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ON THE INTEGRABILITY OF A
SPROTT CUBIC CONSERVATIVE JERK SYSTEM

SARBAST HUSSEIN! AND JAUME LLIBRE?

ABSTRACT. We consider the Sprott cubic conservative jerk differential equation z"—
a(l — 2®)z + 2% = 0 with @ € R. It is known that this differential equation
exhibits chaotic motion for some values of the parameter a. Here we study when
this differential equation has no chaotic motion, i.e. when it has first integrals, and
then we describe its dynamics.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

J.C. Sprott showed numerically that the following third-order differential equation
(1) P —a(l —aHz+2%c =0

is conservative and chaotic for some values of the parameter a € R, see its differential
equation (23) in [11]. Note that this differential equation is a particular jerk differential
system, see again [11]. These last years many authors have studied different kinds of
jerk differential systems, see for instance [3, 4, 7, 10, 12].

In this paper we study when the differential equation (1) is non-chaotic. More
precisely, when this equation is integrable, and in this case we describe its dynamics.

We write the third-order differential equation as the following differential system of
first order in R?

T =y,
(2) Y=z,
2 =a(l — 2%z — 22y,

with a € R. We denote by

_ _,9..9 e — 22 2
(3) X_X(x’y’z)_y8x+zay+(a(1 I’)l' xy)aza

the vector field associated to the differential system (2).
Since the differential system (2) is invariant under the symmetry
(4) T(l‘,y,Z) = (_xv_ya _Z)v

its phase portrait is symmetric with respect to the origin of coordinates.
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Let U be an open subset of R? dense in R3. A C! function H : U — R is a first
integral of the differential system (2) if it is not locally constant but it is constant on
the solutions of system (2) contained in U. So a necessary and sufficient condition in
order that H be a first integral of system (2) is that

M _ vy,
dt

restricted to the orbits of system (2) contained in U.

Two first integrals of system (2) defined in U are independent if their gradients are
independent in all points of U except perhaps in a zero Lebesgue measure set.

System (2) is completely integrable if it has two independent first integrals.

Our results are the following ones.

Proposition 1. If a = 0 then the differential system (2) is completely integrable with
the two independent first integrals

1 1
H($7y72)=z+§x3 and F(,’L‘,y,z):—ix4_2$2+y2,

Proposition 1 is proved in section 3.

An equilibrium point p of a 2-dimensional differential system is a center if there is
a neighborhood N of p such that N \ {p} is filled with periodic orbits. If we have a
differential system in R? with a center p such that R?\ {p} is filled with periodic orbits,
then we say that p is a global center.

Roughly speaking the Poincaré disc is the closed unit disc with its interior identified
with the whole plane R?, and its boundary (the circle S!) identified with the infinity
of R?, see subsection 2.1 for more details on the Poincaré disc.

Theorem 2. The phase portrait on the Poincaré disc of the differential system (2) with
a = 0 restricted to the invariant surface H(x,y,z) = h for all h € R is topologically
equivalent to the one of Figure 1, i.e. on every invariant surface H(x,y,z) = h the
differential system (2) has a global center, see its phase portrait in Figure 1.

Corollary 3. The differential system (2) with a = 0 has the x-axis filled with equilibria,
and all the other orbits are periodic orbits surrounding the x-axis.

Theorem 2 and its Corollary 3 are proved in section 3.

From Corollary 3 the dynamics of the differential system (2) with a = 0 is very
easy, only equilibrium points and periodic orbits, while the dynamics of system (2)
with a = 0.01 consists of two sets of nested tori, one at positive z and the other at
negative x, coupled in such a way that trajectories near their intersection are chaotic
and encircle both tori, see for details [11, page 542]. To describe this change in the
dynamics of system (2) is a challenge problem.

Consider a function of the form

H(z,y,2) = fi(z,v, Z)/\l o iz, Z)Akeulgl(%%Z)/hl(w,yvz) o euggg(:fc,yz)/hg(x,y,z)’



FiGURE 1. The phase portrait in the Poincaré disc of the differential
system (2) with a = 0 restricted to the invariant surface H(z,y, z) = h
for all h € R.

where k > 0 and ¢ > 0 are integers such that k + ¢ > 0, fi(z,y,2) for i = 1,...,k,
9j(z,y,2) and hj(z,y,z) for j =1,..., ¢ are polynomials. If this function H(z,y, z) is
a first integral, then we say that it is a Darbouz first integral. See for more details on
these kind of first integrals [6, Chapter 8] and [5].

Theorem 4. The following statements hold for the differential system (2) with a # 0.

(a) The system has no polynomial first integrals.
(b) The system has no Darboux first integrals.

Theorem 4 is proved in section 4.

2. PRELIMINARY RESULTS

2.1. Equililbrium points of 2-dimensional differential systems. Let (z¢, o) be
an equilibrium point of a differential system in R?, and denote by X the vector field
associated to this system. Let A\; and Ay be the eigenvalues of the Jacobian matrix
DX (xo,y0). It is said that

(a) (xo0,y0) is hyperbolic if A; and A2 have no zero real parts;

(b) (z0,y0) is semi-hyperbolic if A Ag = 0 and A2 + A3 # 0;

(¢) (xo,yo) is nilpotent if Ay = A2 = 0 and the matrix DX (x0, o) is not the zero
matrix;

(d) (zo,yo) is linearly zero if the matrix DX (zg,yo) is the zero matrix.
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The hyperbolic and semi-hyperbolic equilibrium points are also called elementary equi-
librium points, and their local phase portraits are well-known, see for instance The-
orems 2.15 and 2.19 of [6]. Also the local phase portraits of the nilpotent singular
points are well-known, see for example Theorem 3.5 of [6].

2.2. The vertical homogeneous blow-up. In the following we present a technique
for determining the local phase portrait around an equilibrium point of a 2-dimensional
differential system when it is linearly zero. This method determine the local phase
portrait of an equilibrium point using changes of variables called vertical blow-ups.
The idea of a blow-up is to turn an equilibrium point into the whole vertical axis
and study the phase portrait in a neighborhood of this axis instead of studying it in
the neigborhood of the equilibrium point, and repeating this process as many times if
linearly zero equilibria appear on the vertical axes. In general, such equilibrium points
are less degenerate. For more details see [6, chapter 3].

Consider the following analytical differential system

(5) jz:P(x’y):Pm(xvy)_I""a y:Q(mvy):Qn(x’y)+'-')

where F,, and @), are homogeneous polynomials of degree m > 1 and n > 1 respec-
tively, and the dots mean higher order terms in the variables x and y of m in P(x,y)
and of n in Q(z,y). Consider the polynomial

2Qm(x1,22) — yPr(x1,22) ifm=mn
f(ml,mz) = —ypm($1,$2) ifm<n
2Qn (1, 22) ifn<m

The homogeneous polynomial F is called the characteristic polynomial at the origin of
system (5) and the straight lines through the origin defined by the real linear factors
of the polynomial F are called the characteristic directions at the origin. It is known
that if there are orbits starting or ending at the origin of coordinates of system (5)
these at the origin are tangent to a characteristic direction. see for more details [1].

The vertical blow-up is the change of variables (x1,x2) — (u1,u2) where (z1,22) =
(u1,ujuz). The new system in the variables u; and g is
;_ Qur,uaug) — ugP(ur, uyug)

(6) iLl = P(ul, u1u2), Uy .
Uy

We only do a vertical blow-up when the vertical axis 1 = 0 is not a characteristic
direction of system (5), otherwise we can loss information on the orbits of system (5)
tangent to the vertical axis.

The following result establishes relationships between the equilibrium at the origin
of system (5) and the equilibrium points on the vertical axis u; = 0 of system (6), for
more details see [1].

Theorem 5. Let ¢ be an orbit of the differential system (5) tending to origin when
t — 400 (ort — —o0) tangent to one of the two directions 6 determined by tan 6 =
w # +oo. Assume that F Z0. Then



(i) the straight line (x1,wx1) is a characteristic direction;
(i) the point (u1,uz) = (0,w) is an equilibrium point of system (6) and
(iii) an orbit ¢ as in the hypothesis is in biunivocal correspondence with an orbit of
system (6) tending to the equilibrium point (0, w).

2.3. The Poincaré compactification of polynomial differential systems in R?.
In order to study the dynamics of a polynomial differential system in the plane R?
near infinity we need its Poincaré compactification. This tool was created by Poincaré
in [9].

Consider the polynomial differential system
(7) &=Plx,y), §=0Q(@y),

where P and @) are polynomial being d the maximum of the degrees of the polynomials
P and Q.

We consider the plane R? = {(z1,22,1); x1, 22 € R}, the 2-dimensional sphere S? =
{(z1, 79, 23) € R 22 + 23 + 23 = 1}, the northern hemisphere H, = {(x1,x2,73) €
S?; z3 > 0}, the southern hemisphere H_ = {(z1,72,23) € S? 23 < 0} and the
equator St = {(z1, 79, 73) € S?; 23 = 0} of the sphere S?.

In order to study a vector field over S? we consider six local charts that cover the
whole sphere S?. So, for i = 1,2, 3, let

Ui = {(z1,72,23) € S*; x; > 0} and V; = {(z1, 22, 73) € S%; x; < 0}.
Consider the diffeomorphisms ¢; : U; — R? and 1; : V; — R? given by

xj x
pi(1, 2, 73) = Pi(T1, 02, 73) = <j7 k)
T T
with j,k # ¢ and j < k. The sets (U;, ;) and (V;,1);) are called the local charts over
S2.

Let f*:R? — H, be the central projections from R? to S? given by

+ _ 1 - .
ACHE (A(:vl,xz)’ A(x1,29) A(m,m))

where A(x1,22) = \/2? + 23 + 1. In other words f*(z1,z2) is the intersection of the
straight line through the points (0,0,0) and (z1,x2,1) with H.. Note that f* = Lpgl
and f~ = 93 L. Moreover, the maps f* induces over Hy vector fields analytically
conjugate with the differential system (7). Indeed, f* induces on H, = Us the vector
field X1(y) = Df*(p3(y)) X (p3(y)), and f~ induces on H_ = V3 the vector field
Xo(y) = Df~(13(y)) X (3(y)). Thus we obtain a vector field on S?\S! that admits
an analytic extension p(X) on S?, see for more details [6, chapter 5]. The vector field
p(X) on S§? is called the Poincaré compactification.

Denote (u,v) = p;(x1, x2,x3) = ¥;(x1, 22, 23). Then the expression of the differen-
tial system associated to the vector field p(X) in the chart U; is

tefo(t2) - () v ()
v v v v v v
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The expression of p(X) in Us is

The expression of p(X) in Us is
u = P(u,v), v = Q(u,v).

For i = 1,2, 3 the expression of p(X) in the chart V; differs of the expression in U; only
by the multiplicative constant (—1)¢~1.

Note that we can identify the infinity of R? with the circle S'. Two points for each
direction in R? provide two antipodal points of S'. An equilibrium point of p(X) on S*
is called infinite equilibrium point and an equilibrium point on S?\S! is called a finite
equilibrium point. Observe that the coordinates of the infinite equilibrium points are
of the form (u, 0) on the charts Uy, Vi, Us and V. Thus, if (21, 22,0) € S! is an infinite
equilibrium point, then its antipode (—z1, —x2,0) is also a infinite equilibrium point.

The image of the closed northern hemisphere of S? under the projection (x1,x2,23) —
(w1, 22,0) is the Poincaré disc, denoted by D?.

2.4. The differential system (2) with a = 0 restricted to H(x,y,z) = h is
Hamiltonian. The expression of the differential system (2) with a = 0 restricted to
the invariant surface H(z,y, z) = h, i.e. z =h —23/3, is

oG z3 oG
[ = = — ] = h _—— = =
(8) Pey=500 Y 3 e
with the Hamiltonian
GGy = 2+ 5
= x,Y)= 23/ 12 Z.

The fact that the flow of the Hamiltonian systems preserves the area (see for details
[2]) implies that system (8) has no limit cycles, and that its finite equilibrium points
are either centers, or union of hyperbolic sectors.

2.5. On the topological indices of the equilibrium points of 2-dimensional
polynomial differential systems. It is known that the local phase portrait of any
equilibrium point of an analytic differential system in the plane R? is either a focus, a
center, or finite union of hyperbolic, elliptic and parabolic sectors, see [1] or [6].

The topological index or simply the index of an equililbrium point of an analytic
differential system is an integer number which can be computed using the Poincaré
Index Formula, i.e. if h, e and p are the number of hyperbolic, elliptic and parabolic
sectors, respectively, of the local phase portrait of an equilibrium point its index is
given by the formula

e—nh
2
For a proof of this formula see for instance [6, Chapter 5]. Thus the index of a saddle
is —1, the index of a center is 1 because it has no sectors.

+ 1.
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The next theorem shows that the sum of the indices of all equilibria of a compactified
polynomial vector field p(X) in the Poincaré sphere S?, having finitely many equilibria,
does not depend on the polynomial vector field X.

Theorem 6 (Poincaré-Hopf Theorem). The sum of the indices of all equilibria of a
compactified polynomial vector field p(X) in the Poincaré sphere S?, having finitely
many equilibria, is two.

For a simple proof of the Poincaré-Hopf Theorem on the sphere S? see [6, Chapter
5].

2.6. The Darboux theory of integrability for 3-dimensional polynomial dif-
ferential systems. A Darbouz polynomial of the polynomial differential system (2)
is a polynomial f € C|z,y, z]\C such that

of  of 2 2\ Of
(9) yax+zay+(a( i) x—aty) 5= = Kf,
for some polynomial K € C[z,y,z]| called the cofactor of the polynomial f and its
degree at most two. From (9) it follows that f = 0 is an invariant algebraic surface
for the flow of system (2).

Note that if in (9) the cofactor K = 0, then f = f(z,y,2) is a polynomial first
integral.

A nonconstant function F' = exp(g/h) where g, h € C|x,y, z] are coprime polynomi-
als it is an exponential factor of system (2) if it satisfies

OF oF oF

- - 1— 22 — 22y =—
y8x+28y+(a( w)e —a%y) 0z

for some polynomial L € Clz,y, 2] of degree at most two, called the cofactor of F.

(10) = LF,

For more information on invariant algebraic surfaces and exponential factors see
(6, 8].

The next result is proved in [6, Theorem 8.7].

Theorem 7. Suppose that the differential polynomial system (2) defined in R3 admits
p invariant algebraic surfaces f; = 0 with cofactors K; fori=1,...p and q exponential
factors Fj = exp (g;/hj) with cofactors Lj for j =1,...,q. Then, there exist \j, pj €
C, not all zero such that 377_y \i Ki +3_%_; p1j Li = 0 if and only if the following real
(multi-valued) function of Darboux type
A
Mo EM

substituting fi)‘i by \fl|’\Z if \i € R is a first integral of system (2).

3. PROOFS OF PROPOSITION 1, THEOREM 2 AND COROLLARY 3

Proof of Proposition 1. Let X be the vector field associated to the differential system
(2) with @ = 0. Then two easy computations show that XH = 0 and X F = 0, hence H
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and F' are polynomial first integrals of the differential system (2) with a = 0. Moreover,
clearly that the two first integrals H and F' are independent because H depends on z
and F is independent of z. Therefore system (2) is completely integrable. (I

3.1. Infinite equilibria of the differential system (2) with a = 0 restricted to
H(z,y,z) = h. From subsection 2.3 the expression of system (8) in the local chart U;

is
1
U= 3 (3hv3 — 3u?v? — 1) , 0= —uvd.

Since t|y=¢p = —1/3 there are no infinite equilibria on the chart U;. Then the unique
possible infinite equilibria can be the origins of the local charts Uy and V5.

Again from subsection 2.3 the expression of the differential system (8) in the local
chart U, is
1 1
(11) U= 3 (73huv3 +ut + 31}2) , U= 3V (u3 - 3hv3) .

Hence the origin of the chart Us is an infinite equilibrium. In the next proposition we
characterize the local phase portrait at this equilibrium.

Proposition 8. The local phase portrait at the origin of the local chart Us of the
differential system (8) is formed by two hyperbolic sectors, whose two separatrices are
contained on the circle of the infinity, see Figure 2(f).

Jo Ju

us
(a) (b) (c)
v1 V1 ¥
/ N _J L —_ T
P —»——>— u 1 ——a—— |
(d) (e) ()

FIGURE 2. The blow up of the origin of the local chart Us.
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Proof. The origin of the local chart Us is a linearly zero equilibrium point, see system
(11), we shall study its local phase portrait doing the changes of variables called vertical
blow ups, see subsection 2.2. Since u = 0 is not a characteristic direction at the origin
of system (11) we do the vertical blow up (u,v) = (u1, u1v1), then system (11) writes

1
(12) U = gu% (3u%v% - 3hu%v:{’) , 0 = —ug v},
Rescaling the time by u; the previous differential becomes
1
(13) Uy = FuL (3uivy — 3huiv?), 0 = —v3.

The unique equilibrium point of this differential system on the straight line u; = 0
is the origin of coordinates, that again it is a linearly zero equilibrium. Since u; = 0
is a characteristic direction at the origin of system (13) we do the following twist
(u1,v1) = (u2,u2 — v2). Thus in the variables (ug, v2) system (13) writes

(14) Uy = %ug (—3hug + 9husvy — hudvs + 3hudvs + 4u3 — 6ugvs + 31)%) ,

Uy = % (7u3 — 3hu§ + 9hujvy — huzv? + 3hudvs — 15u3vg + 12ugv? — 3v3) .

Now we do the blow (ug,v2) = (us,ugvs) to system (14) obtaining the system
ug = guj (3hudvd — 9huiv3 + 9hudvs — 3huf + 3v3 — 6ug +4)

15
(15) b3 = sud(1— vs) (3hudvi — huiv3 + Shuivs — 3huf + 6v5 — 1203 4 7) .

Now rescaling the time by u2 system (15) writes
iy = tus (3hudvd — 9hudv3 + 9hudvg — 3huj + 3v3 — 6vs +4),

(16)
b3 = 3(1—wv3) (Bhudvi — 9hudvd + 9hudvs — 3huj + 6v3 — 1205+ 7).

The unique equilibrium point of system (16) on the straight line uz = 0 is the (0, 1),
whose linear part has eigenvalues +1/3, so it is a hyperbolic saddle.

The local phase portrait of system (16) in a neighborhood of the straight line ug = 0
is shown in Figure 2(a). Hence the local phase portrait of system (15) in a neighborhood
of the straight line ug = 0 is shown in Figure 2(b). Going back through the blow up
(u2,v2) = (u3,uzvs) and taking into account that tg|y,,—0 = Tu3/3 + h.o.t. we obtain
the local phase portrait at the origin of system (14) in Figure 2(c), as usual “h.o.t.”
denotes higher order terms. Undoing the twist (u1,v1) = (ug, uz — v2) we get the local
phase portrait at the origin of system (13) in Figure 2(d). Therefore the local phase
portrait at the origin of system (12) is given in Figure 2(e). Undoing the blow up
(u,v) = (u1,u1v1) and taking into account that 1|,—o = v?> we obtain the local phase
portrait at the origin of the local chart Us in Figure 2(f). O

Proof of Theorem 2. The differential system (2) with a = 0 restricted to H(z,y,2) = h
given in (8) has a unique finite equilibrium point, namely p = ((3h)/3,0). This system
has at infinity only two equilibria, the origins of the local charts U, and Vs, that from
Proposition 8 and subsection 2.5 they have index zero. Then by the Poincaré-Hopf
theorem the index of the finite equilibrium p is one. Since this differential system is
Hamiltonian, by subsection 2.4 the finite equilibrium p is a center.
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We claim that it does not exist the last periodic orbit surrounding p. Assume that -
is the last periodic orbit surrounging p and we shall arrive to a contradiction. Indeed,
consider the Poincaré return map defined in a transversal section to the periodic orbit
. Since the polynomial differential system (8) is analytic, such a Poincaré map is
analytic, and it is the identity on the transversal section that intersect the periodic
orbits surrounding the center p, but an analytic map of one variable that is the identity
in a piece of the transversal section is the identity in the whole transversal section
where the map is defined. So the periodic orbit + cannot be the last periodic orbit
surrounding p. The claim is proved.

Moreover, since by Proposition 8 the unique infinite equilibria are the origins of the
local charts Uy and V5, and the local phase portraits at these equilibria are formed by
two hyperbolic sectors having their two separatrices on the infinite circle, we obtain
the center p is global. Hence the phase portrait of system (8) in the Poincaré disc
topologically is the one described in Figure 1. O

Proof of Corollary 3. Tt is clear that the equilibria of the differential system (2) with
a = 0 are all the points of the x-axis. From Theorem 2 each equilibrium point (z,0,0)
is on the invariant surface H(x,y, 2) = h = H(«x,0,0), and on this surface it is a global
center. Hence the corollary follows. (Il

4. PROOF OF THEOREM 4
A polynomial F(z,y, z) has weight degree d with weight exponents s1,...,s, € Z if
F(a®zy,...,a"x,) = adF(scl, ceey Tp).

Consider the differential system
;= Pi(x1,...,2Tn), fori=1,...,n,

in R™ where P; are polynomials. This differential system is quasi-homogeneous of

weight degree the positive integer d with weight exponents si,...,s, € Z if for any
a > 0 we have that
Pi(a®txy,...,a’mx,) = asﬁd*lPi(xl, ceey Tp), fori=1,...,n.

Proof of statement (a) of Theorem 4. In order to simplify the computations we con-
sider the following change of variables in system (2)

r=p'X, y=ptY, z=p2Z and t=pul, with pueR/{0}.
Then system (2) becomes
X = ng
(17) Y =2
Z = p*aX —aX3 — X?Y,

where now the dot denotes derivative with respect to the variable T
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Assume that f(x,y, 2) is a polynomial first integral of system (2). Let m > 0 be the
minimum integer such that

m
F(X,Y,Z) = p™f(u ' X, u7 'Y, 0% 2) =) W' F(X,Y,Z),
i=0
where F; fori = 1,...,m is the weight homogeneous polynomial of weight degree m —1

Then m is the weight degree of the polynomial F' with weight exponent (s1, s2,s3) =
(1,1,2) and the weight homogeneous polynomial Fj of weight degree m is non-zero.

From the definition of first integral we have

m m n
OF;, OF;, OF;
1 Y (a4 it 20X —aX® - X%V i = .
(18)  n i§:0uajf+ ;:()uayﬂua a ) Hoy =0

1=0

The coefficient of 4" in equation (18) is

8FO 3 2 8F0_
7oy — (X + X2Y) o2 = 0.

Solving this linear partial differential equation we obtain that Fy = Fy(X,2aX3Y +

X2Y2%472) i.e. Fyisan arbitrary polynomial in the variables X and 2aX3Y + X?2Y 24
Z2. So the polynomial Fyy of weight degree m is of the form

R(X,Y,Z)= > apX"(2aX’Y + X?Y? + 2%)",
k+40=m

with k£ and ¢ non-negative integers.

The coefficient of 1 in equation (18) is

8F0 8F1 aFl

%o et 3 2y OF1
Yot Zas — (aX® + XPY) o =0,
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Solving this linear partial differential equation we get that

2 .
Fr=s Y awlXMY?Z(20X°Y 4 X7V 4 27)

k+4f=m—1
4 .
+3 Y aantX'YZ(2aX% + X% 4 22)
k+4l=m—1
4 Y X 7 (2aX3Y + X2V 4 22)
k+40=m—1
1
o Y @t X2 (2aX3Y + X2V 4 2%
k+44=m—1
+ Y apkZX5 (20X%Y + XY+ 22) 4
k+40=m—1

1 [ X[ (aX +Y) 3 2v-2 N vk
—|—marctan (Z k+4zz B kakga(2aX Y + X°Y +Z) X

— dag, a0 (2aX3Y + X2Y? + 22) 7 XM 4 Gy (a,y, 2).

Since a # 0, and F; must be a weight homogeneous polynomial with weight degree
£+ 4k = m — 1, then agy = 0 for all k + 4¢ = m. Note that k£ and ¢ cannot be zero,
otherewise m = 0 in contradiction with the fact that m > 0. But since aiy = 0 for all
k + 4¢ = m, it follows that Fy = 0, another contradiction. Hence we have proved that
the differential system (2) has no poynomial first integrals. O

To prove statement (b) of Theorem 4 we need to investigate the Darboux polyno-
mials and the exponential factors of system (2) with a # 0. We start with Darboux
polynomials.

Proposition 9. System (2) with a # 0 has no Darbouz polynomials with nonzero
cofactor.

Proof. Let f be a Darboux polynomial with a nonzero cofactor K, i.e. X(f) = Kf
where X is the vector field of (3). Since K is a polynomial of degree at most 2, K is
of the form

K = ko + k1z + koy + ksz + kaa® + kszy + kexz + kry® + ksyz + ko2”.

Due to the symmetry (4) and since f is a Darboux polynomial of system (2), it
follows that 7(f) is also a Darboux polinomial of system (2) with cofactor 7(K), i.e.
X(1(f)) = 7(K)7(f). Then g = f7(f) is a Darboux polynomial of system (2) with
cofactor

K, = K+ 7(K) = 2ko + 2k42? + 2kszy + 2kewz + 2k7y? + 2ksyz + 2ko2?,

because

X(g) = X(N)7(f) + [X(r () = Kfr(f) + fr(E)7(f) = (K + 7(K)) f7(f) = Kqg9.
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Therefore
(19)

dg dg 2 299 2 2 2
Yor +za—y+(ax(1—x )—x y)& = 2(ko + kax® + kszy + kexz + kry” + ksyz + koz“)g.

We write .
g = g($7y7 Z) = Zgj($7y7 Z)?
=0

where g;(x,vy, z) is a homogeneous polynomial of degree j and g, (z,y, z) # 0.
The homogeneous part of degree n + 2 in (19) is

(20) —(ax3 + x%y)%i; = 2(I<:4:r2 + kszy + kexz + kry? + kgyz + k9z2)gn.

For solving this partial differential equation we consider two cases.

Case 1: 689; # (0. Then solving the above linear partial differential equation we obtain

z (6k4z2+6y(k5 z+k7y)+3z(k6a:+kgy)+2k9z2)

gn($7y7z) = Gn(x7 y)e_ 6z2(a1+y)

where G, (z,y) is an arbitray function. Since g, must be a homogeneous polynomial
of degree n, it follows that ky = ks = k¢ = ky = ks = kg = 0 and G, (x,y) is a
homogeneous polynomial of degree n. Hence the Darboux polynomial g(x,y,z) has
cofactor 2kg.

Now we want to show that ky = 0 and the proposition will be proved in case 1. Let
m > 0 be the minimum integer such that

m
G(X,Y,2) = p"g(u ' X, u7 Y, p22) = > p'Gi(X,Y, Z),
i=0
and for ¢ = 1,...,m the G; be the weight homogeneous polynomial with weight de-
gree m — i. Then m is the weight degree of the polynomial G with weight exponent
(Sla 52, 83) = (17 17 2)

Since g(x,y, z) is a Darbous polynomial of degree n with cofactor 2kg of system (2),
we get that G(X,Y, Z) is a Darboux polynomial of weight degree m with cofactor 2k
of system (17). Therefore

" 9G; " 9G; " 0G; LR
21) pY Qa4 iz 2aX —aX? - X%V i =9
(21) p ;M o5+ ;u 5y (WX —a );u o7 ko;uG
The coefficient of u° in equation (21) is
9Go 3 2y 9Go
J——— (aX XY)—=2 .
Y% (a + )0Z koGo

Solving this linear partial differential equation when a # 0 we get

e2]€0 arctan (M) /x

Go =

Since Gy must be a polynomial it follows that ky = 0, and the proposition is proved
in case 1.

h(z, 2ax’y + 2%y* + 22).



14 S. HUSSEIN AND J. LLIBRE

Case 2: %LG = 0. Then, from (20) we have that
2(]{,‘4%‘2 + ksxy + kezz + k:7y2 + ksyz + k’922)gn =0.

Since g, # 0 we again obtain that ky = k5 = k¢ = k7 = ks = k9 = 0. So in this case
the rest of the proof of the proposition follows as in case 1. O

Proposition 10. The differential system (2) has five exponential factors, namely
e* with cofactor L1 =y,

e¥ with cofactor Lo = z,

e with cofactor Ly = 2xy,

ev? with cofactor Ly = 2yz, and

e™ with cofactor Ly = xz + y°.

Proof. From the definition of exponential factor (10) it easy to check that the five
exponentials of the statement of the proposition are exponential factors. Also it is
easy to check that the exponential of any other monomial different from the monomials
z, y, 22, y? and zy provides cofactors of degree greater than two, and consequently
cannot be exponential factors. O

Proof of statement (b) of Theorem 4. From subsection 2.6 and Proposition 9 we know
that the differential system (2) has no invariant algebraic surfaces, and from Propo-
sition 10 this differential system has only the five exponential factors stated there.
Since the unique solution for the u;’s for i« = 1,...,5 in the equation 2?21 wili =0
is the solution p; = 0 for i = 1,...,5, by Theorem 7 it follows that system (2) has no
Darboux first integrals. O
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