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Abstract

Objectives
To present a case series of novel CHD2 variants in patients presenting with genetic epileptic
and developmental encephalopathy.

Background

CHD2 gene encodes an ATP-dependent enzyme, chromodomain helicase DNA-binding
protein 2, involved in chromatin remodeling. Pathogenic variants in CHD?2 are linked to early-
onset conditions such as developmental and epileptic encephalopathy, drug-resistant epilepsies,
and neurodevelopmental disorders. Approximately 225 diagnosed patients from 28 countries
exhibit various allelic variants in CHD2, including small intragenic deletions/insertions and
missense, nonsense, and splice site variants.

Results

We present the molecular and clinical characteristics of 17 unreported individuals from 17
families with novel pathogenic or likely pathogenic variants in CHD2. All individuals presented
with severe global developmental delay, childhood-onset myoclonic epilepsy, and additional
neuropsychiatric features, such as behavioral including autism, ADHD, and hyperactivity. Ad-
ditional findings include abnormal reflexes, hypotonia and hypertonia, motor impairment, gas-
trointestinal problems, and kyphoscoliosis. Neuroimaging features included hippocampal signal
alterations (4/10), with additional volume loss in 2 cases, inferior vermis hypoplasia (7/10), mild
cerebellar atrophy (4/10), and cerebral atrophy (1/10).

*These authors contributed equally as cosenior authors.
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Discussion

Our study broadens the geographic scope of CHD2-related phenotypes, providing valuable insights into the prevalence and
clinical characteristics of this genetic disorder in previously underrepresented populations.

Introduction

Chromodomain helicase DNA-binding protein 2, CHD2, is a
member of the ATP-dependent chromatin-remodeling pro-
teins, involved in the assembly and regulation of chromatin.”
CHD?2 and additional family members play an important role
in chromatin structure remodeling, histone segregation, and
deposition, which controls the 3D architecture of the genome
and gene expression.” The protein consists of 2 chromodo-
mains, a putative helicase-binding ATP domain, and c-ter-
minal domain.>* The ATP-helicase and DEDX-helicase
domain are known to remodel the chromatin configuration by

ATP-driven nucleosome remodeling complex driven.*®

Heterozygous CHD?2 variants (MIM: 602119) have been
identified in neurodevelopmental disorders characterized by
early-onset epileptic encephalopathy and cognitive regression.
Most patients experience multiple seizure types, including drop
attacks, absences, myoclonic seizures, and photosensitivity as-
sociated with generalized spike-wave on EEG." Several prom-
inent features of the CHD2-myoclonic encephalopathy
phenotype such as seizure type and sensitivity overlap with
other developmental and epileptic encephalopathies (DEEs)
including myoclonic-atonic epilepsy, Lennox-Gastaut syn-
drome, West syndrome, and Jeavons syndrome.

We investigated 17 patients from 17 unrelated families carrying
monoallelic CHD2 variants who presented with childhood-onset
myoclonic seizures, intellectual disability (ID), severe global
developmental delay (GDD), and poor response to treatment.
We expand on the genetic and phenotypic spectrum by reporting
a novel recurring variant as well as motor impairments that were
rarely reported in CHD?2 studies.

Methods

Our initial cohort comprised patients followed up in the
Synaptopathies Patient Study Group (UCL), with additional
families recruited through GeneMatcher. Monoallelic CHD2
variants were identified by gene panel or exome sequencing
(ES) and are listed using canonical transcript NM_001271.4.
Allele frequency and pathogenicity of variants were assessed
using available databases and in silico prediction software

(eMethods).

Standard Protocol Approvals, Registrations,
and Patient Consents

The study was approved by the ethics IRB of UCL and ad-
ditional local ethics committees of the participating research
centers. Informed consent for the publication of clinical and
genetic data was obtained from families.
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Data Availability

The corresponding author has full access to the data used in
the analyses and takes full responsibility for the data, the
analyses and interpretation, and the conduct of the research.

Results

Clinical Findings

We identified 17 patients from 17 families with monoallelic
CHD?2 variants found by either trio or single ES (Figure, A) or
panel sequencing (in family 2). The clinical features of the
patients are summarized in eTable 1 and are shown in the
Figure. Almost all individuals (except P13 and P16) presented
with intractable early childhood-onset generalized epilepsy
(mean 3.5 years, range 0.3-8.4 years), severe GDD, delayed
speech, and ID. Three patients had microcephaly (P2, P4, and
P13). Neurodevelopmental disorders affected more than half
of the patients including autism spectrum disorder (ASD;
10/17, 59%) and attention-deficit hyperactivity disorder
(ADHD; 11/17, 65%). Photosensitivity was also commonly
observed in patients (11/17, 65%). Other variable features
included status epilepticus (4/17, 24%), motor impairments
(such as hypotonia (6/17, 35%) and hypertonia (3/17,
17%)), dysmorphic facial features (7/17, 41%), severe con-
stipation (2/17, 12%), and kyphoscoliosis (3/17, 17%). Hy-
peropia was also observed in one patient (P1). Eight
individuals (P1, P2, P4, PS, P12, P13, P14, and P17) had gross
and fine motor skill difficulties.

Neuroimaging Features

Brain MRI studies were available for review in 10 of 17 cases.
The mean age at last MRI was 8 years (range 4.5-11 years). In
3 cases, follow-up MRI studies were performed with a mean
follow-up duration of 5.5 years. Common findings were in-
ferior vermis hypoplasia (7/10) and incomplete hippocampal
rotation (3/10). Other observations included mild cerebellar
subarachnoid space enlargement (4/10), periventricular
white matter volume reduction (2/10), and focal signal al-
terations (1/10). In 4 of 10 cases, we identified bilateral
T2/FLAIR hyperintensity of the hippocampi, associated with
mild hippocampal volume loss in 2 patients. Longitudinal
imaging showed stable hippocampal changes over 7 years in
one case but mild cerebral and cerebellar atrophy progression
in another over 1 year. MR spectroscopy studies were per-
formed in 2 patients and were normal.

Electroclinical Features of Epilepsy

All patients suffered from absences and eyelid myoclonia
starting between 4 months and 8 years (mean 3.5 years). Light
sensitivity with onset <3 years of life was common (9/14
patients, 64%), and occasional bilateral tonic-clonic seizures
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Figure Pedigrees and Genetic and Radiologic Findings of the Patients
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(A) Pedigree of families 1-12. In the pedigree, squares represent men; circles represent women; black-shaded symbols denote affected patients harboring
monoallelic CHD2 variants; and plus (+) and minus (-) signs indicate presence or absence of the CHD2 variants ([+/-] heterozygote and [-/-] wild type).
(B) Schematic depiction of full-length CHD2 shows 2 chromodomains (pink), a helicase ATP-binding domain (green), and a helicase C-terminal domain (light
blue). Variants identified in this cohort are displayed in bold and red. (C) The HomoloGene-generated amino acid alignment of human CHD2 and
its predicted orthologs show the conservation of the amino acids Thr645, Gly871, Arg903, Arg1038, and Gly1575. (D) Brain MRl scans of Patient 1 performed
at 13 years of age (a), Patient 2 at 3 years (b), Patient 4 at 8 years (c), Patient 6 at 7 years (d), Patient 7 at 11 years (e), Patient 8 at 7 years (f), Patient 11 at
11 years(g), Patient 14 at 5years (h), Patient 15 at 4.5 years (i), and Patient 7 at 7 years of age (j). Coronal FLAIR or T2-weighted or IR images at the level of the
hippocampi demonstrate unilateral or bilateral incomplete hippocampal rotation in Patients 1, 2, and 4 (thick arrows in a, b, and c). There is bilateral T2 or
FLAIR hyperintensity of the hippocampi in Patients 4, 7, 8, and 11 (dashed arrows in ¢, e, f, and g). Additional mild hippocampal volume loss is noted in

Patients 4 and 7.
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occurred in most individuals (9/14, 64%); convulsive or
nonconvulsive status epilepticus was rare (3/14, 21%). Sei-
zure frequency varied significantly, ranging from multiple
episodes per day in some patients to experiencing seizures
only every few months in others. Daily seizures were common
in several patients, with variations in frequency and type, in-
cluding myoclonic jerks, generalized tonic-clonic seizures, and
absences. A few patients had less frequent episodes, such as
one every 3 months or S episodes annually, indicating a broad
spectrum of seizure severity and control within the group.
EEG findings showed normal or mildly slowed background
activity and interictal diffuse sharp wave/slow wave or
polyspikes/slow wave complexes in most patients. Over the
follow-up period, seizure management was challenging be-
cause of incomplete/poor response to multiple antiseizure
medications (ASMs) in at least 50% of patients (P2, P6, P9,
P11, P12). However, some individuals (P1, P4, P10, P13,
P14) remained seizure-free on treatment for S-8 years
(eTable 2). Brain MRI was unremarkable except for 4 patients
(P1, P4, P7 P11) showing nonspecific abnormalities, e.g.,
incomplete hippocampal rotation, deep collateral sulci, hy-
poplasia of inferior cingulum, and megacisterna magna
(Figure, D).

Genetic Findings

Among 15 variants identified, 10 variants were in the helicase
C-terminal region of CHD2, except the p.Ala400Valfs*62
variant in the chromo-2 domain and p.Thr64SLys in the
helicase ATP-binding domain (Figure, B). All variants had
arisen de novo in the index probands, as confirmed by Sanger
sequencing. Furthermore, missense variants occurred at
highly conserved regions across species (Figure, C). Genetic
information and allele frequency of each variant in external
population databases are summarized in eTable 2.

In families 1, 2, and 3, a recurring novel heterozygous mis-
sense variant in exon 21, p.Gly871Asp, was identified, which
has not been reported in publicly available population data-
bases, as well as in more than 30,000 in-house exomes. A novel
heterozygous nonsense variant, p.Glul335* (family 7), is
predicted to produce a premature translation termination,
producing a truncated protein product that lacks the last 493
amino acids that contain part of the helicase C-terminal re-
gion. Similarly, the novel frameshift variants identified in
families 11 (p.Ser887%) and 12 (p.Met1681Asnfs*21), both
found in the adjacent C-terminal region, are absent from
population databases. Another frameshift variant (p.Tyr316*)
has been previously reported in VarSome. In family 8, a re-
curring variant, p.GIn1392Thrfs*17, is expected to result in
an absent or disrupted protein product likely to undergo
nonsense-mediated decay.

Novel heterozygous missense variants, p.Arg903Gly,
p-Argl038Cys, and p.Ser1166Leu, were identified in families
9, 10, and 11. The variant p.Arg1038Cys has been reported in
one South Asian man in gnomAD. Both variants are predicted
to have a deleterious impact on the CHD?2 protein, affecting

Neurology: Genetics | Volume 10, Number 4 | August 2024

the same C-terminal catalytic stretch that contains the DNA-
binding domain. In family 15, a 2.2-Mb deletion within the
15q26.1 region was identified by array analysis.

Sex-Related Differences

The ¥ test for independence between sex and the occurrence
of different genetic variants yielded a p-value of 0.233. More-
over, statistical analysis performed on the clinical features did
not reveal any statistically significant differences between
women and men (eMethods).

Discussion

We report on the molecular and phenotypic spectrum of 17
individuals, with 11 novel variant sites and the first CHD2
pathogenic variants in Cypriot, Turkish, Georgian, and
Azerbaijani populations, making the Eurasian region an im-
portant reservoir of genetic diversity, thereby an alluring site
for conducting genetic studies.

While our patients are clinically consistent with known CHD2
cases, the spectrum of seizure types, treatment response, and
motor symptoms were variable. In line with previous reports,
almost all patients had infantile-onset or childhood-onset sei-
zures although the seizure-onset age of P1 was 8 years 5 months,
which deviated from previously reported data. Notably, 2 pa-
tients did not present with epilepsy, further supporting that ep-
ilepsy may not always be present in patients with CHD2
haploinsufficiency. It is noteworthy that motor dysfunctions
were present in a small number of individuals in previous stud-
ies,’ yet our findings show that half of our patients, primarily
those presenting with GDD, exhibited further neurologic fea-
tures such as gait disturbances, abnormal reflexes, tremors,
muscle tone, and/or fine motor dysfunctions. In addition, CHD2
was previously suggested as a genetic modifier for generalized
photosensitive epilepsy syndrome, such as eyelid myoclonia with
absences.”® Photosensitivity was reported in only 50% of pa-
tients while multiple seizure types with or without photosensi-
tivity were observed in line with previous reports. CHD2’s link to
photosensitive epilepsy is acknowledged, but this study suggests
that its impact extends beyond this condition alone. Photosen-
sitivity is just one aspect among several variable features ob-
served, requiring multiple EEG assessments for detection.
However, the study lacks longitudinal EEG data across different
developmental stages. Future studies should incorporate re-
peated EEG assessments to clarify relationship of CHD2 variants
with photosensitivity and its evolution over time.

Neuroimaging features were generally nonspecific, including
various findings like inferior cerebellar vermis hypoplasia,
periventricular white matter volume loss, incomplete hippo-
campal rotation, mild cerebellar atrophy, and white matter
gliotic changes.” However, in 4 patients, a distinct hippo-
campal involvement pattern was noted, characterized by T2/
FLAIR hyperintensity with mild volume reduction in 2 cases.
This pattern remained stable over a 7-year follow-up in one
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patient, suggesting it may not progress to hippocampal scle-
rosis. While previous reports have noted hippocampal signal
changes without accompanying volume loss, further in-
vestigation involving animal models and larger patient cohorts
is warranted to understand their significance in CHD?2 epi-
leptic encephalopathy.'® Similar findings have also been
documented in other epileptic disorders, such as Dravet
syndrome'' and PCDH19 deficiency."” Putative underlying
mechanisms may involve Wallerian degeneration, apoptotic
cell death, inflammation, and excitotoxicity.13

The CHD2 variants identified were distributed throughout the
protein but mainly focused on the helicase C-terminal region
(871-1681aa). They are likely to have a comparable mecha-
nistic effect, resulting in truncated CHD?2 protein that lacks the
C-terminus or affecting the region downstream of the DNA-
binding domain, disrupting the C-terminus. A previously
reported de novo variant (p.GIn1392Thrfs*17) also identified
in our cohort (P8) further strengthens the potential mutational
hotspot region that exists at the C-terminus.%"*'*

In addition to the variant being reported in ClinVar as likely
pathogenic, the recurrent p.Gly871Asp variant represents a
novel potential hotspot for pathogenic mutations found
across the ethnic populations of Eurasia. Glycine at codon 871
is universally conserved across species and paralogs, implying
a significant structural or functional role. All 3 patients had a
history of failure to thrive, speech delay, developmental re-
gression, DD, severe cognitive disability, ASD (P1, P2) or
ADHD (P3), abnormal muscle tone, and gross motor im-
pairments. Only P2 had poor response to ASMs and atonic
seizures with eyelid myoclonia, and the first seizure onset
ranged from 7 months to 8.5 years. Throughout the follow-up
period, seizure management seemed challenging particularly
in half of the patients who demonstrated resistance to mul-
tiple ASMs, indicating a complex refractory nature of their
seizures. This underscores the necessity for continuous eval-
uation of therapeutic strategies, i.e., individualized and pos-
sibly multidisciplinary approaches to optimize seizure control.

Our cohort reports a significant proportion of individuals with
neurodevelopmental disorders, ie., ASD/ADHD with vari-
able onset age, responsiveness to treatment, and symptom
evolution, emphasizing the disease heterogeneity and the
need for personalized management.

For clinical evolution, it is essential to note the variability among
patients. For instance, P9, followed up for a long time, can offer
valuable insights into the long-term disease progression, which
can be crucial for developing targeted therapeutic strategies and

providing appropriate care enhancing life quality.

Overall, our findings suggest that the same genotype can
produce different clinical phenotypes in unrelated patients,
with variable seizure onset, pharmacologic treatment re-
sponse, photosensitivity, motor impairment, and behavioral
or cognitive skills.

Neurology.org/NG

Notably, children born to consanguineous parents in families
2 and 12 have been diagnosed with de novo variants, un-
derlying the necessity of evaluating dominant inheritance in
ES data. De novo variants are often overlooked in consan-
guineous families, where homozygous variations are the usual
suspects. Despite that, consanguinity in family 2 could ac-
count for the dissimilar phenotype severity compared with
families 1 and 3, in addition to the CHD2 variant being
identified by epileptic encephalopathy panel testing instead
of ES.

Recent studies have revealed sex-specific differences in both

electroclinical features and prognostic factors in patients with
. . . 16 . .

genetic generalized epilepsy.” In this series, there was no

significant difference in the distribution of variants and clinical

features between men and women.

Although CHD2-related epilepsy is clinically well established, the
molecular and functional mechanisms of CHD?2 are continu-
ously being investigated. De novo loss-of-function pathogenic
variants have been associated with clinical and electrographic
seizures in animal models resembling those presented by pa-
tients. CHD2 knockdown in zebrafish disturbed locomotor ac-
tivities and caused epileptiform discharges.'” EEG studies in
CHD2-knockdown mice revealed elevated resting alpha and
gamma frequencies as well as increased cortical synchrony in
humans.'® Our patients displayed generalized seizure types and
ictal/interictal slow wave complexes despite epilepsy severity,
treatment, and independent of stimulus, supporting the intrinsic
dysfunction of the epileptic network resulting in an overall in-
creased cortical synchronicity."?

CHD2-related epilepsy often manifests with diverse seizure
types alongside developmental disabilities, autism, and pho-
tosensitivity. Our EEG findings are consistent with previous
literature, showing intractable seizures necessitating multiple
antiseizure medications and EEG patterns of normal or mildly
slowed background with sharp/slow wave complexes. These
results support the link between CHD2 and a spectrum of
neurodevelopmental conditions.

Some significant phenotypes across age groups are as follows:
in infancy (0-2 years), early-onset seizures and developmental
delays, such as motor delay, are prominent; during early
childhood (3-5 years), there are neurodevelopmental chal-
lenges like language delays or social interaction difficulties,
often alongside more distinct seizure types; school-age children
(6-12 years) may experience academic struggles, learning
disabilities, or ADHD; adolescence (13-18 years) brings about
behavioral issues like hyperactivity, ASD, and potential shifts in
seizure patterns; and in adulthood (18+ years), seizures tend to
persist alongside ID and psychiatric symptoms.

Phenotypic variability observed in individuals with CHD2
might be accounted for in several ways. First, the gene is
ubiquitously expressed in all human tissue. CHD2 expression
levels change across different regions of the neocortex during
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embryonic development in animal models.® Second, CHD2,
as a chromatin remodeler, alters the expression of de-
velopmental transcriptional regulators, e.g., the repressor el-
ement 1-silencing transcription factor (REST) gene, a key
regulator of epileptogenesis.** Finally, during the DNA repair
process, CHD family proteins interact and comodify tissues,
compensating for haploinsufficiency.”

In conclusion, we describe 17 novel patients with 11 novel de
novo pathogenic CHD?2 variants, expanding both the geno-
typic and mutational phenotypic spectrum of the disorder.
We report a potential novel hotspot mutation in the impor-
tant helicase C-terminal region. We show that individuals with
CHD2 variants can present with gross and fine motor dys-
function and they do not always present with photosensitive

epilepsy syndromes.
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