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Abstract 
Antibiotic resistance in plant-associated microbiomes poses significant risks for agricultural ecosystems and human health. Although 
accumulating evidence suggests a role for plant genotypes in shaping their microbiome, almost nothing is known about how the 
changes of plant genetic information affect the co-evolved plant microbiome carrying antibiotic resistance genes (ARGs). Here, we 
selected 16 wheat cultivars and experimentally explored the impact of host genetic variation on phyllosphere microbiome, ARGs, 
and metabolites. Our results demonstrated that host genetic variation significantly influenced the phyllosphere resistomes. Wheat 
genotypes exhibiting high phyllosphere ARGs were linked to elevated Pseudomonas populations, along with increased abundances of 
Pseudomonas aeruginosa biofilm formation genes. Further analysis of 350 Pseudomonas spp. genomes from diverse habitats at a global 
scale revealed that nearly all strains possess multiple ARGs, virulence factor genes (VFGs), and mobile genetic elements (MGEs) on 
their genomes, albeit with lower nucleotide diversity compared to other species. These findings suggested that the proliferation 
of Pseudomonas spp. in the phyllosphere significantly contributed to antibiotic resistance. We further observed direct links between 
the upregulated leaf metabolite DIMBOA-Glc, Pseudomonas spp., and enrichment of phyllosphere ARGs, which were corroborated by 
microcosm experiments demonstrating that DIMBOA-Glc significantly enhanced the relative abundance of Pseudomonas spp. Overall, 
alterations in leaf metabolites resulting from genetic variation throughout plant evolution may drive the development of highly 
specialized microbial communities capable of enriching phyllosphere ARGs. This study enhances our understanding of how plants 
actively shape microbial communities and clarifies the impact of host genetic variation on the plant resistomes. 
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Introduction 
Microbial communities are considered the primary determinant 
of the antibiotic resistomes [1, 2]. These communities have 
coevolved with their plant hosts for over 400 million years, 
influenced by intrinsic factors such as plant genotype [3, 4], 
age [5], and species [6], as well as by various biotic and abiotic 
environmental factors including geographical location [4, 7], soil 
type [7], climate [8], and insect herbivory [9]. Of particular interest 
among these factors is the impact of plant genetic variation on 
microbial communities. For example, genome-wide association 
studies have shown that different Arabidopsis accessions exhibited 
different microbial communities, and the plant loci responsible 
for defense and cell wall integrity affect the variation in 
leaf microbial communities [10, 11]. Over evolutionary and 

domestication timescales, plant genetic information undergoes 
functional rearrangements, acquisitions, and losses, driven by 
natural and artificial selection aimed at enhancing plant fitness 
and increasing crop yield. Such natural and artificial selection 
can act on plant traits including tissue structure (e.g. cutin and 
cuticular wax properties, trichome branching), physiology (e.g. 
exudates and volatiles), plant defense, and hormone signaling 
pathways (e.g. auxin), which significantly shape the plant 
microbial communities and initiate microbe–microbe interactions 
[5, 12, 13]. For instance, plant-derived benzoxazinoids can 
function as antibiotics and exert selective pressure on bacterial 
communities [14]. Understanding how changes in plant genetic 
information influence the co-evolved plant microbiome is 
crucial because these changes can alter microbial community 
composition and function, potentially affecting the dissemination
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of antibiotic-resistance genes. Given the rising concern over 
antibiotic resistance, it is essential to explore these genetic 
interactions to develop strategies for managing and mitigating 
the spread of resistance within agricultural ecosystems. 

Plant metabolites are pivotal in governing interactions between 
plants and microorganisms, contributing to the active recon-
struction of microbial communities [15]. Variations in microbiota 
among plant species or genotypes are often associated with differ-
ences in plant exudates [12, 16, 17]. For instance, altered exudation 
of defensive compounds (e.g. benzoxazinoids) leads to a reorgani-
zation of the root microbiome in mutants compared to wild-type 
maize [17, 18]. Compared to the rhizosphere, the phyllosphere rep-
resents an open system and hosts distinct microbial assemblages. 
These microorganisms originate from diverse sources, including 
soil, air, and nearby plants, and are driven by the plant and envi-
ronmental parameters [19]. Despite the open nature of the phyllo-
sphere and its exposure to various environmental factors, recent 
research indicates the presence of a core set of leaf-associated 
microbiota that persist in the phyllosphere, with plant genotype 
having a substantial impact on its microbiome [20, 21]. Moreover, 
leaf metabolites can influence the composition and function of 
phyllosphere microorganisms. These microorganisms, in turn, can 
affect the production and release of leaf metabolites through 
their interactions with the plant host. However, there is limited 
experimental evidence on leaf metabolites and their impact on 
the phyllosphere microbiota, particularly concerning the extent 
of plant genotype influence on the quantity and quality of leaf 
metabolites and their relationship with the resistomes [12, 16, 17]. 
Understanding the genetic effects on the phyllosphere-specific 
microbiome and its interactions with metabolites is essential 
for predicting and monitoring plant resistomes throughout plant 
evolution. 

Wheat, a staple food crop that feeds approximately 20% of the 
world’s population, has undergone extensive evolutionary pro-
cesses, including natural hybridization, polyploidization, domes-
tication, and mutation over more than 10 000 years [22]. Given 
that alterations in microorganisms can induce changes in antibi-
otic resistance gene (ARG) profiles, we hypothesized that specific 
genetic variations among wheat genotypes lead to distinct leaf 
metabolites, which in turn develop a specialized phyllosphere 
microbiome that influences the abundance and distribution of 
ARGs. Our objective was to identify the key wheat metabolites 
involved in this process and to elucidate the mechanisms by 
which these metabolites affect the microbial community and its 
resistomes. To test this hypothesis, we selected 16 wheat cultivars 
to (i) characterize the genetic impacts on the abundance and 
diversity of ARGs using high-throughput quantitative PCR (HT-
qPCR); (ii) estimate the mobility and risks of the phyllosphere 
resistomes by profiling mobile genetic elements (MGEs) and vir-
ulence factor genes (VFGs); (iii) illustrate variations in phyllo-
sphere microbial communities across different wheat cultivars; 
(iv) identify key microbial taxa contributing to differences in 
the phyllosphere resistomes; and (v) comprehensively elucidate 
interactions between plant-specific metabolites, ARGs, and key 
taxa through nontargeted metabolic analysis, metadata analysis, 
and confirmatory experiments. 

Materials and methods 
Experiment design and sample collection 
A pot experiment was conducted to explore the relationships 
between wheat genotypes and phyllosphere resistomes. Exper-
imental soil (0–20 cm depth) was collected from farmland in 

Ningbo, Zhejiang Province, China, and air-dried in the laboratory 
at 25◦C for several days. Subsequently, the dried soil was sieved 
through a 2-mm nylon mesh and moistened with sterile water 
to achieve 60% of the maximum field capacity. To stabilize and 
enhance the activity of the native soil microbial communities 
and provide a consistent baseline for subsequent experimental 
treatments, the soil was preincubated at 25◦C in the dark for 
2 weeks to activate soil microorganisms. We analyzed the genetic 
variations within the three subgenomes of wheat, designated 
as A, B, and D. This nomenclature is based on the evolutionary 
origins of modern hexaploid wheat (Triticum aestivum), which com-
prises three distinct sets of chromosomes from different ancestral 
species: Triticum urartu (A subgenome), a species related to Aegilops 
speltoides (B subgenome), and Aegilops tauschii (D subgenome). Each 
subgenome contributes a set of chromosomes, resulting in a total 
of 21 chromosome pairs (7 pairs per subgenome), labeled as 1A to 
7A for the A subgenome, 1B to 7B for the B subgenome, and 1D 
to 7D for the D subgenome. These genomes harbor unique sets of 
genes and genetic variations, contributing to wheat’s wide genetic 
diversity and adaptability to various environments. Therefore, six-
teen wheat cultivars obtained from the Jiangsu Academy of Agri-
cultural Sciences (Jiangsu Province, China), including those widely 
distributed worldwide (Chinese spring) [23], local species from 
northern and southern China, synthetic hexaploid wheat, and cul-
tivars with missing chromosomes, were used for the microcosm 
experiment (Fig. 1A and Table S1). 

Prior to setting up the experiment, seeds of the 16 wheat 
cultivars were sterilized in 30% H2O2 for 15 min, followed by 
thorough washing with sterilized MilliQ water. Subsequently, the 
seeds were germinated on moist filter paper for 48 h at 28◦C 
in the dark. The germinated seeds were then sown in PVC pots 
(16.8 cm × 13 cm × 15.8 cm) containing 3 kg of preincubated 
soil, with each pot receiving five seeds. Two weeks after sowing, 
the seedlings were thinned to 3 per pot. The wheat seedlings 
were grown in a 12-hour light (light intensity 10 000 lux) and 
12-hour dark cycle, with 65% relative humidity, maintaining a 
daytime temperature of 28◦C and a nighttime temperature of 
22◦C. Each wheat cultivar was allocated three pots, which were re-
randomized daily during the growth period. Soil moisture content 
was regularly adjusted to 35% by weight using deionized water. 
After 7 weeks of growth, corresponding to the tillering stage of 
wheat development, the wheat leaves were collected and stored 
at −80◦C for further analysis. The tillering stage is characterized 
by an increased leaf surface area and heightened microbial 
interactions, creating a nutrient-rich environment conducive to 
microbial growth and horizontal gene transfer, which may pose a 
risk for ARG transmission. 

DNA extraction 
DNA was extracted from the wheat phyllosphere using the 
FastDNA Spin Kit for soil (MP Biomedical, Santa Ana, California, 
USA). Briefly, 5 g of leaf tissue was sonicated and shaken in a 
250-mL conical flask containing 100 mL of 0.01 M phosphate-
buffered saline (PBS). The mixture was then filtered first through 
a sterilized nylon net and then through a cellulose membrane 
with a pore size of 0.22 μm. The filters were subsequently cut into 
pieces using sterilized pair of scissors, and DNA was extracted 
according to the manufacturer’s protocol [24]. DNA concentration 
and quality were determined using a NanoDrop 2000 (Thermo 
Fisher, USA) and gel electrophoresis with a 1.0% agarose gel, 
respectively. DNA extracts were stored at −20◦C until further 
analysis.
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Figure 1. Effect of wheat genotype on phyllosphere resistome. A Graphical representation of the experimental design, involving 16 wheat cultivars. B 
Nonmetric multidimensional scaling analysis based on the Bray–Curtis distances showing the distinct distribution patterns of phyllosphere ARG 
profiles across different wheat genotypes. C Relative abundance (copies per 16S rRNA gene copy) of ARGs in various wheat genotypes. 

High-throughput quantitative PCR 
The ARG patterns in the phyllosphere samples were analyzed 
using high-throughput quantitative PCR (HT-qPCR) with the 
Wafergen SmartChip Real-time PCR system (Wafergen Inc., USA) 
[25]. A total of 384 primer sets (refer to Table S2) were employed,  
comprising 319 primer sets targeting nearly all major classes 
of ARGs, 7 taxonomic genes, 57 primer sets targeting MGEs 
(including 9 insertional genes, 11 plasmid genes, 10 transposase 
genes, 3 integron-integrase genes, and 24 other MGEs), along with 
primer sets for 16S rRNA genes. The 384 primer sets employed in 
this study were carefully selected based on previously published 
studies to ensure specificity and efficiency [25, 26]. In addition, 
these primer sets have been previously employed in various 
studies across different habitats, including soil [25], water [27], 
phyllosphere [28], and animal guts [29], demonstrating their 
reliability and reproducibility. The PCR amplification protocol 
involved an initial step of enzyme activation at 95◦C for 10 min, 
followed by 40 cycles. Each cycle consisted of denaturation 
at 95◦C for 30 s and annealing at 60◦C for 30 s. Melt curves 
were automatically generated using Wafergen software. A 
threshold cycle (Ct) of 31 was employed as the detection limit 
in the present study. The relative copy number of ARGs and 
MGEs was calculated using the formula: relative gene copy 

number = 10(31 − Ct)(10/3), Ct represents the threshold cycle obtained 
during PCR amplification. 

High-throughput sequencing 
To characterize the bacterial and fungal communities in the 
wheat phyllosphere across different genotypes, specific bacterial 
(515F/806R for the V4 region of 16S rRNA gene) [30] and fungal 
(gITS7/ITS4ngs for the ITS2 region) [31] primer sets with barcodes 
were selected for amplification. The amplified products were 
submitted to Majorbio Bio-pharm Technology Co., Ltd (Shang-
hai, China) for high-throughput sequencing using the MiSeq Sys-
tem (Illumina; 300 cycles) platform. Microbiome bioinformatics 
analyses were conducted using QIIME 2 [32]. Raw sequencing 
data were initially demultiplexed and quality-filtered using the 
q2-demux plugin, followed by denoising with DADA2 [33]. All 
amplicon sequence variants (ASVs) were aligned using multiple 
alignment with fast Fourier transform via q2-alignment [34], and 
a phylogenetic tree was constructed with FastTree [35]. Taxo-
nomic assignments for bacterial and fungal ASVs were performed 
using the q2-feature-classifier [36] with the classify-sklearn Naive 
Bayes taxonomy classifier via 99% comparisons to the SILVA 138 
[37] and UNITE 8.0 [38] reference databases, respectively. More-
over, our study exclusively targeted bacteria and fungi, sequences
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corresponding to mitochondria, archaea, chloroplasts, and unas-
signed reads for 16S rRNA gene were removed before downstream 
analysis. 

Nontarget metabolomics analysis 
Leaf tissues were washed with sterilized 1 × PBS, and 50 mg of 
each sample was extracted using a methanol solution (4:1, v/v) 
containing an internal standard. The mixture was processed using 
a tissue crusher and ultrasound, followed by protein precipitation. 
Following centrifugation, supernatants were transferred for LC– 
MS/MS analysis using a UHPLC-Q Exactive HF-system (Thermo 
Fisher Scientific). Quality control samples were used to monitor 
the stability of the analysis. Data processing steps included noise 
removal, database searching, and normalization. Detailed proce-
dures are provided in the supporting information (refer to S1 text). 

Metagenome analysis 
To further reveal the hosts of the wheat phyllosphere resistomes, 
15 samples, including genotypes JY, Elite2–33, N1A-T1D, N3B-T3D, 
and N5D-T5B were selected for metagenomic analysis using the 
DNBSEQ-T7 instrument. Data analysis was processed on the 
Majorbio platform (http://www.majorbio.com). The paired-end 
Illumina reads were trimmed of adaptors, and low-quality reads 
(length < 50 bp or with a quality value <20 or having N bases) 
were removed by fastp (version 0.20.0) [39]. The reads were then 
assembled with MEGAHIT (version 1.1.2) to create contigs of 
≥300 bp [40].Gene prediction was conducted using MetaGene 
[41], and open reading frames (ORFs) ≥100 bp were translated 
using the NCBI translation table (http://www.ncbi.nlm.nih.gov/ 
Taxonomy/taxonomyhome.html/index.cgi?chapter=tgencodes#S 
G1). CD-HIT (version 4.6.1) was used to construct a nonredundant 
gene catalog with 90% sequence identity and coverage [42]. 
Quality-controlled reads were mapped to the nonredundant 
gene catalog with 95% identity using SOAP aligner (version 2.21) 
[43] to evaluate gene abundance. Representative sequences were 
aligned to the NCBI NR database using DIAMOND (version 0.8.35) 
with an e-value cutoff of 1e-5 for taxonomic annotations [44]. 
The predicted gene protein sequences were compared with the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) databases to 
obtain functional annotation information. Antibiotic-resistant 
annotation was conducted using the ARGs online analysis 
pipeline (ARGs-OAP) [45, 46]. Assessing high-risk ARGs is crucial, 
as they pose a significant threat to public health. In the present 
study, the health risk of ARGs to humans was divided into four 
degrees (Q1, Q2, Q3, and Q4) based on human accessibility, 
mobility, pathogenicity, and clinical availability [47]. Virulence 
factors were annotated using DIAMOND (version 0.8.35) against 
the VFDB database (http://www.mgc.ac.cn/VFs/) with an e-value 
cutoff of 1e-5 [44]. 

Validation microcosm setup 
To simulate interactions between specialized metabolites and 
microorganisms, we selected an accessible, relatively important, 
and referable upregulated leaf metabolite DIMBOA-Glu (Toronto 
Research Chemicals, CAS: 113565–32-5). The objective was to 
explore the influence of exogenous DIMBOA-Glu on Pseudomonas 
species. Four treatments were designed: 0 ppb (without DIMBOA-
Glu addition), 10 ppb (10 μg DIMBOA-Glu per kg soil), 100 ppb 
(100 μg DIMBOA-Glu per kg soil), and 1000 ppb (1000 μg DIMBOA-
Glu per kg soil). These treatments were conducted in 100-mL glass 
beaker microcosms, with each treatment allocated in triplicate. 
All microcosms were maintained under conditions consistent 
with those of the wheat development experiment. After four 

weeks, soil samples were collected for DNA extraction. The 16S 
rRNA gene amplicon sequencing was conducted to profile the 
microbial communities, and the abundance of Pseudomonas spp. 
was quantified using quantitative PCR. 

Statistical analysis 
Data analysis was performed using Microsoft Excel 2020 for cal-
culating averages and sums. Microbial diversity was assessed by 
calculating the Shannon index for α-diversity, whereas β-diversity 
was estimated using the Bray–Curtis distance between samples. 
The nonmetric multidimensional scaling analysis (nMDS) and sig-
nificance tests (PERMANOVA test) based on Bray–Curtis distance 
were employed to evaluate differences in ARGs and phyllosphere 
microbial communities among different wheat cultivars, respec-
tively, using the “vegan” [48] and “labdsv” [49] packages. Linear 
discriminant analysis effect size (LEfSe) was calculated with the 
Kruskall–Wallis test (P < 0.05). “igraph” package was used to con-
struct the co-occurrence network based on Spearman’s correla-
tion matrix (|r| > 0.7, P < 0.01), and then visualized with Gephi 0.10 
version. Heatmaps were generated using the “vegan” package [48] 
in R4.3.1. Principal coordinate analysis (PCA) plot was generated 
from Bray–Curtis similarity matrices using “ggplot2” in R4.3.1 to 
distinguish the metabolite profiles in different wheat genotypes. 
Volcano analysis and the variable importance in the projection 
(VIP) values from orthogonal projections to latent structures dis-
criminant analysis (OPLS-DA) were further used to distinguish the 
leaf metabolites associated with high-ARG and low-ARG wheat 
genotypes. Canonical correlation analysis (CCA) was conducted 
with the “vegan” package in R 4.3.1 to investigate the correlations 
between the phyllosphere resistomes and microbiome (bacterial 
community, fungal community), MGEs, and metabolites. We used 
the value of nMDS axis 1 to represent the bacterial and fun-
gal β-diversity, and PCA axis 1 to represent the overall pattern 
of leaf metabolome. All bar charts, bubble plots, scatter dia-
grams, and OLS regressions in this study were generated using the 
“ggplot2” package in R 4.3.1 [50], with significance considered at 
P < 0.05. 

Results 
Abundance and diversity of ARGs in the 
phyllosphere 
A total of 104 ARGs were observed in the wheat phyllosphere 
samples, covering 12 major classes of antibiotics commonly 
administered to humans and animals, such as aminoglycoside, 
beta-lactams, and tetracycline, among others (Fig. S1A). The 
nMDS analysis and PERMANOVA revealed that the phyllosphere 
resistomes formed two major clusters (Adonis, P < 0.01, Bray– 
Curtis distance) (Fig. 1B). For instance, higher abundances and 
diversity of phyllosphere ARGs were found in the wheat genotypes 
of CS, JY, SC42, Elite2–33, N1D-T1B, N1A-T1D, N1A-T1B, and 
N2D-T2B compared to other genotypes such as N3B-T3D, N3D-
T3B, N4A-T4B, N4A-T4D, N5B-T5A, N5D-T5B, N6D-T6B, and 
N7D-T7B (Figs 1C and S1A). According to ARG abundances, the 
phyllosphere samples were classified into high- and low-ARG 
abundance genotype groups. Furthermore, considering resistance 
mechanisms, antibiotic inactivation was the dominant mecha-
nism in all phyllosphere samples. However, the proportions of 
antibiotic inactivation and efflux pump mechanisms were higher 
in phyllosphere samples with high-ARG abundances, whereas 
phyllosphere ARGs in wheat genotypes with low abundance 
exhibited higher proportions of cellular protection mechanisms 
(Fig. 1C).
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Figure 2. Effects of wheat genotype on mobility and risks of the phyllosphere resistome. A Relative abundance of mobile genetic elements (MGEs) in 
different wheat genotypes, small panel showing the correlation between the relative abundance of ARGs and MGEs. B Metagenomic analysis revealing 
the relative abundance of virulence factor genes (VFGs) across various wheat genotypes. C Metagenomic analysis revealing the relative abundance of 
the high-risk ARGs in the wheat genotypes JY, Elite2–33, N1A-T1D, N3B-T3D, and N5D-N5B. 

Mobility and risks of phyllosphere resistome 
Thirty-nine MGEs (including insertional genes, transposase genes, 
integrase genes, and plasmids) were targeted in this study, with 
transposase genes significantly enriched in phyllospheres with 
higher ARG abundances (ranging from 0.026 to 0.252 copies per 
16S rRNA genes) compared to low-ARG genotypes (ranging from 0 
to 0.021 copies per 16S rRNA genes) (Figs 2A and S1B). OLS regres-
sion analysis further revealed a significant correlation between 
the relative abundance of ARGs and MGEs (R2 = 0.9147, P < 0.0001) 
(Fig. 2A). 

To further corroborate the distinct ARG patterns and assess 
risks, phyllosphere metagenomes were generated from five wheat 
genotypes, three with high-ARG abundances (JY, Elite2–33, and 
N1A-T1D) and two with low abundances (N3B-T3D and N5D-
T5B). Consistent with HT-qPCR results, genotypes JY, Elite2–33, 
and N1A-T1D contained higher ARG abundances than N3B-
T3D and N5D-T5B (Fig. S2). Most detected ARGs in the wheat 
phyllosphere belonged to Q1, the highest-risk ARGs, and conferred 

multidrug resistance (Fig. 2B). Additionally, 19 VFGs were detected 
in the wheat phyllosphere, with genotypes harboring high 
abundances of ARGs containing a higher total abundance of VFGs 
(Fig. 2C). Pathogenic bacteria in high-ARG phyllospheres carried 
more abundant pilQ genes, whereas iroC and iroD were dominant 
VFGs in low-ARG phyllospheres (Fig. 2C). 

Phyllosphere microbiome varied with wheat 
genotype 
Both bacterial and fungal α-diversity in the wheat phyllosphere 
significantly varied among plant genotypes (ANOVA, P < 0.05) 
(Figs 3A and S3A). For example, the Shannon index of bacterial 
diversity in genotypes JY, Elite2–33, and N1A-T1D was significantly 
lower than in N3B-T3D and N5D-T5B (ANOVA, P < 0.05) (Fig. 3A). 
Nonmetric multidimensional scaling analysis of Bray–Curtis 
distances demonstrated that variations in wheat genotypes 
were the primary drivers of bacterial and fungal β-diversity 
in the wheat phyllosphere (Adonis, P < 0.01) (Figs S3B and S4).
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Figure 3. Responses of phyllosphere microbial communities in wheat to different genotypes. A Alpha-diversity of phyllosphere bacterial communities 
estimated by the Shannon index. B Composition of phyllosphere bacterial communities classified at the order level. C Co-occurrence network 
illustrating interactions between bacterial taxa and fungal taxa in the phyllosphere with high-ARG abundance. D Comparison of the abundances of 
KEGG pathways related to Pseudomonas aeruginosa biofilm formation, plant hormone signal transduction, and glycolysis/gluconeogenesis between 
high-ARG (high) and low-ARG (low) phyllosphere samples. 

At the order level, most bacterial communities in high-ARG 
abundance phyllospheres belonged to Pseudomonadales (ranging 
from 50.7% to 96.1%), whereas Rhizobiales were abundant in 
the low-ARG phyllospheres ( Fig. 3B). Moreover, the majority of 
fungal sequences were classified as Ascomycota (Fig. S3C). The 
co-occurrence network indicated strong interactions between 
Pseudomonas species, other bacterial taxa, and fungal taxa 
(Fig. 3C). 

To explore the impact of wheat genetic variation on phyl-
losphere microbial function, we analyzed differences in KEGG 
metabolic capacities between high-ARG and low-ARG phyllo-
spheres. Ninety KEGG orthologs (KOs) showed distinct distribution 
patterns between high-ARG and low-ARG groups (Fig. S5), with 
significant enrichment of KOs involved in various pathways 
such as Pseudomonas aeruginosa biofilm formation, plant hormone 
signal transduction, and glycolysis/gluconeogenesis, in high-ARG 
phyllospheres (ANOVA, P < 0.01) (Fig. 3D). 

Pseudomonas spp. enrichment in high-ARG 
phyllospheres 
LEfSe analysis indicated that bacteria Pseudomonas spp. were 
significantly enriched in high-ARG phyllospheres (Fig. S6). 
The co-occurrence networks of bacteria and fungi differed 

significantly between the two groups of phyllosphere samples, 
with Pseudomonas spp. playing a central role in the network of 
high-ARG phyllospheres (Figs 3C and S7). 

A total of 472 MAGs were recovered from the phyllosphere 
samples, and functionally annotated for ARGs, VFGs, and 
MGEs. These MAGs covered 16 bacterial orders, with 165 
MAGs remaining unclassified. In addition, the MAGs from 
Pseudomonadales occupied a large proportion in the high-ARG 
phyllospheres (Fig. S8). Among these, 22 MAGs from Pseudomonas 
spp. were identified, most representing multidrug-resistant 
bacteria carrying numerous VFGs and MGEs (Figs 4A and B). 
The 12 ARGs captured on  Pseudomonas spp. encoded resistance 
to various antibiotics, including aminoglycoside, bacitracin, 
chloramphenicol, polymyxin, quinolone, sulfonamide, and 
multidrug. In addition, ten of these detected ARGs are considered 
high-risk (Fig. 4C). Ten MAGs from the order Rhizobiales also 
carried ARGs (ranging from 0 to 2) and VFGs (ranging from 2 
to 6), but the number of ARGs within Rhizobiales was ten times 
lower compared to Pseudomonas spp. (Fig. 4A). To validate that 
Pseudomonas spp. are more important carriers of ARGs compared 
to other species, 350 Pseudomonas spp. genomes (Fig. 4D) and  
100 Rhizobiales genomes (Table S3) were downloaded from NCBI 
database, covering diverse hosts and habitats. Reassembly and
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Figure 4. Distribution of ARGs, MGEs, and VFGs in metagenome-assembled genomes (MAGs) of Pseudomonas species. A Maximum-likelihood 
phylogenetic tree showing the phylogenetic distributions of ARGs, MGEs, and VFGs on 472 MAGs derived from phyllosphere samples. B Bubble plot 
depicting the number of ARGs, MGEs, and VFGs associated with multidrug resistant bacterial taxa (ARG > 2). C Network analysis revealing the 
co-occurrence patterns between MAGs belonging to Pseudomonas spp. and various ARG subtypes. D Geographic distribution of samples, displaying the 
number of ARGs, MGEs, and VFGs in Pseudomonas spp. from various habitats. E Maximum-likelihood phylogenetic tree showing the phylogenetic 
distributions of ARGs, MGEs, and VFGs on Pseudomonas spp. genome from the present studied phyllosphere samples and those downloaded from NCBI 
database. F A comparison of median genome-wide nucleotide diversity between Pseudomonas spp. and other taxa. 

annotation of these genomes revealed that Pseudomonas spp. 
are high-capacity ARG-carriers, with each genome containing 
an average of 3–17 ARGs, multiple VFGs (ranging from 23 to 
79), and MGEs (ranging from 31 to 89) worldwide ( Fig. 4D). 
Pseudomonas spp. detected in this study contained a higher 
number of MGEs compared to those downloaded from the NCBI 
(Fig. 4E). Moreover, Pseudomonas spp. exhibited significantly lower 
nucleotide diversity than other species (P < 0.001) (Fig. 4F). In 
contrast, Rhizobiales genomes revealed that Rhizobiales is a low-
capacity ARG carrier, with only 20% of taxa containing ARGs 
(ranging from 1 to 4) (Table S3). 

Specific metabolites induced the enrichment of 
pseudomonas spp. in phyllosphere 
Metabolomics analysis revealed that leaf metabolic profiles were 
highly distinct among different wheat cultivars (Adonis, P < 0.01) 
(Fig. 5A). Furthermore, we used a volcano plot (Fig. S9) and  VIP  
values (Fig. 5B) to investigate biomarker metabolites in the high-
ARG wheat. The results showed that 101 metabolites were signif-
icantly enriched in the wheat leaf tissue of high-ARG genotypes 
(ANOVA, P < 0.05) (Fig. S9). Most of these metabolites belonged to 
organooxygen compounds, prenol lipids, and carboxylic acids and 
derivatives. These results showed that DIMBOA-Glc is one of most 
important chemicals driven the divergence between high-ARG 
wheat and low-ARG wheat, with the abundance of DIMBOA-Glc 
in the leaves of JY, Elite2–33, and N1A-T1D being significantly 
higher compared to N5D-T5B (Log2FC > 1, P < 0.001) (Figs 5B 
and S10). 

The procrustes analysis indicated a significant relationship 
between leaf metabolites and phyllosphere resistomes (Fig. 5C). 
CCA analysis further showed that the first two axes explained 
27.8% of the variance between the selected variables. And 

Pseudomonas spp. were the most important drivers of the plant 
resistomes (Fig. 5D). Furthermore, our analysis revealed strong 
correlations between multiple upregulated metabolites and the 
abundance of ARGs, and microorganisms enriched in the high-
ARG phyllosphere (Figs S11 and S12). Additionally, the presence 
of DIMBOA-Glc showed significant positive correlations with 
both the total abundance of phyllosphere Pseudomonas spp. 
(Spearman’s r = 0.79, P < 0.01) (Fig. S11) and ARGs (Spearman’s 
r = 0.76, P < 0.01) (Fig. S12). 

Compared to the overall metabolome patterns, DIMBOA-
Glu exhibited a stronger relationship with the phyllosphere 
resistome (Fig. 5D). Furthermore, to corroborate the hypothesis 
that specific metabolites induce the enrichment of Pseudomonas 
spp. in the high-ARG phyllosphere, a microcosm experiment was 
conducted to explore the effects of exogenous DIMBOA-Glu on 
the Pseudomonas species. The results showed that the addition of 
DIMBOA-Glu significantly altered the overall patterns of bacterial 
communities (Adonis, P < 0.05) (Fig. S13). At the phylum level, 
exogenous DIMBOA-Glu increased the relative abundance of 
Actinobacteria whereas decreasing that of Firmicutes (Fig. S13). At 
the genus level, the relative abundances of Pseudomonas spp. were 
significantly enhanced in the microbial communities with the 
addition of DIMBOA-Glu, regardless of concentration of DIMBOA-
Glu (ANOVA, P < 0.05) (Fig. 5E). Conversely, an opposite trend 
was observed in the absolute abundance of Pseudomonas species 
(Fig. S14). 

Discussion 
Understanding how genetic variation in plants, including 
chromosome mutations, losses, and gains, impacts the antibiotic 
resistome of its phyllosphere is crucial for developing sustainable
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Figure 5. Responses of leaf metabolic profiles to plant genetic variation and their relationship with the phyllosphere resistome. A Principal component 
analysis (PCA) showing the effect of wheat genotype on the leaf metabolome. B Heatmap and variable important in projection (VIP) value bar chart 
illustrating the expression patterns of upregulated metabolites in each leaf sample. The log2FC represents the fold change in metabolite expression 
between two groups, and the log10(P value) indicates the significance of expression differences, with higher values denoting more significant 
differences. Each dot corresponds to a specific metabolite, and dot size reflects VIP values. C Procrustes analysis of ARG profiles with leaf metabolites 
in high-ARG level and low-ARG level samples. D Canonical correspondence analysis (CCA) depicting the quantitative correlation between phyllosphere 
ARG patterns and key factors. E Validation microcosm experiment showing the influence of DIMBOA-Glu concentrations on the relative abundance of 
Pseudomonas species. 

agricultural practices. This study investigated the associations 
between genetic variation in wheat and its antibiotic resistome 
within the specific context of chromosomal changes. Our results 
demonstrated that host genetic variation significantly regulates 
the phyllosphere antibiotic-resistance gene (ARG) profiles of 
globally distributed and important staple crops such as wheat. 
Wheat cultivars exhibited high abundances and diversities 
of ARGs, accompanied by the proliferation of Pseudomonas 
species, which are widely distributed carriers of multiple ARGs, 
as evidenced by metadata. Additionally, we found that plant 
genetic variation reshaped metabolic profiles, and changes 
in the concentration of specific metabolites were associated 
with the abundances of ARGs and Pseudomonas. Therefore, we 
suggest that plant genotype has a considerable impact on the 
establishment of the phyllosphere microbiome by producing 
distinct metabolic profiles. These profiles, in turn, profoundly 
increase the relative abundance of Pseudomonas spp., thereby  
enhancing the resistomes. Our experimental validation con-
firmed that the leaf metabolite DIMBOA-Glu significantly altered 
bacterial communities and increased the relative abundance of 
Pseudomonas species ( Fig. 6). These findings elucidate how plant 
genetic information regulate phyllosphere resistome, and provide 
insights into the potential impacts of natural and artificial plant 
evolution on the occurrence and dissemination of antibiotic 
resistance. 

In this study, we observed that specialized genotypes harbor 
higher levels of ARGs, mobile genetic elements (MGEs), and viru-
lence factor genes (VFGs) in their phyllosphere, indicating that the 
host genome contributes to shaping the phyllosphere resistome 
and affecting the risks of ARGs. For example, we found that the 
loss of chromosomes 1A, 1B, and 1D, as well as the duplication 
of chromosome 1B, significantly enriched the abundance and 
diversity of ARGs. Consequently, we propose that manipulating 
group-1 chromosomes may promote the accumulation of ARGs 
in the wheat phyllosphere. Furthermore, such genetic variation 
increases the abundance of multidrug resistance genes, which 
exhibit the highest average risk index [47]. Previous research 
indicates that bacteria in stressed environments are more likely 
to evolve and maintain multidrug resistance genes. For instance, 
in nutrient-limited or antimicrobial-exposed settings, multidrug 
resistance offers a significant competitive advantage, allowing 
bacteria to survive and proliferate despite the adverse conditions 
[51, 52]. Therefore, genetic variation, such as chromosome loss or 
gene mutations in wheat, can lead to physiological alterations. 
These alterations may affect the availability of essential nutrients 
or metabolites in the phyllosphere, creating a selective environ-
ment that favors the growth of specific microbial populations, 
including those with high-risk ARGs. The presence and accumu-
lation of high-risk ARGs in the wheat phyllosphere microbiome 
can potentially transfer to pathogenic bacteria, leading to the
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Figure 6. Proposed model for genetic-dependent, DIMBOA-Glu, and Pseudomonas-mediated ARG accumulation in the wheat phyllosphere (Created with 
BioRender.com). 

emergence of multidrug-resistant infections [ 53]. Moreover, the 
integration of wheat and wheat-derived products into the food 
chain can facilitate the spread of these ARGs [54, 55], emphasizing 
the need to consider the increased risk of antibiotic resistance to 
the ecosystem during the domestication and/or genetic engineer-
ing breeding processes. 

Microbial communities are well-known drivers of the antibiotic 
resistome [1, 25, 56]. During plant evolution, resident microorgan-
isms co-evolve with their hosts and adapt to them, significantly 
altering plant microbial communities, which in turn reshapes 
the resistome [57]. For example, wheat genotypes with high-ARG 
abundances in the phyllosphere are accompanied by an elevated 
population of Pseudomonas species. Previous studies suggest that 
Pseudomonas spp. can colonize a broad spectrum of habitats due 
to their ability to exploit diverse nutritional sources and adapt to 
new environmental conditions [58, 59]. The significant variation 
in Pseudomonas spp. abundances across different samples, despite 
all wheat genotypes being grown in the same glasshouse with a 
common source of air microbiomes, suggests that genetic vari-
ations among the wheat genotypes are influence the microbial 
community composition. Specific genotypic traits might lead to 
differences in metabolite composition, thereby creating niches 
that favor the proliferation of specific bacterial orders like Pseu-
domonadales in certain genotypes. Meanwhile, abundant VFGs and 
MGEs reside in these multidrug-resistant Pseudomonas species. 
In particular, the abundances of KOs involved in P. aeruginosa 
biofilm formation significantly enriched in the phyllosphere sam-
ples with higher abundances of ARGs. P. aeruginosa possesses a 
highly conserved core genome with low-sequence diversity and a 
highly variable accessory genome that communicates with other 
Pseudomonas spp. and genera via horizontal gene transfer [60]. 
This partly explains the high abundances of ARGs and MGEs in 
high-ARG wheat cultivars, whereas the lower prevalence of Pseu-
domonas spp. in low-ARG phyllospheres explains the low abun-
dances of ARGs in low-ARG wheat cultivars. Moreover, compared 

to overall phyllosphere microbial communities, the abundance 
of Pseudomonas spp. plays a more important role in shaping the 
phyllosphere resistome. We further queried 350 Pseudomonas spp. 
genomes and 100 Rhizobiales genomes from the global dataset 
covering a variety of habitats to assess the presence of ARGs. 
All strains of Pseudomonas spp. host a wide spectrum of environ-
mental ARGs, MGEs, and VFGs, yet Rhizobiales is a low-capacity 
ARG carrier, with only 20% of taxa containing ARGs (ranging 
from one to four). Overall, these findings suggest that although 
the capacity to carry ARGs is common among various bacterial 
orders, the degree of enrichment can vary significantly. The dif-
ferential abundance of ARGs and associated genetic elements in 
Pseudomonas spp. versus Rhizobiales highlights the complex inter-
actions between host plant genetics and microbial community 
composition. These results underscore the importance of consid-
ering the specific microbial taxa when evaluating the resistome of 
plant-associated microbiomes. These findings indicate that host 
genetic variation influences microbial community composition 
and resistome dynamics in a taxon-specific manner, and the 
bloom of Pseudomonas spp. in the wheat phyllosphere is the main 
contributor to antibiotic resistance. In other words, we suggest 
that Pseudomonas spp. can be considered a reliable environmental 
predictor for ARG accumulation in wheat phyllospheres during 
wheat breeding. 

Distinct leaf metabolic profiles were exhibited in high-
ARG wheat cultivars and low-ARG wheat cultivars. Moreover, 
multiple upregulated metabolites in high-ARG wheat cultivars 
showed a strong correlation with various phyllosphere ARGs. 
Thus, leaf metabolites are probably a functional determinant 
of phyllosphere ARG patterns. Our study further suggests that 
the upregulated metabolite DIMBOA-Glc enriches Pseudomonas 
species, thereby enhancing phyllosphere ARGs. In general, 
plants synthesize and release specialized metabolites into their 
environment, serving as chemical cues for recruiting and shaping 
microbial colonizers [15, 61, 62]. DIMBOA-Glc is one of the
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most frequently identified benzoxazinoids in wheat leaves, 
with its concentration varying widely among different wheat 
varieties. Previous studies have reported that benzoxazinoids 
could regulate rhizosphere microbial communities and even 
attract root Pseudomonas spp. in maize [14, 63, 64]. Therefore, the 
positive and strong relationships between Pseudomonas spp. and 
DIMBOA-Glc indicate that the enrichment of DIMBOA-Glc leads to 
a more specialized community capable of resisting or degrading 
benzoxazinoid compounds enriched in the phyllosphere. This 
is supported by the enrichment of plant hormone signal trans-
duction and glycolysis/gluconeogenesis potential in phyllosphere 
microorganisms. Recent study demonstrated that plant-derived 
benzoxazinoids could act as antibiotics [14]. Thus, benzoxazinoids 
may kill specific bacteria and exert selection pressure on other 
microorganisms, which in turn increases the abundances of ARGs. 
Pseudomonas spp. contain the highest proportion of regulatory 
genes observed within a bacterial genome, including a substantial 
number of genes dedicated to the catabolism, transport, 
and efflux of organic compounds. Additionally, Pseudomonas 
spp. possess numerous potential chemotaxis systems. These 
genetic features reflect an evolutionary adaptation that enables 
Pseudomonas spp. to thrive in diverse environments and resist 
a variety of antimicrobial substances [59]. This is evidenced by 
our observation that antibiotic inactivation and efflux pumps 
are the dominant resistance mechanisms in the phyllosphere 
of wheat cultivars with high-ARG and DIMBOA-Glc abundance. 
Moreover, we experimentally demonstrated that the release of 
DIMBOA-Glc significantly enhances the relative abundances of 
Pseudomonas spp. whereas decreasing their absolute abundance. 
These findings validate the antimicrobial effects of DIMBOA-
Glc on microbial communities [14, 64]. In addition to direct 
antimicrobial activities, a previous study reported that DIMBOA 
could act as a chemoattractant for Pseudomonas putida KT2440 
[64], reinforcing our observation that DIMBOA-Glc drives the 
accumulation of Pseudomonas spp. in the phyllosphere. Overall, 
the changes of leaf metabolites caused by genetic variation over 
the course of evolution may lead to a highly specialized microbial 
community that could enrich phyllosphere ARGs. 

The plant microbiome serves as a critical interface between 
human and natural microbiomes, representing a pivotal pathway 
for human exposure to environmental antibiotic resistance [65]. 
Thus, ARG carriers selected by certain plant metabolites during 
evolutionary processes may exacerbate the dispersal of antibiotic 
resistance through the food chain, direct contact, and globaliza-
tion, posing significant risks to human health [66]. Although our 
research focused on wheat, recent studies have highlighted the 
significant impact of plant genetic variation on the microbiome 
across various crops, including maize, tomato, and soybean [4, 17, 
67]. For example, a recent study observed that root exudate purine 
or its derivatives enrich root-associated Pseudomonas spp. and 
improve wild soybean growth under salt stress [67]. These studies 
provide insights into the generalizability of our observed interac-
tions between host genetics, microbial communities, and ARGs. 

In summary, our study unveiled the significant role of host 
genotypic variation in shaping the patterns of ARG in the 
wheat phyllosphere. By integrating data on the phyllosphere 
microbiome, metabolic profiles, and global Pseudomonas spp. 
genome data, along with findings from validation experiments 
on metabolites and bacteria, we demonstrated that chemically 
distinct leaf metabolites resulting from host genetic variation can 
lead to the development of a highly specialized microbial commu-
nity capable of enriching phyllosphere ARGs. Our study addressed 
fundamental questions regarding the factors influencing the 

phyllosphere resistomes throughout plant evolution. Further 
research is warranted to elucidate the molecular mechanisms 
underlying the interactions between wheat genetic variations 
and the microbiome. Longitudinal studies across different growth 
stages and environmental conditions will provide insights into 
the stability and evolution of these interactions. Our findings can 
inform breeding programs aimed at developing crop varieties with 
reduced potential for ARG accumulation. By selecting genotypes 
with lower ARG prevalence, we can mitigate the spread of antibi-
otic resistance in agricultural settings. Additionally, strategies 
such as the targeted application of beneficial microorganisms 
or amendments that modulate plant–microbe interactions can 
manage the microbiome composition, thereby reducing high-
risk ARGs. 
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