algebras with respect to approximate unitary equivalence.
In that version, (NAP) would be changed to: for any €, a;, s, and finite set F' C A, there
exist *~homomorphism Sy, B2 and a unitary u € C such that |[u* 80 (x)u—Beoas(z)|| <
¢ for every x € F. Analogous changes would be made to the other definitions.

3. Fraissé categories of Cuntz semigroups

As explained in the previous section, the approach to Fraissé categories from [40]
requires each Hom-set to be equipped with a right- and left-enriched metric. This rarely
happens in the category Cu: Every Homcy,-set admits a natural metric (defined and
studied in the last section of this paper), but such a metric is seldom left-enriched. This
was already the case for the specific instances of this metric considered in the past. (See
e.g. [15] and [19].)

To overcome these constraints, we introduce a theory of Fraissé categories for Cu-
semigroups where, instead of using a metric on the Hom-sets, we compare morphisms on
finite sets. This allows us to bypass any sort of enrichment property. In the course of our
investigations, we also define an analog of Cauchy sequences for Cu-morphisms, which
are shown to have a unique limit. Further, building on the results from [15], we develop a
general theory of one- and two-sided approximate intertwinings in Cu. These tools allow
us to define and obtain analogous notions and results to those of Kubis. We finish the
section by describing the relation between these theories in the context of C*-algebras
and concrete Cuntz semigroups.

First, let us recall some preliminaries about the category Cu.

3.1 (Cu-semigroups). Let x,y be elements in a partially ordered set P. We write z < y
if, for every increasing sequence (zj,), which has a supremum such that y < sup,, z,,
there exists n € N such that = < z,.

As defined in [22], a positively ordered monoid S is said to be a Cu-semigroup if S
satisfies the following properties:

(01)

(O2) Every element in S can be written as the supremum of a <-increasing sequence.
(O3) The addition and the <-relation are compatible.

(04)

Every increasing sequence in S has a supremum.

Suprema of increasing sequences and the addition are compatible.

A monoid morphism between Cu-semigroups is a Cu-morphism if it preserves the
order, the <-relation, and suprema of increasing sequences. We denote the category
of Cu-semigroups and Cu-morphisms by Cu. (See e.g. [5] or [30] for a more detailed
exposition.)
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The Cuntz semigroup of a C*-algebra A, denoted by Cu(A), is the quotient (AQK) 4/~
equipped with the addition induced by diagonal addition and the order induced by =,
where the relations < and ~ are defined as follows:

a 3b:<= a=limr,br} for some sequence (r,), C A® K.
n
a~b:<—= aZband b3 a.

The Cuntz semigroup of A, first considered in [24], is always a Cu-semigroup. (See
[22].) Further, every *-homomorphism from A to B induces a Cu-morphism from Cu(A)
to Cu(B).

The relation between concrete Cuntz semigroups and the abstract category Cu has
been studied extensively. (See [2,3,6,13,14,21,51,53] among many others.) For instance,
it is known that the category Cu has direct limits and that the functor Cu is continuous.
(See [5], [22].)

A Cu-semigroup S is countably-based if S contains a countable, sup-dense subset.
Examples include the Cuntz semigroup of any separable C*-algebra.

A. Comparison of Cu-morphisms

As mentioned at the beginning of this section, it is not clear when a set of Cu-
morphisms can be equipped with a (meaningful) enriching metric. In order to overcome
this issue and work in the general setting, we will compare Cu-morphisms on finite
sets. This notion was introduced explicitly in [15], although the idea had also appeared
implicitly in the past when working with specific families of Cu-morphisms. (See e.g.
[17-19,41,43].)

Definition 3.2 (/15, Definition 3.9]). Given a pair of Cu-morphisms «,8: S — T and
a finite subset F' C S, we say that a and 8 compare on F, and we write o ~p (3, if for
any pair ¢/, x € F with 2’ < x, we have

a(r’) < B(z) and B(2') < a(z).

Remark 3.3. As observed in [15], the following are equivalent:

(i) a=p.
(ii) o ~p B for any finite subset F' C S.
(iii) o~y 4y B for any s, s € S with s’ < s.

Note that finite-set comparison can also be used for weaker forms of morphisms be-
tween Cu-semigroups. (See [17, Definition 2.2].)

With this notion of comparison at hand, we can define Cauchy sequences, limits, and
approximate intertwinings in the category Cu.
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Definition 3.4. Let («;); be a sequence of Cu-morphisms in Homc,(S,T). We say that
(a;); is a Cauchy sequence if, for any finite subset F' C S, there exists an index iy such
that o; ~p oy whenever j, k > ip.

The following definition of convergence was introduced in [41, Definition 5.1] for con-
crete Cuntz morphisms. We give here the definition for any sequence of Cu-morphisms.

Definition 3.5. Let («;); be a sequence of Cu-morphisms in Home, (S, 7). We say that
()i converges towards a Cu-morphism a: S — T if, for any finite subset F' C S, there
exists an index i¢r such that a; ~p o whenever j > ip.

Remark 3.6. In view of our previous remark, note that («;); converges to « if, for any
pair of elements 2/, € S with 2’ < z, there exists an index iy such that a;(2’) < a(z)
and a(z') < oj(x) whenever j > 1.

Example 3.7. If a sequence of *-homomorphisms (p;: A — B); converges in point-norm
topology to a morphism ¢: A — B, then the sequence (Cu(y;)); converges to Cu(y).

Indeed, given [a], [b] € Cu(A) with [a] < [b], we can find € > 0 small enough such that
[a] < [(b—¢€)+]. Moreover, we can find i € N big enough such that ||¢;(a) — ¢(a)|| < €
for every j > i. Therefore, we have p;(a) 3 ¢;((b—¢)4+) = (p;(b) —e)+ = ¢(b) and
pla) Zo((b—e)s) = (0(b) =€)+ Z ¢ (b).

Theorem 3.8. Let S,T be Cu-semigroups. Then any Cauchy sequence (a;); in
Homey (S, T) converges towards a unique Cu-morphism.

Proof. Let us first assume that S is countably-based, so that there exists a C-increasing

sequence (B, )y of finite sets of S such that B := |J B, is sup-dense in S. Let («;); be
neN
a Cauchy sequence in Homcy (S, T). We can find a strictly increasing map ¢: N — N

such that o; ~p, o for any j, &k > (n).

Let Seq. (B) denote the set of <-increasing sequence in B, which we may think of
as maps f: N — B, i — f;, such that f; < fiy1 in S for each 7. With this notation,
there exists a map 9: N x Seq(B) — N such that

(i) ¥(-, f): N — N is strictly increasing for every fixed f.
(ii) {fo, .. .,fl+1} - Bw(l,f) for each | € N.

Note that the map ¢ o9 (-, f) is strictly increasing for any f € Seq(B).
Now fix [ € N. By the definition of ¢ we have that o; ~p , , ay for any j,k >
e (l, f)). Further, it follows from the construction of ¢ that

a;j(fi) < ar(fir1) and  ap(fi) < a;(fit1)

for any 0 <4 <! and any j,k > o(¢(l, f)).
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In particular, for j = o(¥(l, f)), k = p(¥(l+ 1, f)) and i = I, we obtain

(1, 1) (1) < Qi+, ) (fi1)-

In other words, the sequence (e (p(,f)) (1)), is increasing. Consequently, we can define
the following map

QSeq: Seq (B) — T
f = sup agp.p) (f1)

We aim to construct a Cu-morphism «: S — 7" induced by ageq. For this, we will
need the following claim.

Claim. Let f,g € Seq(B) be such that sup f < supg. Then ageq(f) < ageq(9)-

Proof of the Claim. Let f,g be as in the statement. For any [ € N, there exists
m € N such that f; < fiy1 < gm. Since ¢ o (-, g) is strictly increasing, we can
assume that m is large enough so that o(v¥(l, f)) < ¢(¥»(m,g)). By construction, we
have a1, (fi) < ax(fiz1) for any & > @(9(1, f)). Thus, we compute

Ao (1,£) (1) < Qp(p(m,g)) (J141) < Uy (m,9)) (9m) < Aseq(9)

which implies that ageq(f) < ageq(g) and proves the claim.
Since B is dense in S, we are now able to construct the following order-preserving
map

a:S—T
8 — Qseq((8i)i)

where (s;); is any <-increasing sequence in the basis B obtained from (02), whose
supremum is s. (The claim shows that « is well-defined, i.e. @ does not depend on the
sequence (s;);, and also that « preserves the order.)

Further, using (04), it is readily checked that « preserves the addition. Using a
diagonal-type argument (see e.g. the proof of [15, Lemma 3.12]), it can also be shown
that a preserves suprema of increasing sequences.

We are left to show that a preserves the compact-containment relation. Let f, g €
Seq (B) be such that sup f < sup g. Then, there exists m € N such that f; < gm—2 <
gm-1 < gm for any [ € N. Find [y big enough such that ¢(1(m,g)) < (¥(l, f)) for any
I > lp. By construction, we have

(1, £) (f1) K Qpp,1) (Im—2) < Qp(p(m,g) (Im-1) K A (p(m,g)) (9m) < Aseq(9)

whenever [ > ly. In particular, we get ageq(f) < aseq(g) and, hence, o preserves the
<-relation. This shows that « is a well-defined Cu-morphism.

Finally, let us prove that («;); converges to a. Let 2/,2 € S be such that z’ < x.
By density of B in S, there exists f € Seq(B) such that 2’ < sup f < z. On the one
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hand, note that there exists I € N big enough such that 2’ < f; < fi11 < 2. We deduce
that, for any ¢ > p(¢(1 4+ 1, f)), we have

ai(z') < ai(fi) < apagr,p) (firn) < aseq(f) = asup f) < afz).

On the other hand, note that o(z') < ageq(f) and, hence, there exists m € N big enough
such that a(z') < appm, ) (fm). We deduce that, for any i > @(ip(m, f)), we have

a(z') < apppim, ) (fm) < @i fng1) < ailz).

This shows that («;); converges towards «. Since such an « is unique, this also proves
that o« does not depend on the basis B chosen.

Now let us show that the result holds for any (possibly not countably-based) Cu-
semigroup S. Let («;); be a Cauchy sequence in Homcy(S,T). Any countably-based
sub-Cu-semigroup H of S (i.e. H is Cu-semigroup that order-embeds into S) naturally
induces a Cauchy sequence (c| )i by restriction. We can thus construct its limit as
above, which we denote by ag.

Let z € S. It follows from [50, Lemma 5.1] that there exists a (possibly not unique)
countably-based sub-Cu-semigroup H, such that x € H,. Let Hy, H be countably-based
sub-Cu-semigroups that contain x. By construction, there exist <-increasing sequences
(n)n and (z)), in Hy and Hs respectively with supremum z such that ag,(z) =
sup,, o, (x,) and agp, () = sup,, oy, (x),). Further, we can choose these sequences so that,
for any m > n, we have

o (2n) < am(Tpy1) and o (a),) < am(@), ).

Let n € N, and find m > n such that x,,11 < a,,. Then, we get

ozn(a:n) < O‘m(xn-&-l) < O‘m(xin) < apg, (x)

Taking supremum over n we obtain ap, (x) < ap,(z) and, by a symmetric argument,
we also get o, (z) < agm, (). We conclude that am, () = ap,(x) for any = € S and,
consequently, that the following map is well-defined

a: S —T
x — ap, (1)

Using the techniques from [50] one can check that « is a Cu-morphism and that the
sequence («;); converges to « (by construction). This ends the proof. O

Notation 3.9. We have just shown that any Cauchy sequence («;); in Homey (S, T') con-
verges towards a unique Cu-morphism «: S — T'. We will say that « is the limit of the
sequence, and write lim; a; = a.
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We are now able to define and study approximate intertwinings in the category Cu.
This generalizes the concepts introduced in [15] for the specific case of uniformly-based
Cu-semigroups.

Definition 3.10. Let (S;,04;)ien and (T;,7i;)ien be two inductive sequences in Cu.
Assume that there exists a strictly increasing map ¢: N — N together with a sequence
of Cu-morphisms (a;: S; — Ti,(;)) satisfying the following property:

For any finite subset F' C S;, there exists an index i > ¢ such that, for any j > ip
and any k > j, the diagram

S, —2s 3, i Sk
o] o
Ty T
20 T e olk)

approximately commutes within F, that is, ax 0 0; x ~F Ty(j),0k) © @ © 04 -
We say that («;); is a one-sided approzimate intertwining.

Proposition 3.11. Let (S;, 0, ;)ien and (T;,7i j)ien be two inductive sequences in Cu with
respective limits (S, 0 00) and (T, T 00). Let (a;: S; — Tyy)i be a one-sided approx-
imate intertwining. Then there exists a Cu-morphism «: S — T such that, for any
finite subset F' C S;, there exists ip > 1 such that, for any j > ip, the diagram

S; —o s, il 5
O‘j¢ Jo

Y

Ty — T

T (4),00
approximately commutes within F, that is, o0 0; oo > To(j),00 © O © T4 5.

Proof. For any i € N the sequence (7,(j),o0
Theorem 3.8 that the sequence has a limit, which we denote by 7;: S; — T'. Using that
this limit is unique, it is readily checked that n; = n;00; ; for any ¢ < j. By the universal

o aj; o0;,); is Cauchy. It follows from

property of direct limits, this induces a Cu-morphism a:: S — T such that 7; = a00; o
for any ¢ € N. Finally, note that for any finite subset F' C S;, we can find an index ip
such that 1; ~p T,(j),00 © @ 00 j for any j > ip. Thus, we have

A0 000 =1 =F To(5),00 OO0
which ends the proof. O

Example 3.12. Let (v);: A; — By(;))i be a one-sided approximate intertwining of C*-
algebras from (A4;, ; j)ieN t0 (Bi, ¢; ;)ien- It follows from Example 3.7 that the induced
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maps (Cu(¢;)); define a one-sided approximate intertwining from (Cu(4;), Cu(y; ;)); to
(Cu(Bi), Cu(di,;))i-

Definition 3.13. Let (S;,05;)ien and (75,7 j)ien be two inductive sequences in Cu.
Assume that there exist two strictly increasing maps ¢, 9: N — N together with two
sequences of Cu-morphisms (a;: S; — Ty;y)s and (Bi: Ty — Sy(;)): satisfying the
following property:

For any finite sets F' C S; and G C T}, there exist indices ip, i > ¢ such that, for
any j > ip, j' >ig and any k > ©(j), k' > ¢(j’), the diagrams

Oi,j Tj, (k) T (57), k!
Si Sj Sip(k) Syry ———— S
aj ¢ ?Bk ﬁj’ ¢ \Lo‘k/
Tso(j) To(4),k T Ti Ti,g! Tj/ T’ e (k) T¢(k/)

approximately commute within F' and G respectively, that is,

Tip(k) ~F Br © To(j)h © @5 0 0ig - and Tiper) =G a0 Oy p © Bjr © Tijr-
We say that («;, 8;) is a two-sided approximate intertwining.

Remark 3.14. Each of the sequences («;); and (f3;); that define a two-sided approximate
intertwining induce a one-sided approximate intertwining.

Throughout the paper, when considering a finite set F for comparison of Cu-
morphisms, we will often need to construct a larger finite set F' which is finer than
F' in the following sense.

Definition 3.15. Let F, F' be (finite) subsets of a Cu-semigroup and let n € N. We will
say that F' is an n-refinement of F, or that F refines F n-times, if

(i) FCF.
(ii) For any f’, f € F such that f' < f, there exist n elements ¢1,...,g, € F such that
ff<a<...<g, < f.

Note that, for any n > 1 and any finite set F' of a Cu-semigroup, we can always find
a finite n-refinement of F'.

Remark 3.16. One of the reasons why the previous notion is needed is that ~p is not a
transitive relation, that is, a ~p § ~p v does not imply « ~g ~. Instead, what we do
have is that, if F' is an n-refinement of F, then o ~p a1 ~p ... ~p oy ~p B implies

Oél"Fﬂ.
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Theorem 3.17. Let (S;,0;;)ien and (T;,7ij)ien be two inductive sequences in Cu with
respective limits (S, 0; o) and (T, T, o). Assume that there exists a two-sided approximate
intertwining (o : Si — Ty, Bi: Ti — Sy(iy)i-

Then there exists a Cu zsomorphzsm o S = T induced by (a;); whose inverse is
induced by (3;);-

Proof. Our approach is similar to that of [15, Theorem 3.16], but we proceed with
additional care since our setting is more general.

Arguing as in the proof of Proposition 3.11, we know that for any 7 € N the sequences
(Tp(j),00 0 005 )5 and (0 (jr),00 © Bjr 0Ti jr )5+ are Cauchy, and we denote their respective
limits by n;: S; — T and v;: T; — S. Furthermore, these limits induce Cu-morphisms
a: S — T and B: T — S. In order to show that o and S are inverses of one another,
it suffices to show that S on; = 0; 0 and awov; = 7; o for any ¢ € N.

Let F be a finite subset of S; and let F be a 2-refinement of F. Since n; is the
limit of (7,(;),00 © @j © 74 5);, we know that there exists j > i big enough such that
Ni ~F Ty(j),00 © @ © 0 . Post-composing with 3, we obtain

Bom g Ve(j) © @ © 04 5. (1)

Consider G 1= a; 0 0y ;(F) C Tj(j). Since v,(;) is the limit of (gy().00 © Bk © To(j),k) ks
we know that there exists k > cp( ) big enough such that v,y ~a 0y (k),00 © Bk © T () k-
Precomposing by o; o o; ;, this implies

Ve (j) © Qj © Tij s Oyp(k),00 © B © Te(j) k © A © T (2)

Finally, since (a4, 8;); is a two-sided approximate intertwining, we also have

Tup(k),00 © B © Tip(j) b © O © 04 j ™5 T oo (3)

whenever j and k are big enough.

It follows from the construction of ' and a combination of (1)-(3) that fo1; ~p 0} .
Since this holds for any finite subset, we must have 5 o 1; = 0; o. Therefore, we get
B oa =1idg. The fact that o o § = idp follows from a symmetric argument. O

3.18 (Comparison and approzimate intertwinings in Cu”). Note that none of the proofs
above uses the fact that the ordered monoids under consideration are positively ordered.
Thus, all the results in this section are still valid for the larger category Cu* introduced
in [16] (loosely, this is the category of not necessarily positively ordered Cu-semigroups).

Many refinements of the Cuntz semigroup have Cu® as their target category, and
thus are amenable to the techniques developed here. We predict that this will play
an important role when one such variant of the Cuntz semigroup is used to classify
morphisms between certain C*-algebras.
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B. Fraissé categories of Cuntz semigroups

We are now ready to introduce a version of Fraissé Theory for abstract Cuntz semi-
groups, analogous to that of [40]. As stated earlier, we use finite-set comparison of
Cu-morphisms to bypass the need of enriched metrics.

Definition 3.19. Let ¢ be a subcategory of Cu. We say that ¢

(JEPcy) satisfies the (Cuntz) joint embedding property if, for any A;, Ay € ¢, there exists
B € ¢ such that both Hom(A;, B) and Hom, (A3, B) are nonempty.

(NAP¢,) satisfies the (Cuntz) near amalgamation property if, for any pair of c-
morphisms a; € Hom, (A4, By) and as € Hom (A, Bz), and any finite subset F' C A,
there exist C' € ¢ and ¢-morphisms 8, € Hom(B;,C) and 82 € Hom(Bs,C) such
that 81 o a1 ~p B3 0 aa.

(SEPcy) is (Cuntz) separable if there exists a countable dominating subcategory s C «c,
that is,

e any object S € 5 is a countably-based Cu-semigroup.

the set of s-morphisms is countable.

for any A € ¢ there exist S € s such that Hom (A, S) is nonempty.
for any c-morphism o: S — A with S € s and any finite subset F' C S, there
exists T € s and o € Hom (A4, T) and 7 € Homg(S,T) such that a oo ~p 7.

We say that ¢ is a (Cuntz) Fraissé category if ¢ satisfies (JEPq,), (NAPq,) and
(SEPcy).

As clarified in Remark 2.3, the Cu-morphisms involved need not be embeddings but
we chose to be faithful to the historical name anyways. Next, we define a notion of
(Cuntz) Fraissé sequences and show that any (Cuntz) Fraissé category admits such a
sequence, which is unique up to two-sided approximate intertwining.

Definition 3.20. Let ¢ be a subcategory of Cu. An inductive sequence (S;,0; ;)ien is
called a (Cuntz) Fraissé sequence if

(i) Every S; is a countably-based Cu-semigroup.
(ii) For any finite subset F C S; and any c-morphism «a: S; — C, there exists a
c-morphism Sr: C — S; for some j > i such that fp oa ~p 0 ;.

Theorem 3.21 (Ezistence and Uniqueness). Let ¢ C Cu be a Fraissé category. Then ¢
admits a Fraissé sequence which is unique up to two-sided approximate intertwining in
C.
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Proof. The proof that such a sequence exists is analogous to that of [40, Theorem 3.3].
We reproduce the proof here with our language of finite-set comparison for the sake of
completeness. In contrast, the uniqueness part of the proof differs from [40].

[Existence] Without loss of generality, we may assume that the countable dominating
subcategory s C ¢ satisfies the joint embedding property and the near amalgamation
property.

Now consider the partially ordered set S := {finite inductive sequences in s} with
the end-extension order, i.e. (S;, 0 ;)ij<n < (T3, 7ij)ij<m in S whenever n < m and
(T3, 7i,5)ij<n = (Si,04,)ij<n- For any S € s, fix a basis B := |J By, such that (By); is a
C-increasing sequence of finite sets of S. For any s-morphism Z: S — T and n,k € N,

we let D,, o be the subset of S of all elements (.S;, 05 ;) j<m Satisfying the following

e M >n.
e Hom,(S,S;) # 0 for some 1.
o if S =5, then there exist j > n and 8 € Homq (T, S;) such that S oo ~p, gy, ;.

Using the joint embedding property and the near amalgamation property, it is readily
checked that all sets of the form D, , j are cofinal in § with respect to the end-extension
order, that is, for any triple n, o, k and any s € S there exists d € D, o 1 such that s < d.

Next, we argue similarly as in the proof of [40, Theorem 3.3] and make use of the
following, commonly known as the Rasiowa-Sikorski lemma: Given an ordered set P and
a countable family of cofinal subets {D,,},cn, then there exists an increasing sequence
(dn)n in P with d,, € D,,.

Let us fix an ordering ¢: N — {(n,a, k) | n,k € N, a € s}. Then, we can use the
Rasiowa-Sikorski lemma to find a <-increasing sequence (c;); where ¢; € D ;). Note that
the supremum of (¢;); is in fact a well-defined inductive sequence in s, which we write
as (S;,055):. By construction, (S;,0; ;); is Fraissé for s. Finally, arguing again as in the
proof of [40, Theorem 3.3], we deduce that (S;,0; ;); is in fact a Fraissé sequence for c.

[Uniqueness] Let (S;,0;;); and (T3, 7 ;); be two Fraissé sequences in ¢. We are going
to recursively construct a two-sided approximate intertwining between them.

First, recall that all the Cu-semigroups involved are countably-based (by definition).
Therefore, for each i, we can fix two C-increasing sequences (B ), (C?),, of finite subsets
of S;, T; respectively, such that their unions over n are sup-dense in S; and T;. Now,
using the joint embedding property first, and then the Fraissé sequence property twice,
we construct the maps fy and )y which make the following diagram approximately

commute.
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Si(0)
~ B0 4
\ 0 // o)
Vo ~
.
/ -7 Bo

~
=c0
o

So
To

Ty (0)

Our aim is to construct strictly increasing map ¥, p: N — N together with large

enough subsets Bwi), C’W(i

Qy(it1): Oy(ir1) — Ty(iy1) producing the following approximately commutative dia-

) of Sy(iy; Tipsy and c-morphisms B, ;)1 Ty — Sy(i41) and

gram.
Sy(i) Sy(i+1)
By o
Bup(i) P (i+1)
Qo (i) ~
“Co(i)
Tow Toiry) — -

To do this, we proceed by induction from the initial data BY, C3, B, Quy(0)- Assume that

o the numbers 1(0), p(0), ..., ¥ (%), (7
o the finite sets BY,CY, ..., Bw(i_l), C’w(i_l)

e the C—HlOI‘phiSInS 50, Qap(0)s - -+ ,ﬁ@(ifl), Ay (1)

have been constructed for some ¢ > 0. (By convention, we have fixed ¢(—1) = ¢(—=1) =0
and By := BY,Cy := CY.)

In what follows, a path is any Cu-morphism in the above diagram that can be expressed
as the composition of finitely many maps among o x, 7k, () and By(;). Let us start
by choosing BMU C Sy(iy and C‘v(i) C T,(iy such that
() By(;) € By and CF) € Cope.

(ii) Nw(i) refines {ﬂ(b) € Syeiy | b € Upci< (B¢(i_l) U C‘W(i_l)) , T a path}.

(iii) éga(i) refines {7‘&'(0) € T¢(i) | ce U0<l§i (Bw(ifl) U Clo(i,l)) , T a path}.

We apply successively the Fraissé sequence property twice. First, we obtain an index
(i + 1) > 4(i) together with a c-morphism SB,;y: Tiy(;) — Sy(i+1) such that

Beoi) © (i) =B, To(i).p(i+1)

and then we get an index ¢(i41) > (i) together with a c-morphism vy ;1)1 Sy(it1) —
T (i+1) such that
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Qp(i+1) © Poli) =, Tol)eli+D)

which finishes the inductive argument.

We will now check that the sequences of ¢-morphisms that we have just constructed
induce a two-sided approximate intertwining. Let us first prove the following.

Claim. Let i,/ € N. For any elements b—,b,bT € Bw(i) such that b~ < b < bt, we
have

(i), (i+141) (07) < Bo(iti) © Tp(i) p(itt) © Qapiy (b7)
Bio(itt) © To(i),pi+l) © (i) (D7) < 0yiy piti+n) (b7)

Proof of the Claim. Note that oy y@i+1)(07) < Beiy © iy (b). Moreover, it follows
from the construction of By, 1) (see (ii) above) that there exists by € By 1) such that
Ty w(it1) (b7) K by K Bu(iy © Ay (). Thus, we have that

Ty w(i+2) (07) < Bo(it) © i) (02) < Bo(itr) © ayit1) By © Qi (D))

Proceeding successively in this fashion, we obtain

O'w(i),w(i+l+1)(b_) (Bgo(%H) O Qlypy(i41) )o (@o © Oézp(z‘))(b)- (4)

A similar argument involving the pair vy (;)(b) and ay ;) (b*) shows that

(Qy(itt) © Bo(iti—1)) © - - - 0 (p(it1) © By ) (i) (0)) < Teoa, (it (i (07)). (5)

Post-composing (5) by B, (i+1) and combining it with (4) gives us the first inequality of
the claim. The other inequality follows from a symmetric argument, which proves the
claim.

Finally, let F' be a finite subset of S;. From the construction of the Bw(z-)’s (see (i)
above), there exists an index iz > 7 such that, for any f/, f € F with f’ < f and any
j>ip, we can find b=, b,bT, € Bw(j) such that o; ;) (f') Kb~ < b <K< bT < 05 45 (f).
Applying the claim, we get

Oipk+1) () < Bok) © To(i),0(k) © Q) © Tip() (f)
Buo(k) © Te(4).p(k) © Qy(j) © Ti w(y)(f ) < Uml}(kﬂ)(f)

for any j > ir and any k > j + 1. In other words, o; y(k+1) =F By(k) © Tu(j),0(k) © Qp(j) ©
Tiap(j)- Setting o 1= ay(j) © 04y and By, 1= By(k) © Tk o (k), We obtain

,w(k-i-l) fpﬂkOT()koa 00'1]

The second property of Definition 3.13 is proved by using a symmetric argument and we
are done. O
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On the road towards our version of Theorem 2.7, we follow with some technical lem-

mas.

Lemma 3.22 (Universality). Let ¢ C Cu be a Fraissé category. Let (S;, 0 ;)ien be a
Fraissé sequence and let (T;,7; ;)ien be a c-inductive sequence of countably-based c-
objects.

Then, there exists a one-sided approxvimate intertwining (ci;: Ty — Sp(i))i-

Proof. We are going to construct the desired one-sided approximate intertwining re-
cursively following a similar argument to that of Theorem 3.21. Recall that all the
Cu-semigroups involved are countably-based by definition. Therefore, for each ¢, we can
fix a C-increasing sequence (B! ), of finite subsets of T; such that its unions over n are
sup-dense in T;. Now, using the joint embedding property together with the fact that
(Si,04,7)i is a Fraissé sequence, we construct a ¢-morphism ag: Tp — Sy (0)-

So —— Sy (0)

Our aim is to construct a strictly increasing map ¢: N — N together with large
enough subsets B; of T; and c-morphisms i1t Tip1 — Sp(iq1) such that o,y oeir1) ©
Q; ~p. Qi1 0 Ti;t1. To do this, we proceed by induction from the initial data BY, ap.
Assume that

o the numbers ¢(0),...,¢(i)

o the finite sets B, Bi,...,Bi_1
e the c-morphisms ayg,...,q;

have been constructed for some i > 0. (By convention, we have fixed B_; := B.)
Let us start by choosing Bi C T; such that

(i) B! C B;.
(ii) B; is a 2-refinement of {Ti,l’i(b) €Ti[beUpci<i Bi,l}.

TS,

We then use the near amalgamation property to construct c-morphisms £, ;,6;,1 such
that the quadrilateral in the diagram below approximately commutes within B;. Lastly,
we use the Fraissé sequence property to get a c¢-morphism §§1+1 such that the triangle
underneath approximately commutes within ai(Bi). Define a;41 := g;l+1 00;t1.
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T, ——————= T

N 041
o Vi on
u 7
§iv1 B
o Sit1

a;(B;) A
SW(i) — Scp(i+1)

Hence, we have obtained a sequence of c-morphisms (a;: T; — S,(;))s, and we are left
to show that this is a one-sided approximate intertwining.

Claim. Let i, j € N. For any elements b',b;,b],b € B; such that b < by < b < b,
we have

Top(i)p(i+j) © (D) < @igj 0 Tiig (D)
@it 0 Tiirj (') < 0u(i) ity © i(b)

Proof of the claim. Note that

Toiypien) © (V) < Eh 0 &y 0 ai(by) < &y 00ip1 0 Tiis1 (b)) = g1 0 Tiis1 (b)),

From the construction of the B;’s (see (ii) above), we know that we can find by , b3 € B; 1
such that 7; ;41(b) < by < bF < 7;.:11(b). Therefore, we have

Utp(i+1) ©(i+2) O 41 0Ty z+1(b ) < €z+2 o §z+2 o al-i—l(b ) < Q42 O Ti41, z+2(b+)

Proceeding successively in this fashion, we obtain elements bf, b;“, ceey bj such that

bl+ € Biyi_1, and bz+ &K Tiiti—1(b) for any [ < j. We compute

IN

To(i)p(i+1) © (D) < a1 0Ty i1 (b7)

Op(i+1),p(i+2) © Olz+1(Tz i+1(07)) < aiqa 0 Ti+1,i+2(b§r)

+
1
Op(i+2),0(i+3) © Oéz+2(7'z+1 z+2(b§r)) < @30 Ti+2,i+3(b§r)

Tt j—1)sp(itg) © Vit j—1 (Tij—2,i05—-1(07_1)) < Qi © Tigj—1,i45 (b))

This proves the first inequality of the claim. The other inequality is shown using a
symmetric argument.

Finally let F be a finite subset of T;. From the construction of the By’s (see (i) above),
there exists an index ¢ > 7 such that, for any 7 > ip and any pair f’, f € F with f/ < f,
we can find b, by, b, b, € Bj such that 7, ; (f') < ¥ < b] < b] < b< 7, ;(f). Applying
the claim, we readily obtain
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To() ) © 0 © Tij (f') < a0 T k(f)
ar o Tik(f') < Tp(s).pk) © @5 © Tiri(f)

for any j > ip and any k > j. In other words, ax o Tix ~F Ty(j),p(k) © @ © Tij, as
required. O

Lemma 3.23 (Homogeneity). Let ¢ C Cu be a Fraissé category and let (S;, 0 ;)ien be
a Fraissé sequence. Then, for any c¢-morphisms a: C — S;, B: C — S; and any
finite subset F C C, there exists a two-sided approximate intertwining (n;: S; —
Stp(i)ayi: S; — 51/,(1-))1'2[ such that

op@ oa~prviooiof  and 0y, 0B =FNio0i0oQ

for any i > 1.

Proof. We will build the approximate intertwining following the structure of the previous
proofs.

First, let us consider a 4-refinement F of F. (That is, F is a finite subset of C that
contains F' and is such that, for any f’, f € F with f' < f, there exist ¢, ¢, 97,9 € F
satisfying f/ < ¢’ < g~ < gt < g < f.) Then, using the near amalgamation property
together with the Fraissé sequence property, we construct c-morphisms vy, 1,y such that
the following diagram approximately commutes.

Sp ————= Sl/}(l)

SN
D L

Using the ideas and techniques from Theorem 3.21, it is readily verified that

My (1)

Se()

o101 ° B < ouew) 0 Bg) <y 0 arpa) © a(g) < Ny © Ty © alf)
o oalf) <oyapoalg) <wviopB(g) <wvioB(f)

Finally, from the initial data B; := a(F),C; := B(F), Vi, My(1), one can construct a
two-sided approximate intertwining following the proof of Theorem 3.21 (starting at [
instead of 0). Such an intertwining will enjoy the desired properties. O

We now have all the tools that we need to obtain Fraissé limits in the category Cu.
Let us first introduce the almost factorization property adapted to our setting.

Definition 3.24. Let ¢ C 0 be an inclusion of categories in Cu such that ? has inductive
limits. We say that the inclusion ¢ C 0 has the (Cuntz) almost factorization property
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if, for any C' € ¢, any c-inductive system (S;,0; ;)i jer with d-limit (S, 0;0)s, any -
morphism «: C — S, and any finite subset F© C C, there exist an index i and a
c-morphism arp: C — S;,, satisfying 0, . © aF ~F a.

Adapting the definition of the Ind-completion (see, for example, [38, Chapter VI]), we
define:

Definition 3.25. Let ¢ be a subcategory of Cu. The completion of ¢, denoted by ¢, is the
subcategory of Cu whose

(i) objects are Cu-limits of inductive sequences in c.

(ii) morphisms are induced by some one-sided approximate intertwining.
More specifically, a Cu-morphism «: S — T between ¢-objects S, T is a c-morphism
if for any c-inductive sequence (S;, 0; j); whose Cu-limit objects is S, there exists a
c-inductive sequence (73, 7; ;); whose Cu-limit object is T' together with a one-sided
approximate intertwining (a;: S; — Ty ;)): in ¢ which induces o in the sense of
Proposition 3.11.

Remark 3.26. The following two properties of ¢ are readily verified. (For example, they
can be adapted from the results and references from [38, Chapter VIJ].)

(i) The category ¢ is a well-defined subcategory of Cu containing ¢ as a subcategory.

(ii) Any inductive sequence in ¢ has an inductive limit in ¢ which coincides with its
inductive limit in Cu. In particular, any object S € ¢ can be written as the ¢-limit
object of an inductive sequence in c.

Further, note that ¢ C ¢ may not satisfy the almost factorization property. However,
this will be the case for all our examples.

Theorem 3.27. Let ¢ be a Fraissé category. Then any Fraissé sequence (S;,0;;); has a
¢-limit (S, 04.00)i Such that

(i) S is unique up to isomorphism, that is, S does not depend on the Fraissé sequence
chosen.
(ii) The set Homg(D, S) is nonempty whenever D is countably-based.

Assume that ¢ is contained in a category 0 where every c-inductive sequence has a
limit, and where every d-object is the limit of a c-sequence. If ¢ C 0 satisfies the almost
factorization property, then

(iii) For any C € ¢, any «, 8 € Homy(C,S) and any finite set F C C, there exists a
0-isomorphism ng: S =5 S such that npoa~p 3.
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Proof. (i) follows immediately from Theorem 3.21 together with Theorem 3.17, while
(ii) follows as a combination of Lemma 3.22 and Proposition 3.11.

To see (iii), let o, 8 € Homy(C, S) and let F' C C be a finite subset. Construct a 3-
refinement F of F. Let (Si,0i,5)i be a Fraissé sequence. Then, by the almost factorization
property, there exist morphisms az, 8z: C — S; such that a ~ o) 0 af and § ~5
01,00 © 3. Using Lemma 3.23 and Theorem 3.17, we see that there exists an isomorphism
np: S — S satisfying the desired condition. 0O

3.28 (Fraissé Categories of Cu*-semigroups). Following the discussion from
Paragraph 3.18, we note that all the results above also do not use the fact that the
underlying ordered monoids have a positive order. Thus, we have in fact developed a
Fraissé theory for Cu*-semigroups.

C. C*-algebras and Fraissé categories of Cuntz semigroups

In this last subsection we study under which assumptions the functor Cu induces a
Fraissé category of Cuntz semigroups when applied to a Fraissé category of separable
C*-algebras. A natural (but rather strong) assumption to consider is that Cu classifies
*-homomorphisms of the Fraissé category ¢ C C* at hand. We will see that, under an ad-
ditional mild assumption, this is sufficient to deduce that Cu(c) is a Fraissé category. We
will conclude with some remarks on the link between these Fraissé categories, where we
discuss a weak converse of our result and ways to considerably strengthen the statement.

Let us start by recalling the definition of classifying morphisms. (See, for example,
[43] or [17] for more details.)

Definition 3.29. Let ¢ and 0 be subcategories of separable C*-algebras. We say that the
functor Cu classifies *-homomorphisms from ¢ to 0 if, for any A in ¢, any B in 0 and any
scaled Cu-morphism «: Cu(A) — Cu(B), there exists a *~homomorphism y: A — B,
unique up to approximate unitary equivalence, such that Cu(x) = a.

We will say that Cu classifies *-homomorphisms of ¢ whenever ¢ = 0.

In the setting of Definition 3.29 above, the term scaled Cu-morphism simply means
that there exist strictly positive elements s4 € A and sp € B such that a([sa]) < [sp].
This notion fits in the general framework of scales in Cu-semigroups and their associated
morphisms, as developed in [6, Section 4]. We refer the reader to that paper for a more
detailed exposition.

Lemma 3.30. Let ¢ be a category of separable C*-algebras which is either full or replete.'
Assume that Cu classifies *-homomorphisms of ¢. Then Cu(c) is a subcategory of Cu.

L Most of the Fraissé categories that we will consider are not full (for example, one usually considers
injective maps). However, they will all be replete, i.e. for any A € ¢ and any *-isomorphism a: A — B,
then both B and « are in c.
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Proof. In both cases, the fact that the identity of every Cu(c)-object is a Cu(c)-
morphism, and that both domain and codomain of a Cu(c)-morphism are in Cu(c) is
immediate. The non-trivial part is to check that Cu(c) is closed under composition of
morphisms.

Let ¢: A — B and 9: B’ — C be *-homomorphisms such that Cu(B) = Cu(B’).
Write o := Cu(¢) o Cu(p): Cu(A) — Cu(C). Note that « is still a scaled morphism,
that is, it maps the class of a strictly positive element in A below the class of a strictly
positive element in C.

Assume that ¢ is full. Since Cu classifies *~-homomorphisms of ¢, we know that there
exists a *-homomorphism y,: A — C, which is a ¢-morphism by fullness of ¢, such that
Cu(xa) = a. In other words, a € Cu(c).

Now assume that ¢ is replete. Since Cu classifies *-homomorphisms of ¢ and Cu(B) =
Cu(B’), we know that there exists a *-isomorphism x: B = B’ lifting idcyp). Since ¢ is
replete, we also know that y is in fact a c-morphism. Now define x,, := ®oxop: A — C.
From construction, X, is a c-morphism and Cu(x,) = a. In other words, @ € Cu(c). O

Theorem 3.31. Let ¢ be a category of separable C*-algebras which is either full or replete.
Assume that Cu classifies *-homomorphisms of c.

If ¢ is a Fraissé category whose Fraissé limit is A, then Cu(c) is a Fraissé category
whose Fraissé limit is Cu(A).

Proof. The joint embedding property immediately follows applying the functor Cu.

Let us prove the near amalgamation property in Cu(c). First, we note the following
fact.

Fact. Let A be a C*-algebra and let F' C Cu(A) be a finite subset. Then there exists
a small enough € > 0 such that, for any [a], [b] € F with [a] < [b], then [a] < [(b—€)4].

Let Cu(¢y): Cu(A) — Cu(B;) and Cu(¢z): Cu(A’) — Cu(Bz2) be c-morphisms
with Cu(A4) = Cu(A4’). Using the same arguments as above, we may assume A = A’.
Let F C Cu(A) be finite and let € > 0 be the constant given by the previous fact.
Now, using the near amalgamation property in ¢, we know that there exist c-morphisms
Y1: By — C and ¢9: By — C such that dgs (11 0 ¢1,199 0 ¢2) < . We are left to show
that Cu(y o ¢1) ~p Cu(tz o ¢2). Let [a], [b] € F be such that [a] < [b]. We know that
l1h1 © ¢1(b) — 1ba 0 P2 (b)|| < € and that [a] < [(b — &)4] which implies that

Cu(¢hr 0 ¢1)([a]) < Cu(@hr 0 ¢1)([(b = €)+]) < Culypz o ¢2)([b])
Cu(¢hz 0 da)([a]) < Cu(@hz 0 d2)([(b = €)+]) < Culypn o ¢1)([b])

as desired.

That Cu(c) is separable is shown similarly, by also using the fact that any C*-algebra
in ¢ is separable, and thus gives rise to a countably-based Cu-semigroup.

We deduce that Cu(c) is a Fraissé category. Further, given any Fraissé sequence in c,
we can use that Cu classifies *-homomorphisms of ¢ to show that the induced sequence
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in Cu is Fraissé in Cu(c). Thus, by continuity of the functor Cu, it is readily checked
that Cu(A) is the Fraissé limit of Cu(c). O

Some remarks are in order:

Remark 3.32. (i) Assume that ¢ is such that Cu classifies *-homomorphisms from ¢ to
stable rank one C*-algebras or, more generally, to a category 0 closed under ultraprod-
ucts. Then, it follows from [43, Theorem 3.3.1] that the previous theorem has a weak
converse: Cu(c) is Fraissé if and only if ¢ is Fraissé with respect to approximate unitary
equivalences (in the sense of Remark 2.8).

(ii) The assumption of classification of *-homomorphisms is rather strong in general. For
instance, it is proved in [17] that the functor Cu does not classify *-homomorphisms
of circle algebras. Nevertheless, we do not use the full force of the assumption, neither
in Lemma 3.30 nor in Theorem 3.31. Explicitly, one only needs to assume the following
much weaker condition:

a B
For every A, A’, B, B’ € ¢ such that Cu(A4) = Cu(A’) and Cu(B) = Cu(B’), and any
c-morphism ¢: A — B, there exists a c-morphism ¢: A" — B’ such that Cu(¢p)oa =
B o Cu(yp).

Note that, in particular, this holds whenever our category has a single object. (See
Remark 4.37.)
To obtain a weak converse (as in (i)), the additional property that one needs is:

For every C*-algebra A in ¢, any finite set F C A and any € > 0 there exists a finite
subset G C Cu(A) such that, whenever two c-morphisms ¢1,p2: A — B satisfy
Cu(p1) ~g Cu(yps), then there exists u € B such that ||u*¢1(z)u — pa(2)|| < € for
every x € F.
(iii) A number of examples of C*-algebraic Fraissé subcategories ¢ have injective *-
homomorphisms as morphisms. Note that the theorem above does not imply that ¢
induces a category Cu(c) whose morphisms are order-embeddings, since injective *-
homomorphisms do not generally induce injective Cu-morphisms. For example, the
diagonal map C & C — M>(C) is injective, but the induced Cu-morphism maps both
[(1,0)] and [(0,1)] to [1 @ 0]. Conversely, a *-homomorphism that induces an order-
embedding may not be injective.

4. Examples
In this section we exhibit natural examples of (Cuntz) Fraissé categories together

with their Fraissé limit. This allows us to deduce several generic properties about the
Cu-semigroups at play. More explicitly, we show that the Cuntz semigroup of any UHF-
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algebra and that the Cuntz semigroup of the universal AF-algebra are the Fraissé limits
of some well-chosen Fraissé categories. We also show that there are countably many
Fraissé categories of elementary Cu-semigroups whose Fraissé limits are not purely infi-
nite, non-stably finite, simple Cu-semigroups. Finally, we prove that both Cu-semigroups
Lsc(X,N), where X is either the Cantor set 2N or the pseudo-arc P, can also be written
as Fraissé limits.

In all our examples the inclusion ¢ C ¢ satisfies the almost factorization property.

A. Dimension Cu-semigroups of infinite type as Fraissé limits

In what follows, we show that the Cuntz semigroup of any UHF-algebra arises as a
Fraissé limit. Following [5], recall that a Cu-semigroup S is said to be simplicial whenever
S =N for some r € N, and that an inductive limit of simplicial Cu-semigroups is called
a dimension Cu-semigroup.

Let p be a prime number and consider the semigroup S, := N[%] LI (0, 00], where the
mixed sum and mixed order are defined as follows:

(+) 2o +ys = 25 +ys € (0,00] for any pair z. = k/p' € N[%] and ys € (0, 00].
(<) retaining the same notation, x; < x. < x. < s + ¢ for any € > 0.

Recall that S, is the Cuntz semigroup of the UHF-algebra M. (See, e.g. [5, Proposi-
tion 7.4.3].)

4.1. The category s, is the category whose (single) object is N and whose morphisms are

ok —
powers of p. (That is, a s,-morphism is given by N ZPL N for some k € N.)
Theorem 4.2. The category s, is Fraissé and its limit is Sp.

Proof. The joint embedding property and separability are clear and the amalgamation
property follows from the commutativity in Homs, (N,N). Therefore sp is a Fraissé
category.

Let us now show that the sequence given by (N, i)n is Fraissé. For any s,-morphism

Jr— k —
a: N 22 N there exists a large enough index (consisting of k + 1 steps further from the
domain of «) such that the following diagram commutes

N N
Xﬁ/p

It follows that the sequence is Fraissé and, hence, its limit S, is the Fraissé limit of
Sp. O
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Remark 4.3. An analogous statement to that of Theorem 4.2 works for the Cuntz semi-
group of any UHF-algebra. However, such semigroups may not be as easily computed
as those of infinite type. Also, let us remark that we could have deduced the previous
result from Theorem 3.31.

B. The universal dimension Cu-semigroup as a Fraissé limit

Based on the work done in [32], we now exhibit a universal dimension Cu-semigroup
S as a Fraissé limit of a well-chosen Fraissé category s4im containing all simplicial Cu-
semigroups. As a matter of fact, we will see that S is the concrete Cuntz semigroup of
the universal AF-algebra A constructed in [32]. Therefore, S enjoys analogous properties
to those of A, but in the category Cu. Before we begin, we need to recall and prove some
results about retractions in the category Cu.

4.4 (Retractions). We aim to define a Fraissé category Sqim that will be built out of
retractable Cu-morphisms. Recall that an ordered monoid morphism «: S — T between
two Cu-semigroups is said to be a generalized Cu-morphism if « preserves suprema of
increasing sequences.

Definition 4.5 ([51, Definition 3.14]). Let S,T be Cu-semigroups. We say that S is a
retract of T if there exists a Cu-morphism ¢: S — T together with a generalized Cu-
morphism p: T'— S such that po: =idg.

We say that ¢ is retractable and that p retracts ¢.

Following [21], a submonoid I of a Cu-semigroup S is said to be an ideal if I is
downward-hereditary and closed under suprema of increasing sequences. Given any ideal
I of S, one can construct the quotient Cu-semigroup S/I; see [5, Lemma 5.1.2]. Ideals
and quotients of a C*-algebra A are in bijective correspondence with the ideals and
quotients of its Cuntz semigroup Cu(A); see [5, Section 5].

Proposition 4.6. Let S be a Cu-semigroup.

(i) If S is countably-based and satisfies (05)-(07), then any ideal of S is a retract of S.
(ii) If (S,0i,00)i is the limit of an inductive sequence (S;,0; ;)i such that o; ;41 is re-
tractable for each i € N, then 0, is retractable for any i € N.

Proof. (i) Let I be an ideal of a countably-based Cu-semigroup S and let ¢t: I — S
be the canonical order-embedding. Observe that I is a countably-based Cu-semigroup.
Thus, I has a greatest element that we denote by coy. Using [2, Theorem 2.4], we know
that the infimum z A ooy exists for any = € S. Further, such an infimum is always in I,
since x A ooy < 007.

Now consider the map p: S — I that sends  — x A coy. It follows directly from [2,
Theorem 2.5] that p is a generalized Cu-morphism that satisfies p o ¢ = idy, as desired.
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(ii) Let (S;,04,;); be an inductive sequence with retractable maps, and let (S, 0; )i
be its inductive limit. Denote by p;;1,; the retract of o; ;1. For each pair ¢ < j, let
pji: Sj — S; be the composition p;11,;0...0 p;_1, which trivially retracts o; ;.

Now fix i € N and let s € S. Using the characterization of sequential inductive limits in
the category Cu (see e.g. [43, Section 2.1]), we know that there exists a sequence (Sy,)n>;
with s, € S, such that o, n+1(sn) < Spt1 and sup,s; on,co(Sn) = s. Applying the
retract at each step gives us that s, < pny1.n(Snt+1) and,ihence7 Pn,i(Sn) < Prt1,i(Snt1)
for any n > 4.

Set poc,i(s) := SUP,>; Pn,i(5n). A standard argument shows that p ;: S — S; does
not depend on the sequence (s,)n>; chosen. This also proves that po; is additive,
preserves the order, and suprema of increasing sequences. (See e.g. the argument in [15,
Lemma 3.12] or in [1, Lemma 7.3].)

Finally, let € S; and let (z,), be a <-increasing sequence in S; with supremum z.
For each n > i, set s, 1= 0 n(z,). Since poo; does not depend on the sequence (sy,),
chosen, we have poo i(04.00(2)) = SUpP,, Pn,i(Sn) = sup, Pn,i(0in(zy)) = sup,z, = =
which ends the proof. O

The following is based on [32, Proposition 3.8].
Proposition 4.7. Let ¢ be a subcategory of Cu closed under direct sums. Let (S;, 0, ;); be
an inductive sequence in ¢ with ¢-limit (S, 0 c0);.

Then, there exists an inductive sequence (T;,7; ;); in ¢ with ¢-limit (T, 7T; )i such that

Ti,; s retractable for every pair i < j, and such that S = T/J for some ideal J of T.

Proof. Let i € N and set T} := Sog @ ... ® S;—1 ®S;. Let 7 541: T; — Tiy1 be the
Cu-morphism defined by

Tiit1(805 -+, 8i—1,8i) = (055 8i—1,5,04,54+1(5)).

Note that 7 j41: T; — T4 is retractable by the projection m; 11 ;: T;11 — T; onto the

first ¢ components of T;. More particularly, we have m;41,:(So0, - - -, Si, Si+1) = (S0, - -, 8i)-
It follows that every composition 7;; := 7j_1,j 0 ... 0 7; ;41 is also retractable for any
j>1+ 1.

Let (T, 7;,00); be the limit of the inductive system of (7;,7; ;); and set
Jo:={z €T |z=1(s0,...,5-1,0) for some i € N and sg € Sp,...,si—1 € Si—1}.

Note that Jy is a submonoid of T. Thus, we can construct its sup-closure J := Tosup.
(See e.g. [50, Definition 4.6].) Further, given y € J and « € T such that z < y, take
2’ € T such that ' < x. Since J is the closure of Jy and 2’ < =z, there exist i € N,
t € T;, and (sg,...,8;—1,0) € T; such that

T < To(t) <z, and t< (so,...,si-1,0).
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In particular, we get ¢ € So @ ... ® S;—1 ® 0 and, hence, 7; o (t) € Jo. This shows that =
can be written as the supremum of elements in Jy or, equivalently, that x is in J. Thus,
J is an ideal of T'. It is now clear that S = T/J. O

4.8. The category sqim is the category whose objects are the simplicial Cu-semigroups
and whose morphisms are retractable Cu-morphisms.

Theorem 4.9. The category Sqim s Fraissé and its limit S is the Cuntz semigroup of the
universal AF-algebra.

Proof. First, note that any retractable Cu-morphism between simplicial Cu-semigroups
can always be retracted by a Cu-morphism. Indeed, let t: S — T be a Cu-morphism
between simplicial Cu-semigroups, and let p: T — S be a generalized Cu-morphism
such that p ot =idg.

Define p': T — S by p/'(z) := p(z A cot(lg)). This map is the composition of
generalized Cu-morphisms, and so it itself is a generalized Cu-morphism. To see that
it preserves the <-relation, simply take z € T such that < x. Then, one gets
x Aoot(lg) < x A ooi(lg) and, consequently, that x A cot(lg) < ne(lg) for some n > 1.
This implies p/(z) < nlg, which is equivalent to p/(z) < p/(z), as desired.

Further, since Cu-morphisms map compact elements to compact elements, all maps
involved can be seen as scaled Cu-morphisms between finite-dimensional C*-algebras of
appropriate size.

The result now follows from [32] and Theorem 3.31, combined with the well-known
fact that the scaled Cuntz semigroup classifies *-homomorphisms of finite dimensional
C*-algebras. O

Corollary 4.10. Let S be the universal dimension Cu-semigroup and let S be a (countably-
based) dimension Cu-semigroup. Then, there exists a surjective Cu-morphism & —» S.

Proof. By Proposition 4.7 we know that S is isomorphic to a quotient of the form T'/J,
where T is the limit of some inductive system in s4i,. Further, by universality of the
Fraissé limit, there exists a retractable Cu-morphism ¢: T'— S whose retract p: § —»
T is a Cu-morphism. The composition of p with the quotient map T' —» T'/.J gives the
desired Cu-morphism. O

C. Elementary Fraissé categories
As defined in [52, 8.1], a Cu-semigroup S is said to be elementary if S is simple and

contains a minimal, nonzero element that is finite.? Assume further that S has finitely
many elements. If S satisfies (O5) and (0O6), it follows from [5, Proposition 5.1.19] that

2 This differs slightly from the definition given in [5], and was adjusted to not include the Cuntz semigroup
of simple, purely infinite C*-algebras.
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S=E,:={0,1,...,n,00} for some n € N. It is well known that no such Cu-semigroup
is the Cuntz semigroup of a C*-algebra.?

The following lemma shows that the Cu-morphisms between elementary Cu-
semigroups are well understood. By an order-embedding between Cu-semigroups we
will always mean a Cu-morphism that is also an order-embedding.

Lemma 4.11. Let n,m € N. A map a: {0,1,...,n,00} — {0,1,...,m,00} is

(i) a Cu-morphism if and only if (n+ 1)a(1) = 0o and a(kl) = ka(1) for every k < n.
(ii) an order-embedding if and only if a(1) # 0 and na(l) # oco.

In particular, there exist choices of natural numbers n,m € N such that there is no
or only one order-embedding from E,, to E,,. For example, we know that a(1) = k1
must satisfy m/(n + 1) < k < m/n. Thus, if m = n(n + 1), we get that the only
order-embedding from E,, to E,, is a(1) = (n+ 1)1.

4.12. The category ey is the category whose objects are all elementary Cu-semigroups
satisfying (O5) and (O6) with finitely many elements, and whose morphisms are all
nonzero Cu-morphisms.

Proposition 4.13. The category ¢ is Fraissé.

Proof. The category ¢, contains countably many objects, and the morphisms between
them are given by multiplication. It follows that e, is separable.

Further, given ni,n2 € N, it follows from Lemma 4.11 that the maps ay: E,, —
Enin, and ag: B, — Ep n, given by 1 — nol and 1 — n;1 respectively are order-
embeddings (in particular, nonzero Cu-morphisms). This shows that the category e
has the joint embedding property.

Finally, given any pair of nonzero Cu-morphisms oy : E,, — E,, and as: E, — E,,,
one can simply consider the map g: E,, — E,, given by (1) := co. This Cu-morphism
satisfies 5 o @3 = B o ag, which implies that the category e, is Fraissé. O

Corollary 4.14. The Fraissé limit of eoo is {0,00}, that is, the Cuntz semigroup of any
purely infinite simple C*-algebra.

Proof. Let (S;,0; ); be a Fraissé sequence of ¢o,. For any ¢ € N, let a: .S; — {0, 00}
be the morphism that maps every nonzero element to co. By definition, there exists
B:{0,00} — S; such that o; ; = 5 o . In other words, every element in S; becomes
idempotent eventually.

3 A quick proof of this fact goes as follows: Assume for the sake of contradiction that there exists A with
Cu(A) isomorphic to E,, for some n. Then, A must be simple and weakly purely infinite and, consequently,
purely infinite. The Cuntz semigroup of any simple, purely infinite C*-algebra is isomorphic to {0, 0}, a
contradiction.
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Recall that a Cu-semigroup is called idempotent if x = 2z for each element x. The
only nonzero, simple, idempotent Cu-semigroup is {0, co}. Thus, since the morphisms in
the sequence are nonzero, the Fraissé limit of e, is isomorphic to {0,00}. O

Remark 4.15. The subcategory obtained by considering all order-embeddings instead of
all nonzero Cu-morphisms is not Fraissé, since it fails to satisfy the joint embedding prop-
erty. For example, one can check that the morphisms g, as: {0,1,00} — {0, ..., 6,00}
given by a1(1) =4 -1 and (1) =51 cannot be amalgamated.

4.16. The category e, (for a fixed n > 1) is the category whose objects are all the
elementary semigroups of the form E,» for some k € N, and whose morphisms are all
the order-embeddings given by multiplication by a power of n.

Note that not all maps given by powers of n are Cu-morphisms. As an example, set
n = 2. Then, we know from Lemma 4.11 that multiplying by 2 does not give rise to a
Cu-morphism Ey — Eg. In fact, it follows from Lemma 4.11 that for any given pair
k < s there exists a unique order-embedding E,» — E,,= given by a power of n, namely
1 nsk,

Proposition 4.17. The category ¢, is Fraissé for any n € N.

Proof. That the category e, is separable and satisfies the joint embedding property is
proven similarly as in the proof of Proposition 4.13.

To see that the category ¢, has amalgamation, let ay: E,x» — Eps1 and ag: E v —
E,s2 be ¢,-morphisms. From the joint embedding property, we may assume that s; = ss.
Now, we know from the comments above that these two maps must be the same. Thus,
the category ¢, has amalgamation. O

Recall that a Cu-semigroup S is stably finite if x # x 4 y for every nonzero y € S
whenever & < z for some z € S. Also, extending the definition of [39], let us say that S
is (n-)weakly purely infinite if nx = 2(nx) for every x € S.

Corollary 4.18. The Fraissé limit &, of e, is a simple, non-stably finite, not weakly purely
infinite Cu-semigroup whose order is total.

Proof. The Fraissé sequence of ¢,, consists of simple Cu-semigroups, so its limit must be
simple. Further, since each Cu-semigroup has a total order, so does the limit.

A simple Cu-semigroup is not stably finite if and only if its greatest element, denoted
by oo, satisfies co < co. The Fraissé limit of ¢, admits a nonzero Cu-morphism « from
{0,1,...,n,00}. In particular, a(co) = oo and, since « preserves the <-relation, one has
00 < o0 in the limit. This shows that the limit is not stably finite.

Finally, the limit cannot be weakly purely infinite. Indeed, for any k£ € N we can use
Theorem 3.27 to find an order-embedding « from {0,1,...,n% oo} to the limit. Then,
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a(1) satisfies la(1) # (I—1)a(1) for any [ < n¥. This shows that there is no global bound
on the idempotency of the elements, which implies that the limit is not weakly purely
infinite. O

Remark 4.19. Arguing similarly as in Theorem 4.2, we can deduce that, given a prime
number p, the Fraissé limit &£, of ¢, is a truncated version of the dimension semigroup

of infinite type S, = N[%] L (0, c0]. Explicitly, we have

5,3%{3361\1{;} I_I(O,1]|1:§1}U{oo}

where the order and sum between two elements z,y are defined as in Sp, with the
exception that x +y = co whenever this sum is (strictly) greater than 1. in S,,.

Question 4.20. It can be checked that &, satisfies all the known extra axioms (05)-(08)
that the Cuntz semigroup of any C*-algebra satisfies. Thus, it is natural to ask: Is &,
the Cuntz semigroup of some C*-algebra A?

Note that such a C*-algebra A would be simple, not stably finite, and not purely
infinite. However, A is not the C*-algebra B constructed by Rgrdam in [47], since Cu(B)
does not satisfy the Corona Factorization Property (see [11, Theorem 5.8]) but &, does.

D. The Cantor set and the pseudo-arc

Fraissé Theory allows one to rewrite well-known topological spaces such as the Can-
tor set 2N and the pseudo-arc P as Fraissé limits and, in particular, to generically
(re)prove some interesting facts about them, such as universality and homogeneity. We
refer the reader to [9,35,40] for more details. Following these results, we show that the
Cu-semigroups Lsc(2Y,N) and Lsc(P,N) are Fraissé limits of well-chosen categories of
Cuntz semigroups.

4.21 (Lower-semicontinuous functions). We begin by recalling some facts about monoids
of lower-semicontinuous functions, which constitute a great source of example of abstract
Cuntz semigroups. For instance, it is known that the monoid of lower-semicontinuous
functions from a compact, metric (or, more generally, hereditarily Lindelof, locally com-
pact, and Hausdorff) space X to N, denoted by Lsc(X,N), is a Cu-semigroup when
equipped with pointwise addition and order. (See [34, Proposition 1.16], and also [57,
Corollary 4.22] and [4, Theorem 5.17].) In the specific case where X is a compact one-
dimensional CW-complex, then Lsc(X, N) is in fact the concrete Cuntz semigroup of the
C*-algebra C'(X). (See [45,15] and also [4], [18] for other examples of concrete Cuntz
semigroup of C*-algebras that can be expressed as lower-semicontinuous functions.)
Further, as noted in [46] for the interval, and in [15] for compact one-dimensional
CW-complexes (which include finite discrete sets, the interval and the circle), the set
Homcy (Lsc(X, N), T) of Cu-morphisms can be equipped with the following Cu-metric
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dew(o, 8) :=1inf {r > 0| VV € O(X),a(lv) < B(1y,.) and B(1y) < a(ly,)}

where O(X) := { Open sets of X} and V, := gVB,«(a:), that is, V,. is the set of points

with distance less than r from V.

As proved implicitly in [58, Lemma 4.8] for the interval case and explicitly in [15] for
compact one-dimensional CW-complexes, there is a strong link between the metric dgy,
and finite-set comparison:

Proposition 4.22 (/15, Proposition 5.6]). Let X be a compact one-dimensional CW -
complex and let {U_k}? be a finite closed cover of X induced by an equidistant partition
of size 1/n.

Let F,, := {f € Lsc(X,N) | fiu, is constant for any k € {1,... ,n}} For any pair of
morphisms a, B € Homg, (Lsc(X,N), T), we have

(i) a~p, B implies dou(a, B) < 2/n.
(ii) dou(a, B) < 1/n implies a ~p, B.

As shown in [4, Lemma 5.16], any continuous map f:Y — X between second
countable, compact, Hausdorff spaces induces a Cu-morphism Lsc(f, N): Lsc(X,N) —
Lsc(Y,N) given by | — [ o f. In what follows, we prove that a weak converse of this
result —akin to what happens for commutative C*-algebras— also exists. These results
might be well known to experts (for example, if X and Y are one-dimensional, they
follow from [19] and standard facts about abelian C*-algebras). However, since we have
not found them in the literature with our generality, we provide a proof here for the
convenience of the reader.

Proposition 4.23. Let X,Y be compact, metric spaces and let o: Lsc(X,N) —
Lsc(Y,N) be a Cu-morphism such that a(1) = 1.

Then there exists a continuous map fo: Y — X inducing a, in the sense that a =
Lsc(fa, N).

Proof. We begin our argument by proving the following claim.

Claim. Let A\: Lsc(X,N) — N be a Cu-morphism such that A(1) = 1. Then, there
exists x € X such that A\ = ev,, the evaluation at x.

Proof of the Claim. Let J be the family of open subsets U in X such that A\(1y) = 1.
Given finitely many open sets Uy,...,U, € J, it follows from [57, Remark 4.4] that we
can order the sum 1y, + ...+ 1y, as follows

1y, +... +Lv, = Ly,u; + Lo winuy) + -+ 1nyu;

and, consequently,
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n = )\(:H-Ul) +...+ )\(]]'Un) = )\(:H-UjUj) +...+ )\(]].m].Uj).

This implies that A(1n,y;) = 1 and, in particular, that N;U; # (). Thus, J has the
finite intersection property and, since X is compact, we get that Nye ;U is not empty.

To see that Nye U = {z}, assume for the sake of contradiction that there exist
z,y € NpesU with z # 4. Let B, C be closed disjoint balls of nonzero radius centred at
x and y respectively. One has 1 < 1x_p + 1x_¢ and, consequently, that A(1x_p) or
AM1x_c¢) is 1. Thus, we may assume without loss of generality that A(1x_¢) =1 or, in
other words, that X — C € J. This is a contradiction, since y ¢ X — C. It follows that
NuesU contains a single point .

Finally, to see that A\ = ev,, take any open subset U and let U’ be a compactly
contained open subset in U such that A(1y) = AM(1y/). If A(1y) = 1, then z € U’ and so
2 € U. Conversely, if x € U, take U’ compactly contained in U such that x € U’. Then,
1y + 1y_g7 > 1, which implies that either A(1yy) = 1 or A(1y_gz7) = 1. The second
equality cannot hold, since otherwise we would get 2 € X — U’, a contradiction. This
proves the claim.

Now, for any y € Y, the composition ev, o a is a Cu-morphism such that A\(1) = 1.
Using the claim, there exists x € X with evy, o o = ev,. Let f,: Y — X be the map
defined by f,(y) := x. To see that f, is continuous, take an open subset U of X and let
V CY be the open subset such that a(1y) = Ly. Then, we see that

AU ={yeY| evi p(lv) =1} ={yeY |evyoa(ly)=1} =V
which ends the proof. O

Corollary 4.24. Let X,Y be compact, metric spaces. Let o: Lsc(X,N) — Lsc(Y,N) be
a Cu-morphism with a(1) = 1. Let f,: Y — X be the continuous map obtained above.
Then, « is an order-embedding if and only if f, is surjective.

Proof. Assume for the sake of contradiction that « is an order-embedding and that there
exists € X \ fo(Y). Since f,(Y) is compact, we can find an open neighbourhood U of
x disjoint with f,(Y). In particular, f;*(U) = 0 and, therefore, a(1y) = i) =02
contradiction.

Conversely, assume now that f,: Y — X is surjective. The order in Lsc(X,N)
is determined by the indicators 1y (see e.g. [15, Proposition 4.3] or [57]). Thus it is
enough to prove that 1y < 1y whenever a(ly) < a(ly). Let U,V C X be such that
a(ly) < a(ly). We have 1,1 ;) < 1;-1(y,). Consequently, f1U) C f7HV). By the
surjectivity of f, we deduce that U C V, as desired. 0O

4.25 (The Cantor Set). Let us recall a characterization of the Cantor set. We use the
language and formulations detailed in [9], even though this characterization had been
obtained beforehand, e.g. in [12,40]. As mentioned in the discussion of [9, Example 4.55],
the Cantor set 2N is the Fraissé limit of the category of finite discrete sets and continuous
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surjections in the category of zero-dimensional compacta and continuous surjections.
Now, using the characterization of Fraissé limits given in [9, Theorem 4.15], one obtains
the following result.

Theorem 4.26 (Characterization of the Cantor set). A zero-dimensional compactum C
is the Cantor set if and only if C satisfies the following property:

For any two finite discrete sets F,F' and any two continuous surjections f: C —
F,g: F' — F, there exists a continuous surjection h: C — F' such that hog = f.

4.27. The category Kon is the category whose objects are simplicial Cu-semigroups and
whose morphisms are order-embeddings such that 1+ 1.

Theorem 4.28. The category Kon is Fraissé.

Proof. Throughout the proof, we will denote the r-tuple (0,...,1,...,0) with value 1 at
the i-th component and 0 everywhere else by d7. Note that {d] }I_; generates N".

The category Kyn contains countably many objects and finitely many morphisms
between two given objects. It follows that the category Kyn is separable.

Let NTI,N” be simplicial Cu-semigroups. We construct a; : N' —5>N'e N”
that sends 67" +— 7' @ Igr2 and 6;' +— ;' @ Ogr2 for any 2 < ¢ < ry. Similarly, we
construct as: N - — N '@ N, It is readily checked that ay, as are Kon-morphisms
and, hence, the joint embedding property follows.

Let ag: N — N and Qg N — N be Kon-morphisms. We know from
Corollary 4.24 that r < tq1,t2. Further, we may assume that ¢y = ¢t = t and, upon
a possible reindexing (i.e. composing with an isomorphism), we may also assume that
the ;s are of the form id ®n; for some Cu-morphisms 7;: N — N Note that, since
both «; and as map 1, to 14, the maps 7; also map 1, to 1;,_,.

Let 3;: N @ N o N oN "aN"" be the maps f1(x,y) = (x,y,n2(x)) and
Ba(x,y) = (x,m(z),y). Note that these order-embeddings map 1 to 1. By construction,
we have 1 o a3 = (2 0 ag, which shows that the category Kyn has the amalgamation
property. O

Corollary 4.29. The Fraissé limit of Kon is Lsc(2V, N).

Proof. First, note that we can identify any Kyn-object N' with Lsc(X,,N), where X,
is any finite discrete set of cardinality r. Now, let a: Lsc(X,,N) — Lsc(X;,N) be
a Kon-morphism and consider the continuous surjective map f,: Xy — X, obtained
from Proposition 4.23. From the construction of f,, we deduce that o can be identified
with Lsc(fa, N): Lsc(X,, N) — Lsc(X;, N) which sends [ — [ o f,.

On the other hand, we know that the Fraissé limit is obtained from an inductive
system in Kyn that we write (Nm,ai)i. By the above, we identify the system with
(Lsc(X,,, N),Lsc(fa,, N));. Now combining Corollary 4.24 with Theorem 3.27 (and the
fact that the category Kon has ezact amalgamation property), we get that {iEI(Xm fai)



354 L. Cantier, E. Vilalta / Journal of Algebra 658 (2024) 319-364

is a zero-dimensional compactum satisfying the above characterization of the Cantor set.
That is, im(X,,, fa,) = 2N and the result follows from [4, Proposition 5.18]. O
—

4.30 (The Pseudo-arc). Proceeding as before, we recall a characterization of the pseudo-
arc in the language from [9], althought this result had also been obtained in the past,
e.g. in [35,40]. As shown in [9, Theorem 4.38], the pseudo-arc P is the Fraissé limit of the
category consisting of a single object being the unit interval and continuous surjections
in the category of arc-like continua and continuous surjections. Using [9, Theorem 4.15],
one gets:

Theorem 4.31 (Characterization of the Pseudo-arc). An arc-like continuum P is the
pseudo-arc if and only if P satisfies the following property:

For any two continuous surjections f: P — [0,1] and g: [0,1] — [0,1] and any
e > 0, there exists a continuous surjection h: P — [0,1] such that |[hog— f| < e.

The following two lemmas will be needed in our proofs. The first is known as the
Mountain Climbing Lemma (see [33]), while the second is readily obtained by generalizing
the arguments in [58, Lemma 4.5].

Lemma 4.32 (Mountain Climbing Lemma). Let f1, fo: [0,1] — [0,1] be continuous,
piecewise linear maps that are not constant on any subinterval and such that f1(0) =
0 = f2(0) and f1(1) = 1 = fo(1). Then, there exist surjective, continuous maps
g1,92: [0,1] — [0,1] such that f1 0 g1 = fa 0 ga.

Lemma 4.33. Let X and Y be second countable, compact, Hausdorff spaces. Let f,g :
Y — X be continuous surjective maps and consider their induced Cu-morphisms
Lsc(f,N), Lsc(g, N) given by [ — o f,1 0 g respectively. Then,

(i) For any finite subset F of Lsc(X,N), there evists ep > 0 such that Lsc(f,N) ~p
Lsc(g, N) whenever || f — g|| < e.
(ii) For any e > 0, there exists a finite subset F. of Lsc(X,N) such that ||f — g|| < ¢

whenever Lsc(f,N) ~p Lsc(f,N).

Further, the ep only depends on F,X,Y, and F. only depends on €, X,Y (not on
f.9)-

4.34. The category Kp is the category whose (single) object is Lsc([0, 1], N) and whose
morphisms are order-embeddings such that 1+ 1.

Theorem 4.35. The category Kp is Fraissé.

Proof. The category Kp contains only one object, so the joint embedding property is
trivial.
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To see that KCp is separable, we consider the subcategory s C Kp whose morphisms are
KCp-morphisms of the form Lsc(h, N): Lsc([0,1],N) — Lsc([0, 1], N) where h: [0,1] —
[0, 1] is any piecewise linear, surjective map which is not constant on any subinterval and
which has rational, finitely many peaks and valleys. We know from Corollary 4.24 that
any Kp-morphism « is of the form Lsc(fs, N) where f,: [0,1] — [0, 1] is a continuous
surjective map. Moreover, it is well-known that any such continuous surjective map can
be approximated in norm by a piecewise linear map h which is not constant on any
subinterval and which has rational, finitely many peaks and valleys. Therefore, it follows
from Lemma 4.33 that s is a countable, dominating subcategory.

Finally, let us prove Kp satisfies the near amalgamation property. Let oy, as be Cu-
morphisms in p and consider the continuous, surjective maps fo,, fa,: [0,1] — [0, 1]
obtained from Corollary 4.24. Also, let F' C Lsc([0, 1], N) be a finite subset and consider
the bound ep > 0 given by Lemma 4.33.

Without loss of generality, we can assume that f,,(0) = 0 = f,,(0) and f,,(1) =
1 = fa,(1). (If needed, we can precompose them with well-chosen continuous surjective
maps.) As before, we can find piecewise linear maps hy, ho: [0,1] — [0,1] which are
not constant on any subinterval and which only have rational, finitely many peaks and
valleys, at distance less than £/2 from f,, and f,, respectively, and such that h;(0) =
0= hQ(O) and hl(l) =1= hg(l)

Applying the Mountain Climbing lemma (see Lemma 4.32), we obtain surjective con-
tinuous maps g1,92: [0,1] — [0,1] such that hy o g1 = hs o go. By construction,

we get that f,, o g1 and f,, o go are at distance at most €. Let 31 := Lsc(g1,N)

and f2 := Lsc(ge,N) be the Kp-morphisms induced by g; and go respectively. By
Lemma 4.33, we obtain 8y o a; ~p B3 o ag, as desired. O

Corollary 4.36. The Fraissé limit of Kp is Lsc(P,N).

Proof. We know that the Fraissé limit is obtained from an inductive system in Kp

that we write (Lsc([0,1],N), a;);. Now combining Corollary 4.24 with Theorem 3.27, we

get that lim([0, 1], fa,) is an arc-like continuum satisfying the above characterization of
—

the pseudo-arc. We conclude that 121([0, 1], fa;) = P and the result follows from [4,
Proposition 5.18]. O

Remark 4.37. We have chosen to give self-contained proofs of the last two examples,
but they could have alternatively been obtained as a combination of Remark 3.32 (ii),
Corollary 4.24, [45] and known results in Fraissé theory of C*-algebras (for example, those
n [56]). Indeed, since in both categories Con and Kp the dimension of the underlying
spaces is at most one, we know from [45] (see also [23] for the case of the interval) that all
the objects are Cuntz semigroups of commutative C*-algebras. Further, it follows from
Corollary 4.24 that the Cu-morphisms in both categories are in correspondence with
surjective continuous maps between the spaces, which in turn correspond to injective
*-homomorphisms between the commutative C*-algebras.
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In other words, this shows that both Kon and Kp can be written as Cu(cow)
and Cu(cp) for well chosen subcategories of commutative C*-algebras, which are well-
known to be Fraissé (e.g. [56, Theorem 3.4] for the case of the pseudo-arc). Using
Remark 3.32 (ii), it follows that both on and Kp are Fraissé, and that their limit
coincides with the Cuntz semigroup of the limit of ¢yn and cp.

E. The Jiang-Su algebra

It is readily checked that all the results developed in this paper also hold for classes
where the objects are pairs of the form (S, p) with p: S — [0,00] a generalized Cu-
morphism (also known as a functional) and where the morphisms from a pair (5, p) to
(T, 6) are simply Cu-morphisms S — T preserving the prescribed functional p. Namely,
the statements still hold because a limit of functional-preserving Cu-morphisms is still
functional-preserving.

Using Theorem 3.31 (and [43]) in conjunction with the fact that quasitraces on a C*-
algebra correspond to functionals on its Cuntz semigroup (][26]), one obtains the following
result by using [42] (see also [25]).

4.38. The category Kz is the category whose objects are pairs (Z, 4, p) with p,q co-
prime and p a faithful functional, and whose morphisms are functional-preserving
order-embeddings. Here, Z, , denotes the Cuntz semigroup of the prime dimension-drop
algebra Z, ,. Using computations in [4], recall that we have

Cu(Z,,4) 2 Z, 4= {f € Lsc([0,1],N) | 3k1, k2 such that f(0) = gk; and f(1) = pko}.

Theorem 4.39. The class Kz is Fraissé and its limit is the Cuntz semigroup Z of the
Jiang-Su algebra Z.

5. Metrics on Homc,-sets

In this last section we introduce a metric on any Homgy-set building on the ideas of
[15,20,46,58]. We also provide a number of examples and, in particular, we show that
this notion generalizes the metrics introduced in [15, Definition 5.1]. We also study the
relation between our proposed metric and finite-set comparison. Further, we prove that,
in general, comparing Cu-morphisms via the metric is more restrictive than using finite-
set comparison. As a consequence, when (re)formulating the notion of Cauchy sequences
in terms of the metric, the limit we obtain might not behave as expected. Let us start
by recalling an important fact about the category Cu.

5.1 (A generator for Cu). Let G be the submonoid of Lsc([0, 1], N) defined as

G = {f € Lsc([0,1],N) | f(0) =0, f increasing}.
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If follows from [49, Section 5.2] that G is a Cu-semigroup. Moreover, G is a generator
for the category Cu, in the sense that the functor Cu(G, —): Cu — Set is faithful.
Using terminology of [15], we can view G as the sub-Cu-semigroup of Lsc([0, 1], N)
chain-generated by Ag := {1y | t € (0,1]}. Therefore, the order and the compact-
containment relation in G are completely determined by the ones in Ag. (See [15, Section

4] for more details.)

5.2 (Thomsen semigroup of a Cu-semigroup). Let S be a Cu-semigroup. We define the
Thomsen semigroup of S, in symbols Th(S), to be the set of Cu-morphisms from the
generator G to S. In other words,

Th(S) := Homc, (G, S).

This construction is inspired by the C*-case, where the Thomsen semigroup of a C*-
algebra A, in symbols Th(A), is the set of approximate unitary equivalence classes of
*-homomorphisms of the form Cy((0,1]) — A® K. (See [54].) Here, note that Co((0, 1])
is a generator for the category C*. (See e.g. [49].)

Therefore, the construction above is the natural Cu-analogue of the Thomsen semi-
group for C*-algebras. In fact, there exists a natural (monoid) map Th(4) —
Th(Cu(A)), defined in the following proposition.

Proposition 5.3. Let A be a C*-algebra. The map v : Th(A) — Th(Cu(A)) given by
[¢] = Cu(yp)|c is a well-defined monoid morphism.
If A has stable rank one, then v is a bijection.

Proof. It is a well-known fact that any two approximate unitary equivalent *-
homomorphisms agree at level of Cu. Therefore, ¢ is a well-defined map for any C*-
algebra.

Now assume that A Thas stable rank one. Then, it follows from
[48, Theorem 4.3, Lemma 7.2] that Cu(A) is weakly cancellative and satisfies (O5).

Let 7 € Th(Cu(A)). Proceeding as in the proof of [58, Proposition 3.4], we can
construct a Cu-morphism 7: Cu(Cy((0,1])) — Cu(A) extending 7. Further, such a
morphism is unique.

The functor Cu classifies *~-homomorphisms from Cy((0, 1]) to any C*-algebra of stable
rank one (See [19,46,43]). In particular, one can lift the extension 7 to a *~homomorphism
Co((0,1]) — A. This proves that ¢ is surjective.

Since the extension 7 is unique, and the lift of any such 7 is unique up to approximate
unitary equivalence, ¢ is injective. O

We will use the Thomsen semigroup of S to build a metric on any Homgy-set
Homcey (S, T). Let us start by equipping Th(S) with the following metric, modelled after
the distance in [19]. (See also [46] and Paragraph 4.21.)
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Definition 5.4. Let S be a Cu-semigroup, and let a;, 8 € Th(S). We define

d@(a,ﬁ) = inf {7“ >0 | Vt € [0, 1]7 o (I]-(t+r,1]) <p (]]-(t,l]) and (:Il(t—i-r,l]) <« (]]'(Ll])} .

Remark 5.5. Note that, by definition, dg (a, ) = 0 precisely when a(1¢ 1)) = B(1(,17) for
every t. Thus, since G is generated (as a Cu-semigroup) by the elements 1, 1), one gets
a = f3. Consequently, dg is a metric. This is in contrast to [19], where weak cancellation
of the Cuntz semigroup is needed to ensure positivity.

5.6 (Sets with generating image). Let A be a subset of Th(S). We say that A has a
generating image in S if the submonoid generated by {7(1,1)) | t € [0,1], 7 € A} is
sup-dense in S.

Equivalently, A has a generating image if for any s’,s € S with s’ < s, there exist
Ti,...,Tp in A and t1,...,t, € [0,1] such that s < 71 (L, 1)) + ... + 7L, 17) < 5.

For any Cu-semigroup S, there always exists a family (and, in fact, many) with a
generating image. For instance, the following result shows that Th(S) always has a
generating image in S.

Proposition 5.7 ([/9, Lemma 5.16]). Let S be a Cu-semigroup and let (z,), be a K-
increasing sequence in S. Then, there exists T € Th(S) such that (L1 y)) = .

Proof. We give a brief argument for the convenience of the reader.

Using [6, Proposition 2.10], there exists a net (y;)icjo,1), with Y1 = n, such that
Y+ < yr whenever r < ¢ and sup,~, y+ = yr. (This is achieved by an iterated application
of (02) and the use of (01).) We let 7: G — S be the Cu-morphism defined by
T(L17) := y for each t € [0,1). O

Definition 5.8. Let S, T € Cu and let A C Th(S) be a subset with a generating image in
S. For any «, 5 € Homcy (S, T), we define

da(a, B) :=supdg(aoT,BoT).
TEA
Lemma 5.9. Let S;T € Cu and let A C Th(S) with a generating image in S. Then
dp(a, B) is a metric on Homey (S, T).

Proof. The symmetry, triangular inequality, and the fact that da(a, 8) = 0 whenever
a = f8 are all immediate. We are left to show that o = 8 whenever dy(a, 8) = 0.

Thus, assume that dy(a,8) = 0. Let s’,s € S be such that s’ < s. Since A has a
generating image in S, there exist 71,...,7, € Th(S) and t1,...,t, € [0,1] such that
s < m(Ley,1) + o+ (L, 1) < s. Note that dg(a o7, o7;) = 0 for any i < n.
Therefore, we deduce that a o 7; = 8o 7; for any 7 < n. Consequently, we have
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B(s") < B(m(Lay1) + -+ B (Le,1) = a(ma (L, 1) + -+ a1, 1)) < als).
A symmetric argument gives us that a(s’) < S(s) and Remark 3.3 give susa = 4. O

Example 5.10. Let S,7T" be Cu-semigroups. The metric dry(g) is trivial, that is,
drn(s)(, B) = 1 if and only if o # 3. We give a brief argument below.

Let a, 8 € Homcy(S,T) be such that drys)(a, 3) < 1 and let € > 0 be such that
€ > dry(g)(a, B). Now take any pair z',x € S such that 2’ < z. By Proposition 5.7, we
can find 7 € Th(S) satisfying 7(1(o,1)) =2 and 7(1 1)) = 2’. Since dg (o7, BoT) < ¢,
we compute a(z’) = a(T(1 1)) < B(7(1,11)) = B(z) and B(z’) < a(x). We conclude
that o = 8 by Remark 3.3.

The example above illustrates that, despite always having many sets with a generating
image, they will only induce meaningful metrics as long as they are not too large. The
following examples show that all the (meaningful) Cu-metrics considered in the past for
specific Homey,-sets can be recovered as dp from well-chosen A’s with generating image.

Example 5.11. (i) The Cuntz semigroup of the Jacelon-Razak algebra W can be identified
with [0, 00]; see [44]. Let 7: G — [0, 0] be the Cu-morphism determined by 1 1) +
1—t.

The family A = {7} has a generating image in Cu(W). It can be computed that, for
any a, 8 € Home, (Cu(W),T), we have

da(a, B) =dg(aor,for) =inf{r > 0|Vt €[0,1], a(t—r) < B(t) and B(t—7r) < a(t)}.

(ii) The Cuntz semigroup of the Jiang-Su algebra Z can be identified with (0, 00] L N;
see e.g. [30, Theorem 7.3]. Similarly, let 7: G — [0, oo] be the Cu-morphism determined
by 1,11 — 1 —t and let c: 1(; 1) = 1. be the constant map.

The family A = {7, ¢} has a generating image in Cu(Z). One can show that, for any
a, f € Homey (Cu(Z),T), we have

dn (0, ) = { 1, whenever a(1.) # B(1.).

’ inf{r > 0|Vt e [0,1], a(t —r) < B(¢) and B(t —r) < a(t)}, otherwise.
Example 5.12. Let A be a C*-algebra and let z € Cu(A). Fix a contraction a, € (AQK)4
such that z = [ay]. This element gives rise to the *-homomorphism ¢, : Cy((0,1]) —
(A®K)4 given by id¢, (0,1 + az. Denote the canonical inclusion from G to Cu(Cy(0, 1]))
by ¢.

The family A = {Cu(g,) ot | 2 € Cu(A)} has a generating image in Cu(A). (In fact,
A(G) = Cu(A)). For any ¢1,¢2 € Home« (4, B), we get

da(Cu(er), Cu(gz)) < do- (91, ¢2)-
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Example 5.13. Let X be a compact, metric space. Note that, for any = € X, we have

(| B(z.tdiam(X)) ={z} and |J B(z,tdiam(X)) = X.
te(0,1] te(0,1]

Let S := Lsc(X,N) and let z € X. We define g := Og and z; = 1p( ¢ diam(X))
for any ¢ € (0,1]. By Proposition 5.7, there is a Cu-morphism 7,: G — S such that
To (L)) = x1-¢ for any t € [0, 1].

The family A = {7, | + € X} has a gencrating image in S. It can be computed that
for any «, 8 € Home, (S, T) their distance dp is

da(a, 8) =inf{r >0|VV € O(X),a(ly) < ﬂ(lvr) and B(ly) < Oé(lVT)}

where O(X) := { Open sets of X} and V, := gVBT(x). This generalizes the distance

recalled in Paragraph 4.21 when X is a compact, one-dimensional CW-complex.

Example 5.14. We refer the reader to [15, Section 5.1] for details on finite uniform bases
and induced Cu-semimetrics.

Let S be a uniformly-based Cu-semigroup with a finite uniform basis Ay = (Ay,€n)n-
Let n € N. Recall that A,, is finite and, in particular, that it has finitely many chains,
i.e. finite <-increasing sequences. Let us denote the set of chains in A,, starting at Og
by C,.

Now let ¢ € C,, and let I, be the cardinal of ¢. From Proposition 5.7, we know that
there exists a Cu-morphism 7.: G — S such that 7.(1(y,—k)/, 1) = c(k) for any
0<k<lI..

The family A = |J {7. | ¢ € C,,} has a generating image in S. Following the ideas of
neN
[15, Proposition 5.5], one can show that the metric d, is topologically equivalent to the

Cu-semimetric ddcy,a, induced by the finite uniform basis Ay.

We next expose relations between the above metrics and finite-set comparison for
Cu-morphisms.

Lemma 5.15. Let S, T € Cu and let A C Th(S) with a generating image in S. Then

(i) For any finite set F C S, there exists ep > 0 such that o ~p 8 whenever da(a, ) <
EF.

If moreover A is finite, then

(ii) For any € > 0, there exists a finite set F. C S such that da(a, 8) < € whenever

o ~p B



L. Cantier, E. Vilalta / Journal of Algebra 658 (2024) 319-364 361

Proof. (i) Note that it is enough to prove the result for F' = {z’, 2} where 2/, 2 € S are
such that ' < . Thus, let 2/, x € S be such that ' < x. We know that there exist n €
N, 7,...,7 € Ayand ty,...,t, € [0,1] such that o' <7y (L, 1) +.. .+ Tn(lg, 1) < 2.

For each i, let 7; > 0 be such that 2’ < 74 (L, 4ry,17) + - + Tu(Lg,4r,,1))- Set
eF := min; r;, and let a, 8 be such that dj(a, 3) < er. We get

(@) < alm(Lay4r 1) + -4 AT (Lt gr,1)) < BT (L 1) + -+ B(Ta(le, 1) < B(x)

A symmetric argument gives f(a’) < a(x), as required.
(ii) We now assume that A is finite. Let € > 0 and let ¢1,. .., %, be a partition of [0, 1]
such that |t; —t;11] < /2. Let us define

Foo={m(1g, ) 7€M i <nfU{T(L,4e/2,1) | T EA i <n}.

Let «, 8 be such that @ ~r S. By [58, Lemma 4.8], we have dg(awo 7,80 7) <
1/n+¢/2 < ¢ for every 7 € A. This implies dp (e, ) < €, as desired. O

Let S, T be Cu-semigroups and let A C Th(S) be a set with a generating image in S.
We will say that a sequence (oy); in Homc, (S, T') is da-Cauchy if ), da(ou, aiq1) < 0.
The proposition below shows that any dj-Cauchy sequence has a unique limit «, in the
sense of Definition 3.5. Nevertheless, an extra-assumption is needed (e.g. A is finite) in
order for « to satisfy da(a;,a) — 0.

Proposition 5.16. Let S, T be Cu-semigroups and let A C Th(S) be a set with a generating
image in S. Then any da-Cauchy sequence («;); in Home, (S, T) has a (unique) limit.

Proof. Let F C S be a finite set and let e be the bound given by Lemma 5.15 (i). Since
(cvi); is da-Cauchy, there exists some ip € N such that d(a;, o) < ep whenever j, k >
ip. It follows from Lemma 5.15 (i) that (o;); is Cauchy in the sense of Definition 3.4.
Using Theorem 3.8, we get that (;); has a (unique) limit. O

Proposition 5.17. Let S,T € Cu and let A C Th(S) with a generating image in S. Let
(a;); be a dp-Cauchy sequence in Homey (S, T) and let « € Homey (S, T). Then the
following are equivalent:

(i) « is the limit of a sequence (cy;);.
(ii) dg(asoT,c007) = 0 for any T € A.

If moreover A is finite, then (i)-(ii) are in turn equivalent to
(iii) da(a, ;) — 0.

Remark 5.18. (iii) always implies (ii). We exhibit an example where the converse does
not hold.
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For any n € N we let 7, € Th(G) be the map given by 11 = L(¢41/n,1]- It can
be checked that idg is the limit of the sequence (7). Consider the piecewise linear
functions f,: [0,1] — [0,1] mapping 0+ 0, 1/2 — 1/n, and 1 — 1. Let A,, € Th(S) be
the Cu-morphisms defined by A, (1¢,1)) := Ly, (4),1]-

The family A = {\,},, has a generating image in S, and we get dg (7, 0 Ap, Ap) = 1/2
for each m. This shows that da(7y,,1d) is constantly 1/2. In particular, the distance does
not tend to 0.

Question 5.19. Let S be a Cu-semigroup. When does there exist A C Th(S) such that
Zi dp (e, aiq1) < oo implies dp (o, ;) — 07
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