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Abstract

Antibiotic resistance in plant-associated microbiomes poses significant risks for agricultural ecosystems and human health. Although
accumulating evidence suggests a role for plant genotypes in shaping their microbiome, almost nothing is known about how the
changes of plant genetic information affect the co-evolved plant microbiome carrying antibiotic resistance genes (ARGs). Here, we
selected 16 wheat cultivars and experimentally explored the impact of host genetic variation on phyllosphere microbiome, ARGs,
and metabolites. Our results demonstrated that host genetic variation significantly influenced the phyllosphere resistomes. Wheat
genotypes exhibiting high phyllosphere ARGs were linked to elevated Pseudomonas populations, along with increased abundances of
Pseudomonas aeruginosa biofilm formation genes. Further analysis of 350 Pseudomonas spp. genomes from diverse habitats at a global
scale revealed that nearly all strains possess multiple ARGs, virulence factor genes (VFGs), and mobile genetic elements (MGEs) on
their genomes, albeit with lower nucleotide diversity compared to other species. These findings suggested that the proliferation
of Pseudomonas spp. in the phyllosphere significantly contributed to antibiotic resistance. We further observed direct links between
the upregulated leaf metabolite DIMBOA-Glc, Pseudomonas spp., and enrichment of phyllosphere ARGs, which were corroborated by
microcosm experiments demonstrating that DIMBOA-GIc significantly enhanced the relative abundance of Pseudomonas spp. Overall,
alterations in leaf metabolites resulting from genetic variation throughout plant evolution may drive the development of highly
specialized microbial communities capable of enriching phyllosphere ARGs. This study enhances our understanding of how plants
actively shape microbial communities and clarifies the impact of host genetic variation on the plant resistomes.
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Microbial communities are considered the primary determinant
of the antibiotic resistomes [1, 2]. These communities have
coevolved with their plant hosts for over 400 million years,
influenced by intrinsic factors such as plant genotype [3, 4],
age [5], and species [6], as well as by various biotic and abiotic
environmental factors including geographical location [4, 7], soil
type [7], climate [8], and insect herbivory [9]. Of particular interest
among these factors is the impact of plant genetic variation on
microbial communities. For example, genome-wide association
studies have shown that different Arabidopsis accessions exhibited
different microbial communities, and the plant loci responsible
for defense and cell wall integrity affect the variation in
leaf microbial communities [10, 11]. Over evolutionary and

natural and artificial selection aimed at enhancing plant fitness
and increasing crop yield. Such natural and artificial selection
can act on plant traits including tissue structure (e.g. cutin and
cuticular wax properties, trichome branching), physiology (e.g.
exudates and volatiles), plant defense, and hormone signaling
pathways (e.g. auxin), which significantly shape the plant
microbial communities and initiate microbe-microbe interactions
[5, 12, 13]. For instance, plant-derived benzoxazinoids can
function as antibiotics and exert selective pressure on bacterial
communities [14]. Understanding how changes in plant genetic
information influence the co-evolved plant microbiome is
crucial because these changes can alter microbial community
composition and function, potentially affecting the dissemination
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of antibiotic-resistance genes. Given the rising concern over
antibiotic resistance, it is essential to explore these genetic
interactions to develop strategies for managing and mitigating
the spread of resistance within agricultural ecosystems.

Plant metabolites are pivotal in governing interactions between
plants and microorganisms, contributing to the active recon-
struction of microbial communities [15]. Variations in microbiota
among plant species or genotypes are often associated with differ-
encesin plantexudates [12, 16, 17]. Forinstance, altered exudation
of defensive compounds (e.g. benzoxazinoids) leads to a reorgani-
zation of the root microbiome in mutants compared to wild-type
maize [17,18]. Compared to the rhizosphere, the phyllosphere rep-
resents an open system and hosts distinct microbial assemblages.
These microorganisms originate from diverse sources, including
soil, air, and nearby plants, and are driven by the plant and envi-
ronmental parameters [19]. Despite the open nature of the phyllo-
sphere and its exposure to various environmental factors, recent
research indicates the presence of a core set of leaf-associated
microbiota that persist in the phyllosphere, with plant genotype
having a substantial impact on its microbiome [20, 21]. Moreover,
leaf metabolites can influence the composition and function of
phyllosphere microorganisms. These microorganisms, in turn, can
affect the production and release of leaf metabolites through
their interactions with the plant host. However, there is limited
experimental evidence on leaf metabolites and their impact on
the phyllosphere microbiota, particularly concerning the extent
of plant genotype influence on the quantity and quality of leaf
metabolites and their relationship with the resistomes [12, 16, 17].
Understanding the genetic effects on the phyllosphere-specific
microbiome and its interactions with metabolites is essential
for predicting and monitoring plant resistomes throughout plant
evolution.

Wheat, a staple food crop that feeds approximately 20% of the
world’s population, has undergone extensive evolutionary pro-
cesses, including natural hybridization, polyploidization, domes-
tication, and mutation over more than 10000 years [22]. Given
that alterations in microorganisms can induce changes in antibi-
otic resistance gene (ARG) profiles, we hypothesized that specific
genetic variations among wheat genotypes lead to distinct leaf
metabolites, which in turn develop a specialized phyllosphere
microbiome that influences the abundance and distribution of
ARGs. Our objective was to identify the key wheat metabolites
involved in this process and to elucidate the mechanisms by
which these metabolites affect the microbial community and its
resistomes. To test this hypothesis, we selected 16 wheat cultivars
to (i) characterize the genetic impacts on the abundance and
diversity of ARGs using high-throughput quantitative PCR (HT-
gPCR); (ii) estimate the mobility and risks of the phyllosphere
resistomes by profiling mobile genetic elements (MGEs) and vir-
ulence factor genes (VFGs); (iii) illustrate variations in phyllo-
sphere microbial communities across different wheat cultivars;
(iv) identify key microbial taxa contributing to differences in
the phyllosphere resistomes; and (v) comprehensively elucidate
interactions between plant-specific metabolites, ARGs, and key
taxa through nontargeted metabolic analysis, metadata analysis,
and confirmatory experiments.

Materials and methods
Experiment design and sample collection

A pot experiment was conducted to explore the relationships
between wheat genotypes and phyllosphere resistomes. Exper-
imental soil (0-20 cm depth) was collected from farmland in

Ningbo, Zhejiang Province, China, and air-dried in the laboratory
at 25°C for several days. Subsequently, the dried soil was sieved
through a 2-mm nylon mesh and moistened with sterile water
to achieve 60% of the maximum field capacity. To stabilize and
enhance the activity of the native soil microbial communities
and provide a consistent baseline for subsequent experimental
treatments, the soil was preincubated at 25°C in the dark for
2 weeks to activate soil microorganisms. We analyzed the genetic
variations within the three subgenomes of wheat, designated
as A, B, and D. This nomenclature is based on the evolutionary
origins of modern hexaploid wheat (Triticum aestivum), which com-
prises three distinct sets of chromosomes from different ancestral
species: Triticum urartu (A subgenome), a species related to Aegilops
speltoides (B subgenome), and Aegilops tauschii (D subgenome). Each
subgenome contributes a set of chromosomes, resulting in a total
of 21 chromosome pairs (7 pairs per subgenome), labeled as 1A to
7A for the A subgenome, 1B to 7B for the B subgenome, and 1D
to 7D for the D subgenome. These genomes harbor unique sets of
genes and genetic variations, contributing to wheat’s wide genetic
diversity and adaptability to various environments. Therefore, six-
teen wheat cultivars obtained from the Jiangsu Academy of Agri-
cultural Sciences (Jiangsu Province, China), including those widely
distributed worldwide (Chinese spring) [23], local species from
northern and southern China, synthetic hexaploid wheat, and cul-
tivars with missing chromosomes, were used for the microcosm
experiment (Fig. 1A and Table S1).

Prior to setting up the experiment, seeds of the 16 wheat
cultivars were sterilized in 30% H,0, for 15 min, followed by
thorough washing with sterilized MilliQ water. Subsequently, the
seeds were germinated on moist filter paper for 48 h at 28°C
in the dark. The germinated seeds were then sown in PVC pots
(16.8 cm x 13 cm x 15.8 cm) containing 3 kg of preincubated
soil, with each pot receiving five seeds. Two weeks after sowing,
the seedlings were thinned to 3 per pot. The wheat seedlings
were grown in a 12-hour light (light intensity 10000 lux) and
12-hour dark cycle, with 65% relative humidity, maintaining a
daytime temperature of 28°C and a nighttime temperature of
22°C. Each wheat cultivar was allocated three pots, which were re-
randomized daily during the growth period. Soil moisture content
was regularly adjusted to 35% by weight using deionized water.
After 7 weeks of growth, corresponding to the tillering stage of
wheat development, the wheat leaves were collected and stored
at —80°C for further analysis. The tillering stage is characterized
by an increased leaf surface area and heightened microbial
interactions, creating a nutrient-rich environment conducive to
microbial growth and horizontal gene transfer, which may pose a
risk for ARG transmission.

DNA extraction

DNA was extracted from the wheat phyllosphere using the
FastDNA Spin Kit for soil (MP Biomedical, Santa Ana, California,
USA). Briefly, 5 g of leaf tissue was sonicated and shaken in a
250-mL conical flask containing 100 mL of 0.01 M phosphate-
buffered saline (PBS). The mixture was then filtered first through
a sterilized nylon net and then through a cellulose membrane
with a pore size of 0.22 um. The filters were subsequently cut into
pleces using sterilized pair of scissors, and DNA was extracted
according to the manufacturer’s protocol [24]. DNA concentration
and quality were determined using a NanoDrop 2000 (Thermo
Fisher, USA) and gel electrophoresis with a 1.0% agarose gel,
respectively. DNA extracts were stored at —20°C until further
analysis.
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Figure 1. Effect of wheat genotype on phyllosphere resistome. A Graphical representation of the experimental design, involving 16 wheat cultivars. B
Nonmetric multidimensional scaling analysis based on the Bray—Curtis distances showing the distinct distribution patterns of phyllosphere ARG
profiles across different wheat genotypes. C Relative abundance (copies per 16S rRNA gene copy) of ARGs in various wheat genotypes.

High-throughput quantitative PCR

The ARG patterns in the phyllosphere samples were analyzed
using high-throughput quantitative PCR (HT-qPCR) with the
Wafergen SmartChip Real-time PCR system (Wafergen Inc., USA)
[25]. A total of 384 primer sets (refer to Table S2) were employed,
comprising 319 primer sets targeting nearly all major classes
of ARGs, 7 taxonomic genes, 57 primer sets targeting MGEs
(including 9 insertional genes, 11 plasmid genes, 10 transposase
genes, 3 integron-integrase genes, and 24 other MGEs), along with
primer sets for 16S rRNA genes. The 384 primer sets employed in
this study were carefully selected based on previously published
studies to ensure specificity and efficiency [25, 26]. In addition,
these primer sets have been previously employed in various
studies across different habitats, including soil [25], water [27],
phyllosphere [28], and animal guts [29], demonstrating their
reliability and reproducibility. The PCR amplification protocol
involved an initial step of enzyme activation at 95°C for 10 min,
followed by 40 cycles. Each cycle consisted of denaturation
at 95°C for 30 s and annealing at 60°C for 30 s. Melt curves
were automatically generated using Wafergen software. A
threshold cycle (Ct) of 31 was employed as the detection limit
in the present study. The relative copy number of ARGs and
MGEs was calculated using the formula: relative gene copy

number = 1081~ C9(193) Ct represents the threshold cycle obtained
during PCR amplification.

High-throughput sequencing

To characterize the bacterial and fungal communities in the
wheat phyllosphere across different genotypes, specific bacterial
(515F/806R for the V4 region of 16S rRNA gene) [30] and fungal
(gITS7/1TS4ngs for the ITS2 region) [31] primer sets with barcodes
were selected for amplification. The amplified products were
submitted to Majorbio Bio-pharm Technology Co., Ltd (Shang-
hai, China) for high-throughput sequencing using the MiSeq Sys-
tem (Illumina; 300 cycles) platform. Microbiome bioinformatics
analyses were conducted using QIIME 2 [32]. Raw sequencing
data were initially demultiplexed and quality-filtered using the
g2-demux plugin, followed by denoising with DADA2 [33]. All
amplicon sequence variants (ASVs) were aligned using multiple
alignment with fast Fourier transform via g2-alignment [34], and
a phylogenetic tree was constructed with FastTree [35]. Taxo-
nomic assignments for bacterial and fungal ASVs were performed
using the g2-feature-classifier [36] with the classify-sklearn Naive
Bayes taxonomy classifier via 99% comparisons to the SILVA 138
[37] and UNITE 8.0 [38] reference databases, respectively. More-
over, our study exclusively targeted bacteria and fungi, sequences
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corresponding to mitochondria, archaea, chloroplasts, and unas-
signed reads for 16S rRNA gene were removed before downstream
analysis.

Nontarget metabolomics analysis

Leaf tissues were washed with sterilized 1 x PBS, and 50 mg of
each sample was extracted using a methanol solution (4:1, v/v)
containing an internal standard. The mixture was processed using
a tissue crusher and ultrasound, followed by protein precipitation.
Following centrifugation, supernatants were transferred for LC-
MS/MS analysis using a UHPLC-Q Exactive HF-system (Thermo
Fisher Scientific). Quality control samples were used to monitor
the stability of the analysis. Data processing steps included noise
removal, database searching, and normalization. Detailed proce-
dures are provided in the supporting information (refer to S1 text).

Metagenome analysis

To further reveal the hosts of the wheat phyllosphere resistomes,
15 samples, including genotypes JY, Elite2-33, N1A-T1D, N3B-T3D,
and N5D-T5B were selected for metagenomic analysis using the
DNBSEQ-T7 instrument. Data analysis was processed on the
Majorbio platform (http://www.majorbio.com). The paired-end
llumina reads were trimmed of adaptors, and low-quality reads
(length <50 bp or with a quality value <20 or having N bases)
were removed by fastp (version 0.20.0) [39]. The reads were then
assembled with MEGAHIT (version 1.1.2) to create contigs of
>300 bp [40].Gene prediction was conducted using MetaGene
[41], and open reading frames (ORFs) >100 bp were translated
using the NCBI translation table (http://www.ncbi.nlm.nih.gov/
Taxonomy/taxonomyhome.html/index.cgi?chapter=tgencodes#S
G1). CD-HIT (version 4.6.1) was used to construct a nonredundant
gene catalog with 90% sequence identity and coverage [42].
Quality-controlled reads were mapped to the nonredundant
gene catalog with 95% identity using SOAP aligner (version 2.21)
[43] to evaluate gene abundance. Representative sequences were
aligned to the NCBI NR database using DIAMOND (version 0.8.35)
with an e-value cutoff of le-5 for taxonomic annotations [44].
The predicted gene protein sequences were compared with the
Kyoto Encyclopedia of Genes and Genomes (KEGG) databases to
obtain functional annotation information. Antibiotic-resistant
annotation was conducted using the ARGs online analysis
pipeline (ARGs-OAP) [45, 46]. Assessing high-risk ARGs is crucial,
as they pose a significant threat to public health. In the present
study, the health risk of ARGs to humans was divided into four
degrees (Q1, Q2, Q3, and Q4) based on human accessibility,
mobility, pathogenicity, and clinical availability [47]. Virulence
factors were annotated using DIAMOND (version 0.8.35) against
the VFDB database (http://www.mgc.ac.cn/VFs/) with an e-value
cutoff of 1e-5 [44].

Validation microcosm setup

To simulate interactions between specialized metabolites and
microorganisms, we selected an accessible, relatively important,
and referable upregulated leaf metabolite DIMBOA-Glu (Toronto
Research Chemicals, CAS: 113565-32-5). The objective was to
explore the influence of exogenous DIMBOA-Glu on Pseudomonas
species. Four treatments were designed: O ppb (without DIMBOA-
Glu addition), 10 ppb (10 ug DIMBOA-Glu per kg soil), 100 ppb
(100 g DIMBOA-Glu per kg soil), and 1000 ppb (1000 ug DIMBOA-
Glu per kg soil). These treatments were conducted in 100-mL glass
beaker microcosms, with each treatment allocated in triplicate.
All microcosms were maintained under conditions consistent
with those of the wheat development experiment. After four

weeks, soil samples were collected for DNA extraction. The 16S
TRNA gene amplicon sequencing was conducted to profile the
microbial communities, and the abundance of Pseudomonas spp.
was quantified using quantitative PCR.

Statistical analysis

Data analysis was performed using Microsoft Excel 2020 for cal-
culating averages and sums. Microbial diversity was assessed by
calculating the Shannon index for a-diversity, whereas g-diversity
was estimated using the Bray-Curtis distance between samples.
The nonmetric multidimensional scaling analysis (nMDS) and sig-
nificance tests (PERMANOVA test) based on Bray-Curtis distance
were employed to evaluate differences in ARGs and phyllosphere
microbial communities among different wheat cultivars, respec-
tively, using the “vegan” [48] and “labdsv” [49] packages. Linear
discriminant analysis effect size (LEfSe) was calculated with the
Kruskall-Wallis test (P <0.05). “igraph” package was used to con-
struct the co-occurrence network based on Spearman’s correla-
tion matrix (|r| > 0.7, P < 0.01), and then visualized with Gephi 0.10
version. Heatmaps were generated using the “vegan” package [48]
in R4.3.1. Principal coordinate analysis (PCA) plot was generated
from Bray-Curtis similarity matrices using “ggplot2” in R4.3.1 to
distinguish the metabolite profiles in different wheat genotypes.
Volcano analysis and the variable importance in the projection
(VIP) values from orthogonal projections to latent structures dis-
criminant analysis (OPLS-DA) were further used to distinguish the
leaf metabolites associated with high-ARG and low-ARG wheat
genotypes. Canonical correlation analysis (CCA) was conducted
with the “vegan” package in R 4.3.1 to investigate the correlations
between the phyllosphere resistomes and microbiome (bacterial
community, fungal community), MGEs, and metabolites. We used
the value of nMDS axis 1 to represent the bacterial and fun-
gal g-diversity, and PCA axis 1 to represent the overall pattern
of leaf metabolome. All bar charts, bubble plots, scatter dia-
grams, and OLS regressions in this study were generated using the
“ggplot2” package in R 4.3.1 [50], with significance considered at
P <0.05.

Results

Abundance and diversity of ARGs in the
phyllosphere

A total of 104 ARGs were observed in the wheat phyllosphere
samples, covering 12 major classes of antibiotics commonly
administered to humans and animals, such as aminoglycoside,
beta-lactams, and tetracycline, among others (Fig. S1A). The
nMDS analysis and PERMANOVA revealed that the phyllosphere
resistomes formed two major clusters (Adonis, P <0.01, Bray-
Curtis distance) (Fig. 1B). For instance, higher abundances and
diversity of phyllosphere ARGs were found in the wheat genotypes
of CS, JY, SC42, Elite2-33, N1D-T1B, N1A-T1D, N1A-T1B, and
N2D-T2B compared to other genotypes such as N3B-T3D, N3D-
T3B, N4A-T4B, N4A-T4D, N5B-TSA, N5D-T5B, N6D-T6B, and
N7D-T7B (Figs 1C and S1A). According to ARG abundances, the
phyllosphere samples were classified into high- and low-ARG
abundance genotype groups. Furthermore, considering resistance
mechanisms, antibiotic inactivation was the dominant mecha-
nism in all phyllosphere samples. However, the proportions of
antibiotic inactivation and efflux pump mechanisms were higher
in phyllosphere samples with high-ARG abundances, whereas
phyllosphere ARGs in wheat genotypes with low abundance
exhibited higher proportions of cellular protection mechanisms
(Fig. 1C).
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Figure 2. Effects of wheat genotype on mobility and risks of the phyllosphere resistome. A Relative abundance of mobile genetic elements (MGEs) in
different wheat genotypes, small panel showing the correlation between the relative abundance of ARGs and MGEs. B Metagenomic analysis revealing
the relative abundance of virulence factor genes (VFGs) across various wheat genotypes. C Metagenomic analysis revealing the relative abundance of
the high-risk ARGs in the wheat genotypes JY, Elite2-33, N1A-T1D, N3B-T3D, and N5D-N5B.

Mobility and risks of phyllosphere resistome

Thirty-nine MGEs (including insertional genes, transposase genes,
integrase genes, and plasmids) were targeted in this study, with
transposase genes significantly enriched in phyllospheres with
higher ARG abundances (ranging from 0.026 to 0.252 copies per
16S rRNA genes) compared to low-ARG genotypes (ranging from 0
to 0.021 copies per 16S rRNA genes) (Figs 2A and S1B). OLS regres-
sion analysis further revealed a significant correlation between
the relative abundance of ARGs and MGEs (R? =0.9147, P < 0.0001)
(Fig. 2A).

To further corroborate the distinct ARG patterns and assess
risks, phyllosphere metagenomes were generated from five wheat
genotypes, three with high-ARG abundances (JY, Elite2-33, and
N1A-T1D) and two with low abundances (N3B-T3D and NS5D-
T5B). Consistent with HT-qPCR results, genotypes JY, Elite2-33,
and N1A-T1D contained higher ARG abundances than N3B-
T3D and NSD-TSB (Fig. S2). Most detected ARGs in the wheat
phyllosphere belonged to Q1, the highest-risk ARGs, and conferred

multidrug resistance (Fig. 2B). Additionally, 19 VFGs were detected
in the wheat phyllosphere, with genotypes harboring high
abundances of ARGs containing a higher total abundance of VFGs
(Fig. 2C). Pathogenic bacteria in high-ARG phyllospheres carried
more abundant pilQ genes, whereas iroC and iroD were dominant
VFGs in low-ARG phyllospheres (Fig. 2C).

Phyllosphere microbiome varied with wheat
genotype

Both bacterial and fungal «-diversity in the wheat phyllosphere
significantly varied among plant genotypes (ANOVA, P <0.05)
(Figs 3A and S3A). For example, the Shannon index of bacterial
diversity in genotypesJY, Elite2-33, and N1A-T1D was significantly
lower than in N3B-T3D and N5D-T5B (ANOVA, P < 0.05) (Fig. 3A).
Nonmetric multidimensional scaling analysis of Bray-Curtis
distances demonstrated that variations in wheat genotypes
were the primary drivers of bacterial and fungal B-diversity
in the wheat phyllosphere (Adonis, P <0.01) (Figs S3B and S$4).
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high-ARG (high) and low-ARG (low) phyllosphere samples.

At the order level, most bacterial communities in high-ARG
abundance phyllospheres belonged to Pseudomonadales (ranging
from 50.7% to 96.1%), whereas Rhizobiales were abundant in
the low-ARG phyllospheres (Fig. 3B). Moreover, the majority of
fungal sequences were classified as Ascomycota (Fig. S3C). The
co-occurrence network indicated strong interactions between
Pseudomonas species, other bacterial taxa, and fungal taxa
(Fig. 3Q).

To explore the impact of wheat genetic variation on phyl-
losphere microbial function, we analyzed differences in KEGG
metabolic capacities between high-ARG and low-ARG phyllo-
spheres. Ninety KEGG orthologs (KOs) showed distinct distribution
patterns between high-ARG and low-ARG groups (Fig. S5), with
significant enrichment of KOs involved in various pathways
such as Pseudomonas aeruginosa biofilm formation, plant hormone
signal transduction, and glycolysis/gluconeogenesis, in high-ARG
phyllospheres (ANOVA, P < 0.01) (Fig. 3D).

Pseudomonas spp. enrichment in high-ARG
phyllospheres

LEfSe analysis indicated that bacteria Pseudomonas spp. were
significantly enriched in high-ARG phyllospheres (Fig. S6).
The co-occurrence networks of bacteria and fungi differed

significantly between the two groups of phyllosphere samples,
with Pseudomonas spp. playing a central role in the network of
high-ARG phyllospheres (Figs 3C and S7).

A total of 472 MAGs were recovered from the phyllosphere
samples, and functionally annotated for ARGs, VFGs, and
MGEs. These MAGs covered 16 bacterial orders, with 165
MAGs remaining unclassified. In addition, the MAGs from
Pseudomonadales occupied a large proportion in the high-ARG
phyllospheres (Fig. S8). Among these, 22 MAGs from Pseudomonas
spp. were identified, most representing multidrug-resistant
bacteria carrying numerous VFGs and MGEs (Figs 4A and B).
The 12 ARGs captured on Pseudomonas spp. encoded resistance
to various antibiotics, including aminoglycoside, bacitracin,
chloramphenicol, polymyxin, quinolone, sulfonamide, and
multidrug. In addition, ten of these detected ARGs are considered
high-risk (Fig. 4C). Ten MAGs from the order Rhizobiales also
carried ARGs (ranging from 0 to 2) and VFGs (ranging from 2
to 6), but the number of ARGs within Rhizobiales was ten times
lower compared to Pseudomonas spp. (Fig. 4A). To validate that
Pseudomonas spp. are more important carriers of ARGs compared
to other species, 350 Pseudomonas spp. genomes (Fig. 4D) and
100 Rhizobiales genomes (Table S3) were downloaded from NCBI
database, covering diverse hosts and habitats. Reassembly and
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annotation of these genomes revealed that Pseudomonas spp.
are high-capacity ARG-carriers, with each genome containing
an average of 3-17 ARGs, multiple VFGs (ranging from 23 to
79), and MGEs (ranging from 31 to 89) worldwide (Fig.4D).
Pseudomonas spp. detected in this study contained a higher
number of MGEs compared to those downloaded from the NCBI
(Fig. 4E). Moreover, Pseudomonas spp. exhibited significantly lower
nucleotide diversity than other species (P<0.001) (Fig.4F). In
contrast, Rhizobiales genomes revealed that Rhizobiales is a low-
capacity ARG carrier, with only 20% of taxa containing ARGs
(ranging from 1 to 4) (Table S3).

Specific metabolites induced the enrichment of
pseudomonas spp. in phyllosphere

Metabolomics analysis revealed that leaf metabolic profiles were
highly distinct among different wheat cultivars (Adonis, P <0.01)
(Fig. 5A). Furthermore, we used a volcano plot (Fig. S9) and VIP
values (Fig. 5B) to investigate biomarker metabolites in the high-
ARG wheat. The results showed that 101 metabolites were signif-
icantly enriched in the wheat leaf tissue of high-ARG genotypes
(ANOVA, P < 0.05) (Fig. S9). Most of these metabolites belonged to
organooxygen compounds, prenol lipids, and carboxylic acids and
derivatives. These results showed that DIMBOA-GIlc is one of most
important chemicals driven the divergence between high-ARG
wheat and low-ARG wheat, with the abundance of DIMBOA-Glc
in the leaves of JY, Elite2-33, and N1A-T1D being significantly
higher compared to N5D-T5B (Log2FC>1, P<0.001) (Figs 5B
and S10).

The procrustes analysis indicated a significant relationship
between leaf metabolites and phyllosphere resistomes (Fig. 5C).
CCA analysis further showed that the first two axes explained
27.8% of the variance between the selected variables. And

Pseudomonas spp. were the most important drivers of the plant
resistomes (Fig. 5D). Furthermore, our analysis revealed strong
correlations between multiple upregulated metabolites and the
abundance of ARGs, and microorganisms enriched in the high-
ARG phyllosphere (Figs S11 and S12). Additionally, the presence
of DIMBOA-Glc showed significant positive correlations with
both the total abundance of phyllosphere Pseudomonas spp.
(Spearman’s r=0.79, P<0.01) (Fig. S11) and ARGs (Spearman’s
r=0.76, P <0.01) (Fig. 512).

Compared to the overall metabolome patterns, DIMBOA-
Glu exhibited a stronger relationship with the phyllosphere
resistome (Fig. 5D). Furthermore, to corroborate the hypothesis
that specific metabolites induce the enrichment of Pseudomonas
spp. in the high-ARG phyllosphere, a microcosm experiment was
conducted to explore the effects of exogenous DIMBOA-Glu on
the Pseudomonas species. The results showed that the addition of
DIMBOA-Glu significantly altered the overall patterns of bacterial
communities (Adonis, P <0.05) (Fig. S13). At the phylum level,
exogenous DIMBOA-Glu increased the relative abundance of
Actinobacteria whereas decreasing that of Firmicutes (Fig. S13). At
the genus level, the relative abundances of Pseudomonas spp. were
significantly enhanced in the microbial communities with the
addition of DIMBOA-Glu, regardless of concentration of DIMBOA-
Glu (ANOVA, P <0.05) (Fig. S5E). Conversely, an opposite trend
was observed in the absolute abundance of Pseudomonas species
(Fig. S14).

Discussion

Understanding how genetic variation in plants, including
chromosome mutations, losses, and gains, impacts the antibiotic
resistome of its phyllosphere is crucial for developing sustainable
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Pseudomonas species.

agricultural practices. This study investigated the associations
between genetic variation in wheat and its antibiotic resistome
within the specific context of chromosomal changes. Our results
demonstrated that host genetic variation significantly regulates
the phyllosphere antibiotic-resistance gene (ARG) profiles of
globally distributed and important staple crops such as wheat.
Wheat cultivars exhibited high abundances and diversities
of ARGs, accompanied by the proliferation of Pseudomonas
species, which are widely distributed carriers of multiple ARGs,
as evidenced by metadata. Additionally, we found that plant
genetic variation reshaped metabolic profiles, and changes
in the concentration of specific metabolites were associated
with the abundances of ARGs and Pseudomonas. Therefore, we
suggest that plant genotype has a considerable impact on the
establishment of the phyllosphere microbiome by producing
distinct metabolic profiles. These profiles, in turn, profoundly
increase the relative abundance of Pseudomonas spp., thereby
enhancing the resistomes. Our experimental validation con-
firmed that the leaf metabolite DIMBOA-Glu significantly altered
bacterial communities and increased the relative abundance of
Pseudomonas species (Fig. 6). These findings elucidate how plant
genetic information regulate phyllosphere resistome, and provide
insights into the potential impacts of natural and artificial plant
evolution on the occurrence and dissemination of antibiotic
resistance.

In this study, we observed that specialized genotypes harbor
higher levels of ARGs, mobile genetic elements (MGEs), and viru-
lence factor genes (VFGs) in their phyllosphere, indicating that the
host genome contributes to shaping the phyllosphere resistome
and affecting the risks of ARGs. For example, we found that the
loss of chromosomes 1A, 1B, and 1D, as well as the duplication
of chromosome 1B, significantly enriched the abundance and
diversity of ARGs. Consequently, we propose that manipulating
group-1 chromosomes may promote the accumulation of ARGs
in the wheat phyllosphere. Furthermore, such genetic variation
increases the abundance of multidrug resistance genes, which
exhibit the highest average risk index [47]. Previous research
indicates that bacteria in stressed environments are more likely
to evolve and maintain multidrug resistance genes. For instance,
in nutrient-limited or antimicrobial-exposed settings, multidrug
resistance offers a significant competitive advantage, allowing
bacteria to survive and proliferate despite the adverse conditions
[51, 52]. Therefore, genetic variation, such as chromosome loss or
gene mutations in wheat, can lead to physiological alterations.
These alterations may affect the availability of essential nutrients
or metabolites in the phyllosphere, creating a selective environ-
ment that favors the growth of specific microbial populations,
including those with high-risk ARGs. The presence and accumu-
lation of high-risk ARGs in the wheat phyllosphere microbiome
can potentially transfer to pathogenic bacteria, leading to the
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emergence of multidrug-resistant infections [53]. Moreover, the
integration of wheat and wheat-derived products into the food
chain can facilitate the spread of these ARGs [54, 55], emphasizing
the need to consider the increased risk of antibiotic resistance to
the ecosystem during the domestication and/or genetic engineer-
ing breeding processes.

Microbial communities are well-known drivers of the antibiotic
resistome [1, 25, 56]. During plant evolution, resident microorgan-
isms co-evolve with their hosts and adapt to them, significantly
altering plant microbial communities, which in turn reshapes
the resistome [57]. For example, wheat genotypes with high-ARG
abundances in the phyllosphere are accompanied by an elevated
population of Pseudomonas species. Previous studies suggest that
Pseudomonas spp. can colonize a broad spectrum of habitats due
to their ability to exploit diverse nutritional sources and adapt to
new environmental conditions [58, 59]. The significant variation
in Pseudomonas spp. abundances across different samples, despite
all wheat genotypes being grown in the same glasshouse with a
common source of air microbiomes, suggests that genetic vari-
ations among the wheat genotypes are influence the microbial
community composition. Specific genotypic traits might lead to
differences in metabolite composition, thereby creating niches
that favor the proliferation of specific bacterial orders like Pseu-
domonadales in certain genotypes. Meanwhile, abundant VFGs and
MGEs reside in these multidrug-resistant Pseudomonas species.
In particular, the abundances of KOs involved in P aeruginosa
biofilm formation significantly enriched in the phyllosphere sam-
ples with higher abundances of ARGs. P. aeruginosa possesses a
highly conserved core genome with low-sequence diversity and a
highly variable accessory genome that communicates with other
Pseudomonas spp. and genera via horizontal gene transfer [60].
This partly explains the high abundances of ARGs and MGEs in
high-ARG wheat cultivars, whereas the lower prevalence of Pseu-
domonas spp. in low-ARG phyllospheres explains the low abun-
dances of ARGs in low-ARG wheat cultivars. Moreover, compared

to overall phyllosphere microbial communities, the abundance
of Pseudomonas spp. plays a more important role in shaping the
phyllosphere resistome. We further queried 350 Pseudomonas spp.
genomes and 100 Rhizobiales genomes from the global dataset
covering a variety of habitats to assess the presence of ARGs.
All strains of Pseudomonas spp. host a wide spectrum of environ-
mental ARGs, MGEs, and VEGs, yet Rhizobiales is a low-capacity
ARG carrier, with only 20% of taxa containing ARGs (ranging
from one to four). Overall, these findings suggest that although
the capacity to carry ARGs is common among various bacterial
orders, the degree of enrichment can vary significantly. The dif-
ferential abundance of ARGs and associated genetic elements in
Pseudomonas spp. versus Rhizobiales highlights the complex inter-
actions between host plant genetics and microbial community
composition. These results underscore the importance of consid-
ering the specific microbial taxa when evaluating the resistome of
plant-associated microbiomes. These findings indicate that host
genetic variation influences microbial community composition
and resistome dynamics in a taxon-specific manner, and the
bloom of Pseudomonas spp. in the wheat phyllosphere is the main
contributor to antibiotic resistance. In other words, we suggest
that Pseudomonas spp. can be considered a reliable environmental
predictor for ARG accumulation in wheat phyllospheres during
wheat breeding.

Distinct leaf metabolic profiles were exhibited in high-
ARG wheat cultivars and low-ARG wheat cultivars. Moreover,
multiple upregulated metabolites in high-ARG wheat cultivars
showed a strong correlation with various phyllosphere ARGs.
Thus, leaf metabolites are probably a functional determinant
of phyllosphere ARG patterns. Our study further suggests that
the upregulated metabolite DIMBOA-Glc enriches Pseudomonas
species, thereby enhancing phyllosphere ARGs. In general,
plants synthesize and release specialized metabolites into their
environment, serving as chemical cues for recruiting and shaping
microbial colonizers [15, 61, 62]. DIMBOA-Glc is one of the
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most frequently identified benzoxazinoids in wheat leaves,
with its concentration varying widely among different wheat
varieties. Previous studies have reported that benzoxazinoids
could regulate rhizosphere microbial communities and even
attract root Pseudomonas spp. in maize [14, 63, 64]. Therefore, the
positive and strong relationships between Pseudomonas spp. and
DIMBOA-Glc indicate that the enrichment of DIMBOA-Glc leads to
a more specialized community capable of resisting or degrading
benzoxazinoid compounds enriched in the phyllosphere. This
is supported by the enrichment of plant hormone signal trans-
duction and glycolysis/gluconeogenesis potential in phyllosphere
microorganisms. Recent study demonstrated that plant-derived
benzoxazinoids could act as antibiotics [14]. Thus, benzoxazinoids
may kill specific bacteria and exert selection pressure on other
microorganisms, which in turn increases the abundances of ARGs.
Pseudomonas spp. contain the highest proportion of regulatory
genes observed within a bacterial genome, including a substantial
number of genes dedicated to the catabolism, transport,
and efflux of organic compounds. Additionally, Pseudomonas
spp. possess numerous potential chemotaxis systems. These
genetic features reflect an evolutionary adaptation that enables
Pseudomonas spp. to thrive in diverse environments and resist
a variety of antimicrobial substances [59]. This is evidenced by
our observation that antibiotic inactivation and efflux pumps
are the dominant resistance mechanisms in the phyllosphere
of wheat cultivars with high-ARG and DIMBOA-Glc abundance.
Moreover, we experimentally demonstrated that the release of
DIMBOA-Glc significantly enhances the relative abundances of
Pseudomonas spp. whereas decreasing their absolute abundance.
These findings validate the antimicrobial effects of DIMBOA-
Glc on microbial communities [14, 64]. In addition to direct
antimicrobial activities, a previous study reported that DIMBOA
could act as a chemoattractant for Pseudomonas putida KT2440
[64], reinforcing our observation that DIMBOA-Glc drives the
accumulation of Pseudomonas spp. in the phyllosphere. Overall,
the changes of leaf metabolites caused by genetic variation over
the course of evolution may lead to a highly specialized microbial
community that could enrich phyllosphere ARGs.

The plant microbiome serves as a critical interface between
human and natural microbiomes, representing a pivotal pathway
for human exposure to environmental antibiotic resistance [65].
Thus, ARG carriers selected by certain plant metabolites during
evolutionary processes may exacerbate the dispersal of antibiotic
resistance through the food chain, direct contact, and globaliza-
tion, posing significant risks to human health [66]. Although our
research focused on wheat, recent studies have highlighted the
significant impact of plant genetic variation on the microbiome
across various crops, including maize, tomato, and soybean [4, 17,
67]. For example, a recent study observed that root exudate purine
or its derivatives enrich root-associated Pseudomonas spp. and
improve wild soybean growth under salt stress [67]. These studies
provide insights into the generalizability of our observed interac-
tions between host genetics, microbial communities, and ARGs.

In summary, our study unveiled the significant role of host
genotypic variation in shaping the patterns of ARG in the
wheat phyllosphere. By integrating data on the phyllosphere
microbiome, metabolic profiles, and global Pseudomonas spp.
genome data, along with findings from validation experiments
on metabolites and bacteria, we demonstrated that chemically
distinct leaf metabolites resulting from host genetic variation can
lead to the development of a highly specialized microbial commu-
nity capable of enriching phyllosphere ARGs. Our study addressed
fundamental questions regarding the factors influencing the

phyllosphere resistomes throughout plant evolution. Further
research is warranted to elucidate the molecular mechanisms
underlying the interactions between wheat genetic variations
and the microbiome. Longitudinal studies across different growth
stages and environmental conditions will provide insights into
the stability and evolution of these interactions. Our findings can
inform breeding programs aimed at developing crop varieties with
reduced potential for ARG accumulation. By selecting genotypes
with lower ARG prevalence, we can mitigate the spread of antibi-
otic resistance in agricultural settings. Additionally, strategies
such as the targeted application of beneficial microorganisms
or amendments that modulate plant-microbe interactions can
manage the microbiome composition, thereby reducing high-
risk ARGs.
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