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1. Introduction

Fraïssé Theory was introduced in [29] by Fraïssé in the context of model theory with 
the intent of giving a generic method to construct countable homogeneous structures from 
their finitely-generated substructures. Since then, several adaptations of this method 
have appeared. These include, but are not limited to, projective Fraïssé theory ([35]), 
Fraïssé theory for metric structures ([60]) and, of late, Fraïssé categories ([32,40]). The 
overall idea is to build a ‘large object’, called the Fraïssé limit, which is unique, univer-
sal, and homogeneous with respect to a class of ‘small sub-objects’, known as the Fraïssé 
class. All these variations of Fraïssé theory have produced interesting results in their 
corresponding areas. For example, well-known topological spaces such as the Cantor set, 
the pseudo-arc, the Lelek fan or the Menger curve have been expressed as (projective) 
Fraïssé limits. (See [9,10,35,40].) Similarly, as shown in [40], the Gurarĭı space is the 
Fraïssé limit of the class of finite dimensional Banach spaces. In graph theory, the count-
able random graph also arises as the Fraïssé limit of the class of finite graphs and, in 
model theory, Ehrenfeucht-Fraïssé-like games can be built using Fraïssé classes.

Recently, Fraïssé theory has been applied to the field of C∗-algebras (for example, in 
[25,36,42,56]) and, in that setting, many well known C∗-algebras have been constructed 
as Fraïssé limits. As proof, the Jiang-Su algebra Z —introduced in [37], and which plays 
a central role in the classification of simple C∗-algebras— can be seen as a Fraïssé limit 
([42]). Further, as noted in [31], this construction can be used to (re)prove in simpler 
ways some of the properties of the algebra, such as its strong self-absorption. Among 
other examples, several stably projectionless C∗-algebras were also built as Fraïssé limits 
in [36], and the existence of a universal AF-algebra was proved in [32].

In light of the recent discoveries connecting Fraïssé theory and C∗-algebras, it is high 
time to explore Fraïssé categories of (abstract) Cuntz semigroups. First introduced by 
Cuntz in [24], the Cuntz semigroup is a powerful invariant for C∗-algebras that codifies 
how positive elements are compared. In [22], Coward, Elliott and Ivanescu introduced 
the category Cu of abstract Cuntz semigroups, or Cu-semigroups for short. This rich 
subcategory of positively ordered monoids has been studied extensively (see, among 
many others, [2,6–8,13,14,21]) and has yielded new results for C∗-algebras, such as the 
ones obtained in [3,17,18,26,43,51,53,55,59]. Further, the category Cu allows one to view 
the Cuntz semigroup as a continuous functor for C∗-algebras.

The aim of this paper is twofold: To develop a general theory of metric-like properties 
for (abstract) Cuntz semigroups, and to use such results to introduce a Fraïssé theory in 
the category Cu, while also giving examples and studying its relations to its C∗-algebraic 
counterpart.

The first obstruction that one finds when trying to mimic the past approaches is the 
general lack of a non-trivial, enriched distance in the Hom-sets of Cu. Although such 
a distance does exist for specific Cu-semigroups (and has been exploited successfully in 
a number of situations; see [17–19,43,46]), this approach is still too restrictive for our 
purposes. Instead, we will compare morphisms in Cu by using finite-set comparison, an 
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idea that had appeared implicity in the past (e.g. [19,46]) but that was first given a name 
in [15].

Using this notion of comparison, we introduce Cauchy sequences of morphisms 
(Definition 3.4) and show that all such sequences converge.

Theorem (3.8). Let S, T be Cu-semigroups. Then any Cauchy sequence (αi)i in 
HomCu(S, T ) converges towards a unique Cu-morphism.

Further, we also develop a comprehensive theory of intertwinings in Cu; see Defini-
tions 3.10/3.13.

Theorem (3.17). Let (Si, σi,j)i∈N and (Ti, τi,j)i∈N be two inductive sequences in Cu with 
respective limits (S, σi,∞) and (T, τi,∞). Assume that there exists a two-sided approximate 
intertwining (αi : Si −→ Tϕ(i), βi : Ti −→ Sψ(i))i.

Then there exists a Cu-isomorphism α : S ∼= T induced by (αi)i whose inverse is 
induced by (βi)i.

Both of the aforementioned theorems generalize all previous results on the subject 
and provide a unified picture of the metric-like structure that Cuntz semigroups enjoy. 
Moreover, as noted in Paragraph 3.18, the ideas and techniques developed here can 
be applied to a vast family of generalizations of the Cuntz semigroup (including, in 
particular, all of its refinements considered in the past). We predict that these metric 
flavoured statements will play a key role in future classification and structure results for 
possibly non-simple C∗-algebras.

With all these tools at our disposal, we are able to develop a Fraïssé theory for Cu-
semigroups in Part B of Section 3 and obtain the following theorem.

Theorem (3.27). Let c ⊆ Cu be a Fraïssé category of Cu-semigroups. Then any Fraïssé 
sequence (Si, σi,j)i has a c-limit (S, σi,∞)i such that

(i) S is unique up to isomorphism, that is, S does not depend on the Fraïssé sequence 
chosen.

(ii) The set Homc(D, S) is nonempty whenever D is countably-based.

Further, assume that c is contained in a category d where every c-inductive sequence 
has a limit, and where every d-object is the limit of a c-sequence. If c ⊆ d satisfies the 
almost factorization property, then

(iii) For any C ∈ c, any α, β ∈ Homd(C, S) and any finite set F ⊆ C, there exists a 

d-isomorphism ηF : S
∼=−→ S such that ηF ◦ α �F β.

In Part C of Section 3 we study the relations between this theorem and the Fraïssé 
theory of C∗-algebras, while in Section 4 we provide a number of examples, listed below:
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(1) Any dimension Cu-semigroup Sp of infinite type is the Fraïssé limit of the Fraïssé 
category sp.

(2) There exists a universal dimension Cu-semigroup S which is the Fraïssé limit of the 
Fraïssé category sdim.

(3) There exist countably many Fraïssé categories en whose Fraïssé limits are simple, 
non-stably finite, not weakly purely infinite Cu-semigroups.

(4) The Cu-semigroup Lsc(2N , N), where 2N denotes the Cantor set, is the Fraïssé limit 
of the Fraïssé category K2N .

(5) The Cu-semigroup Lsc(P , N), where P denotes the pseudo-arc, is the Fraïssé limit 
of the Fraïssé category KP .

(6) The Cuntz semigroup of the Jiang-Su algebra is the Fraïssé limit of the Fraïssé 
category KZ .

Some of the notions in this paper and in [50] seem to hint at the right direction to 
develop a model theory of Cu-semigroups, similar to the model theory of C∗-algebras 
from [27,28]. We do not pursue this here, since this is an elaborate task that will be done 
elsewhere.

Organization of the paper. Section 2 recalls the categorical Fraïssé theory developed 
in [40], where the reader can find the definition of Fraïssé categories, Fraïssé sequences, 
and the fact that any Fraïssé category admits a unique Fraïssé sequence, up to two-sided 
approximate intertwining.

We introduce (Cuntz) Fraïssé categories and their limit in Section 3. We start by 
recalling some preliminaries about the category Cu and the notion of finite-set compar-
ison for Cu-morphisms (Definition 3.2). We show that Cauchy sequences with respect 
to finite-set comparison have a unique limit (Theorem 3.8), and we study approximate 
intertwinings in the category Cu (Theorem 3.17). Then, we define the ‘Cuntz analogue’ 
of a Fraïssé category (Definition 3.19), a Fraïssé sequence (Definition 3.20), and the fact 
that any Fraïssé category admits a unique Fraïssé sequence, up to two-sided approxi-
mate intertwining (Theorem 3.21). Finally, a characterization of Fraïssé limits is given 
(Theorem 3.27). We finish the section by exploring the relations between Fraïssé cate-
gories of C∗-algebras and Fraïssé categories of Cuntz semigroups. (Part C.)

Section 4 is divided in Parts A-E, which deal with the aforementioned examples. In
Section 5 we define the Thomsen semigroup of a Cu-semigroup (Paragraph 5.2) by using 
the generator G of the category Cu. This allows us to define metrics on any HomCu-set 
(Definition 5.8). We then explore the properties and several examples of such metrics 
(Examples 5.10-5.14 and Proposition 5.17).

Acknowledgments. This research started when the second author visited the first author 
at the Czech Academy of Sciences. They are both grateful to the IMCAS for its hospi-
tality and for providing a great working environment. The first author would also like 
to thank W. Kubiś for introducing him to Fraïssé Theory.

Both authors thank the anonymous referee for their helpful comments.
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2. Preliminaries on Fraïssé categories

The aim of this section is to gather the main definitions and results about Fraïssé 
categories. These differ slightly, but include, the model-theoretical tools originally devel-
oped in [29]. The categorical approach described below has been developed by Kubiś, 
and we follow his notation and definitions from [40]. (See also [9] and [32].)

As mentioned in the introduction, the core idea of Fraïssé theory is to produce ‘large’ 
objects that are universal and homogeneous in a generic sense —these objects will be 
called Fraïssé limits— for a given category of ‘small’ objects —these categories will be 
called Fraïssé categories—.

Definition 2.1. Let c be a small category. We say that c is metric-enriched if

(i) For any A, B ∈ c, the set Homc(A, B) is equipped with a metric d(A,B).
(ii) For any α1, α2 ∈ Homc(A, B) and β ∈ Homc(B, C), we have

d(A,C)(β ◦ α1, β ◦ α2) ≤ d(A,B)(α1, α2).

(iii) For any α ∈ Homc(A, B) and β1, β2 ∈ Homc(B, C), we have

d(A,C)(β1 ◦ α, β2 ◦ α) ≤ d(B,C)(β1, β2).

Whenever the context is clear, we write dc instead of d(A,B).

Definition 2.2. Let c be a metric-enriched category. We say that c

(JEP) satisfies the joint embedding property if, for any A1, A2 ∈ c, there exists B ∈ c

such that both Homc(A1, B) and Homc(A2, B) are nonempty.
(NAP) satisfies the near amalgamation property if, for any ε > 0, and any c-morphisms 

α1 ∈ Homc(A, B1) and α2 ∈ Homc(A, B2), there exist C ∈ c and c-morphisms 
β1 ∈ Homc(B1, C) and β2 ∈ Homc(B2, C) such that dc(β1 ◦ α1, β2 ◦ α2) < ε.

(SEP) is separable if there exists a countable dominating subcategory s ⊆ c, that is,
• the set of s-morphisms is countable. (A fortiori, so is the set of s-objects.)
• for any A ∈ c there exists S ∈ s such that Homc(A, S) is nonempty.
• for any ε > 0 and any c-morphism σ : S −→ A with S ∈ s, there exist T ∈ s and 

α ∈ Homc(A, T ) and ν ∈ Homs(S, T ) such that dc(α ◦ σ, ν) < ε.

We say that c is a Fraïssé category if c satisfies (JEP), (NAP) and (SEP).

Remark 2.3. Note that, despite the term ‘Joint Embedding Property’, (JEP) does not 
ask the homomorphisms involved to be embeddings.
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Definition 2.4. Let c be a metric-enriched category. An inductive sequence (Fi, σi,j)i∈N
is called a Fraïssé sequence if, for any ε > 0 and any c-morphism γi : Fi −→ C, there 
exists a c-morphism γj : C −→ Fj for some j ≥ i such that dc(σi,j , γj ◦ γi) < ε.

Theorem 2.5 (cf. [40]). Let c be a Fraïssé category. Then c admits a Fraïssé sequence 
which is unique up to two-sided approximate intertwining.

Let us now recall the notion of Fraïssé limits. As stated before, these objects are often 
‘large’, in the sense that they do not belong to the Fraïssé category c at hand. Instead, 
they are built as inductive limits of c-objects. (Particularly, as inductive limits of Fraïssé 
sequences.)

More concretely, this amounts to the fact that a Fraïssé category c need not have 
inductive limits. Because of this, one often considers an inclusion of categories of the 
form c ⊆ d, where d does have inductive limits. However, the category d cannot be ‘too’ 
large, since this inclusion is asked to satisfy the following almost factorization property.

Definition 2.6. Let c, d be metric-enriched categories such that d has inductive limits and 
c ⊆ d. We say that the inclusion c ⊆ d has the almost factorization property if, for any 
inductive system (Ai, σi,j)i∈N in c with d-limit (A, σi,∞)i, any B ∈ c, any d-morphism 
β : B −→ A, and any ε > 0, there exist i ∈ N and a c-morphism βε : B −→ Ai such that 
dd(σi,∞ ◦ βε, β) < ε.

Theorem 2.7 (cf. [40]). Let c be a Fraïssé category included in a category d which admits 
inductive limits, and such that any object in d is a limit of a c-sequence. Then, any 
Fraïssé sequence in c has a d-limit F satisfying the following properties:

(i) F is unique up to isomorphism.
(ii) For any D ∈ d, the set Homd(D, F ) is nonempty.

If, additionally, c ⊆ d satisfies the almost factorization property, then

(iii) For any ε > 0, any C ∈ c, and any α1, α2 ∈ Homd(C, F ), there exists a d-
isomorphism η : F

∼=−→ F such that dd(η ◦ α1, α2) < ε.

Remark 2.8. The category of C∗-algebras C∗ is metric-enriched by the usual norm-
distance between ∗-homomorphisms. Therefore, the definitions given here can be ap-
plied to C∗ directly (as done in [32]). However, it is more common to compare 
∗-homomorphisms metrically on finite sets. (See e.g. [56].) For example, (NAP) in 
Definition 2.2 gets changed to: for any ε, α1, α2, and finite set F ⊆ A, there exist ∗-
homomorphism β1, β2 such that ‖β1 ◦α1(x) −β2 ◦α2(x)‖ < ε for every x ∈ F . A similar 
change is done in the third condition of (SEP) and the definition of Fraïssé sequence.
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As we will discuss in Remark 3.32, for our purposes it would also be interesting to 
study Fraïssé categories of C∗-algebras with respect to approximate unitary equivalence. 
In that version, (NAP) would be changed to: for any ε, α1, α2, and finite set F ⊆ A, there 
exist ∗-homomorphism β1, β2 and a unitary u ∈ C̃ such that ‖u∗β1◦α1(x)u −β2◦α2(x)‖ <
ε for every x ∈ F . Analogous changes would be made to the other definitions.

3. Fraïssé categories of Cuntz semigroups

As explained in the previous section, the approach to Fraïssé categories from [40]
requires each Hom-set to be equipped with a right- and left-enriched metric. This rarely 
happens in the category Cu: Every HomCu-set admits a natural metric (defined and 
studied in the last section of this paper), but such a metric is seldom left-enriched. This 
was already the case for the specific instances of this metric considered in the past. (See 
e.g. [15] and [19].)

To overcome these constraints, we introduce a theory of Fraïssé categories for Cu-
semigroups where, instead of using a metric on the Hom-sets, we compare morphisms on 
finite sets. This allows us to bypass any sort of enrichment property. In the course of our 
investigations, we also define an analog of Cauchy sequences for Cu-morphisms, which 
are shown to have a unique limit. Further, building on the results from [15], we develop a 
general theory of one- and two-sided approximate intertwinings in Cu. These tools allow 
us to define and obtain analogous notions and results to those of Kubiś. We finish the 
section by describing the relation between these theories in the context of C∗-algebras 
and concrete Cuntz semigroups.

First, let us recall some preliminaries about the category Cu.

3.1 (Cu-semigroups). Let x, y be elements in a partially ordered set P . We write x � y

if, for every increasing sequence (zn)n which has a supremum such that y ≤ supn zn, 
there exists n ∈ N such that x ≤ zn.

As defined in [22], a positively ordered monoid S is said to be a Cu-semigroup if S
satisfies the following properties:

(O1) Every increasing sequence in S has a supremum.
(O2) Every element in S can be written as the supremum of a �-increasing sequence.
(O3) The addition and the �-relation are compatible.
(O4) Suprema of increasing sequences and the addition are compatible.

A monoid morphism between Cu-semigroups is a Cu-morphism if it preserves the 
order, the �-relation, and suprema of increasing sequences. We denote the category 
of Cu-semigroups and Cu-morphisms by Cu. (See e.g. [5] or [30] for a more detailed 
exposition.)



326 L. Cantier, E. Vilalta / Journal of Algebra 658 (2024) 319–364
The Cuntz semigroup of a C∗-algebra A, denoted by Cu(A), is the quotient (A ⊗K)+/ ∼
equipped with the addition induced by diagonal addition and the order induced by �, 
where the relations � and ∼ are defined as follows:

a � b :⇐⇒ a = lim
n

rnbr
∗
n for some sequence (rn)n ⊆ A⊗K.

a ∼ b :⇐⇒ a � b and b � a.

The Cuntz semigroup of A, first considered in [24], is always a Cu-semigroup. (See 
[22].) Further, every ∗-homomorphism from A to B induces a Cu-morphism from Cu(A)
to Cu(B).

The relation between concrete Cuntz semigroups and the abstract category Cu has 
been studied extensively. (See [2,3,6,13,14,21,51,53] among many others.) For instance, 
it is known that the category Cu has direct limits and that the functor Cu is continuous. 
(See [5], [22].)

A Cu-semigroup S is countably-based if S contains a countable, sup-dense subset. 
Examples include the Cuntz semigroup of any separable C∗-algebra.

A. Comparison of Cu-morphisms

As mentioned at the beginning of this section, it is not clear when a set of Cu-
morphisms can be equipped with a (meaningful) enriching metric. In order to overcome 
this issue and work in the general setting, we will compare Cu-morphisms on finite 
sets. This notion was introduced explicitly in [15], although the idea had also appeared 
implicitly in the past when working with specific families of Cu-morphisms. (See e.g. 
[17–19,41,43].)

Definition 3.2 ([15, Definition 3.9]). Given a pair of Cu-morphisms α, β : S −→ T and 
a finite subset F ⊆ S, we say that α and β compare on F , and we write α �F β, if for 
any pair x′, x ∈ F with x′ � x, we have

α(x′) ≤ β(x) and β(x′) ≤ α(x).

Remark 3.3. As observed in [15], the following are equivalent:

(i) α = β.
(ii) α �F β for any finite subset F ⊆ S.
(iii) α �{s′,s} β for any s′, s ∈ S with s′ � s.

Note that finite-set comparison can also be used for weaker forms of morphisms be-
tween Cu-semigroups. (See [17, Definition 2.2].)

With this notion of comparison at hand, we can define Cauchy sequences, limits, and 
approximate intertwinings in the category Cu.
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Definition 3.4. Let (αi)i be a sequence of Cu-morphisms in HomCu(S, T ). We say that 
(αi)i is a Cauchy sequence if, for any finite subset F ⊆ S, there exists an index iF such 
that αj �F αk whenever j, k ≥ iF .

The following definition of convergence was introduced in [41, Definition 5.1] for con-
crete Cuntz morphisms. We give here the definition for any sequence of Cu-morphisms.

Definition 3.5. Let (αi)i be a sequence of Cu-morphisms in HomCu(S, T ). We say that 
(αi)i converges towards a Cu-morphism α : S −→ T if, for any finite subset F ⊆ S, there 
exists an index iF such that αj �F α whenever j ≥ iF .

Remark 3.6. In view of our previous remark, note that (αi)i converges to α if, for any 
pair of elements x′, x ∈ S with x′ � x, there exists an index i0 such that αj(x′) ≤ α(x)
and α(x′) ≤ αj(x) whenever j ≥ i0.

Example 3.7. If a sequence of ∗-homomorphisms (ϕi : A −→ B)i converges in point-norm 
topology to a morphism ϕ : A −→ B, then the sequence (Cu(ϕi))i converges to Cu(ϕ).

Indeed, given [a], [b] ∈ Cu(A) with [a] � [b], we can find ε > 0 small enough such that 
[a] ≤ [(b − ε)+]. Moreover, we can find i ∈ N big enough such that ‖ϕj(a) − ϕ(a)‖ < ε

for every j ≥ i. Therefore, we have ϕj(a) � ϕj((b − ε)+) = (ϕj(b) − ε)+ � ϕ(b) and 
ϕ(a) � ϕ((b − ε)+) = (ϕ(b) − ε)+ � ϕj(b).

Theorem 3.8. Let S, T be Cu-semigroups. Then any Cauchy sequence (αi)i in
HomCu(S, T ) converges towards a unique Cu-morphism.

Proof. Let us first assume that S is countably-based, so that there exists a ⊆-increasing 
sequence (Bn)n of finite sets of S such that B :=

⋃
n∈N

Bn is sup-dense in S. Let (αi)i be 

a Cauchy sequence in HomCu(S, T ). We can find a strictly increasing map ϕ : N −→ N

such that αj �Bn
αk for any j, k ≥ ϕ(n).

Let Seq�(B) denote the set of �-increasing sequence in B, which we may think of 
as maps f : N −→ B, i �→ fi, such that fi � fi+1 in S for each i. With this notation, 
there exists a map ψ : N × Seq�(B) −→ N such that

(i) ψ(·, f) : N −→ N is strictly increasing for every fixed f .
(ii) {f0, . . . , fl+1} ⊆ Bψ(l,f) for each l ∈ N.

Note that the map ϕ ◦ ψ(·, f) is strictly increasing for any f ∈ Seq�(B).
Now fix l ∈ N. By the definition of ϕ we have that αj �Bψ(l,f) αk for any j, k ≥

ϕ(ψ(l, f)). Further, it follows from the construction of φ that

αj(fi) ≤ αk(fi+1) and αk(fi) ≤ αj(fi+1)

for any 0 ≤ i ≤ l and any j, k ≥ ϕ(ψ(l, f)).
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In particular, for j = ϕ(ψ(l, f)), k = ϕ(ψ(l + 1, f)) and i = l, we obtain

αϕ(ψ(l,f))(fl) ≤ αϕ(ψ(l+1,f))(fl+1).

In other words, the sequence 
(
αϕ(ψ(l,f))(fl)

)
l
is increasing. Consequently, we can define 

the following map

αSeq : Seq�(B) −→ T

f �−→ supl αϕ(ψ(l,f))(fl)

We aim to construct a Cu-morphism α : S −→ T induced by αSeq. For this, we will 
need the following claim.

Claim. Let f, g ∈ Seq�(B) be such that sup f ≤ sup g. Then αSeq(f) ≤ αSeq(g).
Proof of the Claim. Let f, g be as in the statement. For any l ∈ N, there exists 

m ∈ N such that fl � fl+1 � gm. Since ϕ ◦ ψ(·, g) is strictly increasing, we can 
assume that m is large enough so that ϕ(ψ(l, f)) ≤ ϕ(ψ(m, g)). By construction, we 
have αϕ(ψ(l,f))(fl) ≤ αk(fl+1) for any k ≥ ϕ(ψ(l, f)). Thus, we compute

αϕ(ψ(l,f))(fl) ≤ αϕ(ψ(m,g))(fl+1) ≤ αϕ(ψ(m,g))(gm) ≤ αSeq(g)

which implies that αSeq(f) ≤ αSeq(g) and proves the claim.
Since B is dense in S, we are now able to construct the following order-preserving 

map

α : S −→ T

s �−→ αSeq((si)i)

where (si)i is any �-increasing sequence in the basis B obtained from (O2), whose 
supremum is s. (The claim shows that α is well-defined, i.e. α does not depend on the 
sequence (si)i, and also that α preserves the order.)

Further, using (O4), it is readily checked that α preserves the addition. Using a 
diagonal-type argument (see e.g. the proof of [15, Lemma 3.12]), it can also be shown 
that α preserves suprema of increasing sequences.

We are left to show that α preserves the compact-containment relation. Let f, g ∈
Seq�(B) be such that sup f � sup g. Then, there exists m ∈ N such that fl � gm−2 �
gm−1 � gm for any l ∈ N. Find l0 big enough such that ϕ(ψ(m, g)) ≤ ϕ(ψ(l, f)) for any 
l ≥ l0. By construction, we have

αϕ(ψ(l,f))(fl) � αϕ(ψ(l,f))(gm−2) ≤ αϕ(ψ(m,g))(gm−1) � αϕ(ψ(m,g))(gm) ≤ αSeq(g)

whenever l ≥ l0. In particular, we get αSeq(f) � αSeq(g) and, hence, α preserves the 
�-relation. This shows that α is a well-defined Cu-morphism.

Finally, let us prove that (αi)i converges to α. Let x′, x ∈ S be such that x′ � x. 
By density of B in S, there exists f ∈ Seq�(B) such that x′ � sup f � x. On the one 
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hand, note that there exists l ∈ N big enough such that x′ � fl � fl+1 � x. We deduce 
that, for any i ≥ ϕ(ψ(l + 1, f)), we have

αi(x′) ≤ αi(fl) ≤ αϕ(ψ(l+1,f))(fl+1) ≤ αSeq(f) = α(sup f) ≤ α(x).

On the other hand, note that α(x′) � αSeq(f) and, hence, there exists m ∈ N big enough 
such that α(x′) � αϕ(ψ(m,f))(fm). We deduce that, for any i ≥ ϕ(ψ(m, f)), we have

α(x′) ≤ αϕ(ψ(m,f))(fm) ≤ αi(fm+1) ≤ αi(x).

This shows that (αi)i converges towards α. Since such an α is unique, this also proves 
that α does not depend on the basis B chosen.

Now let us show that the result holds for any (possibly not countably-based) Cu-
semigroup S. Let (αi)i be a Cauchy sequence in HomCu(S, T ). Any countably-based 
sub-Cu-semigroup H of S (i.e. H is Cu-semigroup that order-embeds into S) naturally 
induces a Cauchy sequence (αi|H)i by restriction. We can thus construct its limit as 
above, which we denote by αH .

Let x ∈ S. It follows from [50, Lemma 5.1] that there exists a (possibly not unique) 
countably-based sub-Cu-semigroup Hx such that x ∈ Hx. Let H1, H2 be countably-based 
sub-Cu-semigroups that contain x. By construction, there exist �-increasing sequences 
(xn)n and (x′

n)n in H1 and H2 respectively with supremum x such that αH1(x) =
supn αn(xn) and αH2(x) = supn αn(x′

n). Further, we can choose these sequences so that, 
for any m ≥ n, we have

αn(xn) ≤ αm(xn+1) and αn(x′
n) ≤ αm(x′

n+1).

Let n ∈ N, and find m ≥ n such that xn+1 � x′
m. Then, we get

αn(xn) ≤ αm(xn+1) ≤ αm(x′
m) ≤ αH2(x).

Taking supremum over n we obtain αH1(x) ≤ αH2(x) and, by a symmetric argument, 
we also get αH2(x) ≤ αH1(x). We conclude that αH1(x) = αH2(x) for any x ∈ S and, 
consequently, that the following map is well-defined

α : S −→ T

x �−→ αHx
(x)

Using the techniques from [50] one can check that α is a Cu-morphism and that the 
sequence (αi)i converges to α (by construction). This ends the proof. �
Notation 3.9. We have just shown that any Cauchy sequence (αi)i in HomCu(S, T ) con-
verges towards a unique Cu-morphism α : S −→ T . We will say that α is the limit of the 
sequence, and write limi αi = α.
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We are now able to define and study approximate intertwinings in the category Cu. 
This generalizes the concepts introduced in [15] for the specific case of uniformly-based 
Cu-semigroups.

Definition 3.10. Let (Si, σi,j)i∈N and (Ti, τi,j)i∈N be two inductive sequences in Cu. 
Assume that there exists a strictly increasing map ϕ : N −→ N together with a sequence 
of Cu-morphisms (αi : Si −→ Tϕ(i))i satisfying the following property:

For any finite subset F ⊆ Si, there exists an index iF ≥ i such that, for any j ≥ iF
and any k ≥ j, the diagram

Si

σi,j

Sj

αj

σj,k

Sk

αk

Tϕ(j) τϕ(j),ϕ(k)
Tϕ(k)

approximately commutes within F , that is, αk ◦ σi,k �F τϕ(j),ϕ(k) ◦ αj ◦ σi,j .
We say that (αi)i is a one-sided approximate intertwining.

Proposition 3.11. Let (Si, σi,j)i∈N and (Ti, τi,j)i∈N be two inductive sequences in Cu with 
respective limits (S, σi,∞) and (T, τi,∞). Let (αi : Si −→ Tϕ(i))i be a one-sided approx-
imate intertwining. Then there exists a Cu-morphism α : S −→ T such that, for any 
finite subset F ⊆ Si, there exists iF ≥ i such that, for any j ≥ iF , the diagram

Si

σi,j

Sj

αj

σj,∞
S

∃α

Tϕ(j) τϕ(j),∞
T

approximately commutes within F , that is, α ◦ σi,∞ �F τϕ(j),∞ ◦ αj ◦ σi,j.

Proof. For any i ∈ N the sequence (τϕ(j),∞ ◦ αj ◦ σi,j)j is Cauchy. It follows from 
Theorem 3.8 that the sequence has a limit, which we denote by ηi : Si −→ T . Using that 
this limit is unique, it is readily checked that ηi = ηj ◦σi,j for any i ≤ j. By the universal 
property of direct limits, this induces a Cu-morphism α : S −→ T such that ηi = α◦σi,∞
for any i ∈ N. Finally, note that for any finite subset F ⊆ Si, we can find an index iF
such that ηi �F τϕ(j),∞ ◦ αj ◦ σi,j for any j ≥ iF . Thus, we have

α ◦ σi,∞ = ηi �F τϕ(j),∞ ◦ αj ◦ σi,j

which ends the proof. �
Example 3.12. Let (ψi : Ai −→ Bϕ(i))i be a one-sided approximate intertwining of C∗-
algebras from (Ai, ϕi,j)i∈N to (Bi, φi,j)i∈N . It follows from Example 3.7 that the induced 
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maps (Cu(ψi))i define a one-sided approximate intertwining from (Cu(Ai), Cu(ϕi,j))i to 
(Cu(Bi), Cu(φi,j))i.

Definition 3.13. Let (Si, σi,j)i∈N and (Ti, τi,j)i∈N be two inductive sequences in Cu. 
Assume that there exist two strictly increasing maps ϕ, ψ : N −→ N together with two 
sequences of Cu-morphisms (αi : Si −→ Tϕ(i))i and (βi : Ti −→ Sψ(i))i satisfying the 
following property:

For any finite sets F ⊆ Si and G ⊆ Ti, there exist indices iF , iG ≥ i such that, for 
any j ≥ iF , j′ ≥ iG and any k ≥ ϕ(j), k′ ≥ ψ(j′), the diagrams

Si

σi,j

Sj

αj

σj,ψ(k)
Sψ(k)

Tϕ(j) τϕ(j),k
Tk

βk

Sψ(j′)
σψ(j′),k′

Sk′

αk′

Ti τi,j′
Tj′

βj′

τj′,ϕ(k′)
Tϕ(k′)

approximately commute within F and G respectively, that is,

σi,ψ(k) �F βk ◦ τϕ(j),k ◦ αj ◦ σi,j and τi,ϕ(k′) �G αk′ ◦ σψ(j′),k′ ◦ βj′ ◦ τi,j′ .

We say that (αi, βi)i is a two-sided approximate intertwining.

Remark 3.14. Each of the sequences (αi)i and (βi)i that define a two-sided approximate 
intertwining induce a one-sided approximate intertwining.

Throughout the paper, when considering a finite set F for comparison of Cu-
morphisms, we will often need to construct a larger finite set F̃ which is finer than 
F in the following sense.

Definition 3.15. Let F, F̃ be (finite) subsets of a Cu-semigroup and let n ∈ N. We will 
say that F̃ is an n-refinement of F , or that F̃ refines F n-times, if

(i) F ⊆ F̃ .
(ii) For any f ′, f ∈ F such that f ′ � f , there exist n elements g1, . . . , gn ∈ F̃ such that 

f ′ � g1 � . . . � gn � f .

Note that, for any n ≥ 1 and any finite set F of a Cu-semigroup, we can always find 
a finite n-refinement of F .

Remark 3.16. One of the reasons why the previous notion is needed is that �F is not a 
transitive relation, that is, α �F β �F γ does not imply α �F γ. Instead, what we do 
have is that, if F̃ is an n-refinement of F , then α �F̃ α1 �F̃ . . . �F̃ αn �F̃ β implies 
α �F β.
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Theorem 3.17. Let (Si, σi,j)i∈N and (Ti, τi,j)i∈N be two inductive sequences in Cu with 
respective limits (S, σi,∞) and (T, τi,∞). Assume that there exists a two-sided approximate 
intertwining (αi : Si −→ Tϕ(i), βi : Ti −→ Sψ(i))i.

Then there exists a Cu-isomorphism α : S ∼= T induced by (αi)i whose inverse is 
induced by (βi)i.

Proof. Our approach is similar to that of [15, Theorem 3.16], but we proceed with 
additional care since our setting is more general.

Arguing as in the proof of Proposition 3.11, we know that for any i ∈ N the sequences 
(τϕ(j),∞◦αj ◦σi,j)j and (σψ(j′),∞◦βj′ ◦τi,j′)j′ are Cauchy, and we denote their respective 
limits by ηi : Si −→ T and νi : Ti −→ S. Furthermore, these limits induce Cu-morphisms 
α : S −→ T and β : T −→ S. In order to show that α and β are inverses of one another, 
it suffices to show that β ◦ ηi = σi,∞ and α ◦ νi = τi,∞ for any i ∈ N.

Let F be a finite subset of Si and let F̃ be a 2-refinement of F . Since ηi is the 
limit of (τϕ(j),∞ ◦ αj ◦ σi,j)j , we know that there exists j ≥ i big enough such that 
ηi �F̃ τϕ(j),∞ ◦ αj ◦ σi,j . Post-composing with β, we obtain

β ◦ ηi �F̃ νϕ(j) ◦ αj ◦ σi,j . (1)

Consider G̃ := αj ◦ σi,j(F̃ ) ⊆ Tϕ(j). Since νϕ(j) is the limit of (σψ(k),∞ ◦ βk ◦ τϕ(j),k)k, 
we know that there exists k ≥ ϕ(j) big enough such that νϕ(j) �G̃ σψ(k),∞ ◦ βk ◦ τϕ(j),k. 
Precomposing by αj ◦ σi,j , this implies

νϕ(j) ◦ αj ◦ σi,j �F̃ σψ(k),∞ ◦ βk ◦ τϕ(j),k ◦ αj ◦ σi,j . (2)

Finally, since (αi, βi)i is a two-sided approximate intertwining, we also have

σψ(k),∞ ◦ βk ◦ τϕ(j),k ◦ αj ◦ σi,j �F̃ σi,∞ (3)

whenever j and k are big enough.
It follows from the construction of F̃ and a combination of (1)-(3) that β ◦ηi �F σi,∞. 

Since this holds for any finite subset, we must have β ◦ ηi = σi,∞. Therefore, we get 
β ◦ α = idS . The fact that α ◦ β = idT follows from a symmetric argument. �
3.18 (Comparison and approximate intertwinings in Cu∗). Note that none of the proofs 
above uses the fact that the ordered monoids under consideration are positively ordered. 
Thus, all the results in this section are still valid for the larger category Cu∗ introduced 
in [16] (loosely, this is the category of not necessarily positively ordered Cu-semigroups).

Many refinements of the Cuntz semigroup have Cu∗ as their target category, and 
thus are amenable to the techniques developed here. We predict that this will play 
an important role when one such variant of the Cuntz semigroup is used to classify 
morphisms between certain C∗-algebras.
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B. Fraïssé categories of Cuntz semigroups

We are now ready to introduce a version of Fraïssé Theory for abstract Cuntz semi-
groups, analogous to that of [40]. As stated earlier, we use finite-set comparison of 
Cu-morphisms to bypass the need of enriched metrics.

Definition 3.19. Let c be a subcategory of Cu. We say that c

(JEPCu) satisfies the (Cuntz) joint embedding property if, for any A1, A2 ∈ c, there exists 
B ∈ c such that both Homc(A1, B) and Homc(A2, B) are nonempty.

(NAPCu) satisfies the (Cuntz) near amalgamation property if, for any pair of c-
morphisms α1 ∈ Homc(A, B1) and α2 ∈ Homc(A, B2), and any finite subset F ⊆ A, 
there exist C ∈ c and c-morphisms β1 ∈ Homc(B1, C) and β2 ∈ Homc(B2, C) such 
that β1 ◦ α1 �F β2 ◦ α2.

(SEPCu) is (Cuntz) separable if there exists a countable dominating subcategory s ⊆ c, 
that is,
• any object S ∈ s is a countably-based Cu-semigroup.
• the set of s-morphisms is countable.
• for any A ∈ c there exist S ∈ s such that Homc(A, S) is nonempty.
• for any c-morphism σ : S −→ A with S ∈ s and any finite subset F ⊆ S, there 

exists T ∈ s and α ∈ Homc(A, T ) and τ ∈ Homs(S, T ) such that α ◦ σ �F τ .

We say that c is a (Cuntz) Fraïssé category if c satisfies (JEPCu), (NAPCu) and 
(SEPCu).

As clarified in Remark 2.3, the Cu-morphisms involved need not be embeddings but 
we chose to be faithful to the historical name anyways. Next, we define a notion of 
(Cuntz) Fraïssé sequences and show that any (Cuntz) Fraïssé category admits such a 
sequence, which is unique up to two-sided approximate intertwining.

Definition 3.20. Let c be a subcategory of Cu. An inductive sequence (Si, σi,j)i∈N is 
called a (Cuntz) Fraïssé sequence if

(i) Every Si is a countably-based Cu-semigroup.
(ii) For any finite subset F ⊆ Si and any c-morphism α : Si −→ C, there exists a 

c-morphism βF : C −→ Sj for some j ≥ i such that βF ◦ α �F σi,j .

Theorem 3.21 (Existence and Uniqueness). Let c ⊆ Cu be a Fraïssé category. Then c
admits a Fraïssé sequence which is unique up to two-sided approximate intertwining in 
c.
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Proof. The proof that such a sequence exists is analogous to that of [40, Theorem 3.3]. 
We reproduce the proof here with our language of finite-set comparison for the sake of 
completeness. In contrast, the uniqueness part of the proof differs from [40].

[Existence] Without loss of generality, we may assume that the countable dominating 

subcategory s ⊆ c satisfies the joint embedding property and the near amalgamation 

property.
Now consider the partially ordered set S := {finite inductive sequences in s} with 

the end-extension order, i.e. (Si, σi,j)i,j≤n ≤ (Ti, τi,j)i,j≤m in S whenever n ≤ m and 

(Ti, τi,j)i,j≤n = (Si, σi,j)i,j≤n. For any S ∈ s, fix a basis B :=
⋃
k

Bk such that (Bk)k is a 

⊆-increasing sequence of finite sets of S. For any s-morphism α : S −→ T and n, k ∈ N, 
we let Dn,α,k be the subset of S of all elements (Si, σi,j)i,j≤m satisfying the following

• m > n.
• Homs(S, Si) �= ∅ for some i.
• if S = Sn, then there exist j > n and β ∈ Homs(T, Sj) such that β ◦ α �Bk

σn,j .

Using the joint embedding property and the near amalgamation property, it is readily 

checked that all sets of the form Dn,α,k are cofinal in S with respect to the end-extension 

order, that is, for any triple n, α, k and any s ∈ S there exists d ∈ Dn,α,k such that s ≤ d.
Next, we argue similarly as in the proof of [40, Theorem 3.3] and make use of the 

following, commonly known as the Rasiowa-Sikorski lemma: Given an ordered set P and 

a countable family of cofinal subets {Dn}n∈N , then there exists an increasing sequence 

(dn)n in P with dn ∈ Dn.
Let us fix an ordering ϕ : N −→ {(n, α, k) | n, k ∈ N, α ∈ s}. Then, we can use the 

Rasiowa-Sikorski lemma to find a ≤-increasing sequence (cl)l where cl ∈ Dϕ(l). Note that 
the supremum of (cl)l is in fact a well-defined inductive sequence in s, which we write 

as (Si, σi,j)i. By construction, (Si, σi,j)i is Fraïssé for s. Finally, arguing again as in the 

proof of [40, Theorem 3.3], we deduce that (Si, σi,j)i is in fact a Fraïssé sequence for c.
[Uniqueness] Let (Si, σi,j)i and (Ti, τi,j)i be two Fraïssé sequences in c. We are going 

to recursively construct a two-sided approximate intertwining between them.
First, recall that all the Cu-semigroups involved are countably-based (by definition). 

Therefore, for each i, we can fix two ⊆-increasing sequences (Bi
n)n, (Ci

n)n of finite subsets 
of Si, Ti respectively, such that their unions over n are sup-dense in Si and Ti. Now, 
using the joint embedding property first, and then the Fraïssé sequence property twice, 
we construct the maps β0 and αψ(0) which make the following diagram approximately 

commute.
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S0 Sψ(0)

αψ(0)
V0


B0
0

T0

β0

C0

0

Tϕ(0)

Our aim is to construct strictly increasing map ψ, ϕ : N −→ N together with large 
enough subsets B̃ψ(i), C̃ϕ(i) of Sψ(i), Tϕ(i) and c-morphisms βϕ(i) : Tϕ(i) −→ Sψ(i+1) and 
αψ(i+1) : Sψ(i+1) −→ Tϕ(i+1) producing the following approximately commutative dia-
gram.

. . . Sψ(i)

αψ(i)


B̃ψ(i)

Sψ(i+1)

αψ(i+1)

. . .

. . . Tϕ(i)

βϕ(i)


C̃ϕ(i)

Tϕ(i+1) . . .

To do this, we proceed by induction from the initial data B0
0, C

0
0 , β0, αψ(0). Assume that

• the numbers ψ(0), ϕ(0), . . . , ψ(i), ϕ(i)
• the finite sets B0

0 , C
0
0 , . . . , B̃ψ(i−1), C̃ϕ(i−1)

• the c-morphisms β0, αψ(0), . . . , βϕ(i−1), αψ(i)

have been constructed for some i ≥ 0. (By convention, we have fixed ψ(−1) = ϕ(−1) = 0
and B̃0 := B0

0 , C̃0 := C0
0 .)

In what follows, a path is any Cu-morphism in the above diagram that can be expressed 
as the composition of finitely many maps among σj,k, τj,k, αψ(j) and βϕ(j). Let us start 
by choosing B̃ψ(i) ⊆ Sψ(i) and C̃ϕ(i) ⊆ Tϕ(i) such that

(i) B
ψ(i)
ψ(i) ⊆ B̃ψ(i) and Cϕ(i)

ϕ(i) ⊆ C̃ϕ(i).

(ii) B̃ψ(i) refines 
{
π(b) ∈ Sψ(i) | b ∈

⋃
0<l≤i

(
B̃ψ(i−l) ∪ C̃ϕ(i−l)

)
, π a path

}
.

(iii) C̃ϕ(i) refines 
{
π(c) ∈ Tϕ(i) | c ∈

⋃
0<l≤i

(
B̃ψ(i−l) ∪ C̃ϕ(i−l)

)
, π a path

}
.

We apply successively the Fraïssé sequence property twice. First, we obtain an index 
ψ(i + 1) > ψ(i) together with a c-morphism βϕ(i) : Tϕ(i) −→ Sψ(i+1) such that

βϕ(i) ◦ αψ(i) �B̃ψ(i)
σψ(i),ψ(i+1)

and then we get an index ϕ(i +1) > ϕ(i) together with a c-morphism αψ(i+1) : Sψ(i+1) −→
Tϕ(i+1) such that
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αψ(i+1) ◦ βϕ(i) �C̃ϕ(i)
τϕ(i),ϕ(i+1)

which finishes the inductive argument.
We will now check that the sequences of c-morphisms that we have just constructed 

induce a two-sided approximate intertwining. Let us first prove the following.
Claim. Let i, l ∈ N. For any elements b−, b, b+ ∈ B̃ψ(i) such that b− � b � b+, we 

have {
σψ(i),ψ(i+l+1)(b−) ≤ βϕ(i+l) ◦ τϕ(i),ϕ(i+l) ◦ αψ(i)(b+)
βϕ(i+l) ◦ τϕ(i),ϕ(i+l) ◦ αψ(i)(b−) ≤ σψ(i),ψ(i+l+1)(b+)

Proof of the Claim. Note that σψ(i),ψ(i+1)(b−) ≤ βϕ(i) ◦ αψ(i)(b). Moreover, it follows 
from the construction of B̃ψ(i+1) (see (ii) above) that there exists b2 ∈ B̃ψ(i+1) such that 
σψ(i),ψ(i+1)(b−) � b2 � βϕ(i) ◦ αψ(i)(b). Thus, we have that

σψ(i),ψ(i+2)(b−) ≤ βϕ(i+1) ◦ αψ(i+1)(b2) ≤ βϕ(i+1) ◦ αψ(i+1)(βϕ(i) ◦ αψ(i)(b)).

Proceeding successively in this fashion, we obtain

σψ(i),ψ(i+l+1)(b−) ≤ (βϕ(i+l) ◦ αψ(i+l)) ◦ . . . ◦ (βϕ(i) ◦ αψ(i))(b). (4)

A similar argument involving the pair αψ(i)(b) and αψ(i)(b+) shows that

(αψ(i+l) ◦ βϕ(i+l−1)) ◦ . . . ◦ (αψ(i+1) ◦ βϕ(i))(αψ(i)(b)) ≤ τϕ(i),ϕ(i+l)(αψ(i)(b+)). (5)

Post-composing (5) by βϕ(i+l) and combining it with (4) gives us the first inequality of 
the claim. The other inequality follows from a symmetric argument, which proves the 
claim.

Finally, let F be a finite subset of Si. From the construction of the B̃ψ(i)’s (see (i) 
above), there exists an index iF ≥ i such that, for any f ′, f ∈ F with f ′ � f and any 
j ≥ iF , we can find b−, b, b+, ∈ B̃ψ(j) such that σi,ψ(j)(f ′) � b− � b � b+ � σi,ψ(j)(f). 
Applying the claim, we get

{
σi,ψ(k+1)(f ′) ≤ βϕ(k) ◦ τϕ(j),ϕ(k) ◦ αψ(j) ◦ σi,ψ(j)(f)
βϕ(k) ◦ τϕ(j),ϕ(k) ◦ αψ(j) ◦ σi,ψ(j)(f ′) ≤ σi,ψ(k+1)(f)

for any j ≥ iF and any k ≥ j + 1. In other words, σi,ψ(k+1) �F βϕ(k) ◦ τϕ(j),ϕ(k) ◦αψ(j) ◦
σi,ψ(j). Setting α′

j := αψ(j) ◦ σj,ψ(j) and β′
k := βϕ(k) ◦ τk,ϕ(k), we obtain

σi,ψ(k+1) �F β′
k ◦ τϕ(j),k ◦ α′

j ◦ σi,j .

The second property of Definition 3.13 is proved by using a symmetric argument and we 
are done. �
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On the road towards our version of Theorem 2.7, we follow with some technical lem-
mas.

Lemma 3.22 (Universality). Let c ⊆ Cu be a Fraïssé category. Let (Si, σi,j)i∈N be a 
Fraïssé sequence and let (Ti, τi,j)i∈N be a c-inductive sequence of countably-based c-
objects.

Then, there exists a one-sided approximate intertwining (αi : Ti −→ Sϕ(i))i.

Proof. We are going to construct the desired one-sided approximate intertwining re-
cursively following a similar argument to that of Theorem 3.21. Recall that all the 
Cu-semigroups involved are countably-based by definition. Therefore, for each i, we can 
fix a ⊆-increasing sequence (Bi

n)n of finite subsets of Ti such that its unions over n are 
sup-dense in Ti. Now, using the joint embedding property together with the fact that 
(Si, σi,j)i is a Fraïssé sequence, we construct a c-morphism α0 : T0 −→ Sϕ(0).

T0

α0V0

S0 Sϕ(0)

Our aim is to construct a strictly increasing map ϕ : N −→ N together with large 
enough subsets B̃i of Ti and c-morphisms αi+1 : Ti+1 −→ Sϕ(i+1) such that σϕ(i),ϕ(i+1) ◦
αi �B̃i

αi+1 ◦ τi,i+1. To do this, we proceed by induction from the initial data B0
0 , α0. 

Assume that

• the numbers ϕ(0), . . . , ϕ(i)
• the finite sets B0

0 , B̃1, . . . , B̃i−1

• the c-morphisms α0, . . . , αi

have been constructed for some i ≥ 0. (By convention, we have fixed B̃−1 := B0
0 .)

Let us start by choosing B̃i ⊆ Ti such that

(i) Bi
i ⊆ B̃i.

(ii) B̃i is a 2-refinement of 
{
τi−l,i(b) ∈ Ti | b ∈

⋃
0<l≤i B̃i−l

}
.

We then use the near amalgamation property to construct c-morphisms ξui+1, θi+1 such 
that the quadrilateral in the diagram below approximately commutes within B̃i. Lastly, 
we use the Fraïssé sequence property to get a c-morphism ξdi+1 such that the triangle 
underneath approximately commutes within αi(B̃i). Define αi+1 := ξdi+1 ◦ θi+1.
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Ti

αi


B̃i

Ti+1

αi+1

θi+1

Vi+1

ξdi+1

Sϕ(i)

ξui+1

Sϕ(i+1)


αi(B̃i)

Hence, we have obtained a sequence of c-morphisms (αi : Ti −→ Sϕ(i))i, and we are left 
to show that this is a one-sided approximate intertwining.

Claim. Let i, j ∈ N. For any elements b′, b−1 , b
+
1 , b ∈ B̃i such that b′ � b−1 � b+1 � b, 

we have
{

σϕ(i),ϕ(i+j) ◦ αi(b′) ≤ αi+j ◦ τi,i+j(b)
αi+j ◦ τi,i+j(b′) ≤ σϕ(i),ϕ(i+j) ◦ αi(b)

Proof of the claim. Note that

σϕ(i),ϕ(i+1) ◦ αi(b′) ≤ ξdi+1 ◦ ξui+1 ◦ αi(b−1 ) ≤ ξdi+1 ◦ θi+1 ◦ τi,i+1(b+1 ) = αi+1 ◦ τi,i+1(b+1 ).

From the construction of the B̃i’s (see (ii) above), we know that we can find b−2 , b
+
2 ∈ B̃i+1

such that τi,i+1(b+1 ) � b−2 � b+2 � τi,i+1(b). Therefore, we have

σϕ(i+1),ϕ(i+2) ◦ αi+1 ◦ τi,i+1(b+1 ) ≤ ξdi+2 ◦ ξui+2 ◦ αi+1(b−2 ) ≤ αi+2 ◦ τi+1,i+2(b+2 ).

Proceeding successively in this fashion, we obtain elements b+1 , b
+
2 , . . . , b

+
j such that 

b+l ∈ B̃i+l−1, and b+l � τi,i+l−1(b) for any l ≤ j. We compute

σϕ(i),ϕ(i+1) ◦ αi(b′) ≤ αi+1 ◦ τi,i+1(b+1 )

σϕ(i+1),ϕ(i+2) ◦ αi+1(τi,i+1(b+1 )) ≤ αi+2 ◦ τi+1,i+2(b+2 )

σϕ(i+2),ϕ(i+3) ◦ αi+2(τi+1,i+2(b+2 )) ≤ αi+3 ◦ τi+2,i+3(b+3 )

...

σϕ(i+j−1),ϕ(i+j) ◦ αi+j−1(τi+j−2,i+j−1(b+j−1)) ≤ αi+j ◦ τi+j−1,i+j(b+j ).

This proves the first inequality of the claim. The other inequality is shown using a 
symmetric argument.

Finally let F be a finite subset of Ti. From the construction of the B̃i’s (see (i) above), 
there exists an index iF ≥ i such that, for any j ≥ iF and any pair f ′, f ∈ F with f ′ � f , 
we can find b′, b−1 , b

+
1 , b, ∈ B̃j such that τi,j(f ′) � b′ � b−1 � b+1 � b � τi,j(f). Applying 

the claim, we readily obtain
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{
σϕ(j),ϕ(k) ◦ αj ◦ τi,j(f ′) ≤ αk ◦ τi,k(f)
αk ◦ τi,k(f ′) ≤ σϕ(j),ϕ(k) ◦ αj ◦ τi,j(f)

for any j ≥ iF and any k > j. In other words, αk ◦ τi,k �F σϕ(j),ϕ(k) ◦ αj ◦ τi,j , as 
required. �
Lemma 3.23 (Homogeneity). Let c ⊆ Cu be a Fraïssé category and let (Si, σi,j)i∈N be 
a Fraïssé sequence. Then, for any c-morphisms α : C −→ Sl, β : C −→ Sl and any 
finite subset F ⊆ C, there exists a two-sided approximate intertwining (ηi : Si −→
Sϕ(i), νi : Si −→ Sψ(i))i≥l such that

σl,ψ(i) ◦ α �F νi ◦ σl,i ◦ β and σl,ϕ(i) ◦ β �F ηi ◦ σl,i ◦ α

for any i ≥ l.

Proof. We will build the approximate intertwining following the structure of the previous 
proofs.

First, let us consider a 4-refinement F̃ of F . (That is, F̃ is a finite subset of C that 
contains F and is such that, for any f ′, f ∈ F with f ′ � f , there exist g′, g−, g+, g ∈ F̃

satisfying f ′ � g′ � g− � g+ � g � f .) Then, using the near amalgamation property 
together with the Fraïssé sequence property, we construct c-morphisms νl, ηψ(l) such that 
the following diagram approximately commutes.

Sl


F̃


α(F̃ )

Sψ(l)

ηψ(l)
C

α

β

Vl

Sl

νl

β(F̃ )

Sϕ(l)

Using the ideas and techniques from Theorem 3.21, it is readily verified that
{

σl,ϕ(l) ◦ β(f ′) ≤ σl,ϕ(l) ◦ β(g′) ≤ ηψ(l) ◦ σl,ψ(l) ◦ α(g) ≤ ηψ(l) ◦ σl,ψ(l) ◦ α(f)
σl,ψ(l) ◦ α(f ′) ≤ σl,ψ(l) ◦ α(g′) ≤ νl ◦ β(g) ≤ νl ◦ β(f)

Finally, from the initial data B̃l := α(F̃ ), C̃l := β(F̃ ), νl, ηψ(l), one can construct a 
two-sided approximate intertwining following the proof of Theorem 3.21 (starting at l
instead of 0). Such an intertwining will enjoy the desired properties. �

We now have all the tools that we need to obtain Fraïssé limits in the category Cu. 
Let us first introduce the almost factorization property adapted to our setting.

Definition 3.24. Let c ⊆ d be an inclusion of categories in Cu such that d has inductive 
limits. We say that the inclusion c ⊆ d has the (Cuntz) almost factorization property
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if, for any C ∈ c, any c-inductive system (Si, σi,j)i,j∈I with d-limit (S, σi,∞)i, any d-
morphism α : C −→ S, and any finite subset F ⊆ C, there exist an index iF and a 
c-morphism αF : C −→ SiF satisfying σiF ,∞ ◦ αF �F α.

Adapting the definition of the Ind-completion (see, for example, [38, Chapter VI]), we 
define:

Definition 3.25. Let c be a subcategory of Cu. The completion of c, denoted by c, is the 
subcategory of Cu whose

(i) objects are Cu-limits of inductive sequences in c.
(ii) morphisms are induced by some one-sided approximate intertwining.

More specifically, a Cu-morphism α : S −→ T between c-objects S, T is a c-morphism 
if for any c-inductive sequence (Si, σi,j)i whose Cu-limit objects is S, there exists a 
c-inductive sequence (Ti, τi,j)i whose Cu-limit object is T together with a one-sided 
approximate intertwining (αi : Si −→ Tϕ(i))i in c which induces α in the sense of 
Proposition 3.11.

Remark 3.26. The following two properties of c are readily verified. (For example, they 
can be adapted from the results and references from [38, Chapter VI].)

(i) The category c is a well-defined subcategory of Cu containing c as a subcategory.
(ii) Any inductive sequence in c has an inductive limit in c which coincides with its 

inductive limit in Cu. In particular, any object S ∈ c can be written as the c-limit 
object of an inductive sequence in c.

Further, note that c ⊆ c may not satisfy the almost factorization property. However, 
this will be the case for all our examples.

Theorem 3.27. Let c be a Fraïssé category. Then any Fraïssé sequence (Si, σi,j)i has a 
c-limit (S, σi,∞)i such that

(i) S is unique up to isomorphism, that is, S does not depend on the Fraïssé sequence 
chosen.

(ii) The set Homc(D, S) is nonempty whenever D is countably-based.

Assume that c is contained in a category d where every c-inductive sequence has a 
limit, and where every d-object is the limit of a c-sequence. If c ⊆ d satisfies the almost 
factorization property, then

(iii) For any C ∈ c, any α, β ∈ Homd(C, S) and any finite set F ⊆ C, there exists a 

d-isomorphism ηF : S
∼=−→ S such that ηF ◦ α �F β.
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Proof. (i) follows immediately from Theorem 3.21 together with Theorem 3.17, while 
(ii) follows as a combination of Lemma 3.22 and Proposition 3.11.

To see (iii), let α, β ∈ Homd(C, S) and let F ⊆ C be a finite subset. Construct a 3-
refinement F̃ of F . Let (Si, σi,j)i be a Fraïssé sequence. Then, by the almost factorization 
property, there exist morphisms αF̃ , βF̃ : C → Sl such that α �F̃ σl,∞ ◦ αF̃ and β �F̃

σl,∞◦βF̃ . Using Lemma 3.23 and Theorem 3.17, we see that there exists an isomorphism 
ηF : S −→ S satisfying the desired condition. �
3.28 (Fraïssé Categories of Cu∗-semigroups). Following the discussion from
Paragraph 3.18, we note that all the results above also do not use the fact that the 
underlying ordered monoids have a positive order. Thus, we have in fact developed a 
Fraïssé theory for Cu∗-semigroups.

C. C∗-algebras and Fraïssé categories of Cuntz semigroups

In this last subsection we study under which assumptions the functor Cu induces a 
Fraïssé category of Cuntz semigroups when applied to a Fraïssé category of separable 
C∗-algebras. A natural (but rather strong) assumption to consider is that Cu classifies 
∗-homomorphisms of the Fraïssé category c ⊆ C∗ at hand. We will see that, under an ad-
ditional mild assumption, this is sufficient to deduce that Cu(c) is a Fraïssé category. We 
will conclude with some remarks on the link between these Fraïssé categories, where we 
discuss a weak converse of our result and ways to considerably strengthen the statement.

Let us start by recalling the definition of classifying morphisms. (See, for example, 
[43] or [17] for more details.)

Definition 3.29. Let c and d be subcategories of separable C∗-algebras. We say that the 
functor Cu classifies ∗-homomorphisms from c to d if, for any A in c, any B in d and any 
scaled Cu-morphism α : Cu(A) −→ Cu(B), there exists a ∗-homomorphism χ : A −→ B, 
unique up to approximate unitary equivalence, such that Cu(χ) = α.

We will say that Cu classifies ∗-homomorphisms of c whenever c = d.

In the setting of Definition 3.29 above, the term scaled Cu-morphism simply means 
that there exist strictly positive elements sA ∈ A and sB ∈ B such that α([sA]) ≤ [sB ]. 
This notion fits in the general framework of scales in Cu-semigroups and their associated 
morphisms, as developed in [6, Section 4]. We refer the reader to that paper for a more 
detailed exposition.

Lemma 3.30. Let c be a category of separable C∗-algebras which is either full or replete.1
Assume that Cu classifies ∗-homomorphisms of c. Then Cu(c) is a subcategory of Cu.

1 Most of the Fraïssé categories that we will consider are not full (for example, one usually considers 
injective maps). However, they will all be replete, i.e. for any A ∈ c and any *-isomorphism α : A → B, 
then both B and α are in c.
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Proof. In both cases, the fact that the identity of every Cu(c)-object is a Cu(c)-
morphism, and that both domain and codomain of a Cu(c)-morphism are in Cu(c) is 
immediate. The non-trivial part is to check that Cu(c) is closed under composition of 
morphisms.

Let ϕ : A −→ B and ψ : B′ −→ C be ∗-homomorphisms such that Cu(B) = Cu(B′). 
Write α := Cu(ψ) ◦ Cu(ϕ) : Cu(A) −→ Cu(C). Note that α is still a scaled morphism, 
that is, it maps the class of a strictly positive element in A below the class of a strictly 
positive element in C.

Assume that c is full. Since Cu classifies ∗-homomorphisms of c, we know that there 
exists a ∗-homomorphism χα : A −→ C, which is a c-morphism by fullness of c, such that 
Cu(χα) = α. In other words, α ∈ Cu(c).

Now assume that c is replete. Since Cu classifies ∗-homomorphisms of c and Cu(B) =
Cu(B′), we know that there exists a ∗-isomorphism χ : B ∼= B′ lifting idCu(B). Since c is 
replete, we also know that χ is in fact a c-morphism. Now define χα := ψ◦χ ◦ϕ : A −→ C. 
From construction, χα is a c-morphism and Cu(χα) = α. In other words, α ∈ Cu(c). �
Theorem 3.31. Let c be a category of separable C∗-algebras which is either full or replete. 
Assume that Cu classifies ∗-homomorphisms of c.

If c is a Fraïssé category whose Fraïssé limit is A, then Cu(c) is a Fraïssé category 
whose Fraïssé limit is Cu(A).

Proof. The joint embedding property immediately follows applying the functor Cu.
Let us prove the near amalgamation property in Cu(c). First, we note the following 

fact.
Fact. Let A be a C∗-algebra and let F ⊆ Cu(A) be a finite subset. Then there exists 

a small enough ε > 0 such that, for any [a], [b] ∈ F with [a] � [b], then [a] � [(b − ε)+].
Let Cu(φ1) : Cu(A) −→ Cu(B1) and Cu(φ2) : Cu(A′) −→ Cu(B2) be c-morphisms 

with Cu(A) = Cu(A′). Using the same arguments as above, we may assume A = A′. 
Let F ⊆ Cu(A) be finite and let ε > 0 be the constant given by the previous fact. 
Now, using the near amalgamation property in c, we know that there exist c-morphisms 
ψ1 : B1 −→ C and ψ2 : B2 −→ C such that dC∗(ψ1 ◦φ1, ψ2 ◦φ2) < ε. We are left to show 
that Cu(ψ1 ◦ φ1) �F Cu(ψ2 ◦ φ2). Let [a], [b] ∈ F be such that [a] � [b]. We know that 
‖ψ1 ◦ φ1(b) − ψ2 ◦ φ2(b)‖ < ε and that [a] � [(b − ε)+] which implies that

{
Cu(ψ1 ◦ φ1)([a]) � Cu(ψ1 ◦ φ1)([(b− ε)+]) ≤ Cu(ψ2 ◦ φ2)([b])
Cu(ψ2 ◦ φ2)([a]) � Cu(ψ2 ◦ φ2)([(b− ε)+]) ≤ Cu(ψ1 ◦ φ1)([b])

as desired.
That Cu(c) is separable is shown similarly, by also using the fact that any C∗-algebra 

in c is separable, and thus gives rise to a countably-based Cu-semigroup.
We deduce that Cu(c) is a Fraïssé category. Further, given any Fraïssé sequence in c, 

we can use that Cu classifies ∗-homomorphisms of c to show that the induced sequence 
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in Cu is Fraïssé in Cu(c). Thus, by continuity of the functor Cu, it is readily checked 
that Cu(A) is the Fraïssé limit of Cu(c). �

Some remarks are in order:

Remark 3.32. (i) Assume that c is such that Cu classifies ∗-homomorphisms from c to 
stable rank one C∗-algebras or, more generally, to a category d closed under ultraprod-
ucts. Then, it follows from [43, Theorem 3.3.1] that the previous theorem has a weak 
converse: Cu(c) is Fraïssé if and only if c is Fraïssé with respect to approximate unitary 
equivalences (in the sense of Remark 2.8).
(ii) The assumption of classification of ∗-homomorphisms is rather strong in general. For 
instance, it is proved in [17] that the functor Cu does not classify ∗-homomorphisms 
of circle algebras. Nevertheless, we do not use the full force of the assumption, neither 
in Lemma 3.30 nor in Theorem 3.31. Explicitly, one only needs to assume the following 
much weaker condition:

For every A, A′, B, B′ ∈ c such that Cu(A) 
α∼= Cu(A′) and Cu(B) 

β∼= Cu(B′), and any 
c-morphism ϕ : A → B, there exists a c-morphism φ : A′ → B′ such that Cu(φ) ◦α =
β ◦ Cu(ϕ).

Note that, in particular, this holds whenever our category has a single object. (See 
Remark 4.37.)

To obtain a weak converse (as in (i)), the additional property that one needs is:

For every C∗-algebra A in c, any finite set F ⊆ A and any ε > 0 there exists a finite 
subset G ⊆ Cu(A) such that, whenever two c-morphisms ϕ1, ϕ2 : A → B satisfy 
Cu(ϕ1) �G Cu(ϕ2), then there exists u ∈ B̃ such that ‖u∗ϕ1(x)u − ϕ2(x)‖ < ε for 
every x ∈ F .

(iii) A number of examples of C∗-algebraic Fraïssé subcategories c have injective ∗-
homomorphisms as morphisms. Note that the theorem above does not imply that c
induces a category Cu(c) whose morphisms are order-embeddings, since injective ∗-
homomorphisms do not generally induce injective Cu-morphisms. For example, the 
diagonal map C ⊕ C −→ M2(C) is injective, but the induced Cu-morphism maps both 
[(1, 0)] and [(0, 1)] to [1 ⊕ 0]. Conversely, a ∗-homomorphism that induces an order-
embedding may not be injective.

4. Examples

In this section we exhibit natural examples of (Cuntz) Fraïssé categories together 
with their Fraïssé limit. This allows us to deduce several generic properties about the 
Cu-semigroups at play. More explicitly, we show that the Cuntz semigroup of any UHF-
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algebra and that the Cuntz semigroup of the universal AF-algebra are the Fraïssé limits 
of some well-chosen Fraïssé categories. We also show that there are countably many 
Fraïssé categories of elementary Cu-semigroups whose Fraïssé limits are not purely infi-
nite, non-stably finite, simple Cu-semigroups. Finally, we prove that both Cu-semigroups 
Lsc(X, N), where X is either the Cantor set 2N or the pseudo-arc P , can also be written 
as Fraïssé limits.

In all our examples the inclusion c ⊆ c satisfies the almost factorization property.

A. Dimension Cu-semigroups of infinite type as Fraïssé limits

In what follows, we show that the Cuntz semigroup of any UHF-algebra arises as a 
Fraïssé limit. Following [5], recall that a Cu-semigroup S is said to be simplicial whenever 
S ∼= N

r for some r ∈ N, and that an inductive limit of simplicial Cu-semigroups is called 
a dimension Cu-semigroup.

Let p be a prime number and consider the semigroup Sp := N[ 1p ] � (0, ∞], where the 
mixed sum and mixed order are defined as follows:

(+) xc + ys = xs + ys ∈ (0, ∞] for any pair xc = k/pl ∈ N[ 1p ] and ys ∈ (0, ∞].
(≤) retaining the same notation, xs ≤ xc � xc ≤ xs + ε for any ε > 0.

Recall that Sp is the Cuntz semigroup of the UHF-algebra Mp∞ . (See, e.g. [5, Proposi-
tion 7.4.3].)

4.1. The category sp is the category whose (single) object is N and whose morphisms are 

powers of p. (That is, a sp-morphism is given by N
×pk

−→ N for some k ∈ N.)

Theorem 4.2. The category sp is Fraïssé and its limit is Sp.

Proof. The joint embedding property and separability are clear and the amalgamation 
property follows from the commutativity in Homsp(N, N). Therefore sp is a Fraïssé 
category.

Let us now show that the sequence given by (N, 
×p−→)n is Fraïssé. For any sp-morphism 

α : N ×pk

−→ N there exists a large enough index (consisting of k+1 steps further from the 
domain of α) such that the following diagram commutes

. . . N

α

. . . N . . .

N
×p

It follows that the sequence is Fraïssé and, hence, its limit Sp is the Fraïssé limit of 
sp. �
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Remark 4.3. An analogous statement to that of Theorem 4.2 works for the Cuntz semi-
group of any UHF-algebra. However, such semigroups may not be as easily computed 
as those of infinite type. Also, let us remark that we could have deduced the previous 
result from Theorem 3.31.

B. The universal dimension Cu-semigroup as a Fraïssé limit

Based on the work done in [32], we now exhibit a universal dimension Cu-semigroup
S as a Fraïssé limit of a well-chosen Fraïssé category sdim containing all simplicial Cu-
semigroups. As a matter of fact, we will see that S is the concrete Cuntz semigroup of 
the universal AF-algebra A constructed in [32]. Therefore, S enjoys analogous properties 
to those of A, but in the category Cu. Before we begin, we need to recall and prove some 
results about retractions in the category Cu.

4.4 (Retractions). We aim to define a Fraïssé category sdim that will be built out of 
retractable Cu-morphisms. Recall that an ordered monoid morphism α : S −→ T between 
two Cu-semigroups is said to be a generalized Cu-morphism if α preserves suprema of 
increasing sequences.

Definition 4.5 ([51, Definition 3.14]). Let S, T be Cu-semigroups. We say that S is a 
retract of T if there exists a Cu-morphism ι : S −→ T together with a generalized Cu-
morphism ρ : T −→ S such that ρ ◦ ι = idS .

We say that ι is retractable and that ρ retracts ι.

Following [21], a submonoid I of a Cu-semigroup S is said to be an ideal if I is 
downward-hereditary and closed under suprema of increasing sequences. Given any ideal 
I of S, one can construct the quotient Cu-semigroup S/I; see [5, Lemma 5.1.2]. Ideals 
and quotients of a C∗-algebra A are in bijective correspondence with the ideals and 
quotients of its Cuntz semigroup Cu(A); see [5, Section 5].

Proposition 4.6. Let S be a Cu-semigroup.

(i) If S is countably-based and satisfies (O5)-(O7), then any ideal of S is a retract of S.
(ii) If (S, σi,∞)i is the limit of an inductive sequence (Si, σi,j)i such that σi,i+1 is re-

tractable for each i ∈ N, then σi,∞ is retractable for any i ∈ N.

Proof. (i) Let I be an ideal of a countably-based Cu-semigroup S and let ι : I −→ S

be the canonical order-embedding. Observe that I is a countably-based Cu-semigroup. 
Thus, I has a greatest element that we denote by ∞I . Using [2, Theorem 2.4], we know 
that the infimum x ∧∞I exists for any x ∈ S. Further, such an infimum is always in I, 
since x ∧∞I ≤ ∞I .

Now consider the map ρ : S −→ I that sends x �→ x ∧∞I . It follows directly from [2, 
Theorem 2.5] that ρ is a generalized Cu-morphism that satisfies ρ ◦ ι = idI , as desired.
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(ii) Let (Si, σi,j)i be an inductive sequence with retractable maps, and let (S, σi,∞)i
be its inductive limit. Denote by ρi+1,i the retract of σi,i+1. For each pair i ≤ j, let 
ρj,i : Sj −→ Si be the composition ρi+1,i ◦ . . . ◦ ρj,j−1, which trivially retracts σi,j .

Now fix i ∈ N and let s ∈ S. Using the characterization of sequential inductive limits in 
the category Cu (see e.g. [43, Section 2.1]), we know that there exists a sequence (sn)n≥i

with sn ∈ Sn such that σn,n+1(sn) � sn+1 and supn≥i σn,∞(sn) = s. Applying the 
retract at each step gives us that sn ≤ ρn+1,n(sn+1) and, hence, ρn,i(sn) ≤ ρn+1,i(sn+1)
for any n ≥ i.

Set ρ∞,i(s) := supn≥i ρn,i(sn). A standard argument shows that ρ∞,i : S −→ Si does 
not depend on the sequence (sn)n≥i chosen. This also proves that ρ∞,i is additive, 
preserves the order, and suprema of increasing sequences. (See e.g. the argument in [15, 
Lemma 3.12] or in [1, Lemma 7.3].)

Finally, let x ∈ Si and let (xn)n be a �-increasing sequence in Si with supremum x. 
For each n ≥ i, set sn := σi,n(xn). Since ρ∞,i does not depend on the sequence (sn)n
chosen, we have ρ∞,i(σi,∞(x)) = supn ρn,i(sn) = supn ρn,i(σi,n(xn)) = supn xn = x

which ends the proof. �
The following is based on [32, Proposition 3.8].

Proposition 4.7. Let c be a subcategory of Cu closed under direct sums. Let (Si, σi,j)i be 
an inductive sequence in c with c-limit (S, σi,∞)i.

Then, there exists an inductive sequence (Ti, τi,j)i in c with c-limit (T, τi,∞)i such that 
τi,j is retractable for every pair i ≤ j, and such that S ∼= T/ J for some ideal J of T .

Proof. Let i ∈ N and set Ti := S0 ⊕ . . . ⊕ Si−1 ⊕ Si. Let τi,i+1 : Ti −→ Ti+1 be the 
Cu-morphism defined by

τi,i+1(s0, . . . , si−1, si) := (s0, . . . , si−1, si, σi,i+1(si)).

Note that τi,i+1 : Ti −→ Ti+1 is retractable by the projection πi+1,i : Ti+1 −→ Ti onto the 
first i components of Ti. More particularly, we have πi+1,i(s0, . . . , si, si+1) = (s0, . . . , si). 
It follows that every composition τi,j := τj−1,j ◦ . . . ◦ τi,i+1 is also retractable for any 
j ≥ i + 1.

Let (T, τi,∞)i be the limit of the inductive system of (Ti, τi,j)i and set

J0 := {x ∈ T | x = τi,∞(s0, . . . , si−1, 0) for some i ∈ N and s0 ∈ S0, . . . , si−1 ∈ Si−1}.

Note that J0 is a submonoid of T . Thus, we can construct its sup-closure J := J0
sup. 

(See e.g. [50, Definition 4.6].) Further, given y ∈ J and x ∈ T such that x ≤ y, take 
x′ ∈ T such that x′ � x. Since J is the closure of J0 and x′ � x, there exist i ∈ N, 
t ∈ Ti, and (s0, . . . , si−1, 0) ∈ Ti such that

x′ � τi,∞(t) � x, and t � (s0, . . . , si−1, 0).
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In particular, we get t ∈ S0 ⊕ . . .⊕ Si−1 ⊕ 0 and, hence, τi,∞(t) ∈ J0. This shows that x
can be written as the supremum of elements in J0 or, equivalently, that x is in J . Thus, 
J is an ideal of T . It is now clear that S ∼= T/ J . �
4.8. The category sdim is the category whose objects are the simplicial Cu-semigroups 
and whose morphisms are retractable Cu-morphisms.

Theorem 4.9. The category sdim is Fraïssé and its limit S is the Cuntz semigroup of the 
universal AF-algebra.

Proof. First, note that any retractable Cu-morphism between simplicial Cu-semigroups 
can always be retracted by a Cu-morphism. Indeed, let ι : S −→ T be a Cu-morphism 
between simplicial Cu-semigroups, and let ρ : T −→ S be a generalized Cu-morphism 
such that ρ ◦ ι = idS .

Define ρ′ : T −→ S by ρ′(x) := ρ(x ∧ ∞ι(1S)). This map is the composition of 
generalized Cu-morphisms, and so it itself is a generalized Cu-morphism. To see that 
it preserves the �-relation, simply take x ∈ T such that x � x. Then, one gets 
x ∧∞ι(1S) � x ∧∞ι(1S) and, consequently, that x ∧∞ι(1S) ≤ nι(1S) for some n ≥ 1. 
This implies ρ′(x) ≤ n1S , which is equivalent to ρ′(x) � ρ′(x), as desired.

Further, since Cu-morphisms map compact elements to compact elements, all maps 
involved can be seen as scaled Cu-morphisms between finite-dimensional C∗-algebras of 
appropriate size.

The result now follows from [32] and Theorem 3.31, combined with the well-known 
fact that the scaled Cuntz semigroup classifies ∗-homomorphisms of finite dimensional 
C∗-algebras. �
Corollary 4.10. Let S be the universal dimension Cu-semigroup and let S be a (countably-
based) dimension Cu-semigroup. Then, there exists a surjective Cu-morphism S −� S.

Proof. By Proposition 4.7 we know that S is isomorphic to a quotient of the form T/J , 
where T is the limit of some inductive system in sdim. Further, by universality of the 
Fraïssé limit, there exists a retractable Cu-morphism ι : T −→ S whose retract ρ : S −�
T is a Cu-morphism. The composition of ρ with the quotient map T −� T/J gives the 
desired Cu-morphism. �
C. Elementary Fraïssé categories

As defined in [52, 8.1], a Cu-semigroup S is said to be elementary if S is simple and 
contains a minimal, nonzero element that is finite.2 Assume further that S has finitely 
many elements. If S satisfies (O5) and (O6), it follows from [5, Proposition 5.1.19] that 

2 This differs slightly from the definition given in [5], and was adjusted to not include the Cuntz semigroup 
of simple, purely infinite C∗-algebras.
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S ∼= En := {0, 1, . . . , n, ∞} for some n ∈ N. It is well known that no such Cu-semigroup 
is the Cuntz semigroup of a C∗-algebra.3

The following lemma shows that the Cu-morphisms between elementary Cu-
semigroups are well understood. By an order-embedding between Cu-semigroups we 
will always mean a Cu-morphism that is also an order-embedding.

Lemma 4.11. Let n, m ∈ N. A map α : {0, 1, . . . , n, ∞} −→ {0, 1, . . . , m, ∞} is

(i) a Cu-morphism if and only if (n + 1)α(1) = ∞ and α(k1) = kα(1) for every k ≤ n.
(ii) an order-embedding if and only if α(1) �= 0 and nα(1) �= ∞.

In particular, there exist choices of natural numbers n, m ∈ N such that there is no 
or only one order-embedding from En to Em. For example, we know that α(1) = k1
must satisfy m/(n + 1) < k ≤ m/n. Thus, if m = n(n + 1), we get that the only 
order-embedding from En to Em is α(1) = (n + 1)1.

4.12. The category e∞ is the category whose objects are all elementary Cu-semigroups 
satisfying (O5) and (O6) with finitely many elements, and whose morphisms are all 
nonzero Cu-morphisms.

Proposition 4.13. The category e∞ is Fraïssé.

Proof. The category e∞ contains countably many objects, and the morphisms between 
them are given by multiplication. It follows that e∞ is separable.

Further, given n1, n2 ∈ N, it follows from Lemma 4.11 that the maps α1 : En1 −→
En1n2 and α2 : En2 −→ En1n2 given by 1 �→ n21 and 1 �→ n11 respectively are order-
embeddings (in particular, nonzero Cu-morphisms). This shows that the category e∞
has the joint embedding property.

Finally, given any pair of nonzero Cu-morphisms α1 : En −→ Em and α2 : En −→ Em, 
one can simply consider the map β : Em −→ Em given by β(1) := ∞. This Cu-morphism 
satisfies β ◦ α1 = β ◦ α2, which implies that the category e∞ is Fraïssé. �
Corollary 4.14. The Fraïssé limit of e∞ is {0, ∞}, that is, the Cuntz semigroup of any 
purely infinite simple C∗-algebra.

Proof. Let (Si, σi,j)i be a Fraïssé sequence of e∞. For any i ∈ N, let α : Si −→ {0, ∞}
be the morphism that maps every nonzero element to ∞. By definition, there exists 
β : {0, ∞} −→ Sj such that σi,j = β ◦ α. In other words, every element in Si becomes 
idempotent eventually.

3 A quick proof of this fact goes as follows: Assume for the sake of contradiction that there exists A with 
Cu(A) isomorphic to En for some n. Then, A must be simple and weakly purely infinite and, consequently, 
purely infinite. The Cuntz semigroup of any simple, purely infinite C∗-algebra is isomorphic to {0, ∞}, a 
contradiction.
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Recall that a Cu-semigroup is called idempotent if x = 2x for each element x. The 
only nonzero, simple, idempotent Cu-semigroup is {0, ∞}. Thus, since the morphisms in 
the sequence are nonzero, the Fraïssé limit of e∞ is isomorphic to {0, ∞}. �
Remark 4.15. The subcategory obtained by considering all order-embeddings instead of 
all nonzero Cu-morphisms is not Fraïssé, since it fails to satisfy the joint embedding prop-
erty. For example, one can check that the morphisms α1, α2 : {0, 1, ∞} −→ {0, . . . , 6, ∞}
given by α1(1) = 4 · 1 and α2(1) = 5 · 1 cannot be amalgamated.

4.16. The category en (for a fixed n ≥ 1) is the category whose objects are all the 
elementary semigroups of the form Enk for some k ∈ N, and whose morphisms are all 
the order-embeddings given by multiplication by a power of n.

Note that not all maps given by powers of n are Cu-morphisms. As an example, set 
n = 2. Then, we know from Lemma 4.11 that multiplying by 2 does not give rise to a 
Cu-morphism E2 −→ E8. In fact, it follows from Lemma 4.11 that for any given pair 
k ≤ s there exists a unique order-embedding Enk −→ Ens given by a power of n, namely 
1 �→ ns−k.

Proposition 4.17. The category en is Fraïssé for any n ∈ N.

Proof. That the category en is separable and satisfies the joint embedding property is 
proven similarly as in the proof of Proposition 4.13.

To see that the category en has amalgamation, let α1 : Enk −→ Ens1 and α2 : Enk −→
Ens2 be en-morphisms. From the joint embedding property, we may assume that s1 = s2. 
Now, we know from the comments above that these two maps must be the same. Thus, 
the category en has amalgamation. �

Recall that a Cu-semigroup S is stably finite if x �= x + y for every nonzero y ∈ S

whenever x � z for some z ∈ S. Also, extending the definition of [39], let us say that S
is (n-)weakly purely infinite if nx = 2(nx) for every x ∈ S.

Corollary 4.18. The Fraïssé limit En of en is a simple, non-stably finite, not weakly purely 
infinite Cu-semigroup whose order is total.

Proof. The Fraïssé sequence of en consists of simple Cu-semigroups, so its limit must be 
simple. Further, since each Cu-semigroup has a total order, so does the limit.

A simple Cu-semigroup is not stably finite if and only if its greatest element, denoted 
by ∞, satisfies ∞ � ∞. The Fraïssé limit of en admits a nonzero Cu-morphism α from 
{0, 1, . . . , n, ∞}. In particular, α(∞) = ∞ and, since α preserves the �-relation, one has 
∞ � ∞ in the limit. This shows that the limit is not stably finite.

Finally, the limit cannot be weakly purely infinite. Indeed, for any k ∈ N we can use 
Theorem 3.27 to find an order-embedding α from {0, 1, . . . , nk, ∞} to the limit. Then, 
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α(1) satisfies lα(1) �= (l−1)α(1) for any l ≤ nk. This shows that there is no global bound 
on the idempotency of the elements, which implies that the limit is not weakly purely 
infinite. �
Remark 4.19. Arguing similarly as in Theorem 4.2, we can deduce that, given a prime 
number p, the Fraïssé limit Ep of ep is a truncated version of the dimension semigroup 
of infinite type Sp = N[ 1p ] � (0, ∞]. Explicitly, we have

Ep ∼=
{
x ∈ N

[
1
p

]
� (0, 1] | x ≤ 1

}
∪ {∞}

where the order and sum between two elements x, y are defined as in Sp, with the 
exception that x + y = ∞ whenever this sum is (strictly) greater than 1c in Sp.

Question 4.20. It can be checked that Ep satisfies all the known extra axioms (O5)-(O8) 
that the Cuntz semigroup of any C∗-algebra satisfies. Thus, it is natural to ask: Is Ep
the Cuntz semigroup of some C∗-algebra A?

Note that such a C∗-algebra A would be simple, not stably finite, and not purely 
infinite. However, A is not the C∗-algebra B constructed by Rørdam in [47], since Cu(B)
does not satisfy the Corona Factorization Property (see [11, Theorem 5.8]) but Ep does.

D. The Cantor set and the pseudo-arc

Fraïssé Theory allows one to rewrite well-known topological spaces such as the Can-
tor set 2N and the pseudo-arc P as Fraïssé limits and, in particular, to generically 
(re)prove some interesting facts about them, such as universality and homogeneity. We 
refer the reader to [9,35,40] for more details. Following these results, we show that the 
Cu-semigroups Lsc(2N , N) and Lsc(P , N) are Fraïssé limits of well-chosen categories of 
Cuntz semigroups.

4.21 (Lower-semicontinuous functions). We begin by recalling some facts about monoids 
of lower-semicontinuous functions, which constitute a great source of example of abstract 
Cuntz semigroups. For instance, it is known that the monoid of lower-semicontinuous 
functions from a compact, metric (or, more generally, hereditarily Lindelöf, locally com-
pact, and Hausdorff) space X to N, denoted by Lsc(X, N), is a Cu-semigroup when 
equipped with pointwise addition and order. (See [34, Proposition 1.16], and also [57, 
Corollary 4.22] and [4, Theorem 5.17].) In the specific case where X is a compact one-
dimensional CW-complex, then Lsc(X, N) is in fact the concrete Cuntz semigroup of the 
C∗-algebra C(X). (See [45,15] and also [4], [18] for other examples of concrete Cuntz 
semigroup of C∗-algebras that can be expressed as lower-semicontinuous functions.)

Further, as noted in [46] for the interval, and in [15] for compact one-dimensional 
CW-complexes (which include finite discrete sets, the interval and the circle), the set 
HomCu(Lsc(X, N), T ) of Cu-morphisms can be equipped with the following Cu-metric
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dCu(α, β) := inf {r > 0 | ∀V ∈ O(X), α(1V ) ≤ β(1Vr
) and β(1V ) ≤ α(1Vr

)}

where O(X) := { Open sets of X} and Vr := ∪
x∈V

Br(x), that is, Vr is the set of points 
with distance less than r from V .

As proved implicitly in [58, Lemma 4.8] for the interval case and explicitly in [15] for 
compact one-dimensional CW-complexes, there is a strong link between the metric dCu
and finite-set comparison:

Proposition 4.22 ([15, Proposition 5.6]). Let X be a compact one-dimensional CW-
complex and let {Uk}

n

1 be a finite closed cover of X induced by an equidistant partition 
of size 1/n.

Let Fn :=
{
f ∈ Lsc(X,N) | f|Uk

is constant for any k ∈ {1, . . . , n}
}
. For any pair of 

morphisms α, β ∈ HomCu(Lsc(X, N), T ), we have

(i) α �Fn
β implies dCu(α, β) ≤ 2/n.

(ii) dCu(α, β) ≤ 1/n implies α �Fn
β.

As shown in [4, Lemma 5.16], any continuous map f : Y −→ X between second 
countable, compact, Hausdorff spaces induces a Cu-morphism Lsc(f, N) : Lsc(X, N) −→
Lsc(Y, N) given by l �−→ l ◦ f . In what follows, we prove that a weak converse of this 
result —akin to what happens for commutative C∗-algebras— also exists. These results 
might be well known to experts (for example, if X and Y are one-dimensional, they 
follow from [19] and standard facts about abelian C∗-algebras). However, since we have 
not found them in the literature with our generality, we provide a proof here for the 
convenience of the reader.

Proposition 4.23. Let X, Y be compact, metric spaces and let α : Lsc(X, N) −→
Lsc(Y, N) be a Cu-morphism such that α(1) = 1.

Then there exists a continuous map fα : Y −→ X inducing α, in the sense that α =
Lsc(fα, N).

Proof. We begin our argument by proving the following claim.
Claim. Let λ : Lsc(X, N) −→ N be a Cu-morphism such that λ(1) = 1. Then, there 

exists x ∈ X such that λ = evx, the evaluation at x.
Proof of the Claim. Let J be the family of open subsets U in X such that λ(1U ) = 1. 

Given finitely many open sets U1, . . . , Un ∈ J , it follows from [57, Remark 4.4] that we 
can order the sum 1U1 + . . . + 1Un

as follows

1U1 + . . . + 1Un
= 1∪jUj

+ 1∪i<j(Ui∩Uj) + . . . + 1∩jUj

and, consequently,
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n = λ(1U1) + . . . + λ(1Un
) = λ(1∪jUj

) + . . . + λ(1∩jUj
).

This implies that λ(1∩jUj
) = 1 and, in particular, that ∩jUj �= ∅. Thus, J has the 

finite intersection property and, since X is compact, we get that ∩U∈JU is not empty.
To see that ∩U∈JU = {x}, assume for the sake of contradiction that there exist 

x, y ∈ ∩U∈JU with x �= y. Let B, C be closed disjoint balls of nonzero radius centred at 
x and y respectively. One has 1 ≤ 1X−B + 1X−C and, consequently, that λ(1X−B) or 
λ(1X−C) is 1. Thus, we may assume without loss of generality that λ(1X−C) = 1 or, in 
other words, that X − C ∈ J . This is a contradiction, since y /∈ X − C. It follows that 
∩U∈JU contains a single point x.

Finally, to see that λ = evx, take any open subset U and let U ′ be a compactly 
contained open subset in U such that λ(1U ) = λ(1U ′). If λ(1U ) = 1, then x ∈ U ′ and so 
x ∈ U . Conversely, if x ∈ U , take U ′ compactly contained in U such that x ∈ U ′. Then, 
1U + 1X−U ′ ≥ 1, which implies that either λ(1U ) = 1 or λ(1X−U ′) = 1. The second 
equality cannot hold, since otherwise we would get x ∈ X − U ′, a contradiction. This 
proves the claim.

Now, for any y ∈ Y , the composition evy ◦ α is a Cu-morphism such that λ(1) = 1. 
Using the claim, there exists x ∈ X with evy ◦ α = evx. Let fα : Y −→ X be the map 
defined by fα(y) := x. To see that fα is continuous, take an open subset U of X and let 
V ⊆ Y be the open subset such that α(1U ) = 1V . Then, we see that

f−1
α (U) = {y ∈ Y | evfα(y)(1U ) = 1} = {y ∈ Y | evy ◦ α(1U ) = 1} = V

which ends the proof. �
Corollary 4.24. Let X, Y be compact, metric spaces. Let α : Lsc(X, N) −→ Lsc(Y, N) be 
a Cu-morphism with α(1) = 1. Let fα : Y −→ X be the continuous map obtained above.

Then, α is an order-embedding if and only if fα is surjective.

Proof. Assume for the sake of contradiction that α is an order-embedding and that there 
exists x ∈ X \ fα(Y ). Since fα(Y ) is compact, we can find an open neighbourhood U of 
x disjoint with fα(Y ). In particular, f−1

α (U) = ∅ and, therefore, α(1U ) = 1f−1
α (U) = 0, a 

contradiction.
Conversely, assume now that fα : Y −→ X is surjective. The order in Lsc(X, N)

is determined by the indicators 1U (see e.g. [15, Proposition 4.3] or [57]). Thus it is 
enough to prove that 1U ≤ 1V whenever α(1U ) ≤ α(1V ). Let U, V ⊆ X be such that 
α(1U ) ≤ α(1V ). We have 1f−1

α (U) ≤ 1f−1
α (V ). Consequently, f−1

α (U) ⊆ f−1
α (V ). By the 

surjectivity of fα we deduce that U ⊆ V , as desired. �
4.25 (The Cantor Set). Let us recall a characterization of the Cantor set. We use the 
language and formulations detailed in [9], even though this characterization had been 
obtained beforehand, e.g. in [12,40]. As mentioned in the discussion of [9, Example 4.55], 
the Cantor set 2N is the Fraïssé limit of the category of finite discrete sets and continuous 
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surjections in the category of zero-dimensional compacta and continuous surjections. 
Now, using the characterization of Fraïssé limits given in [9, Theorem 4.15], one obtains 
the following result.

Theorem 4.26 (Characterization of the Cantor set). A zero-dimensional compactum C
is the Cantor set if and only if C satisfies the following property:

For any two finite discrete sets F, F ′ and any two continuous surjections f : C −→
F, g : F ′ −→ F , there exists a continuous surjection h : C −→ F ′ such that h ◦ g = f .

4.27. The category K2N is the category whose objects are simplicial Cu-semigroups and 
whose morphisms are order-embeddings such that 1 �→ 1.

Theorem 4.28. The category K2N is Fraïssé.

Proof. Throughout the proof, we will denote the r-tuple (0, . . . , 1, . . . , 0) with value 1 at 
the i-th component and 0 everywhere else by δri . Note that {δri }ri=1 generates Nr.

The category K2N contains countably many objects and finitely many morphisms 
between two given objects. It follows that the category K2N is separable.

Let Nr1
, N

r2 be simplicial Cu-semigroups. We construct α1 : Nr1 −→ N
r1 ⊕ N

r2

that sends δr11 �→ δr11 ⊕ 1Nr2 and δr1i �→ δr1i ⊕ 0Nr2 for any 2 ≤ i ≤ r1. Similarly, we 
construct α2 : Nr2 −→ N

r1 ⊕ N
r2 . It is readily checked that α1, α2 are K2N -morphisms 

and, hence, the joint embedding property follows.
Let α1 : Nr −→ N

t1 and α2 : Nr −→ N
t2 be K2N -morphisms. We know from 

Corollary 4.24 that r ≤ t1, t2. Further, we may assume that t1 = t2 = t and, upon 
a possible reindexing (i.e. composing with an isomorphism), we may also assume that 
the αi’s are of the form id⊕ηi for some Cu-morphisms ηi : N

r −→ N
t−r. Note that, since 

both α1 and α2 map 1r to 1t, the maps ηi also map 1r to 1t−r.
Let βi : N

r ⊕ N
t−r → N

r ⊕ N
t−r ⊕ N

t−r be the maps β1(x, y) = (x, y, η2(x)) and 
β2(x, y) = (x, η1(x), y). Note that these order-embeddings map 1 to 1. By construction, 
we have β1 ◦ α1 = β2 ◦ α2, which shows that the category K2N has the amalgamation 
property. �
Corollary 4.29. The Fraïssé limit of K2N is Lsc(2N , N).

Proof. First, note that we can identify any K2N -object Nr with Lsc(Xr, N), where Xr

is any finite discrete set of cardinality r. Now, let α : Lsc(Xr, N) −→ Lsc(Xt, N) be 
a K2N -morphism and consider the continuous surjective map fα : Xt −→ Xr obtained 
from Proposition 4.23. From the construction of fα, we deduce that α can be identified 
with Lsc(fα, N) : Lsc(Xr, N) −→ Lsc(Xt, N) which sends l �−→ l ◦ fα.

On the other hand, we know that the Fraïssé limit is obtained from an inductive 
system in K2N that we write (Nri

, αi)i. By the above, we identify the system with 
(Lsc(Xri , N), Lsc(fαi

, N))i. Now combining Corollary 4.24 with Theorem 3.27 (and the 
fact that the category K2N has exact amalgamation property), we get that lim(Xri , fαi

)

←−
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is a zero-dimensional compactum satisfying the above characterization of the Cantor set. 
That is, lim

←−
(Xri , fαi

) ∼= 2N and the result follows from [4, Proposition 5.18]. �
4.30 (The Pseudo-arc). Proceeding as before, we recall a characterization of the pseudo-
arc in the language from [9], althought this result had also been obtained in the past, 
e.g. in [35,40]. As shown in [9, Theorem 4.38], the pseudo-arc P is the Fraïssé limit of the 
category consisting of a single object being the unit interval and continuous surjections 
in the category of arc-like continua and continuous surjections. Using [9, Theorem 4.15], 
one gets:

Theorem 4.31 (Characterization of the Pseudo-arc). An arc-like continuum P is the 
pseudo-arc if and only if P satisfies the following property:

For any two continuous surjections f : P −→ [0, 1] and g : [0, 1] −→ [0, 1] and any 
ε > 0, there exists a continuous surjection h : P −→ [0, 1] such that ‖h ◦ g − f‖ < ε.

The following two lemmas will be needed in our proofs. The first is known as the 
Mountain Climbing Lemma (see [33]), while the second is readily obtained by generalizing 
the arguments in [58, Lemma 4.5].

Lemma 4.32 (Mountain Climbing Lemma). Let f1, f2 : [0, 1] −→ [0, 1] be continuous, 
piecewise linear maps that are not constant on any subinterval and such that f1(0) =
0 = f2(0) and f1(1) = 1 = f2(1). Then, there exist surjective, continuous maps 
g1, g2 : [0, 1] −→ [0, 1] such that f1 ◦ g1 = f2 ◦ g2.

Lemma 4.33. Let X and Y be second countable, compact, Hausdorff spaces. Let f, g :
Y −→ X be continuous surjective maps and consider their induced Cu-morphisms 
Lsc(f, N), Lsc(g, N) given by l �−→ l ◦ f, l ◦ g respectively. Then,

(i) For any finite subset F of Lsc(X, N), there exists εF > 0 such that Lsc(f, N) �F

Lsc(g, N) whenever ‖f − g‖ < ε.
(ii) For any ε > 0, there exists a finite subset Fε of Lsc(X, N) such that ‖f − g‖ < ε

whenever Lsc(f, N) �F Lsc(f, N).

Further, the εF only depends on F, X, Y , and Fε only depends on ε, X, Y (not on 
f, g).

4.34. The category KP is the category whose (single) object is Lsc([0, 1], N) and whose 
morphisms are order-embeddings such that 1 �→ 1.

Theorem 4.35. The category KP is Fraïssé.

Proof. The category KP contains only one object, so the joint embedding property is 
trivial.
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To see that KP is separable, we consider the subcategory s ⊆ KP whose morphisms are 
KP -morphisms of the form Lsc(h, N) : Lsc([0, 1], N) −→ Lsc([0, 1], N) where h : [0, 1] −→
[0, 1] is any piecewise linear, surjective map which is not constant on any subinterval and 
which has rational, finitely many peaks and valleys. We know from Corollary 4.24 that 
any KP -morphism α is of the form Lsc(fα, N) where fα : [0, 1] −→ [0, 1] is a continuous 
surjective map. Moreover, it is well-known that any such continuous surjective map can 
be approximated in norm by a piecewise linear map h which is not constant on any 
subinterval and which has rational, finitely many peaks and valleys. Therefore, it follows 
from Lemma 4.33 that s is a countable, dominating subcategory.

Finally, let us prove KP satisfies the near amalgamation property. Let α1, α2 be Cu-
morphisms in KP and consider the continuous, surjective maps fα1 , fα2 : [0, 1] −→ [0, 1]
obtained from Corollary 4.24. Also, let F ⊆ Lsc([0, 1], N) be a finite subset and consider 
the bound εF > 0 given by Lemma 4.33.

Without loss of generality, we can assume that fα1(0) = 0 = fα2(0) and fα1(1) =
1 = fα2(1). (If needed, we can precompose them with well-chosen continuous surjective 
maps.) As before, we can find piecewise linear maps h1, h2 : [0, 1] −→ [0, 1] which are 
not constant on any subinterval and which only have rational, finitely many peaks and 
valleys, at distance less than ε/2 from fα1 and fα2 respectively, and such that h1(0) =
0 = h2(0) and h1(1) = 1 = h2(1).

Applying the Mountain Climbing lemma (see Lemma 4.32), we obtain surjective con-
tinuous maps g1, g2 : [0, 1] −→ [0, 1] such that h1 ◦ g1 = h2 ◦ g2. By construction, 
we get that fα1 ◦ g1 and fα2 ◦ g2 are at distance at most ε. Let β1 := Lsc(g1, N)
and β2 := Lsc(g2, N) be the KP -morphisms induced by g1 and g2 respectively. By 
Lemma 4.33, we obtain β1 ◦ α1 �F β2 ◦ α2, as desired. �
Corollary 4.36. The Fraïssé limit of KP is Lsc(P , N).

Proof. We know that the Fraïssé limit is obtained from an inductive system in KP

that we write (Lsc([0, 1], N), αi)i. Now combining Corollary 4.24 with Theorem 3.27, we 
get that lim

←−
([0, 1], fαi

) is an arc-like continuum satisfying the above characterization of 
the pseudo-arc. We conclude that lim

←−
([0, 1], fαi

) ∼= P and the result follows from [4, 
Proposition 5.18]. �
Remark 4.37. We have chosen to give self-contained proofs of the last two examples, 
but they could have alternatively been obtained as a combination of Remark 3.32 (ii), 
Corollary 4.24, [45] and known results in Fraïssé theory of C∗-algebras (for example, those 
in [56]). Indeed, since in both categories K2N and KP the dimension of the underlying 
spaces is at most one, we know from [45] (see also [23] for the case of the interval) that all 
the objects are Cuntz semigroups of commutative C∗-algebras. Further, it follows from 
Corollary 4.24 that the Cu-morphisms in both categories are in correspondence with 
surjective continuous maps between the spaces, which in turn correspond to injective 
∗-homomorphisms between the commutative C∗-algebras.
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In other words, this shows that both K2N and KP can be written as Cu(c2N )
and Cu(cP ) for well chosen subcategories of commutative C∗-algebras, which are well-
known to be Fraïssé (e.g. [56, Theorem 3.4] for the case of the pseudo-arc). Using 
Remark 3.32 (ii), it follows that both K2N and KP are Fraïssé, and that their limit 
coincides with the Cuntz semigroup of the limit of c2N and cP .

E. The Jiang-Su algebra

It is readily checked that all the results developed in this paper also hold for classes 
where the objects are pairs of the form (S, ρ) with ρ : S → [0, ∞] a generalized Cu-
morphism (also known as a functional) and where the morphisms from a pair (S, ρ) to 
(T, δ) are simply Cu-morphisms S → T preserving the prescribed functional ρ. Namely, 
the statements still hold because a limit of functional-preserving Cu-morphisms is still 
functional-preserving.

Using Theorem 3.31 (and [43]) in conjunction with the fact that quasitraces on a C∗-
algebra correspond to functionals on its Cuntz semigroup ([26]), one obtains the following 
result by using [42] (see also [25]).

4.38. The category KZ is the category whose objects are pairs (Zp,q, ρ) with p, q co-
prime and ρ a faithful functional, and whose morphisms are functional-preserving 
order-embeddings. Here, Zp,q denotes the Cuntz semigroup of the prime dimension-drop 
algebra Zp,q. Using computations in [4], recall that we have

Cu(Zp,q) ∼= Zp,q = {f ∈ Lsc([0, 1],N) | ∃k1, k2 such that f(0) = qk1 and f(1) = pk2}.

Theorem 4.39. The class KZ is Fraïssé and its limit is the Cuntz semigroup Z of the 
Jiang-Su algebra Z.

5. Metrics on HomCu-sets

In this last section we introduce a metric on any HomCu-set building on the ideas of 
[15,20,46,58]. We also provide a number of examples and, in particular, we show that 
this notion generalizes the metrics introduced in [15, Definition 5.1]. We also study the 
relation between our proposed metric and finite-set comparison. Further, we prove that, 
in general, comparing Cu-morphisms via the metric is more restrictive than using finite-
set comparison. As a consequence, when (re)formulating the notion of Cauchy sequences 
in terms of the metric, the limit we obtain might not behave as expected. Let us start 
by recalling an important fact about the category Cu.

5.1 (A generator for Cu). Let G be the submonoid of Lsc([0, 1], N) defined as

G = {f ∈ Lsc([0, 1],N) | f(0) = 0, f increasing}.
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If follows from [49, Section 5.2] that G is a Cu-semigroup. Moreover, G is a generator 
for the category Cu, in the sense that the functor Cu(G, −) : Cu −→ Set is faithful.

Using terminology of [15], we can view G as the sub-Cu-semigroup of Lsc([0, 1], N)
chain-generated by ΛG := {1(t,1] | t ∈ (0, 1]}. Therefore, the order and the compact-
containment relation in G are completely determined by the ones in ΛG. (See [15, Section 
4] for more details.)

5.2 (Thomsen semigroup of a Cu-semigroup). Let S be a Cu-semigroup. We define the 
Thomsen semigroup of S, in symbols Th(S), to be the set of Cu-morphisms from the 
generator G to S. In other words,

Th(S) := HomCu(G,S).

This construction is inspired by the C∗-case, where the Thomsen semigroup of a C∗-
algebra A, in symbols T h(A), is the set of approximate unitary equivalence classes of 
∗-homomorphisms of the form C0((0, 1]) −→ A ⊗K. (See [54].) Here, note that C0((0, 1])
is a generator for the category C∗. (See e.g. [49].)

Therefore, the construction above is the natural Cu-analogue of the Thomsen semi-
group for C∗-algebras. In fact, there exists a natural (monoid) map T h(A) −→
Th(Cu(A)), defined in the following proposition.

Proposition 5.3. Let A be a C∗-algebra. The map ι : T h(A) −→ Th(Cu(A)) given by 
[ϕ] �→ Cu(ϕ)|G is a well-defined monoid morphism.

If A has stable rank one, then ι is a bijection.

Proof. It is a well-known fact that any two approximate unitary equivalent ∗-
homomorphisms agree at level of Cu. Therefore, ι is a well-defined map for any C∗-
algebra.

Now assume that A has stable rank one. Then, it follows from
[48, Theorem 4.3, Lemma 7.2] that Cu(A) is weakly cancellative and satisfies (O5).

Let τ ∈ Th(Cu(A)). Proceeding as in the proof of [58, Proposition 3.4], we can 
construct a Cu-morphism τ̃ : Cu(C0((0, 1])) −→ Cu(A) extending τ . Further, such a 
morphism is unique.

The functor Cu classifies ∗-homomorphisms from C0((0, 1]) to any C∗-algebra of stable 
rank one (See [19,46,43]). In particular, one can lift the extension τ̃ to a ∗-homomorphism 
C0((0, 1]) → A. This proves that ι is surjective.

Since the extension τ̃ is unique, and the lift of any such τ is unique up to approximate 
unitary equivalence, ι is injective. �

We will use the Thomsen semigroup of S to build a metric on any HomCu-set 
HomCu(S, T ). Let us start by equipping Th(S) with the following metric, modelled after 
the distance in [19]. (See also [46] and Paragraph 4.21.)
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Definition 5.4. Let S be a Cu-semigroup, and let α, β ∈ Th(S). We define

dG(α, β) := inf
{
r > 0 | ∀t ∈ [0, 1], α

(
1(t+r,1]

)
≤ β

(
1(t,1]

)
and β

(
1(t+r,1]

)
≤ α

(
1(t,1]

)}
.

Remark 5.5. Note that, by definition, dG(α, β) = 0 precisely when α(1(t,1]) = β(1(t,1]) for 
every t. Thus, since G is generated (as a Cu-semigroup) by the elements 1(t,1], one gets 
α = β. Consequently, dG is a metric. This is in contrast to [19], where weak cancellation 
of the Cuntz semigroup is needed to ensure positivity.

5.6 (Sets with generating image). Let Λ be a subset of Th(S). We say that Λ has a 
generating image in S if the submonoid generated by {τ(1(t,1]) | t ∈ [0, 1], τ ∈ Λ} is 
sup-dense in S.

Equivalently, Λ has a generating image if for any s′, s ∈ S with s′ � s, there exist 
τ1, . . . , τn in Λ and t1, . . . , tn ∈ [0, 1] such that s′ � τ1(1(t1,1]) + . . . + τn(1(tn,1]) � s.

For any Cu-semigroup S, there always exists a family (and, in fact, many) with a 
generating image. For instance, the following result shows that Th(S) always has a 
generating image in S.

Proposition 5.7 ([49, Lemma 5.16]). Let S be a Cu-semigroup and let (xn)n be a �-
increasing sequence in S. Then, there exists τ ∈ Th(S) such that τ(1( 1

n ,1]) = xn.

Proof. We give a brief argument for the convenience of the reader.
Using [6, Proposition 2.10], there exists a net (yt)t∈[0,1), with y 1

n
= xn, such that 

yt � yr whenever r < t and supt>r yt = yr. (This is achieved by an iterated application 
of (O2) and the use of (O1).) We let τ : G −→ S be the Cu-morphism defined by 
τ(1(t,1]) := yt for each t ∈ [0, 1). �
Definition 5.8. Let S, T ∈ Cu and let Λ ⊆ Th(S) be a subset with a generating image in 
S. For any α, β ∈ HomCu(S, T ), we define

dΛ(α, β) := sup
τ∈Λ

dG(α ◦ τ, β ◦ τ).

Lemma 5.9. Let S, T ∈ Cu and let Λ ⊆ Th(S) with a generating image in S. Then 
dΛ(α, β) is a metric on HomCu(S, T ).

Proof. The symmetry, triangular inequality, and the fact that dΛ(α, β) = 0 whenever 
α = β are all immediate. We are left to show that α = β whenever dΛ(α, β) = 0.

Thus, assume that dΛ(α, β) = 0. Let s′, s ∈ S be such that s′ � s. Since Λ has a 
generating image in S, there exist τ1, . . . , τn ∈ Th(S) and t1, . . . , tn ∈ [0, 1] such that 
s′ ≤ τ1(1(t1,1]) + . . . + τn(1(tn,1]) ≤ s. Note that dG(α ◦ τi, β ◦ τi) = 0 for any i ≤ n. 
Therefore, we deduce that α ◦ τi = β ◦ τi for any i ≤ n. Consequently, we have
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β(s′) ≤ β(τ1(1(t1,1])) + . . . + β(τ1(1(tn,1])) = α(τ1(1(t1,1])) + . . . + α(τ1(1(tn,1])) ≤ α(s).

A symmetric argument gives us that α(s′) ≤ β(s) and Remark 3.3 give sus α = β. �
Example 5.10. Let S, T be Cu-semigroups. The metric dTh(S) is trivial, that is, 
dTh(S)(α, β) = 1 if and only if α �= β. We give a brief argument below.

Let α, β ∈ HomCu(S, T ) be such that dTh(S)(α, β) < 1 and let ε > 0 be such that 
ε > dTh(S)(α, β). Now take any pair x′, x ∈ S such that x′ � x. By Proposition 5.7, we 
can find τ ∈ Th(S) satisfying τ(1(0,1]) = x and τ(1(ε,1]) = x′. Since dG(α◦τ, β◦τ) < ε, 
we compute α(x′) = α(τ(1(ε,1])) ≤ β(τ(1(0,1])) = β(x) and β(x′) ≤ α(x). We conclude 
that α = β by Remark 3.3.

The example above illustrates that, despite always having many sets with a generating 
image, they will only induce meaningful metrics as long as they are not too large. The 
following examples show that all the (meaningful) Cu-metrics considered in the past for 
specific HomCu-sets can be recovered as dΛ from well-chosen Λ’s with generating image.

Example 5.11. (i) The Cuntz semigroup of the Jacelon-Razak algebra W can be identified 
with [0, ∞]; see [44]. Let τ : G −→ [0, ∞] be the Cu-morphism determined by 1(t,1] �→
1 − t.

The family Λ = {τ} has a generating image in Cu(W). It can be computed that, for 
any α, β ∈ HomCu(Cu(W), T ), we have

dΛ(α, β) = dG(α ◦ τ, β ◦ τ) = inf{r > 0 | ∀t ∈ [0, 1], α(t− r) ≤ β(t) and β(t− r) ≤ α(t)}.

(ii) The Cuntz semigroup of the Jiang-Su algebra Z can be identified with (0, ∞] � N; 
see e.g. [30, Theorem 7.3]. Similarly, let τ : G −→ [0, ∞] be the Cu-morphism determined 
by 1(t,1] �→ 1 − t and let c : 1(t,1] �→ 1c be the constant map.

The family Λ = {τ, c} has a generating image in Cu(Z). One can show that, for any 
α, β ∈ HomCu(Cu(Z), T ), we have

dΛ(α, β) =
{

1, whenever α(1c) �= β(1c).
inf{r > 0 | ∀t ∈ [0, 1], α(t− r) ≤ β(t) and β(t− r) ≤ α(t)}, otherwise.

Example 5.12. Let A be a C∗-algebra and let x ∈ Cu(A). Fix a contraction ax ∈ (A ⊗K)+
such that x = [ax]. This element gives rise to the ∗-homomorphism ϕx : C0((0, 1]) −→
(A ⊗K)+ given by idC0(0,1] �→ ax. Denote the canonical inclusion from G to Cu(C0(0, 1]))
by ι.

The family Λ = {Cu(ϕx) ◦ ι | x ∈ Cu(A)} has a generating image in Cu(A). (In fact, 
Λ(G) = Cu(A)). For any φ1, φ2 ∈ HomC∗(A, B), we get

dΛ(Cu(φ1),Cu(φ2)) ≤ dC∗(φ1, φ2).
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Example 5.13. Let X be a compact, metric space. Note that, for any x ∈ X, we have

⋂
t∈(0,1]

B(x, t diam(X)) = {x} and
⋃

t∈(0,1]

B(x, t diam(X)) = X.

Let S := Lsc(X, N) and let x ∈ X. We define x0 := 0S and xt := 1B(x,t diam(X))
for any t ∈ (0, 1]. By Proposition 5.7, there is a Cu-morphism τx : G −→ S such that 
τx(1(t,1]) = x1−t for any t ∈ [0, 1].

The family Λ = {τx | x ∈ X} has a generating image in S. It can be computed that 
for any α, β ∈ HomCu(S, T ) their distance dΛ is

dΛ(α, β) = inf {r > 0 | ∀V ∈ O(X), α(1V ) ≤ β(1Vr
) and β(1V ) ≤ α(1Vr

)}

where O(X) := { Open sets of X} and Vr := ∪
x∈V

Br(x). This generalizes the distance 

recalled in Paragraph 4.21 when X is a compact, one-dimensional CW-complex.

Example 5.14. We refer the reader to [15, Section 5.1] for details on finite uniform bases 
and induced Cu-semimetrics.

Let S be a uniformly-based Cu-semigroup with a finite uniform basis Λf = (Λn, εn)n. 
Let n ∈ N. Recall that Λn is finite and, in particular, that it has finitely many chains, 
i.e. finite �-increasing sequences. Let us denote the set of chains in Λn starting at 0S
by Cn.

Now let c ∈ Cn and let lc be the cardinal of c. From Proposition 5.7, we know that 
there exists a Cu-morphism τc : G −→ S such that τc(1((lc−k)/lc,1]) = c(k) for any 
0 ≤ k ≤ lc.

The family Λ =
⋃

n∈N
{τc | c ∈ Cn} has a generating image in S. Following the ideas of 

[15, Proposition 5.5], one can show that the metric dΛ is topologically equivalent to the 
Cu-semimetric ddCu,Λf

induced by the finite uniform basis Λf .

We next expose relations between the above metrics and finite-set comparison for 
Cu-morphisms.

Lemma 5.15. Let S, T ∈ Cu and let Λ ⊆ Th(S) with a generating image in S. Then

(i) For any finite set F ⊆ S, there exists εF > 0 such that α �F β whenever dΛ(α, β) <
εF .

If moreover Λ is finite, then

(ii) For any ε > 0, there exists a finite set Fε ⊆ S such that dΛ(α, β) < ε whenever 
α �Fε

β.
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Proof. (i) Note that it is enough to prove the result for F = {x′, x} where x′, x ∈ S are 
such that x′ � x. Thus, let x′, x ∈ S be such that x′ � x. We know that there exist n ∈
N, τ1, . . . , τn ∈ Λ, and t1, . . . , tn ∈ [0, 1] such that x′ ≤ τ1(1(t1,1]) + . . .+ τn(1(tn,1]) � x.

For each i, let ri > 0 be such that x′ � τ1(1(t1+r1,1]) + . . . + τn(1(tn+rn,1]). Set 
εF := mini ri, and let α, β be such that dΛ(α, β) < εF . We get

α(x′) ≤ α(τ1(1(t1+r1,1])) + . . . + α(τn(1(tn+rn,1])) ≤ β(τ1(1(t1,1])) + . . . + β(τn(1(tn,1])) ≤ β(x)

A symmetric argument gives β(x′) ≤ α(x), as required.
(ii) We now assume that Λ is finite. Let ε > 0 and let t1, . . . , tn be a partition of [0, 1]

such that |ti − ti+1| < ε/2. Let us define

Fε := {τ(1(ti,1]) | τ ∈ Λ, i ≤ n} ∪ {τ(1(ti+ε/2,1]) | τ ∈ Λ, i ≤ n}.

Let α, β be such that α �Fε
β. By [58, Lemma 4.8], we have dG(α ◦ τ, β ◦ τ) <

1/n + ε/2 ≤ ε for every τ ∈ Λ. This implies dΛ(α, β) < ε, as desired. �
Let S, T be Cu-semigroups and let Λ ⊆ Th(S) be a set with a generating image in S. 

We will say that a sequence (αi)i in HomCu(S, T ) is dΛ-Cauchy if 
∑

i dΛ(αi, αi+1) < ∞. 
The proposition below shows that any dΛ-Cauchy sequence has a unique limit α, in the 
sense of Definition 3.5. Nevertheless, an extra-assumption is needed (e.g. Λ is finite) in 
order for α to satisfy dΛ(αi, α) → 0.

Proposition 5.16. Let S, T be Cu-semigroups and let Λ ⊆ Th(S) be a set with a generating 
image in S. Then any dΛ-Cauchy sequence (αi)i in HomCu(S, T ) has a (unique) limit.

Proof. Let F ⊆ S be a finite set and let εF be the bound given by Lemma 5.15 (i). Since 
(αi)i is dΛ-Cauchy, there exists some iF ∈ N such that dΛ(αj , αk) < εF whenever j, k ≥
iF . It follows from Lemma 5.15 (i) that (αi)i is Cauchy in the sense of Definition 3.4. 
Using Theorem 3.8, we get that (αi)i has a (unique) limit. �
Proposition 5.17. Let S, T ∈ Cu and let Λ ⊆ Th(S) with a generating image in S. Let 
(αi)i be a dΛ-Cauchy sequence in HomCu(S, T ) and let α ∈ HomCu(S, T ). Then the 
following are equivalent:

(i) α is the limit of a sequence (αi)i.
(ii) dG(αi ◦ τ, α ◦ τ) → 0 for any τ ∈ Λ.

If moreover Λ is finite, then (i)-(ii) are in turn equivalent to

(iii) dΛ(α, αi) → 0.

Remark 5.18. (iii) always implies (ii). We exhibit an example where the converse does 
not hold.
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For any n ∈ N we let τn ∈ Th(G) be the map given by 1(t,1] �→ 1(t+1/n,1]. It can 
be checked that idG is the limit of the sequence (τn)n. Consider the piecewise linear 
functions fn : [0, 1] → [0, 1] mapping 0 �→ 0, 1/2 �→ 1/n, and 1 �→ 1. Let λn ∈ Th(S) be 
the Cu-morphisms defined by λn(1(t,1]) := 1(fn(t),1].

The family Λ = {λn}n has a generating image in S, and we get dG(τn ◦λn, λn) = 1/2
for each n. This shows that dΛ(τn, id) is constantly 1/2. In particular, the distance does 
not tend to 0.

Question 5.19. Let S be a Cu-semigroup. When does there exist Λ ⊆ Th(S) such that ∑
i dΛ(αi, αi+1) < ∞ implies dΛ(α, αi) → 0?
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