
This is the **accepted version** of the journal article:

Gaona Soler, Marc; Corral, Jordi; Campoy Sánchez, Susana; [et al.]. «The novel MFS efflux pump SxtP, regulated by the LysR-type transcriptional activator SxtR, is involved in the susceptibility to sulfamethoxazole/trimethoprim (SXT) and the pathogenesis of *Acinetobacter baumannii*». *Antimicrobial Agents and Chemotherapy*, Vol. 68, Issue 10 (October 2024), art. e00712-24. DOI 10.1128/aac.00712-24

This version is available at <https://ddd.uab.cat/record/311233>

under the terms of the license

1 **A Short-Form Paper for Antimicrobial Agents and Chemotherapy**

2 **Title:** The novel MFS efflux pump SxtP, regulated by the LysR-Type transcriptional activator
3 SxtR, is involved in the susceptibility to sulfamethoxazole/trimethoprim (SXT) and the
4 pathogenesis of *Acinetobacter baumannii*

5 **Authors:** Marc Gaona, Jordi Corral, Susana Campoy, Jordi Barbé[#], María Pérez-Varela* and
6 Jesús Aranda*

7 Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de
8 Barcelona (UAB), Bellaterra 08193, Cerdanyola del Vallès (Barcelona), Spain

9 [#]Senior author, *Corresponding authors: maria.perez@uab.cat and jesus.aranda@uab.cat

10 **Running title:** A new *A. baumannii* MFS–LysR pair: SxtP–SxtR

11 **Keywords:** *Acinetobacter*, MFS efflux pump, LysR-type transcriptional regulator,
12 co-trimoxazole

13 **ABSTRACT**

14 *Acinetobacter baumannii* is a notorious opportunistic pathogen responsible for
15 healthcare-associated infections worldwide. Efflux pumps play crucial roles in mediating
16 antimicrobial resistance, motility and virulence. In this study, we present the identification and
17 characterization of the new *A. baumannii* efflux pump SxtP belonging to the MFS superfamily
18 (Major Facilitator Superfamily), along with its associated activator LTTR (LysR-Type
19 Transcriptional Regulator) SxtR, demonstrating their roles in sulfamethoxazole/trimethoprim
20 (also known as co-trimoxazole or SXT) resistance, surface-associated motility and virulence.

21

22

23

24 *Acinetobacter baumannii* is a Gram-negative bacterium that has become a significant threat in
25 hospital settings due to its ability to acquire and rapidly develop resistance to antimicrobial
26 agents (1). One of the primary mechanisms underlying its multidrug resistance is the
27 expression of efflux pumps that extrude antimicrobial agents from the internal environment of
28 the bacterial cell. Multidrug efflux pumps are frequently encoded adjacent to a divergently
29 transcribed regulatory protein that controls the expression of the pump gene in response to
30 the transported substrates. For example, AdeL is an LTTR (LysR-Type Transcriptional Regulator)
31 which is encoded opposite to the *adeFGH* operon and represses these genes encoding an RND
32 (Resistance Nodulation Division) efflux system in *A. baumannii* (2). Another example of LTTR in
33 *A. baumannii* is AceR, which controls the expression, in this case as an activator, of the
34 divergently encoded PACE (Proteobacterial Antimicrobial Compound Efflux) superfamily efflux
35 pump Acel (3). LTTRs are the largest family of prokaryotic transcriptional regulators and can
36 function either as activators or repressors, controlling gene products involved across diverse
37 processes, including antimicrobial resistance, motility, and virulence (2–5).

38 By analyzing the genome of the *A. baumannii* ATCC 17978 strain (GenBank: CP018664.1), we
39 have identified the genes *AUO97_05400* (protein_id="APP30282.1") and *AUO97_05405*
40 (protein_id="APP30283.1"), which are located adjacent to each other and oriented in opposite
41 directions. The *AUO97_05400* gene is located upstream of *AUO97_05405* and they are
42 separated by a short intergenic region of 138 base pairs (bp). The *AUO97_05400* gene is 921 bp
43 in length and encodes a putative transcriptional regulator (LTTR-type). According to the
44 deduced amino acid sequence, the putative LTTR protein consists of 306 residues and has a
45 molecular mass of 33.65 kDa. The HTH (Helix-Turn-Helix) program (<https://npsa-prabi.ibcp.fr>)
46 predicted the presence of this HTH DNA-binding motif typical of the LTTR family between
47 residues 7 and 28, specifically KNFTKAAQRLNMSQPPLSMQIR (score 5.13, probability 100 %).
48 The *AUO97_05405* gene is 1,245 bp in length and encodes a putative efflux pump (MFS type).
49 Beyond the inferred sequence of amino acids, the putative MFS protein consists of 414

50 residues and has a molecular mass of 44.4 kDa. Based on predictions of its secondary structure
51 and transmembrane topology using the Protter program (<https://wlab.ethz.ch/protter/>), this
52 putative MFS is composed of 12 α -helical transmembrane segments, with both the N- and
53 C-termini located in the cytoplasm (data not shown). An *in-silico* search of the sequences of
54 the *A. baumannii* deposited in the NCBI database was carried out to determine the presence of
55 the identified genes in the genomes of other strains within this species. This search involved
56 1,388 *A. baumannii* complete chromosome sequences and the presence of both genes was
57 detected in 94.3 % of the analyzed genomes, indicating a strong conservation of these genes in
58 *A. baumannii* strains (see details in supplementary material).

59 To determine whether the lack of the genes encoding the LTTR and MFS proteins alter
60 antimicrobial susceptibilities, an internal ~500 bp of each gene amplified by PCR was cloned
61 into the suicide vector pCR-BluntII-TOPO (Invitrogen) to disrupt the corresponding ORFs of *A.*
62 *baumannii* target strains (ATCC 17978 and a clinical isolate) as previously described (6). All
63 oligonucleotides used in this work are listed in Table S1. Antimicrobial susceptibility was
64 determined by both disk diffusion and broth microdilution assays, conducted in accordance
65 with the Clinical & Laboratory Standards Institute (CLSI) guidelines . Compared to the wild-type
66 (WT) parental strain, both *A. baumannii* knockouts strains exhibited a 256-fold increase in
67 susceptibility to sulfamethoxazole and a 128-fold increase in susceptibility to co-trimoxazole (a
68 combination of trimethoprim and sulfamethoxazole in a 1:5 ratio). Additionally, the knockout
69 strains shown 2- to 4-fold higher susceptibilities to the tested aminoglycosides (amikacin,
70 gentamicin and apramycin), tetracyclines (minocycline and tetracycline), quinolones
71 (levofloxacin, enrofloxacin and nalidixic acid) as well as to rifampin and trimethoprim (Table 1).
72 In contrast, the mutants and their WT parental strain did not differ in their susceptibilities to
73 the tested β -lactams (ceftazidime, cefotaxime, ticarcillin), macrolides (erythromycin),
74 polymyxins (colistin) or to other antimicrobials such as chloramphenicol or ciprofloxacin (Table
75 1). Due to the high susceptibility of both mutants to co-trimoxazole, also known as SXT, we

76 renamed the genes *AUO97_05405* and *AUO97_05400* to *sxtP* (Pump) and *sxtR* (Regulator),
77 respectively. As both the transcriptional regulator and efflux pump knockouts show similar
78 antimicrobial profiles, it can be hypothesized that the LTTR protein SxtR could be a direct
79 regulator of the MFS efflux pump SxtP, potentially playing a role as an activator. To further
80 corroborate this inference, EMSAs (Electrophoretic Mobility Shift Assays) and RT-qPCRs were
81 carried out as previously reported (7). Results obtained show that the SxtR purified protein
82 specifically recognizes and binds the 138-bp intergenic region between the genes coding for
83 the SxtR and SxtP proteins (Fig. 1), which includes a TTA-N₇-TAA motif (specifically:
84 TTA-AATAGCT-TAA), typical of an LTTR box which is implicated in DNA binding by LTTRs (4).
85 Accordingly, the expression level of the SxtP encoding gene was observed to be decreased by 2
86 to 4-fold in three independent RT-qPCR analyses conducted on the *sxtR* defective mutant
87 compared to the ATCC 17978 WT strain and similar results were obtained with an *A. baumannii*
88 *sxtR* knockout constructed from the clinical strain UAB_M1B07, which was recently isolated
89 from a hospital in the metropolitan area of Barcelona, Spain. It is worth noting that although
90 this strain was more sensitive to co-trimoxazole (MIC 0.125 mg/L) than the ATCC 17978 strain
91 (see Table 1), the inactivation of the *sxtR* gene in the UAB_M1B07 strain reduced the MIC to
92 0.032 mg/L. All together, these results demonstrate that the SxtR protein acts as a direct
93 transcriptional activator of the gene encoding the SxtP efflux pump.

94 Additionally, to assess the inducibility of this regulatory system, RT-qPCR experiments were
95 performed using RNA extracted from cultures treated in the exponential growth phase with
96 different antimicrobials (sulfamethoxazole, levofloxacin, or amikacin) at various subinhibitory
97 concentrations for two hours. The results obtained showed no significant changes in the
98 expression of the system with any of the tested antimicrobials compared to untreated cultures
99 (data not shown). It is important to note that the presence of expelled antimicrobials does not
100 necessarily indicate that they are inducers of these systems, as previously demonstrated. For
101 example, the *Pseudomonas aeruginosa* MexAB-OprM efflux pump, which extrudes several

102 classes of antimicrobials including chloramphenicol, does not exhibit increased expression in
103 the presence of this compound (8).

104 Efflux pumps may play a crucial role in bacterial pathogenicity by transporting antimicrobial
105 molecules, secreting surfactants for surface-associated motility, and expelling virulence factors
106 (9, 10). In this context, the identified genes were investigated for their potential roles in
107 surface-associated motility and virulence of *A. baumannii*. Following priorly described
108 methods (11), motility assays on 0.5 % agar plates exhibited a noteworthy decrease in motility
109 for both *sxtP* and *sxtR* knockouts (Fig. 2A). It is worth noting that growth curves in liquid
110 Luria–Bertani (LB) medium remained unaltered, this rules out changes in growth rate as the
111 underlying cause for the observed motility impairments (data not shown). Moreover, assays in
112 the *Galleria mellonella* animal model exhibited a significant reduction in virulence upon the
113 inactivation of either *SxtR*- or *SxtP*-encoding genes (Fig. 2B), emphasizing their importance in
114 the pathogenicity of *A. baumannii*.

115 Data reported here demonstrate that the newly characterized MFS efflux pump *SxtP*, along
116 with its transcriptional activator *SxtR*, are widely distributed among clinical *A. baumannii*
117 isolates and play an important role not only in antimicrobial resistance, specially to
118 co-trimoxazole, but also in surface-associated motility, and virulence in *A. baumannii*. These
119 findings underscore the potential of these proteins, among other efflux pumps and their
120 transcriptional regulators, as putative new targets for developing novel therapeutic strategies
121 against this nosocomial pathogen.

122

123 **ACKNOWLEDGMENTS**

124 We thank Joan Ruiz (UAB) and Susana Escribano (UAB) for their excellent technical assistance.
125 This work has received funding from the *Ministerio de Ciencia e Innovación de España* PID2020-
126 117708GB-I00, and from the *Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) de la*

127 *Generalitat de Catalunya* (2021 SGR 00646 and 2023 PROD 00011). The funders had no role in
128 the study design, data collection or data interpretation, nor the decision to submit the work for
129 publication.

130

131 **Table 1. Minimum inhibitory concentrations (MICs, mg/liter) of the indicated antimicrobials**
132 **for wild-type *A. baumannii* ATCC 17978 (WT) and the derivative mutants lacking the genes**
133 **encoding either the LysR or the MFS proteins.**

134

	WT	SxtP ⁻	SxtR ⁻
Sulfamethoxazole	256	1	1
Co-trimoxazole	4	0.0031	0.0031
Trimethoprim	16	8	8
Amikacin	2	0.5	1
Gentamicin	1	0.5	0.5
Apramycin	4	2	2
Minocycline	0.125	0.062	0.062
Tetracycline	1	0.5	0.5
Tigecycline	0.25	0.25	0.25
Levofloxacin	0.031	0.016	0.016
Enrofloxacin	0.0062	0.0031	0.0031
Nalidixic acid	8	4	4
Rifampin	4	2	2
Ceftazidime	4	4	4
Cefotaxime	8	8	8
Ticarcillin	32	32	32
Erythromycin	8	8	8
Colistin	0.5	0.5	0.5
Chloramphenicol	32	32	32
Ciprofloxacin	0.25	0.25	0.25

135

136

137

138

139 **FIGURE LEGENDS**

140 **Fig. 1. (A)** Intergenic region showing the 138 bp between the *sxtP* and *sxtR* genes in *A.*
141 *baumannii* strain ATCC 17978. Surrounding genes are also shown. The TTA–N₇–TAA DNA motif
142 is shown in bold and underlined. **(B)** EMSA of a DIG-labeled DNA fragment containing the
143 intergenic sequence present between the genes coding SxtP and SxtR proteins. The experiment
144 was carried out in the presence (+) or absence (–) of 2 μM of SxtR protein, with at least a
145 10-fold molar excess of non-labeled and non-specific DNA in all lanes, and non-labeled and
146 specific DNA (third lane). All EMSAs were performed at least three times obtaining
147 reproducible results. A representative image is shown.

148

149 **Fig. 2. (A)** Surface-associated motility assays of wild-type *A. baumannii* strain ATCC 17978
150 (WT), and the derivative mutants lacking the genes encoding either the SxtP or the SxtR
151 proteins. All surface-associated motility assays were performed at least three times obtaining
152 reproducible results. A representative image is shown. **(B)** *G. mellonella* killing assay of the
153 specified strains. Larvae (n = 10 per group) were inoculated with either ~10⁶ CFU of the
154 indicated strain or PBS as a negative control (not shown). *P < 0.001 compared to the *A.*
155 *baumannii* parental ATCC 17978 strain (WT). All *G. mellonella* killing experiments were
156 performed at least three times obtaining reproducible results. A representative graph of larval
157 survival is shown.

158

159 **REFERENCES**

160 1. Nocera FP, Attili AR, De Martino L. 2021. *Acinetobacter baumannii*: Its clinical
161 significance in human and veterinary medicine. *Pathogens* 10(2): 127.

162 2. Coyne S, Rosenfeld N, Lambert T, Courvalin P, Périchon B. 2010. Overexpression
163 of resistance-nodulation-cell division pump AdeFGH confers multidrug
164 resistance in *Acinetobacter baumannii*. *Antimicrob Agents Chemother*
165 54(10):4389–4393.

166 3. Liu Q, Hassan KA, Ashwood HE, Gamage HKAH, Li L, Mabbutt BC, Paulsen IT.
167 2018. Regulation of the *aceI* multidrug efflux pump gene in *Acinetobacter*
168 *baumannii*. *Journal of Antimicrobial Chemotherapy* 73:1492–1500.

169 4. Maddocks SE, Oyston PCF. 2008. Structure and function of the LysR-type
170 transcriptional regulator (LTTR) family proteins. *Microbiology* 154(Pt
171 12):3609–3623.

172 5. Russell DA, Byrne GA, O'Connell EP, Boland CA, Meijer WG. 2004. The LysR-type
173 transcriptional regulator VirR is required for expression of the virulence gene
174 *vapA* of *Rhodococcus equi* ATCC 33701. *J Bacteriol* 186(17):5576–5584.

175 6. Aranda J, Poza M, Pardo BG, Rumbo S, Rumbo C, Parreira JR, Rodriguez-Velo P,
176 Bou G. 2010. A rapid and simple method for constructing stable mutants of
177 *Acinetobacter baumannii*. *BMC Microbiol* 10:279.

178 7. Aranda J, Poza M, Shingu-Vázquez M, Cortés P, Boyce JD, Adler B, Barbé J, Bou G.
179 2013. Identification of a DNA-damage-inducible regulon in *Acinetobacter*
180 *baumannii*. *J Bacteriol* 195:5577–5582.

181 8. Laborda P, Alcalde-Rico M, Blanco P, Martínez JL, Hernando-Amado S. 2019.
182 Novel inducers of the expression of multidrug efflux pumps that trigger
183 *Pseudomonas aeruginosa* transient antibiotic resistance. *Antimicrob Agents
184 Chemother* 63.

185 9. Blaschke U, Skiebe E, Wilharm G. 2021. Novel genes required for
186 surface-associated motility in *Acinetobacter baumannii*. *Curr Microbiol*
187 78(4):1509–1528.

188 10. Gaurav A, Bakht P, Saini M, Pandey S, Pathania R. 2023. Role of bacterial efflux
189 pumps in antibiotic resistance, virulence, and strategies to discover novel efflux
190 pump inhibitors. *Microbiology* 169(5): 001333.

191 11. Pérez-Varela M, Corral J, Aranda J, Barbé J. 2019. Roles of efflux pumps from
192 different superfamilies in the surface-associated motility and virulence of
193 *Acinetobacter baumannii* ATCC 17978. *Antimicrob Agents Chemother*
194 63(3):e02190–18.

195