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Abstract 

Protein aggregation is behind the genesis of incurable diseases and imposes constraints on drug discovery and the industrial production and 
formulation of proteins. Over the years, we have been advancing the Aggresscan3D (A3D) method, aiming to deepen our comprehension of 
protein aggregation and assist the engineering of protein solubility. Since its inception, A3D has become one of the most popular str uct ure- 
based aggregation predictors because of its performance, modular functionalities, RESTful service for extensive screenings, and intuitive user 
interface. Building on this foundation, we introduce Aggrescan4D (A4D), significantly extending A3D’s functionality. A4D is aimed at predicting 
the pH-dependent aggregation of protein str uct ures, and feat ures an e v olutionary -inf ormed automatic mutation protocol to engineer protein 
solubility without compromising str uct ure and st abilit y. It also integrates precalculated results for the nearly 50 0,0 0 0 jobs in the A3D Model 
Organisms Database and str uct ure retrie v al from the AlphaFold database. Globally, A4D constitutes a comprehensive tool for underst anding , 
predicting, and designing solutions for specific protein aggregation challenges. T he A4D w eb serv er and e xtensiv e documentation are a v ailable 
at ht tps://biocomp.c hem.u w.edu.pl/a4d/. T his w ebsite is free and open to all users without a login requirement. 
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Introduction 

Protein aggregation is a multifactorial process, directed by the
intrinsic properties of proteins ( 1 ) and heavily influenced by
environmental factors ( 2 ). This phenomenon accounts for the
onset of highly debilitating proteinopathies, posing a signif-
icant challenge to human health. Additionally, it hinders the
development and implementation of protein-based biotechno-
logical and biomedical applications ( 3 ). 
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Classical computational methods that predict protein ag- 
gregation rely on sequential information to assess the propen- 
sity of a protein to aggregate. These algorithms belong to 

four main categories: (i) heuristic detection of molecular de- 
terminants of aggregation ( 4–6 ), (ii) assessment of the con- 
formational compatibility with amyloid-like architectures ( 7–
9 ), (iii) consensus methods employing weighted predictions 
from other algorithms ( 10 ,11 ) and (iv) machine-learning 
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ethods ( 12–15 ). While some of these algorithms provide a
inary decision on whether a given sequence will aggregate,
n most cases, they identify and weight the contribution of
ggregation-prone regions (APRs), as is the case for Aggres-
an ( 6 ). While highlighting APRs provides information on
he regions driving aggregation, this strategy assumes that the
roximity between residues is directly proportional to their
equential distance, which might apply for disordered or de-
atured protein states but is an imprecise approximation for
he native state of globular proteins. 

Being structure agnostic, these methods treat the aggrega-
ion contribution of amino acids residing in collapsed or in-
ccessible regions (such as the hydrophobic core) equally to
xposed residues. To overcome these limitations, we devel-
ped a three-dimensional structure aggregation predictor, Ag-
rescan3D (A3D), which projects classical Aggrescan scor-
ng to proteins’ native structure, introducing the concept
f STructural APRs (STAPs ( 16 )), which correspond to the
ain drivers of protein aggregation in natively folded struc-

ures ( 17 ). To further enhance the biological relevance of its
redictions, A3D incorporates C ABS-flex ( 18 ,19 ). C ABS-flex
s a cost-efficient conformational sampling method designed
o capture the inherent flexibility of proteins in solution. It
ccounts for the influence of multiple conformations on ag-
regation, moving beyond the limitations of a single, static
tructure description. 

Building on these improvements, here we present Aggres-
an4D (A4D), which adds a new dimension to protein aggre-
ation prediction: environmental pH. This new variable con-
extualizes aggregation as a phenomenon modulated by en-
ironmental conditions. This paves the way to studying the
elationship between pH and aggregation in biological con-
exts ( 20 ,21 ), while providing a tool to modulate protein ag-
regation in biotechnological setups. We have also added a
ew, evolutionary-based automatic mutation protocol to re-
uce protein aggregation while minimally impacting protein
hermodynamic stability . Additionally , other user-centric im-
rovements have been incorporated to streamline A4D use.
ollectively, this update brings experimental results and com-
utational predictions closer by providing a better description
f the protein’s biochemical context. 

ew features and updates 

H-dependent aggregation prediction 

roteins are, in general terms, evolutionarily selected to be sol-
ble in their natural contexts ( 22 ), but the protein microenvi-
onment (temperature, ions, or pH) can profoundly impact
his capacity. This is highly relevant for engineered proteins
such as antibodies or enzymes), which have not undergone
atural selection to ensure solubility under their intended con-
itions of use. Despite their importance, aggregation predic-
ors have historically disregarded environmental conditions
nd focused solely on the proteins’ physicochemical character-
stics to model protein aggregation. In 2020, we inferred that
nvironmental changes in pH impacted amino acids’ charge
nd lipophilicity, and by applying a pH-dependent scale for
roteinogenic amino acids ( 23 ), we fitted an empirical equa-
ion capable of capturing pH-dependent aggregation in intrin-
ically disordered proteins (IDPs) ( 24 ). This led us to develop
olupHred, the first disordered protein aggregation predic-
tor that systematically incorporated the pH variable into its
logic ( 25 ). Later in 2023, CamSol 3.0 adopted the same ra-
tionale to introduce pH-dependent solubility predictions for
IDPs and globular proteins ( 26 ). Thus, we sought to adapt
SolupHred’s methodology to structured proteins by calculat-
ing structural pKa values with pKa-ANI, an algorithm based
on deep representation learning ( 27 ), to predict the influ-
ence of pH on the aggregation of proteins in their folded
configurations. 

To model the influence of pH on aggregation propensity,
we used two metrics: the maximum aggregation propensity
(A4D max ) and the average aggregation propensity (A4D avg ).
These two measures delineate two different aggregation
regimes: A4D max represents the highest propensity observed
across all residues and is better suited for proteins displaying
defined STAPs. A4D avg represents the mean propensity across
all residues and is more appropriate for polypeptides with an
aggregation tendency that is more evenly distributed through-
out the protein structure. Therefore, these two measures ad-
dress the innate difference in which aggregation propensity is
encoded in globular proteins and IDPs. A4D max is the most
appropriate metric to describe pH-dependent aggregation for
globular proteins, while A4D avg is better suited for IDPs. To
aid in selecting the appropriate metric, we provide an objec-
tive criterion capturing the compactness of the protein struc-
ture for discriminating between ordered and disordered pro-
tein structures ( Supplementary Information SI 1 ). 

We assessed the performance of A4D max and A4D avg by an-
alyzing data collected from 18 different experiments studying
the impact of pH changes on the aggregation or solubility of
14 different proteins. Eleven of these experiments were con-
ducted with globular proteins and 7 on IDPs (summarized in
SI 2 and Supplementary Table S1 ; STs S2-S19 contain col-
lected experimental data). These experiments used different
metrics to measure the aggregation / solubility of the protein in
the experimental setup, hereby referred to as experimental re-
porter. This umbrella term allows us to gather together aggre-
gation and solubility measurements, such as Thioflavin T flu-
orescence ( 28 ) or solubility in PEG ( 29 ), respectively. We used
linear regression to evaluate the relationship between the ex-
perimental reporters of aggregation / solubility and both A4D
metrics. 

The final benchmark covered A4D max and A4D avg per-
formance. Although protein solubility cannot always be as-
sumed to be the inverse of aggregation propensity, for the
sake of completeness, we decided to include as well CamSol
3.0, a web server for the sequence-based prediction of pH-
dependent protein solubility ( 26 ). A4D scores increase with a
higher aggregation tendency . Conversely , as CamSol 3.0 pre-
dicts solubility, its scores should be lower for higher aggrega-
tion propensities. 

To assess the algorithm’s ability to discriminate the influ-
ence of pH on protein solubility / aggregation, we analyzed the
concordance of the linear regression slope between the exper-
imental reporters and the benchmarked metrics (summarized
in SI3 and STs S20-S23 ). 

The overall concordance of A4D max , A4D avg and Cam-
Sol 3.0 were 78%, 89% and 78%, respectively. However,
the degree of concordance varied depending on the proteins’
conformation. Notably, for IDPs, both A4D avg and CamSol
3.0 demonstrated perfect concordance (100%); while, as ex-
pected, A4D max performed significantly worse, reaching only
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43%. The situation is the opposite in the case of globular pro-
teins. Here, A4D max reached a concordance of 100%, whereas
A4D avg and CamSol 3.0 showed worse performance, 82% and
64%, respectively. 

Thus, we have computed a novel structure-informed con-
sensus measure, A4D consensus , which considers the protein
structure’s compactness and based on that, selects the most
appropriate metric for each query (A4D max or A4D avg ), reach-
ing a 100% overall concordance in the evaluated experi-
ments (Figure 1 A). Even though A4D max is recommended for
globular proteins, it is worth noting that A4D avg remains a
valid metric across all scenarios, reporting an overall concor-
dance of 89%. Details of the benchmark are provided in SI 3
( STs S24-S41 and Supplementary Figures S1- S18 ). A case
study is presented in SI 4 and SF S19 . 

To cover all tools aimed at predicting pH-dependent pro-
tein aggregation, we integrated a benchmark of SolupHred
with the disordered proteins used in the general benchmark.
SolupHred, like A4D avg and CamSol 3.0, demonstrated 100%
concordance on this dataset, something expected as it was
specifically designed for IDPs. 

Evolutionary-aware protein solubility improvement 

The automated mutation mode to enhance solubility was in-
troduced in A3D 2.0 ( 30 ). This method optimizes the input
structure using FoldX ( 31 ) and ranks the most aggregation-
prone residues according to their A3D score. Subsequently, the
less soluble residues are mutated to charged amino acids (ly-
sine, arginine, aspartic acid, or glutamic acid). While these mu-
tations might turn optimal for reducing protein aggregation,
they often induce significant changes in side chain physico-
chemical properties, which can negatively impact folding and
stability, potentially disrupting protein function. 

A4D provides an alternative to circumvent this limitation
by applying a solubilizing strategy informed on the evolution-
ary conservation of point substitutions. Point accepted muta-
tion (PAM) matrices store the sum of accepted substitutions in
closely related sequences (identity ≥ 0.85), ensuring changes
are a consequence of a single point mutation (A → B) and not
an accumulation of multiple mutations (A → C → B) ( 32 ,33 ).
This translates to evolutionary favored changes that should
have minimal impact on protein structure and stability. De-
spite this generalization, the server allows restraining the al-
gorithm from mutating residues known by users as critical for
maintaining protein function. 

This protocol integrates evolutionary and aggregation in-
formation to suggest conservative mutations that reduce the
aggregation propensity of the protein. First, conserved and
neutral mutations are chosen based on the PAM250 substi-
tution matrix (log-transformed PAM value ≥ 0). Out of these,
only solubilizing mutations ( �A4D score < 0) are consid-
ered. Finally, up to three mutations are suggested for each
residue, prioritizing solubilization. We conducted a case study
on bovine growth hormone (bGH) predicted structure (AF-
A4GX95, residues 27–217). Despite sharing 90% sequential
identity, whereas the human protein (hGH) is very soluble,
bGH exhibits extreme aggregation across different experi-
mental conditions ( 34 ). Notably, the analysis revealed differ-
ent instances where the automated protocol’s recommended
mutations aligned with the residue identities found in hGH
(V76T, Figure 1 B). A comparison of this protocol and the pro-
tocol added in A3D 2.0 is provided in SI 5 and SF S20 . 
Other improvements 

Beyond core functionalities, this update also contains numer- 
ous quality-of-life improvements. First, we expanded file com- 
patibility to accept CIF / mmCIF file formats. Moreover, we 
have added seamless cross-database linking in the form of au- 
tomatic AlphaFold structure fetching from UniProt ID ( 35 ) 
and A3D-Model Organisms DataBase (A3D-MODB) ( 36 ) en- 
try retrieval. A3D-MODB includes precomputed predictions 
for over 164k proteins across 12 model organisms. Avoiding 
unnecessary calculations speeds up the tool and reduces its en- 
vironmental impact, especially for recurrent jobs or training 
scenarios ( 37 ). 

An essential consideration when using protein structures 
as inputs is the presence of long, disordered regions in pro- 
teins from the AlphaFold database, which are absent in most 
experimentally resolved protein structures. These disordered 

regions are occupying (pseudo)-random positions, generally 
close to the globular core (if it exists) ( 38 ). The static na- 
ture of these models leads to the generation of artificial sur- 
face regions stemming from the arbitrary and fixed position 

of disordered regions, which might lead to artifactual re- 
sults, such as protecting or generating STAPs ( 36 ). To miti- 
gate this, AlphaCutter is implemented as a pre-processing op- 
tion, generating protein structures containing only globular 
regions ( 39 ). 

In addition to these technical improvements, we have un- 
dertaken a thorough redesign of our user interface to improve 
the tool’s usability and user experience. Moreover, A4D now 

includes a selection of example jobs showcasing the offered 

functionalities, complementing the detailed tutorial and FAQ 

sections already present in the server. 

Limitations 

We acknowledge that limitations associated with A4D pH- 
dependent aggregation predictions may impact the overall per- 
formance of the tool and subsequent benchmark. 

First and foremost, the scarcity of well-annotated available 
data has been one of the most limiting factors for this work.
Although we aimed to amend this limitation by enriching ex- 
isting datasets with our unpublished data, we still cover only 
14 different proteins, representing a considerably small frac- 
tion of the protein landscape. A second limiting factor was 
the high diversity of experimental reporters of protein aggre- 
gation provided by the authors. Given this problem, we inter- 
changeably use measures of aggregation and solubility. Third,
the heterogeneity of data sources has also contributed to the 
noise in the performance assessment ( 40 ). 

Discussion and conclusions 

Before the advent of bioinformatic tools, understanding and 

modifying the aggregation tendency of proteins was a very 
challenging and expensive task. For instance, to produce solu- 
ble, protein-based pharmaceuticals, techniques such as phage 
display ( 41 ) were often used. Services like A4D help users un- 
derstand the causes behind aggregation in their proteins and 

assist in devising strategies to prevent it. While this behav- 
ior is primarily encoded in a protein’s sequence and structure,
other factors such as protein or crowding agent concentra- 
tion, temperature, or pH can heavily influence the aggrega- 
tion of polypeptides. Recognizing the importance of pH in 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae382#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae382#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae382#supplementary-data
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B

A

Figure 1. ( A ) Benchmark results for A4D (green) and CamSol 3.0 (gray) pH predictions. Results are presented jointly for all proteins and separately for 
globular proteins and IDPs. ( B ) Schematic representation of the e v olutionary -a w are solubility impro v ement protocol applied to bovine growth hormone. 
Mutations are suggested for the protein’s most aggregation-prone residues, considering their relative conservation and aggregation score. If the new 

residue is predicted to be conserved or neutral and improve the solubility of the protein, it is considered for mutation (green). On the contrary, if the 
residue is not conserved or does not reduce the aggregation potential (orange) or both (red), it is not considered. 
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odulating protein aggregation, we updated our existing al-
orithm, A3D, to model this effect. This represents a categor-
cal shift, moving beyond protein sequence (Aggrescan) and
tructure (Aggrescan3D) analyses, to provide a more com-
rehensive vision of protein aggregation. To our knowledge,
olupHred (2020) ( 25 ), and CamSol 3.0 (2023) ( 26 ) are the
nly existing resources that systematically model the effect of
H on solubility / aggregation of protein structures. This lim-
ited landscape reflects the difficulty of modeling the contri-
bution of solvent conditions to protein aggregation, and the
scarcity of available experimental data. We also introduce a
novel protocol that suggests mild, evolutionary-neutral mu-
tations to solubilize and, eventually, stabilize proteins with-
out requiring a deep understanding of the protein at hand.
A4D provides a platform for researchers to optimize their
experimental conditions and generate more consistent data,
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which can feed back the present algorithm and trigger the
development of novel computational tools and standardized
benchmarks. 

A3D has been successfully applied in the redesign of less
aggregation-prone variants of biotherapeutics, engineering
novel self-assembled nanomaterials, understanding of patho-
logical and physiological protein aggregation, and as a tool
for teaching protein aggregation in university courses ( 42 ).
While mutation protocols are the most straightforward and
potent to prevent protein aggregation, they may face limita-
tions such as the impossibility of mutating aggregation-prone
but functionally important residues, like CDRs in antibodies
or the existence of intellectual protection issues, like in the
case of biosimilars. Thus, modifying the aggregation behavior
of proteins without altering the protein sequence itself is key
in many biotechnological and medical applications. Given the
new functionalities implemented in this update, we anticipate
that A4D will become a widely used tool within the protein
science community. 
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