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SUMMARY: Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) vaccines have been long
overdue. Structure-based vaccine design created a new momentum in the last decade, and the first RSV vaccines
have finally been approved in older adults and pregnant individuals. These vaccines are based on recombinant
stabilized pre-fusion F glycoproteins administered as soluble proteins. Multimeric antigenic display could
markedly improve immunogenicity and should be evaluated in the next generations of vaccines. Here we tested a
new virus like particles-based vaccine platform which utilizes the direct fusion of an immunogen of interest to the
structural human immunodeficient virus (HIV) protein Gag to increase its surface density and immunogenicity.
We compared, in mice, the immunogenicity of RSV-F or hMPV-F based immunogens delivered either as soluble
proteins or displayed on the surface of our VLPs. VLP associated F-proteins showed better immunogenicity and
induced superior neutralizing responses. Moreover, when combining both VLP associated and soluble immu-
nogens in a heterologous regimen, VLP-associated immunogens provided added benefits when administered as

the prime immunization.

1. Introduction

Respiratory syncytial virus (RSV) and human metapneumovirus
(hMPV) are closely related human orthopneumoviruses and major
etiological agents of acute respiratory infections in humans [1]. Severe
disease mostly affects young children, individuals with chronic respi-
ratory or heart conditions, and older adults. In the latter group, mor-
tality is comparable to the one of influenza A [2]. In children, while
infection associated deaths primarily occur in developing countries,
hospitalizations remain an economic burden in developed countries [3].

Vaccines for both RSV and hMPV are long overdue, but their
development had been delayed following initial setbacks in the 1960's
when a formalin-inactivated RSV vaccine tested in children led to
enhanced disease and the death of two toddlers. After long and careful

studies of RSV immunology, the development of RSV vaccines took a
new momentum in the last decade with the elucidation of the RSV
Fusion glycoprotein (RSV-F) post-fusion and pre-fusion atomic struc-
tures [4-6]. Neutralizing antibodies, following infection or passive im-
munization, have been associated with disease protection [7-11],
however, neutralizing epitopes are mostly exposed on a metastable pre-
fusion RSV-F and vaccine clinical trials using post-fusion F protein were
unsuccessful in eliciting sufficient neutralizing responses. Advances in
structure-based vaccine design permitted the creation of the first stabi-
lized pre-fusion recombinant RSV-F, DS-CAV-1, via the introduction of a
disulfide (DS) bond between S155C and S290C mutations and cavity-
filling (CAV) mutations S190F and V207L [12]. This paved the way
for the development of new recombinant RSV vaccine candidates.
Several vaccine candidates are now in late clinical trial stage showing
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promising results. Two pre-fusion F glycoprotein-based vaccines, from
GlaxoSmithKline Biologicals (AREXVY) and Pfizer (ABRYSVO), have
been recently approved for the first time for older adults, and the latter
vaccine was also approved for pregnant individuals.

High density of immunogens on particles can induce stronger im-
mune responses when compared with soluble recombinant proteins
[13-15]. Therefore, Virus-like particles (VLPs), which derive from the
expression of one or more viral structural proteins, represent a prom-
ising platform for the display of multimeric antigens. Efficacy of VLP-
based vaccines has already been demonstrated for both RSV and
hMPYV in animal models [16-21] and recently, a highly engineered VLP-
based bivalent RSV [22] and hMPV vaccine, IVX-A12 (Icosavax) has
reached phase 2 clinical trial. VLPs can derive from enveloped or non-
enveloped viruses ([23] for review). Non-enveloped VLPs are a well-
organized assembly of structural proteins and can display immuno-
gens with a geometrically controlled density. Enveloped VLPs possess a
lipidic membrane, they can accommodate more complex surface pro-
teins and provide a native-like platform for vaccines targeting enveloped
viruses such as human immunodeficiency virus (HIV-1) or RSV/hMPV.
HIV derived VLPs can easily be produced by expression of a single
structural protein, Gag. However, the incorporation of immunogens at
their surface is not optimal. We recently developed a new approach to
increase the density of displayed immunogens at the surface of the VLPs
[24]. This strategy consists in the expression of a unique fusion protein
combining HIV-1 Gag with an immunogen of interest. We already tested
this concept with HIV-1 [24] and feline leukemia virus (FeLV) [25]
derived immunogens, obtaining VLPs with a higher density of surface
immunogens.

Here, we applied our Gag fusion strategy for the creation of both
RSV- and hMPV-F vaccines. We designed RSV-F-Gag and hMPV-F-Gag
fusion constructs, validated the corresponding VLP production and an-
tigenicity in vitro and optimized their purification. We then performed
immunizations in mice comparing VLP-associated and soluble F pro-
teins. VLP-associated F proteins demonstrated better immunogenicity
after prime immunization and better neutralizing response following
booster immunization.

2. Results
2.1. RSV-F vaccine strategy

Our working hypothesis was that displaying high density of RSV-F
immunogen at the surface of VLPs would generate a better humoral
response than the soluble form of the equivalent RSV-F immunogen. In
order to generate such VLPs, we utilized a previously described RSV-F
pre-fusion stabilized immunogen, sc9-10 DS-Cavl A149C Y458C S46G
N671 E92D S215P K465Q (referred here as VRC4) [26] which we fused
to the HIV-1 structural protein Gag. VRC4 is a structure-based engi-
neered immunogen designed as an improved version of DS-CAV-1 [12].
In addition to DS-CAV-1 modifications, it included: a GS linker between
residues 105 and 145 (Fig. 1A), in place of pep27 and the fusion peptide,
directly connecting the F; and F5 domains; an additional disulfide bond
enabled by A149C and Y458C mutations; and additional mutations,
S46G, N671, E92D, S215P, L373R and K465Q, for increased pre-fusion
stability and/or expression. We restored the RSV-F transmembrane
domain to VRC4 (mVRC4) and fused mVRC4 to HIV-1 Gag via a flexible
GS linker (Fig. 1A). To define the final design, we first analyzed the
potential impact of the Cysteine 550 located in the cytoplasmic domain
of F protein close to the RSV-F and HIV Gag junction. This residue is
known to be palmitoylated [27] but not required for protein expression
or function [28]. Since palmitoylation could impact membrane locali-
zation and hence influence VLP formation, we constructed two mVRC4-
Gag fusion proteins containing or lacking C550. No differences were
observed in protein expression or VLP formation between each construct
(data not shown) and we decided to exclude this residue from the final
protein design. Gag was fused via a flexible GS linker directly after the
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transmembrane domain, in C-terminal of L548. Importantly, the asso-
ciation of HIV-1 Gag with a transmembrane domain redirects Gag
oligomerization along the intracellular secretory pathway which leads
to intracellular VLP budding [25].

2.2. mVRC4-Gag and VLPygc4 antigenicity

In a first round of experiments, we evaluated the antigenicity of
mVRC4-Gag fusion proteins, expressed in Expi293F cells (Fig. 1B),
against a panel of human (or humanized) and mouse anti-RSV-F anti-
bodies [29-33] specific for previously described characteristic epitopes
[5,29] present in pre- and/or post-fusion RSV-F ([34] for review). As
expected, signal was increased in permeabilized cells because of intra-
cellular VLP budding and protein accumulation. All the main neutral-
izing epitopes were recognized, including sites ® and V as well as a
trimeric F-specific epitope which are all characteristic of pre-fusion RSV-
F. These data along with the absence of recognition by the post-fusion
specific antibody 4D7 also indicated that RSV-F proteins were prop-
erly stabilized in a trimeric prefusion conformation, as expected. Intra-
cellular budding could be confirmed by transmission electronic
microscopy (TEM) on transfected cells (Fig. 1C) showing VLPs formed
with a size of roughly 100 to 150 nm in diameter. In order to recover
these VLPs, we performed a detergent extraction step adapted from the
work of the Titchener-Hooker group [35,36] and which we described
previously [25]. After extraction, VLPs (VLPygc4) could be identified by
cryogenic-TEM (cryo-EM) together with cell debris (Fig. 1D). Mainte-
nance of pre-fusion RSV F antigenic sites for these extracted VLPs was
assessed by ELISA using the previously mentioned RSV-F antibody panel
as capture antibodies and an HRP-conjugated polyclonal anti-Gag anti-
body for detection (Fig. 1E). The antigenic profile was reminiscent of
cellular staining confirming the presence of all key neutralizing epitopes
as well as the presence of trimeric RSV-F.

2.3. VLPyge4 purification and quantification

To better isolate extracted VLPs from cell debris and other soluble
proteins, we established a purification strategy (Fig. S1A), which
included ultracentrifugation on a double sucrose cushion (30 %/70 %),
dialysis using a 100 kDa MWCO membrane to remove the excess of
sucrose, and filtration at 0.45 um for sterilization. All steps were per-
formed in sterile conditions to minimize possible contamination and
subsequent endotoxin accumulation. After ultracentrifugation
(Fig. S1B), each fraction was collected and analyzed on SDS-page gels.
While total proteins were visualized by Coomassie stain (Fig. S1C),
mVRC4-Gag protein was identified by western blot using an anti-Gag
polyclonal antibody (pAb) (Fig. S1D). Most contaminating proteins
were retained before the 30 % sucrose cushion and Gag signal was
enriched at the interphase of the 30 % and 70 % sucrose (fraction 4),
immediately below (fraction 5) and also present in the 70 % cushion
(Fraction 6). We retained fractions 4 and 5 for vaccine production. These
fractions were mixed and dialyzed using a 100 kDa MWCO membrane in
sterile PBS and filtered at 0.45 pm for sterilization. The final production
was quantified by western blot comparing the VLP associated RSV-F
protein and a standard of soluble recombinant VRC4 RSV-F, the same
protein used subsequently as protein control for animal immunization
(Fig. S1E). After final filtration, purified mVRC4-Gag VLP (VLPygrc4)
were obtained at a concentration of 2.4 ug/mL of soluble VRC4 protein
(Proyrcs) equivalent (Table 1). We also verified the endotoxin content
which was well below the required maximum level of 0.15 endotoxin
unit (EU) per injection for in vivo immunization [37] (Table 1).

Finally, we performed a mass spectrometry (MS) analysis to char-
acterize the protein content of our VLPyrcs4 vaccine preparation. MS
sequence coverage of the mVRC4-Gag fusion protein was 46.4 %
(Fig. S1F and Table 1) and mVRC4-Gag peptides contributed 1.9 % of the
MS signal of all identified peptides (Table 1). All other proteins detected
were of human origin (from producer cells), notably including heat
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Fig. 1. Antigenicity of VRC4-Gag based VLPs. A. Schematic representing mVRC4 and mVRC4-Gag constructs. PS = peptide signal, TM = transmembrane domain. For
mVRC4, glycosylation sites are indicated on top, and disulfide bounds at the bottom (thin lines indicate natural RSV-F disulfide bounds while thick lines indicate
artificial bounds consecutive to amino acids substitutions). For mVRC4-Gag construct the truncation position (residue 548) is indicated on top. B. Surface and total
antigenicity of mVRC4-Gag measured by flow cytometry in transfected Expi293F cells. C. TEM on mVRC4-Gag and mock transfected Expi293F cells highlighting
intracellular VLP accumulation. D. Cryo-EM on extracted mVRC4-Gag VLPs. E. Sandwich ELISA on extracted mVRC4-Gag VLPs using the indicated capture antibodies
and an HRP-conjugated anti-HIV-1 p17p24p55 Gag pAb for detection.
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Table 1
VLPygrc4 and VLPyypy.r post-purification analyses.
VLPygrca VLPympv-F
Quantification:
RSV-F or hMPV-F concentration (ug/mL) 2.4 9.83
Endotoxin:
Endotoxin concentration (EU/mL) 0.21 0.18
Endotoxin per injection of 100 ng RSV-F (EU) 0.009 0.002
Mass-Spec analysis:
Coverage [%] 46 67
# Peptides 26 48
% MS signal 1.95 8.49

shock protein 70, ribonucleoproteins and ribosomal proteins (Fig. S1G).

2.4. VRC4 immunization in BALB/c mice

To first evaluate the immunogenicity of VLPyrcs4, we immunized
BALB/c female mice with 2 doses of a homologous vaccine regimen
including either 100 ng of Proygrcs protein formulated with Merck
amorphous aluminum hydroxylphosphate sulfate (MAA, Merck & Co.,
Inc., Rahway, NJ, USA), 100 ng RSV-F equivalent of VLPygrc4 formulated
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with or without MAA, or MAA alone (Fig. 2A). Second immunization
was performed 4 weeks apart and sera were collected 2 weeks after each
immunization (PD1 and PD2). The level of antibody against pre-fusion
(Fig. 2B) and post-fusion (Fig. S2) RSV-F was determined by ELISA.
Soluble recombinant pre-fusion, but not post-fusion RSV-F used as the
coating antigen in the ELISA assays, contains a foldon domain in the C-
terminal which can account for some of antibody binding reactivity
observed in the sera of animals immunized with soluble protein-based
(which also contains the foldon domain), but not VLP-based vaccines.
Therefore, we measured antibodies against both pre- and post-fusion
RSV-F to control for non-relevant anti-foldon responses. At PD1, ani-
mals immunized with Proyrcs + MAA had low or undetectable levels of
RSV-F specific antibodies (GM = 51) probably because of the low dose of
immunogen (Fig. 2B). Similarly, in the absence of adjuvant, only a few
mice immunized with VLPygrc4 showed RSV-F specific antibodies (GM =
45). In sharp contrast, when VLPygc4 were formulated with MAA, RSV-F
antibodies were detected in all animals and the PD1 antibody level (GM
= 1199) was statistically superior to Proyrcs + MAA (p = 0.0014) and
VLPygrc4 alone (p = 0.0014). Results were similar when measuring anti-
post-fusion F specific response (Fig. S2A). At PD2, all anti-pre-fusion
RSV-F responses were clearly boosted by the second immunization
(Fig. 2C). Notably, while Proyrcs + MAA induced response was low at
PD1, at PD2 it was superior to VLPygc4 without adjuvant (p = 0.00196)
and equivalent to the response from VLPygcs4 + MAA (p = ns). In terms of
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Fig. 2. Immunogenicity of mVRC4-Gag based VLPs in BALB/c mice. A. Schematic representing the immunization regimen and timeline of immunizations and blood
collection. B/C. ELISA quantification of (B) anti-pre-fusion humoral responses at PD1 (B) and PD2 (C) in heat inactivated serum collected 2 weeks after each im-
munization. Bars indicate geometric means. As many sera yielded undetected results, comparisons were performed with a Peto-Peto test. Significant p values are

indicated and were corrected for multiple comparison (**p < 0.01,

***p < 0.001). Dashed lines indicate the assay lower limit of detection (=25). D. Anti-RSV-F

neutralization titers in sera collected 2 weeks after second immunization. Titers are expressed in reciprocal dilution. Bars indicate geometric means. As many
sera yielded undetected results, comparisons were performed with a Peto-Peto test. Significant p values are indicated and were corrected for multiple comparison (*p
< 0.05, **p < 0.01). Dashed lines indicate the assay lower limit of detection (=10).
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immunogenicity, VLPyrcs + MAA, which was superior to Proyrcs +
MAA at PD1, lost its advantage at PD2, suggesting that this specific VLP
regimen was not optimal for boosting.

PD2 sera were then tested for their neutralizing activity against RSV.
Only immunization regimens that included MAA adjuvant (Proyrcs +
MAA and VLPygrcs + MAA) were able to induce a significant neutralizing
response. Notably, while VLPyrc4 alone did not elicit any detectable
neutralizing responses, VLPyrcs4 + MAA generated a greater neutralizing
response than Proyrcs + MAA (Geo Mean: 355 vs 58, p = 0.014, Fig. 2D),
even though the two vaccines induced comparable binding antibody
titers.

Altogether, this data indicates that VRC4 immunization as a VLP-
displayed immunogen was more effective at primary immunization
and generated a better neutralizing response than soluble VRC4. How-
ever, the boost conferred by the second immunization was probably not
optimal with the tested VLP regimen. This could be explained by the
presence of human host proteins in the VLP-based vaccine, which might
interfere with a VRC4 focused response during the second immuniza-
tion. Therefore, we hypothesized that a heterologous regimen
combining VLP-displayed immunogen and soluble VRC4 protein could
avoid repeated anti-human protein stimulation and provide a better
boost.

2.5. hMPV-F VLP vaccine

Before proceeding with a second immunization experiment, we
decided to generate an additional vaccine candidate targeting hMPV-F.
In this case, hMPV-F-Gag was based on the wild-type (WT) unmodified
extracellular and transmembrane domains sequence of hMPV-F and was
fused to HIV-1 Gag after the transmembrane domain, C-terminal of K516
(Fig. 3A). Antigenicity was first verified in transiently transfected
Expi293F cells. Among our panel of F specific antibodies, all four anti-
bodies with known reactivity against hMPV-F (3G8, M2D2, M1C7 and
M1C7s) showed strong recognition demonstrating good presentation of
antigenic sites II, III, IV, and most importantly V (Fig. 3B). As with
mVRC4-Gag, intracellular signal was superior, therefore, predicting
intracellular accumulation of VLPs. TEM on transfected cells confirmed
the presence of VLP like elements in the cellular secretory pathway
(Fig. 3C). Following extraction, we confirmed by cryo-EM the presence
of VLPs with a diameter of about 100 nm (Fig. 3D). Antigenicity of
extracted VLPs was analyzed by ELISA showing a very similar profile to
the one observed by flow cytometry (Fig. 3E). Extracted VLPs were
subsequently purified following the same strategy described for
VLPygc4. Following sucrose gradient ultracentrifugation, we retained
fractions 4, 5 and 6 (Fig. S3A-C). After dialysis and final filtration,
VLPhvpy.F preparation was quantified by western blot against recom-
binant hMPV-F protein. Notably, final concentration of VLPpypy.r was
increased in comparison to VLPygrcs (Fig. S3D and Table 1). Endotoxin
level was minimal.

Final MS analysis indicated a better overall purity (8.49 % MS signal,
Table 1) and coverage (Fig. S2E) of VLPpypy.r in line with the increased
concentration as compared to VLPygcs. Host protein contaminants were
of similar origin as in the VLPyrc4 preparation (Fig. S3F-G).

2.6. Homologous and heterologous VRC4 and hMPV-F immunization in
C57Bl/6J0laHsd mice

For this second immunization experiment, we used male and female
C57Bl/6J0laHsd mice, and we compared homologous and heterologous
immunization regimes combining 100 ng of VLP-associated and/or
soluble immunogen (Fig. 4A), for either RSV or hMPV-F. All immuni-
zations were formulated with aluminum phosphate adjuvant (Inviv-
oGen, AdjP). For heterologous prime/boost immunizations, VLP based
vaccines were administered either as first or second dose. In the specific
case of VLPpypy.p, as concentration and purity in the final preparation
were higher, we also tested an additional condition with an increased
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quantity of hMPV-F equivalent VLPs (300 ng) which was injected as first
dose followed by a 100-ng dose of soluble hMPV-F.

As already observed in the previous immunization experiment, anti-F
antibody responses at PD1 were clearly superior when using the VLP
platform compared to soluble protein immunogens. This was true for
both, mVRC4 (Fig. 4B, p = 0.0058) and hMPV-F (Fig. 4C, 100 ng —p =
0.0003, 300 ng - p = 0.0006) immunizations. In the case of hMPV-F,
immunization with an increased dose of VLP trended to higher anti-
body response but significance was not reached between 100 and 300 ng
doses.

AtPD2, as anticipated, the VLP/Pro strategy was the better option for
VRC4 immunization (Fig. 4D) as compared to the Pro/Pro strategy (p =
0.03), confirming that VLPs serve as a better priming vaccine. Interest-
ingly, heterologous VLP/Pro regimen was also superior to the VLP/VLP
homologous regimen (p = 0.046), corroborating our hypothesis that
immune responses after homologous VLPygc4 vaccination may have
been suppressed due to the presence of human host-cell proteins. In the
case of h(MPV-F, VLP/VLP immunization seemed more in line with other
combinations and no statistical difference was observed, possibly
because the purity of these VLPs was better, which could limit the
interference from anti-human protein responses in immunized mice. To
assess the anti-human response, we stained Expi293F cells with immu-
nized mouse serums (Fig. S4). PD2 sera of mice who received VLPygc4 or
VLPpypy.r immunization developed antibodies against Expi293F cells
and titers were increased when mice received two VLP immunizations
(Fig. S4A). Moreover, after PD1, the anti-Expi293F response in mice
which received VLPpypy.F was significantly reduced compared to mice
who received VLPyrcs (Fig. S4B), confirming the higher purity of the
VLPhyvpy.F preparation.

Finally, we measured the neutralizing response after VRC4 and
hMPV-F immunizations. While, in the previous immunization experi-
ment, 2 doses of Proyrcs were sufficient to induce detectable neutrali-
zation titers in almost all BALB/c mice (Fig. 2D), only two out of eight
immunized C57Bl/6JOlaHsd derived mice show neutralization re-
sponses (Fig. 4F), suggesting that the C57Bl/6JOlaHsd mouse model is
more restrictive to the generation of anti-F neutralizing antibodies. In
this context, both VLPygrc4/Proyrcs (p = 0.0054, neutralization detected
in 7 animal out of 8) and VLPygrc4/VLPyrcs (p = 0.041; neutralization
detected in 4 animal out of 8) immunizations induced significant
neutralizing responses. No neutralization was detected with Proycgra/
VLPygrcs (Fig. 4F). Importantly the heterologous regimen VLPygrcs/
Proyrcs was superior to all other tested groups. Similar results were
obtained for the hMPV-F immunization, although in that case only the
300 ng VLPpypy.p/Pronvpy.r heterologous regiment induced a signifi-
cant neutralizing response (Fig. 4G, p = 0.039). All together, these data
suggest that F antigen displayed on a VLP could induce a better primary
response in naive animals and better neutralizing responses following
boosting.

3. Discussion

In this work we generated HIV Gag derived VLP exposing an RSV- or
hMPV-F immunogen, directly fused to Gag, as a strategy to increase
surface antigen density and induce better B-cell activation. Pre-fusion
RSV-F conformation provides the best presentation of neutralizing epi-
topes [4,6]. Therefore, we built upon a previously described pre-fusion F
design [26], referred here as VRC4. mVRC4-Gag antigenicity measured
both in producing cells and in particles indicated good presentation of
site ® and V previously described as the most sensitive to neutralization
antibodies [12]. In the case of hMPV-F, we tested the possibility to use a
wild-type protein sequence which did not include any stabilizing mu-
tation. While soluble forms of F proteins rapidly adopt a post-fusion
conformational state [5], membrane bound F protein are more likely
to maintain a pre-fusion conformation. In our case, h(MPV-F-Gag showed
a good exposure of site V both in cells and in particles suggesting a
prevalent pre-fusion state. However, the neutralization activity
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cells highlighting intracellular VLP accumulation. D. Cryo-EM on extracted hMPV-F-Gag VLPs. E. Sandwich ELISA on extracted hMPV-F-Gag VLPs using the indicated
capture antibodies and an HRP-conjugated anti-HIV-1 p17p24p55 Gag pAb for detection.
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Fig. 4. Immunogenicity of mVRC4-Gag and hMPV-F-Gag based VLPs in C57Bl/6JOlaHsd mice. A. Schematic representing the immunization regimen and timeline of
immunizations and blood collection. B/C/D/E. ELISA quantification of anti-pre-fusion RSV-F (B/D) and hMPV-F (C/E) humoral responses in heat inactivated serum
collected 2 weeks after first (PD1) and second (PD2) immunizations. Bars indicate geometric means. As many sera yielded undetected results, comparisons were
performed with a Peto-Peto test. Significant p values are indicated and were corrected for multiple comparison (*p < 0.05, **p < 0.01, ***p < 0.001). Dashed lines
indicate the assay lower limit of detection (=25). F/G. Anti-RSV (F) and hMPV (G) neutralization titers in sera collected 2 weeks after second immunization. Titers
are expressed in reciprocal dilution. As many sera yielded undetected results, comparisons were performed with a Peto-Peto test. Significant p values are indicated
and were corrected for multiple comparison (*p < 0.05, **p < 0.01). Dashed lines indicate the assay lower limit of detection (=10).
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measured after 2 immunizations was underwhelming and, while
increasing the dose of the vaccine to 300 ng of F-protein substantially
improved the response, it will be interesting to compare these results
with a pre-fusion stabilized hMPV-F immunogen.

We initially hypothesized that immunization with VLPs could pre-
clude the need for adjuvantation, specifically when compared to unad-
juvanted soluble proteins, since we had already observed good immune
responses in a previous study [24] using an HIV-1 based immunogen in
absence of any adjuvant. However, in this study, following first immu-
nization, we only observed a significant response when adjuvant was
present. It is important to point out that in this work, animals were
immunized with very low doses of vaccines: 100 ng F protein equivalent
per injection of RSV-F based vaccine and up to 300 ng F protein
equivalent in the case of hMPV. Other works using VLP
[16,17,19,38,39] or nanoparticles [22] for RSV-F and or hMPV-F im-
munization commonly use between 4 ug and 20 ug of F-protein equiv-
alent. In addition, our VLP preparations had very low endotoxin content,
less than 0.02 EU per injection, which is well below the recommended
limit of 0.15 EU per injection [37]. In this context, and in the presence of
aluminum adjuvant (MAA or AdjP), a first injection with VLP associated
F proteins induced greater response than the equivalent soluble protein.
This was true for both RSV and hMPV-F immunizations, suggesting that
F-Gag based VLPs provide better immunogenicity in comparison to
soluble proteins in naive animals. Importantly, our VLP preparations
were directly quantified against the respective recombinant soluble F
protein that were used for mouse immunization, ensuring the fairest
comparison.

After the second homologous immunization, the benefits of our VLP
platform faded in terms of total anti-F specific humoral response, sug-
gesting that the VLP associated F immunogens failed to properly boost
the response in comparison to the protein-protein regimen. We hy-
pothesized that this was due to the presence of human host proteins as
part of the VLPs preparation which could induce anti-human protein
response after primary immunization and this response could interfere
with boosting using VLPs containing the same impurity. Interestingly
though, despite the protein—protein regimen showing similar end-point
antibody binding titers, the neutralizing response obtained after two
consecutive VLP displayed F protein immunization was still statistically
superior to the protein—protein immunization. This suggests that VLP
based immunization provided a qualitative benefit which translated in
higher neutralizing potency. To better optimize the F immunogen for the
second immunization, we tested a heterologous regimen VLP/Pro. As
anticipated, VLP/Pro led to higher binding and neutralizing antibody
responses which were statistically superior to the Pro/Pro regimen.
Differences between regimen were less pronounced with the hMPV-F
vaccine although trends were similar. Interestingly, the opposite
regimen, Pro/VLP, failed to induce a comparable neutralizing activity,
suggesting that a specific immunological imprinting was established
after the first immunization with soluble protein. Overall, these results
show that F-Gag based VLPs provide better immunogenicity in com-
parison to soluble proteins and most importantly, generate a better
neutralizing response. It will be interesting to test the capacity of this
platform to induce T-cell responses and ultimately to evaluate the pro-
tection against virus challenge in animal model.

Limits of our study include the purity of the VLPs, in term of the
presence of human host protein. This could be improved by using more
advanced chromatography approaches. hMPV-F-Gag based VLPs
reached a higher level of purity (increased “relative MS-signal in-
tensity””) probably thanks to a better expression level in producing cells.
However, hMPV-F immunizations achieved lower apparent neutralizing
responses despite robust binding antibody responses overall. This could
be due to the mouse model used (C57Bl/6JOlaHsd mice) and/or the fact
that the hMPV-F immunogens did not include stabilizing mutations.
Alternative approaches to avoid the need of complex purification pro-
cesses to remove host proteins, could include the use of nucleic acid-
based vaccines encoding for GAG/antigen fusion proteins, producing
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VLPs in vivo to generate functional humoral responses [24]. Another
limit of our work resides in the fact that immunization experiments were
performed using two different mouse models in two different locations.
BALB/c and C57BL/6 mice are regarded as Th2 and Thl dominant
strains, respectively [40,41], which could influence their capacity to
generate neutralizing antibody. There were also meaningful changes in
immunization protocols, notably the use, for logistical reason, of similar
but not identical adjuvants, and differences in the immunization tech-
nics (intramuscular vs hock injection) specific to each center’s expertise.
Importantly, sera were analyzed by the same team and using the same
ELISA and neutralization assays. In this context, both RSV-F immuni-
zation studies, performed in different centers, consistently showed the
superior immunogenicity and higher neutralizing response of the VLP
based vaccines. Finally, while using low dose of immunogens was a
guiding principle of this and our previous studies [24], improving the
quantity and purity of the VLP production will be critical to evaluate the
precise amount of immunogen required and take fully advantage of our
Gag fusion protein based VLP platform.

4. Methods
4.1. Antibodies

For the characterization of RSV-F and hMPV-F antigenicity, we used
the human antibodies D25 [30], AM14 [30], 3G8 [31], M2D2 [31],
MI1C7 [31], M1C7s [32], the humanized antibody, Palivizumab [33]
and the mouse antibody 4D7 [29].

4.2. Soluble VRC4 and hMPV-F proteins

The plasmid construction and production of RSV PreF (VRC4) was
performed as previously described [26]. The hMPV-F trimeric antigen
was derived from a previously published F sequence of strain B2 with a
C-terminal GCN4 trimerization domain [42]. All constructs have a C-
terminal thrombin cleavage site, followed by a 6xHis tag and a strep-tag.
Sequences were codon-optimized for mammalian expression (Life
Technologies and Genewiz), cloned into an expression vector, and
transiently transfected into Expi293 suspension cells (Thermo Fisher
Scientific). On days 3 post-transfection, supernatants were harvested for
western blot to confirm expression and for large-scale purification. The
purification of all antigens was performed as previously described
[29,31]. Briefly, harvested supernatants with His-tagged proteins were
captured by Ni-Sepharose chromatography (GE Healthcare, USA) and
eluted by high imidazole concentration. In course of an overnight dial-
ysis in the presence of thrombin, the His-tag was cleaved, and the con-
centration of imidazole was reduced. Uncleaved His-tag products, as
well as initial Ni-Sepharose non-specific binding impurities, were
removed by negative Ni- Sepharose chromatography (product in flow-
through). The protein antigens were further purified by size-exclusion
chromatography (Superdex 200, GE Healthcare) and stored in a buffer
of 50 mM HEPES pH 7.5 with 300 mM NaCl.

4.3. Cell lines

The Expi293F cell line (ThermoFisher Scientific, USA) was used for
VLP production. Cells were cultured in Expi293 Expression Medium
(Gibco, Thermo Fisher Scientific) at 37 °C, 8 % CO2, and under agitation
at 125 rpm.

4.4. Plasmids

All DNA sequences were synthesized at GeneArt (Thermo Fisher
Scientific, Waltham, MA, USA) and subcloned into the pcDNA3.4-TOPO
vector (Thermo Fisher Scientific, Waltham, MA, USA). All plasmids were
transformed into One Shot TOP10 Chemically Competent E. coli (Invi-
trogen) for plasmid DNA amplification. Plasmids were purified in
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endotoxin-free conditions using the ZymoPure II Plasmid Maxiprep Kit
(Zymo Research) and sterile filtered at 0.22 um (Millipore).

4.5. Expression

Expi293F cells were transiently transfected with mVRC4-Gag or
hMPV-F-Gag expression plasmids using ExpiFectamine transfection re-
agents (Gibco) following the manufacturer’s instructions. Notably, 20 h
after transfection cell medium was supplemented with enhancer re-
agents (Gibco). Cells were harvested at 48 h after transfection. Super-
natant was kept for analysis.

4.6. Flow cytometry analysis of antigenicity

Expi293F cells transfected with mVRC4-Gag or hMPV-F-Gag were
stained extracellularly and or intracellularly with a panel of RSF-F and
hMPV-F specific human monoclonal antibodies (described above)
revealed by an APC-labeled anti-human IgG (Fcy) (Jackson ImmunoR-
esearch) and intracellularly with a FITC-conjugated HIV-1 p24 Gag
specific antibody (mouse, KC57; Beckman Coulter, USA). Extracellular
staining was performed in PBS. For intracellular staining, cells were first
fixed with fixation buffer (Medium A; Invitrogen/Thermo Fisher Sci-
entific) and stained in permeabilizing conditions with permeabilization
buffer (Medium B; Invitrogen/Thermo Fisher Scientific). For the detec-
tion of site-I post-fusion epitope, cells were stained with a mouse
monoclonal antibody 4D7 (described above). In that specific case, cells
were not dual stained with anti-HIV-1 p24 Gag antibody KC57 which is
also a mouse antibody, to avoid interference. Stained cells were acquired
on a BD FACSCelesta™ Cell Analyzer (BD, USA) with FACSDiva™
Software version 8.0.1.1 (BD) and analyzed with FlowJo™ v10.6.1
Software (BD).

4.7. Transmission electron microscopy (TEM)

Cells producing VLPs were analyzed by transmission electron mi-
croscopy (TEM). Briefly, transiently transfected Expi293F cells were
fixed with 2.5 % glutaraldehyde in PBS 0.1 M for 2 h at 4 °C, post-fixed
with 1 % osmium tetroxide with 0.8 % potassium ferrocyanide for 2 h
and dehydrated in increasing concentrations of ethanol. Then, pellets
were embedded in epon resin and polymerized at 60 °C for 48 h. Sec-
tions of 70 nm in thickness were obtained with a Leica EM UC6 micro-
tome (Wetzlar), stained with 2 % uranyl acetate and Reynold’s solution
(0.2 % sodium citrate and 0.2 % lead nitrate), and analyzed using a JEM-
1400 transmission electron microscope (Jeol Ltd., Akishima, Japan). All
images were taken at 120 kV.

4.8. VLP extraction

Recovery of intracellular VLPs was adapted from Titchener-Hooker,
N. et al. [35,36]. Cell pellets were resuspended in 1 pellet volume (PV) of
ice-cold lysis buffer: PBS pH 7.4 (Gibco), 2 mM EDTA (Thermo Fisher
Scientific, Waltham, MA, USA), 2 mM EGTA (Merck, Darmstadt,
German), and Protease Inhibitor (Complete™ ULTRA Tablets EDTA-
free, Merck, Darmstadt, German). Cells suspensions were homoge-
nized with a tissue grinder (CS1, KIMBLE) for 1 min on ice. 2 PV of lysis
buffer supplemented with 0.2 % final Triton X-100 were added and cells
were incubated for 4 h at 4 °C under rotation to ensure VLP release.
Centrifugation at 3000 x g for 15 min was carried out to remove cellular
debris and contaminants. Finally, supernatants were incubated with
Amberlite XAD-4 beads (Merck, Darmstadt, German) for 2 h at 4 °C for
Triton X-100 removal. VLP containing supernatant were recovered after
filtration through a 70 pym mesh (Greiner bio-one, Kremsmdiinster,
Austria) to remove the beads.
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4.9. ELISA analysis of antigenicity

In order to characterize mVRC4-Gag and hMPV-F-Gag antigenicity
on extracted particles we performed a sandwich ELISA combining a
capture step utilizing the panel of RSV-F and hMPV-F specific mono-
clonal antibodies described above and detection staining with and Anti-
HIV-1 p55 + p24 + pl7 Gag antibody (Rabbit, ab63917; Abcam, UK)
followed by HRP-conjugated AffiniPure F(ab’). Fragment Donkey Anti-
Rabbit IgG (H + L) (Jackson ImmunoResearch, USA). Capture anti-
bodies were coated overnight in PBS at 4 °C in Nunc Maxisorp ELISA
plates (Thermo Fisher Scientific). Plates were then blocked with 1 % BSA
PBS (without detergent) for 2 h at room temperature. Various dilutions
of VLP preparation were incubated in the plate overnight at 4 °C. After
washing with PBS 0.05 % Tween 20, plates were incubated for 1 h at
room temperature with detection antibody diluted in blocking buffer.
After washes, plates were incubated for another hour at room temper-
ature with the HRP-conjugated secondary antibody and finally plates
were developed with o-Phenylenediamine dihydrochloride (OPD)
(Sigma Aldrich, St. Louis, MO, USA) and stopped using 2 N of H2S04.
The signal was analyzed on an EnSight Multimode Plate Reader (Per-
kinElmer, USA) at 492 nm with noise correction at 620 nm.

4.10. Cryogenic transmission electron microscopy (cryo-EM)

Extracted VLP preparations were analyzed by cryo-EM. VLPs were
deposited on a carbon-coated copper grid and prepared using a Leica EM
GP workstation (Leica). VLPs were observed with a Jeol JEM-2011 (Jeol
Ltd., Akishima, Japan), equipped with a CCD 895 USC4000 camera
(Gatan, Pleasanton, CA, USA).

4.11. VLP purification

Samples were further purified by ultracentrifugation in a 70 %/30 %
double sucrose cushion at 28,000 x g for 2.5 h at 4C. After centrifuga-
tion, each fraction was recovered separately (Fig. S1B) and analyzed by
western blot (see below). Fractions of interest were further treated for
sucrose removal by dialysis with 100 kDa MWCO Spectra-Por Float-A-
Lyzer G2 (Merck, Darmstadt, German) following the manufacturer’s
recommendation against 1 x PBS at 4C. The final sucrose concentration
in VLP vaccine preparation was expected to be lower than 5 %. Finally,
VLP preparation were filtered through 0.45 pm pore size (Millipore).

4.12. Coomassie and western blot characterization

Samples were treated with reducing agent (Thermo Fisher Scienti-
fic), boiled for 5 min at 95 °C and subjected to electrophoresis in
NuPAGE Bis-Tris 4 % to 12 % (Thermo Fisher Scientific).

For coomassie stain, gel was washed in water, incubated 1 h with
Coomassie blue under agitation, de-stained overnight in water and ac-
quired on Chemidoc (Bio Rad).

For western blot, proteins were transferred onto a PVDF membrane
(Bio-Rad) using the Trans-Blot Turbo Transfer System (Bio-Rad).
Membranes were blocked for 1 h at room temperature with blocking
buffer (5 % w/v non-fat skim milk powder in PBS 0.05 % Tween20).
Membranes were incubated overnight at 4 °C with the primary poly-
clonal antibodies: Anti-HIV1 p55 + p24 + pl7 antibody (Rabbit,
ab63917; Abcam), anti-RSV-F (Guinea pig, in-house generated) and
anti-hMPV-F (Rabbit, in-house generated). After washing, incubation
with the secondary antibody, HRP-conjugated AffiniPure F(ab’). Frag-
ment Donkey Anti-Rabbit IgG (H + L) (Jackson ImmunoResearch) or
HRP-conjugated AffiniPure Donkey Anti-Guinea Pig IgG (H + L)
(Jackson ImmunoResearch) was performed for 1 h at room temperature.
Membranes were developed using SuperSignal West Pico PLUS Chemi-
luminescent Substrate (Thermo Fisher Scientific) or SuperSignal West
Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific),
depending on the band’s signal and according to the manufacturer’s
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4.13. Western blot quantification

For protein quantification the VLP preparations were compared
against a standard made of the soluble form of the corresponding anti-
gen (VRC4 or hMPV-F as described above). Standard ranged from 7.8 ng
to 125 ng. Western blot pictures were analyzed with Image Lab (Bio
Rad) and quantification was obtained using the integrated “quantity
tool” function.

4.14. Endotoxin detection

Endotoxin measurements were performed by LeanBio (Barcelona)
with a standard limulus amebocyte lysate (LAL) method using a Portable
Endotoxin Testing System (PTS) from Charles River Laboratories (USA).

4.15. Proteomic analysis

Samples were prepared for bottom-up analysis using the filter aided
sample preparation (FASP) method [43] following manufacturer’s in-
structions (FASP protein digestion kit, Abcam ab270519). In brief, VLP
samples were concentrated to a volume of 100 pl using a spin filter with
a 30 kDa cut of membrane. The VLPs were then denatured by adding
100 pl of 8 M ultra-pure urea (Thermo Fisher). Disulfide bonds were
reduced in the filter for 15 min at 65 °C in an incubator shaker by adding
2 ul of 500 mM tris (2-carboxyethyl) phosphine (TCEP, Pierce, bond
breaker). Reduction was followed by alkylation with Iodoacetamide. 3
ul of 375 mM freshly prepared Iodoacetamide was added to the filter and
then allowed to react for 30 min at room temperature. The enzymatic
digestion was performed after clean-up of the reagents using 1:50 (wt/
wt) Trypsin/LysC mixture (Promega V5071) per VLP sample. The
digestion reaction is performed overnight in an incubator shaker at
37 °C at 400 rpm.

Peptides of the VLP digests were analyzed by nano-LC tandem mass
spectrometry using an Orbitap XL mass spectrometer (Thermo Fisher)
equipped with an Ultimate 3000 RS nano-HPLC system (Thermo Fisher).
One sixth of the peptide mixture from each digest was first captured onto
a C-18 p-trapping column (300 pm ID x 5 mm, C18 PepMap 100P/N
160454, Thermo Fisher) and then back eluted onto a Pico-chip™
analytical tip column (75 pm ID x 10 cm, 15 pm tip ID; New Objective,
Littleton, MA) for MS/MS analysis. Peptides were eluted using a 120 min
gradient starting at 2 % acetonitrile, linearly progressing within 90 min
to 32 % acetonitrile (0.1 % formic acid, EMD suprapure P/N 11670) at a
flow rate of 300 nl/min. The analytical portion of the gradient was
followed by a cleanup and reconditioning phase. Tandem mass spectra
were acquired using top 5, data dependent analysis with dynamic
exclusion enabled for 300 s and a repeat duration of 25 s. Raw files were
analyzed using the Proteome Discoverer 2.4 software package (Themo
Fisher). Extracted ion chromatograms (XIC) were calculated within PD
2.4 to obtain MS signal intensities for VLP and host cell proteins. The XIC
contribution for individual proteins was calculated as percentage of the
sum total of the XIC of all identified proteins and served as an approx-
imation of protein abundance within each sample. FASTA proteome
databases for human proteins were downloaded from uniprot.org.

4.16. Mouse immunogenicity studies

Mouse experiments were performed at 2 different centers and in 2
different mouse strains.

BALB/c mouse studies were performed by the team at Merck & Co.,
Inc., Rahway, NJ, USA and approved by the Institutional Animal Care
and Use Committee (IACUC, APS#2019-600920-Mar) at Merck & Co.,
Inc., Rahway, NJ, USA. Groups of 8 female BALB/c mice (Charles River
Laboratories, USA) aged 6-8 weeks were immunized intramuscularly
twice at a 4-week interval. 100 uL of candidate vaccines, containing 100
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ng of either soluble or VLP-associated F-protein, were split equally over
right and left quadriceps and administered to the mice. Two weeks after
each immunization, blood was collected by tail vein bleed without an-
esthetics for serological assays.

C57Bl/6J0laHsd mouse studies were performed by the team at
IrsiCaixa, Badalona, Spain at the Centre for Comparative Medicine and
Bioimage (CMCiB) under the approval of the Committee on the Ethics of
Animal Experimentation of the Germans Trias i Pujol Research Institute
(IGTP) and the authorization of Generalitat de Catalunya (codes: 9525).
All procedures were in accordance with the 3R principle and prioritize
animal welfare. 4 male and 4 female 6-8 weeks old C57Bl/6JOlaHsd
mice (Envigo) were immunized twice with 4-weeks interval in the hock
of one hindlimb with a maximum volume of 50 pl of vaccine containing
100 ng or 300 ng of either soluble or VLP-associated F-protein diluted in
PBS and mixed with Adju-Phos (Invivogen, San Diego, USA) adjuvant at
a 1:1 vol ratio. Housing conditions were 22+/—2 °C, 30-70 % humidity,
12 h dark/light cycle, and food and water ad libitum. 2 weeks after each
immunization, a small blood sample was obtained from the facial vein
under anesthesia (4-5 % isoflurane).

4.17. Immunogenicity analysis

Serum was recovered from whole blood by coagulation and centri-
fugation, and then were heat-inactivated at 56 °C for 30 min. Antibody
binding titers against pre-fusion and post-fusion RSV-F and hMPV-F
proteins were evaluated using ELISA. RSV pre-fusion F (DS-Cavl) [5],
RSV post-fusion F [6] and hMPV F [32] coating antigens were produced
as described previously. 384-well MaxiSorp treated plates (Thermo
Scientific) were coated with 2 pg/mL of purified recombinant F protein
and incubated overnight at 4 °C. Plates were then washed and blocked
using 3 % milk in 1x PBS-T for 30 min at room temperature. Mouse sera
were serially diluted in 10-point titration in 3 % milk in 1x PBS-T,
transferred to the coated and blocked assay plates, and incubated at
room temperature for 2 h. Plates were then washed 6 times with 1x PBS-
T. After being washed, HRP conjugated goat anti-mouse antibody
(Thermo Scientific) diluted at 1:10,000 in 3 % milk in 1x PBS-T was
added to the plates, and the plates were incubated at room temperature
for 1 h. Plates were washed again 6 times with 1x PBS-T and developed
with West Pico PLUS Chemiluminescent Substrate (Thermo Scientific).
After a 15-minute incubation at room temperature, luminescence was
read on the EnVision 2104 microplate reader (PerkinElmer). An inter-
polated end point titer was calculated for each serum sample using the
relative light unit (RLU) values and the following formula: interpolated
endpoint titer = (starting dilution/series dilution factor) X (series dilu-
tion factor"t) where t = x — [(cut-off — L)/(H — L)]. The “cut-off” value
was designated as 50,000. “H” = High well RLU value (the RLU value of
the first titration point ABOVE 50,000), and “L” = Low well RLU value
(the RLU of the first titration point BELOW 50,000). X = Low well
number (the number in the titration series of “L”, where the first dilution
in the titration series was 1, and the highest serum dilution of the
titration series was 10). Samples that did not cross the cut-off value were
given a placeholder titer of “25”, or one-half the initial starting serum
dilution.

4.18. Neutralizing response analysis

Serum neutralization assays are conducted in 384-well plates and
utilize an AlphaLISA-based assay readout which measures RSV or hMPV
F protein present in cell lysates. Animal sera are heat inactivated and
serially diluted in a 384-well plate. The sera are combined with virus and
incubated for 1 h. Cells are added at a density of 5,000 cells per well,
then further incubated for 72-96 h at 37 °C. After incubation, assay
medium is removed, then cells and virus are lysed in AlphaLISA lysis
buffer (PerkinElmer) for 60 min at room temperature. Diluted lysates
from a set of four 384-well plates are combined into a 1536-well plate
and then exposed to a suspension of AlphaLISA acceptor beads
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(PerkinElmer) and biotinylated antibody for 1 h at room temperature. A
suspension of streptavidin-coated donor beads (PerkinElmer) is next
added to the plate and then further incubated at room temperature for
30 min, after which fluorescence is measured on an EnVision microplate
reader (PerkinElmer). Four-parameter curve fitting (BioAssay analysis
software) is used to calculate titers, from which the 50 % neutralizing
titer (NT50) can be derived at the curve inflection point and reported as
fold dilution. Separate assay setups used either RSV A Long or hMPV A
Baylor at the virus addition step, and the differences between RSV and
hMPYV assays are described in Table 2.

4.19. Statistical analysis

All Figures were generated in GraphPad Prism 10.0.3. Statistical
analyses were performed using R v4.1.1. Unpaired datasets were
analyzed using a Kruskal-Wallis and Conover’s post hoc test unless many
results were undetected, in which case comparisons were performed
with a Peto & Peto left-censored k sample test. Individual unpaired
comparisons were performed with Mann-Whitney test and paired com-
parisons with Wilcoxon test.
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Table 2
Comparison of serum neutralization assay conditions for RSV and hMPV.
Assay condition RSV hMPV
Virus concentration added 25 pfu/well 65 pfu/well
Host cell line Hep2 Vero CCL-81
Incubation time at 37 °C, 72 hrs 96 hrs
5 % CO3, 80 % RH
CaCl, in assay medium None 0.03 %
Cell/virus lysate dilution 1:50 1:10

factor
Acceptor bead antibody 1D2 M2D2 (Merck & Co.,
Inc., Rahway, NJ, USA)

10-R25C (Fitzgerald)

MCA4674 (Bio-Rad)

M2D2 (Merck & Co.,
Inc., Rahway, NJ, USA)

Biotinylated antibody
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