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Limiting Resources Define the Global Pattern of Soil

Microbial Carbon Use Efficiency

Yongxing Cui,* Junxi Hu, Shushi Peng, Manuel Delgado-Baquerizo, Daryl L. Moorhead,
Robert L. Sinsabaugh, Xiaofeng Xu, Kevin M. Geyer, Linchuan Fang, Pete Smith,

Josep Pefiuelas, Yakov Kuzyakov, and Ji Chen*

Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic
C used by microorganisms for anabolism and ultimately influences the
amount of C sequestered in soils. However, the key factors controlling CUE
remain enigmatic, leading to considerable uncertainty in understanding soil C
retention and predicting its responses to global change factors. Here, we
investigate the global patterns of CUE estimate by stoichiometric modeling in
surface soils of natural ecosystems, and examine its associations with
temperature, precipitation, plant-derived C and soil nutrient availability. We
found that CUE is determined by the most limiting resource among these four
basic environmental resources within specific climate zones (i.e., tropical,
temperate, arid, and cold zones). Higher CUE is common in arid and cold
zones and corresponds to limitations in temperature, water, and plant-derived
C input, while lower CUE is observed in tropical and temperate zones with
widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The
contrasting resource limitations among climate zones led to an apparent
increase in CUE with increasing latitude. The resource-specific dependence of
CUE implies that soils in high latitudes with arid and cold environments may
retain less organic C in the future, as warming and increased precipitation can
reduce CUE. In contrast, oligotrophic soils in low latitudes may increase
organic C retention, as CUE could be increased with concurrent
anthropogenic nutrient inputs. The findings underscore the importance of
resource limitations for CUE and suggest asymmetric responses of organic C
retention in soils across latitudes to global change factors.

1. Introduction

Organic carbon (C) in soils, which orig-
inates from net primary production, is
mainly decomposed by heterotrophic mi-
croorganisms that release CO, back into the
atmosphere.['? The efficiency with which
microorganisms assimilate organic C into
biomass (commonly defined as C use ef-
ficiency, CUE) represents the balance be-
tween the accumulation and loss of organic
C in soils and is critical for soil C storage
and climate change mitigation.*l Stud-
ies on this basic microbial characteristic,
from cross-system patterns to its responses
to environmental change, have suggested
that CUE could decline under future cli-
mate scenarios.”®! However, the funda-
mental drivers of CUE in terrestrial ecosys-
tems remain largely unknown,!®) which hin-
ders our understanding of the patterns and
mechanisms governing CUE and, conse-
quently, projections of soil C stocks under
climate change.

The drivers of CUE are not clear for three
main reasons. First, CUE is usually deter-
mined by incubation experiments in the
specific context such as the methods (i.e.,
13C./C-labeled substrates and '#O-labeled
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water), experimental conditions (e.g., temperature and soil mois-
ture), and duration (from hours to weeks).>1%1) These differ-
ences complicate the discovery of robust spatial patterns of CUE
and the corresponding drivers using either incubation exper-
iments or meta-analyses based on isotopic measurements.34]
Second, various environmental factors affecting CUE obscure
the identification of determinants. CUE undoubtedly depends
on numerous environmental conditions, given the constant
and ubiquitous interactions of soil microorganisms with their
environment.['>13] Unfortunately, it is not possible to measure or
assess the impacts of all possible factors on CUE. A crude alter-
native, generally used in current models of soil C cycling, is to
represent the CUE by temperature-dependent functions.[*141]
This simplified method has identified broad spatial patterns of
CUE,**] but only represents temperature effects and ignores
other potential drivers. Third, varying impacts of drivers on CUE
across environmental gradients may further obscure the mech-
anisms determining CUE. For example, temperature, soil water
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and nutrient availability, and nutrient stoichiometry have strong
effects on CUE, but these effects depend on climate and ecosys-
tem types.”15-18] The relative importance of the potential drivers
of CUE under different environmental conditions is inconclu-
sive.

Indeed, the resources required for microbial metabolism and
the environmental factors that determine the availability of re-
sources are potentially the most important drivers of CUE. Tem-
perature, water, C source, and nutrients (mainly nitrogen (N) and
phosphorus (P)) are the most important factors regulating micro-
bial activity and growth.[®1219-22] These factors are also sensitive
to global climate change. For example, climate change is affect-
ing soil temperature and water availability, while atmospheric N
deposition is disproportionately altering the relative availability
of N and P in the soil across terrestrial ecosystems.[?>?] Iden-
tifying the effects of these fundamental factors on CUE under
different environmental conditions is therefore a clear priority
to understand the mechanisms controlling CUE and to predict
the impact of global change on the microbially mediated soil
C cycle.

To investigate patterns of CUE on a global scale, we esti-
mated community-level CUE (n = 1094) in natural ecosystems
worldwide (Figure 1a) using culture-independent stoichiometric
modeling.!?’) Compared to isotopic approaches based on incu-
bation experiments, stoichiometric modeling can estimate CUE
using measurable indicators relevant to microbial demand and
supply of soil resources (details in Experimental Section). In par-
ticular, the CUE estimated by this method (hereafter “CUE;”)
embodies the ability of a microbial community in situ to recon-
cile disparities between resource availability and metabolic de-
mand by obtaining C, N, and P from polymeric resources.!>?]
As such, it reflects physiological acclimatization, shifts in com-
munity composition, and genetic adaptations that regulate the
production of ecoenzymes catalyzing polymeric resources. To
explore which factors control CUEg;, we separately tested how
CUEy; is related to temperature, precipitation, plant-derived C,
and soil nutrients in tropical, arid, temperate, and cold zones
(Figure S1, Supporting Information). The associations of CUEg
with the four environmental factors were further verified using
43 isotope-based manipulative experiments worldwide. We hy-
pothesized that sufficient availability of C and water, along with
a warm environment, would lead to low CUEg;, as microbial
activity and overflow respiration are generally high under these
conditions.[?’] In contrast, soil systems with a cold environment
or low availability of C and water, combined with sufficient nutri-
ents (e.g., N and P) would result in a high CUEq;.

2. Results

2.1. Global Patterns of CUE;

CUEg; increased with latitude across global natural ecosystems
(p < 0.001, Figure 1b), despite a large variability (0.06-0.59 with a
mean of 0.27) (Figure 1a). CUEg also differed among five climate
zones: tropical, arid, temperate, cold, and polar zones (p < 0.001,
Figure 1d), with the lowest values in the tropical zone (mean of
0.24), and the highest in the arid zone (mean of 0.38).
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Figure 1. Global distribution of microbial carbon use efficiency (CUEgt) estimated by stoichiometric modeling. a), 1094 CUEg values at 447 sites from
160 studies. b), Latitudinal patterns of CUEg fitted by quadratic and linear models, ***
frequency distribution of CUEgy for the 1094 observations. d), Differences in CUEgr among five climate zones. Tropical zone, CUEgt mean = 0.243,
standard deviation (SD) = 0.074; arid zone, mean = 0.381, SD = 0.126; temperate zone, mean = 0.281, SD = 0.117; cold zone, mean = 0.290, SD =
0.132; and polar zone, mean = 0.286, SD = 0.152. The numbers in parentheses below the violin plots indicate the sample size. Different letters indicate

Climate zone

indicates p < 0.007 in the fitted model. c), Histogram of the

significant differences (p < 0.001) among the climate zones based on the analysis of linear mixed-effect models followed by Tukey’s tests.
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Figure 2. Effects of four environmental variables on microbial carbon use efficiency (CUEgy) in soils across climate zones. a—d) Generalized linear
models identifying the relationships between the four environmental variables and CUEg; for each climate zone. A quadratic model was used to identify
the relationship between CUEgr and soil pH for the tropical zone because the data showed an obvious unimodal pattern (d). e-h) Partial least squares
path modeling of the major pathways of the influences of the four environmental variables on CUEgy across the climate zones. A priori path modeling is
shown in Figure S5 (Supporting Information). The upper part of each subplot shows the pathways of the influences of these environmental variables on
CUEgr, and the lower part of each subplot shows the total effects of these variables on CUEgt. Blue solid and orange dotted arrows indicate positive and
negative causal flows (p < 0.05), respectively. The numbers near the arrows indicate significant standardized path coefficients. R? indicates the variance
of the dependent variable explained by the model. “p < 0.05; p < 0.0; ““p < 0.001. Gray solid/dashed arrows indicate the lack of significant relationships
(effects) between the variables (p > 0.05). Note that the gray double-sided arrows between MAP and soil MAT theoretically indicate potential interactions
between them, as stated in our priori pathway modeling. However, we did not calculate the interactive values between them using our data in the PLS-PM
analysis, as the path in the PLS-PM must be one-way, representing the causal effect of one latent variable on another. MAP, mean annual precipitation;

Soil MAT, mean annual soil temperature; LA, leaf area index.

2.2. Effects of Environmental Factors on CUEg;

Four environmental factors (mean annual precipitation, MAP;
mean annual soil temperature, soil MAT; leaf area index, LAI;
and soil pH) were considered as potential drivers of CUEg. The
four factors were supposed to represent water supply, tempera-
ture limitation, and the availability of plant-derived C and soil
nutrients (mainly N and P) for soil microorganisms, respectively
(details in Experimental Section). Notably, soil pH rather than nu-
trient indicators was used to represent availability of soil nutri-
ents to avoid statistical collinearity, as the stoichiometric model
of CUEg; includes soil N and P indicators as parameters (details
in Experimental Section). We also combined the polar zone with
the cold zone because the polar zone had a small sample size
(35 observations) and the CUEg; in the polar zone did not differ
from the cold zone (p > 0.05, Figure 1d). Therefore, there were
only four climate zones (i.e., tropical, arid, temperate, and cold
zones) in the following analyses. The four environmental factors

Adv. Sci. 2024, 11, 2308176 2308176 (4 of 11)

showed the expected gradients across climate zones (p < 0.001,
Figure S3, Supporting Information). For example, MAP was low-
est in the arid and cold zones, and both MAP and soil MAT were
highest in the tropical zone.

In the tropical and temperate zones with high primary produc-
tivity, precipitation, and temperature, soil pH had the strongest
effect on CUEg; compared to LAI, MAP, and soil MAT (p <
0.001, Figure 2; Figure S3, Supporting Information). It is note-
worthy that soil pH in the tropical zone correlated non-linearly
with CUEg; (p < 0.001, Figure 2d), with CUEg; being highest at
apH of5.1 (p < 0.001, Figure S4, Supporting Information). How-
ever, LAI, MAP, and soil MAT were more important for CUEg; in
arid and cold zones with low primary productivity, precipitation,
and temperature (p < 0.001, Figure 2a—c; Figure S3, Supporting
Information).

The direct and indirect associations between these factors and
CUEg; were further assessed using partial least-squares path
modeling (Figure 2e-h; Tables S4-S7; Figures S5, Supporting

© 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

asu00TT suowMI)) 2A1EAL) [qratdde oy Aq PAUI9AOS aIE SAAIIE (O F9SN JO SA[NI 10] AIRIQIT AUIUQ AO[IAL UO (SUOHIPUOD-PUE-SULIA W0 Ka[ 1A ATeIqiouI[u0,/SdY) SUONIPUOD) PUE SWA oY} 238 “[$Z07/01/p1] U0 ATeIqrT SuIuUQ 9[IA “(PFPIUES 9P OLIAISIUI) UOISIAOI] [FUONEN AULIGP0]) ystueds Aq 9/ [80ETOTSAPE/Z001 01/10p/W0dKajiav AIeqrioutuo;/:sdny wo1y papeojusoq S§ *b70Z ‘38612



ADVANCED
SCIENCE NEWS

ADVANCED
SCIENCE

Open Access,

www.advancedsciencenews.com

Information). We found that the direct effect of soil pH on
CUEg was greater in both tropical (—0.31) and temperate (0.42)
zones than in other zones, while the direct effects of MAP
(—0.55) and LAI (—0.35) on CUEg; were greater in arid and cold
zones than in other zones. In addition, MAP had the greater
indirect effects on CUEg; compared to other factors in the arid
(—0.15), temperate (—0.11), and cold (—0.20) zones (Tables S5-S7,
Supporting Information). Overall, soil pH had the largest total
effects on CUEg; in the tropical (—0.31) and temperate (0.42)
zones (Figure 2e,g), while MAP had the largest total effects on
CUEg; in the arid (—0.70) and cold (—0.37) zones (Figure 2h).
These results were further confirmed by the analysis of the selec-
tion of mixed-effect models (Figure S6, Supporting Information)
and random-forest models (Figure S7, Supporting Information).

2.3. Response of Isotope-Based CUE (CUE-Isotope) to Changes
in Environmental Factors

To verify the results of the statistical analyses, 195 paired obser-
vations of CUE-isotope were collected at 43 sites from 41 publica-
tions around the world that independently measured CUE with
either *C-labeled substrates or ¥O-labeled water (Figure 3a). Se-
lected studies with incubation periods are generally within 24 h
to minimize the effects of trial duration on measurements. We
quantified the responses of the CUE-isotope to six manipulative
factors to identify the drivers of the CUE-isotope (Figure 3b—d).
The responses of the CUE-isotope to these manipulative factors
are consistent with the effects of selected environmental factors
on CUE; in different climate zones. On average across all stud-
ies and the six manipulative factors, the CUE-isotope responded
strongly to drought and C- and N-additions in the temperate
zone (Figure 3b), and to C-addition in the cold zone (Figure 3d).
For example, C-addition decreased the CUE-isotope in the cold
zone, which is consistent with the results of the generalized lin-
ear model and partial least-squares path modeling for CUEg;
(Figures 2¢,h, and 3c). However, the CUE-isotope did not respond
to most manipulative factors (Figure 3), suggesting either low
sensitivity or wide variation in microbial responses to environ-
mental changes under incubation conditions.[8-30]

3. Discussion

The observed increase in CUE with latitude (Figure 1) supports
our hypothesis that CUE would increase with increasing limi-
tations in the availability of plant-derived C and hydrothermal
conditions, and vice versa. This latitudinal pattern of CUE was
largely explained by selected MAP, soil MAT, LAI, and soil pH
across four climate zones (Figures 2 and 3). We found that MAP
has a greater effect on CUE in the arid and cold zones (generally
high latitudes) than in other regions. These regions are gener-
ally characterized by limited hydrothermal conditions with low
vegetation production. In general, the high availability of plant-
derived C with sufficient hydrothermal conditions in the soil can
reduce CUE through increased microbial metabolic activity and
overflow respiration.[>?!l A limited availability of plant-derived C
for soil microorganisms due to low vegetation production un-
der limiting hydrothermal conditions in the arid and cold zones
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thus corresponded to high CUE (Figure 2c; Figure S3, Support-
ing Information). Limited soil water availability and low temper-
ature could further contribute to the maintenance of high CUE
(Figure 2a,b) by suppressing microbial metabolic rates.[?!] As a
result, the combined limitations in plant-derived C, soil water,
and temperature contributed to high CUE in high-latitude soils
(Figure 4).

In contrast, we found that soil pH had greater effects on CUE
than MAP, soil MAT or LAI in both tropical and temperate zones
(generally low latitudes). High availability of nutrients such as N
and P in the soil tends to increase CUE by supporting the syn-
thesis of microbial biomass.[103%] However, low-latitude soils are
usually characterized by severe nutrient (especially P) deficiency
due to the old age of the exposed parent material, heavy leach-
ing of nutrients, and strong competition between microorgan-
isms and plants for nutrients.*!*2] Such limitation in nutrient
resources could therefore reduce CUE to maintain stoichiomet-
ric homeostasis of microbial biomass in low latitudes.!*) High
plant-derived C input and favorable hydrothermal conditions in
low latitudes could further reduce CUE by increasing microbial
activity.l!! Consequently, the limitation in soil nutrients could be
the main reason for the low CUE in oligotrophic low latitudes.

Carbon and nutrients as crucial components of microbial
metabolism and production directly regulate CUE. Low CUE
in highly productive ecosystems and vice versa (Figure 2¢) in-
dicates that litter-rich soils sequester organic C less efficiently
than litter-poor soils, especially in low latitudes with limited avail-
ability of nutrients. This is consistent with the litter decomposi-
tion model,*3 which suggests that the transfer of C from plants
to soil is less efficient in more productive ecosystems. More-
over, surface soils, which generally have a much higher input
of plant litter with high C:N and C:P ratios, have a lower CUE
(mean of 0.27, Figure la) compared to deeper soils (mean of
CUE > 0.33).3% Such a pattern suggests microbial efforts to
minimize the stoichiometric mismatch between supply and de-
mand for maintaining homeostasis.!*° With an average global
CUE of 0.27 for surface soils (Figure 1a), more than two-thirds
of plant-derived C could return to the atmosphere via micro-
bial metabolism in surface soils. A higher input of plant litter
would consequently lead to a higher CO, release from surface
soils, which could also increase C loss from deeper soils through
the priming effect.’” This counterbalance between microbial
C retention and plant litter input limits the soil C sinks and
may be an inherent constraint for sequestering more C in the
soil.

In addition to the contrasting roles of C and nutrients in CUE,
inconsistent effects of soil MAT on CUE were also observed in
different climate zones (Figure 2b).[*%38] The inconsistent ef
fects likely result from two aspects. First, according to Liebig’s
Law of the Minimum, the most limiting factor in the environ-
ment probably has the greatest effect on microorganisms.!*!) For
example, low water availability should have the dominant effect
on microbial activity in the arid zone, while low temperature
should have the dominant effect on microbial activity in the cold
zone. Second, the differential impacts of temperature on vegeta-
tion production among climate zones (Figure 2e-h) could alter
the relative importance of temperature for microbial activity and
metabolism in different climate zones. Overall, the inconsistent
effects of temperature on CUE across climate zones emphasize
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Figure 3. Responses of microbial carbon use efficiency (CUE-isotope), measured with 3C- or '30-labeled approaches, to six manipulative factors world-
wide. a), Site distribution of manipulative experiments used in this meta-analysis (a total of 195 paired observations at 43 sites from 41 publications).
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ed circles in Europe, the United States, and China. b—d), Natural log response

ratio (LRR) and 95% confidence intervals (Cls) of the CUE-isotope on these manipulative factors for the temperate, cold, and arid zones. No experiment

with N, P, and N+P additions met our criteria in the arid zone, and no

experiment met our criteria for any manipulative factor in the tropical zone.

Manipulative factors: drought (rainfall reduction), warming (soil warming), C (addition of plant litter), N (addition of mineral N), P (addition of mineral
P), and N+P (addition of both mineral N and P). The numbers on the right side of the Cls indicate the sample sizes for each group. The effects of the
manipulative factors were considered significant if the confidence interval did not include zero, that is, the filled circles with the asterisks (*) and the
hollow circles indicate significant and non-significant effects, respectively.

the uncertainties in predicting CUE in ecosystems based on func-
tions that rely solely on individual variables.[*37]
4. Implications for Soil C Cycling and Uncertainties

The latitudinal patterns of CUE (Figure 1) indicate that the po-
tential for soil organic C retention increases with latitude.[®12]
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However, the resource dependence of CUE implies that the ex-
isting patterns of CUE in high and low latitudes could shift in
opposite directions under global change. Increases in tempera-
ture, precipitation, and primary production could reduce CUE
in high-latitude soils by mitigating the limitations of tempera-
ture, water, and plant-derived C on microorganisms and pro-
moting their activity and overflow respiration.[>4%] In contrast,
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Figure 4. Conceptual framework showing the contrasting effects of different resource limitations on microbial carbon use efficiency (CUE) across climate
zones. In this framework, the limitation of temperature, water, and plant C on microorganisms in the high latitudes leads to high CUE, which could thus
contribute to the high potential of soil organic C retention in these ecosystems. In contrast, the limitation of soil nutrients such as nitrogen (N) or
phosphorus (P) on microorganisms in the low latitudes results in low CUE, which could thus contribute to the low potential of soil organic C retention

in these ecosystems, despite the much higher input of plant C.

CUE could increase in low-latitude soils if anthropogenic nutri-
ent inputs such as N and P deposition increase the availability
of soil nutrients,**?] which stimulate microbial anabolism and
growth.[**#] This argument is supported by a widely observed
decrease in soil respiration and an increase in soil C sequestra-
tion under N deposition.[*>*% The opposite shifts in CUE across
latitudes suggest that microbially mediated soil C retention may
respond asymmetrically to global change factors, which is neither
recognized nor accounted for in most biogeochemical models.

These results contribute to the understanding and prediction
of the soil C cycle, but with several caveats. First, in our study,
the CUE; estimated by the stoichiometric model and the CUE-
isotope measured by incubation experiments are from different
ecosystems with various environmental conditions, which im-
plies uncertainties when comparing their drivers. Additionally,
we estimated a global average CUEg; of 0.27 (Figure 1a), which
was lower than the results measured with isotopic approaches
(global mean = 0.37 under N addition, mean = 0.33 under con-
trol treatment).[*®! This discrepancy could be partly because only
a few enzymes were used as model parameters for estimating
CUEg;. While this approach is rational (see Experimental Sec-
tion). it may not fully capture microbial demand and actual re-
source acquisition.>#”) We thus acknowledge the importance and
necessity of comparing CUE from model estimates and isotope
measurements as a priority in future research to reduce uncer-
tainties in conclusions due to different methods.

Second, the enzymatic indicators we selected are generally mi-
crobial proxies using polymeric matter.[2**¥! Soluble resources
that do not require enzymatic catalysis for acquisition may skew
predictions.>#%3%1 However, we only used observations of sur-
face soils (mean depth of 11.0 cm, Figure S2, Supporting In-
formation) from natural ecosystems in which the dominant re-
source pools should be polymers from plant litter.’!] This se-
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lection could reduce the uncertainties arising from soluble re-
sources, such as those present in the rhizosphere and cropland.

Third, we considered only four environmental factors as poten-
tial drivers of CUE, whereas other abiotic factors (e.g., soil salinity
and availability of iron and manganese) may also indirectly affect
CUE by acting on microbial taxa and metabolic processes.['*%?] In
particular, the use of soil pH to represent the availability of soil
nutrients introduced uncertainties, as soil pH has varying effects
on the availability of soil N and P, and others. For example, from
acidic to alkaline, it determines the relative availability of NO;~
and NH,* 31531 while its effect on P availability is nonlinear.’*
As found in our study, soil pH has a nonlinear effect on CUE
in tropical soils, with the highest CUE observed at a pH of 5.1
(p < 0.001, Figure 2d; Figure S4, Supporting Information). This
suggests either the crucial role of P availability in CUE in trop-
ical soils due to widespread P limitation for microorganisms at
low latitudes,[**! or that microorganisms have different optimal
pH ranges under varying environmental conditions. Since soils
in tropical ecosystems are generally acidic, the optimal pH for
microorganisms in these soils could be below neutral, such as
the pH of 5.1 observed in our study. Moreover, soil pH can af-
fect microbial community composition and metabolic processes
by inducing physiological stress in microbial cells when pH devi-
ates significantly from neutral.l>>*% These possible mechanisms
suggest that soil pH plays varying roles in CUE across environ-
mental gradients through both direct and indirect effects, which
are not yet fully understood.

In summary, our findings are based on robust generaliza-
tions of CUEg over surface soils globally, verified by indepen-
dentisotope-based manipulative experiments. Beyond the debate
on the environmental factors affecting CUE,[***>7] our study
clarifies the fundamental drivers of CUE across climate zones
and theorizes resource limitations as the key factors regulating
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CUE (Figure 4). Microbially mediated soil C turnover is one of
the most intractable challenges in predicting the terrestrial C
cycle.l125258] This understanding of the fundamental but distinct
roles of plant-derived C, hydrothermal conditions, and soil nu-
trients in CUE is a valuable step toward representing the com-
plex soil C cycle with measurable indicators in biogeochemical
models.

5. Experimental Section

Data Collection—Global Data of the Model Parameters for the Estima-
tion of CUEgy:  We compiled a global dataset of ecoenzymatic activities
(EEA), microbial biomass, and soil nutrients in surface soils (mean depth
~ 11 cm, Figure S2, Supporting Information) from a literature search in
the Web of Science (http://isiknowledge.com) and the Google Scholar
Resource Integrated Database (https://scholar.google.com). Studies pub-
lished between 1980 and 2022 were searched for using combinations of
the keywords “extracellular enzymes OR exoenzymes OR ecoenzymes”,
“threshold element ratio OR enzyme stoichiometry modeling”, and “mi-
crobial biomass OR microbial resource limitations”. The criteria for in-
clusion were as follows. First, the studies included: 1) the activities
of C-, N-, and P-acquiring enzymes, i.e., f—1, 4-glucosidase (BG) as
C-acquiring enzyme, f—1, 4-N-acetylglucosaminidase (NAG) and/or L-
leucine aminopeptidase (LAP) as N-acquiring enzymes, and acid or alka-
line phosphatase (AP) as P-acquiring enzymes (Table ST, Supporting Infor-
mation), 2) the concentrations of microbial biomass C (MBC), N (MBN),
and P (MBP), and 3) the concentrations of C (soil organic C, SOC), N (soil
total N, TN) and P (soil total P, TP), as these indicators are the parame-
ters of the stoichiometric model needed to estimate CUEg1.[2%] Second,
EEA was measured fluorometrically with a 200-um solution of substrates
labeled with 4-methylumbelliferone or 7-amino-4-methylcoumarin. Third,
microbial biomass was determined by chloroform fumigation extraction.
Fourth, data from intensively managed ecosystems (e.g., agroforestry, fer-
tilized plantations, sown pastures, cropland, and urban forests) were ex-
cluded to avoid unexpected anthropogenic disturbances.

Based on these criteria, we selected 1094 paired observations of terres-
trial surface soils at 477 geographic locations from 160 studies (Figures
S1and S2, Supporting Information). Data from the selected studies were
extracted from tables or figures using GetData Graph Digitizer v.2.25. We
also extracted the corresponding location information (longitude and lat-
itude) from the literature. The locations of these sampling sites were ini-
tially divided into five climate zones (tropical, arid, temperate, cold, and
polar zones) based on the global Képpen-Geiger grid map of climate
classification.[>?] However, we further combined the polar zone with the
cold zone, because the polar zone has few observations (n = 35) and sim-
ilar climate conditions to the cold zones, especially for MAT, the main lim-
iting factor.

Environmental Variables: \We considered four environmental variables
(MAP, soil MAT, LAI, and soil pH) as potential drivers of CUEgr, as they de-
fine the basic conditions for microbial survival and reproduction,!20:21]
Specifically, MAP, soil MAT, LAI, and soil pH were considered to repre-
sent water supply, temperature limitation, and availability of plant-derived
C and nutrients (mainly N and P) to soil microbial communities, respec-
tively. Soil temperatures are generally less variable than atmospheric tem-
peratures, which are derived from estimates of air temperature.[%0] We
have therefore used the data for soil MAT from a recent study instead of
the mean annual atmospheric temperature.l% We used the LAl as an in-
dex for the availability of plant-derived C for two reasons. First, almost
all C sources in surface soils originally come from the input of plant litter.
Second, it was recently found that plant litter, rather than soil organic mat-
ter processed by microorganisms, is the dominant C source for microbial
metabolism.[1] In addition, the soil N and P variables were not used to di-
rectly represent nutrient availability in the soil, as the stoichiometric model
used includes these variables as parameters. Soil pH is a fundamental reg-
ulator of N and P availability and indirectly represents their supply.[61:62]
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We therefore used soil pH as an indicator of soil N and P availability. We re-
trieved MAP, soil MAT, and LAl from different sources with a relatively fine
spatial resolution (see Table S3, Supporting Information for details). Soil
pH data were collected from the 160 studies we screened. Sixteen stud-
ies did not contain soil pH data (82 values). These missing values were
extracted from other recently published studies with the same sample lo-
cation information and similar geographic coordinates. In general, soil P
availability is limited in the tropical zone, and N availability is typically low
in the temperate zone. The arid zone is characterized by low precipitation
and plant productivity, while cold zone exhibits low temperature and plant
productivity. Consequently, nutrients in tropical and temperate zones, wa-
ter and plant-derived C in arid zone, and temperature and plant-derived C
in cold zone should be the primary limiting resources for soil microorgan-
isms.

Dataset for CUE-Isotope-Based on '3C or 80 Labeled Approaches: We
compiled another global dataset on the responses of '>C/'®O-based CUE
to various manipulative factors. Specifically, we considered six treatments:
reduction of precipitation (simulation of drought), soil warming, addition
of plant litter, addition of mineral N, addition of mineral P, and addition of
both mineral N and P. These treatments corresponded to the four environ-
mental factors we selected. Relevant studies were identified by searching
the Web of Science and the Google Scholar Resource Integrated Database
using combinations of the keywords “carbon use efficiency OR growth effi-
ciency” and “soil microbial OR soil microbe” and “carbon addition OR ni-
trogen addition OR phosphorus addition OR fertilization OR warming OR
elevated temperature OR drought OR decreased precipitation”. The stud-
ies had to fulfill the following criteria: 1) experimental site, vegetation, and
soil type were similar in the controls and treatments, and 2) the mean val-
ues of the variables could be extracted. A total of 195 paired observations
were obtained from 43 sites around the world in 41 publications that met
these criteria (Figure 3a). For each study, we extracted the CUE-isotope
values in the controls and treatments from the tables or figures using En-
gauge Digitizer 4.1 (Free Software Foundation, Inc., Boston, USA). These
41 studies (see reference list in the Supporting Information) are not in-
cluded in the 160 studies used to estimate the CUEgy.

Estimating Community-Level CUEsr—Comparison of Isotope-based Ap-
proaches and Stoichiometric Modeling for the Characterization of CUE:  Cur-
rent approaches to quantify CUE in soil are based on different assump-
tions and represent different aspects of microbial C metabolism.[>47] The
use of 3C/'“C labeled substrates quantifies the incorporation of C from
substrates into the microbial biomass and the release of C by microbial
respiration.[*] Similarly, substrate-independent approaches measure the
incorporation of 0 from water into DNA simultaneously with the loss
of C through respiration to estimate CUE.[**7] These isotope-based ap-
proaches identify key processes of microbial anabolism and provide ir-
replaceable methods for direct measurement of CUE. However, any dis-
turbance and addition of resources in incubation experiments could alter
the structures and functions of the original communities and trigger cas-
cading responses of microbial metabolism to other resources.[03%4] These
uncertainties make it difficult to identify general patterns of CUE across
ecosystems, whether through multi-ecosystem research or meta-analyses
involving isotope-based incubation experiments.

Alternatively, enzyme-based stoichiometric modeling can estimate CUE
independently of incubation experiments.[>2526.65] \ith this approach,
measurable indicators of natural communities can be used to estimate
CUE, making the estimated CUEs highly comparable among studies.
Despite the obvious advantage, CUE estimates at a large scale based
on field studies or meta-analyses using this method are rare, because
the parameters of the model contain many indicators that need to be
measured.[263465] | this study, we collected 160 individual studies on
a global scale that contain all the indicators needed to estimate CUEgt
with this model. Thus, we were able to use this stoichiometric method to
estimate CUEgy across terrestrial ecosystems.

Stoichiometric Modeling for the Estimation of CUEsr: Sinsabaugh &
Follstad Shahl?®] proposed the enzyme-based stoichiometric model that
incorporates EEA, microbial biomass, and soil resources to estimate CUE
at the community level. The basis of this stoichiometric method is the use
of several specific EEAs to represent the microbial resource requirements.
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In particular, soil microorganisms synthesize and excrete ecoenzymes
(Table S1, Supporting Information) that degrade various organic macro-
molecules into products available for microbial assimilation. The EEA
profile represents the relative microbial acquisition of C, N, and P from
polymeric sources to meet microbial demand and maintain stoichiometric
homeostasis of microbial biomass.[?6] Many ecoenzymes contribute to
the degradation of complex polymers (e.g., cellulose), but only a few (i.e.,
BG, NAG and/or LAP, and AP) catalyze the terminal reactions of the most
common substrates and produce soluble products for microbial assimila-
tion. These ecoenzymes thus define the functional interface between prod-
uct release and microbial acquisition.[®] They generally have the highest
activities per unit of microbial biomass and are strongly associated with
litter decay and microbial metabolism compared to other ecoenzymes.[43]
As a result, these ecoenzymes are usually selected as the proximate
agents of microbial nutrient acquisition during metabolism.[26:67]
We estimated CUEgy using the following Equations (1-3):(2%]

CUEg; = CUE™™ x (e X Scp) v M
ST [(Ken + Sen) X (Keep + Scep)]
Ben 1
Sey = — 2
N Lew 8 EEAc.N @
B
cP 1 3)

Sep=—— X
P Lep " EEAce

where Sc.y and Sc.p are scalars representing the extent to which the al-
location of EEA offsets the disparity between the elemental composition
of available resources and the composition of microbial biomass. In this
case, EEA( and EEA(.p were calculated as BG/(NAG + LAP) and BG/AP,
respectively. In addition, Lc.y and Lc.p were calculated as molar ratios of
SOC:TN and SOC:TP, respectively, and B¢\ and B¢.p were calculated as
molar ratios of MBC:MBN and MBC:MBP. Both K and Kc.p are half-
saturation constants for CUEgt based on the availability of C, N, and P,
and are assumed to be 0.5.126] CUE™® (maximum CUE) is 0.6, based on
metabolic kinetics and energetics.[2663%] Finally, it was found that the
estimated CUEgy was normally distributed on a global scale (Anderson-
Darling normality test, A= 0.21 and p = 0.86; Figure 1c).

Meta-Analysis: We conducted a meta-analysis to obtain data on the
responses of CUE-isotope to six manipulative factors on a global scale.l”°]
The dataset for the analysis includes means, standard deviations (SD;),
and sample sizes (n) extracted from published studies. When the standard
error (SE) was reported instead of the SD, the SD was calculated as follows:

SD = SEv/n 4

When neither SD nor SE was reported, we approximated the missing
SD by multiplying the reported mean by the average coefficient of vari-
ance of the full dataset. We approximated the SD, for the control and the
treatments separately.

The responses of CUE-isotope to these treatments were evaluated us-
ing the natural logarithm of the response ratio (LRR):

LRR=In <§> =In (Z) —n (Z) )

c

where X, and X_ are the means for the treatments and controls, respec-
tively. The variance (v) of the LRR was calculated as:

s? s?
v —+— (6)

nX; n.X,

where n, and n, are the sample sizes for the treatments and controls, re-
spectively, and S, and S, are the standard deviations for the treatments
and controls, respectively.
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The 95% confidence interval (Cl) for LRR was calculated as:

95% Cl = LRR + 1.96s X LRR )

We used the “rma.mv” function in the R package “metafor”l’"] to calcu-
late the weighted mean response ratio and 95% confidence intervals (Cls)
to quantify the response of the CUE-isotope to these selected treatments.
The study site was used as a random factor when measuring the weighted
mean response ratio and 95% Cls. The effect was considered significant
if the 95% Cls did not overlap with zero. In addition, publication bias was
tested with a funnel plot (Figure S8, Supporting Information), and the ob-
served pattern indicated no evidence of publication bias across climate
zones.

Statistical Analysis: We used both quadratic and linear models to de-
scribe the latitudinal pattern of CUEgy (Figure 1b). After a normality test
for the estimated CUEgy (n = 1094) using the Anderson-Darling normality
test, the linear mixed-effects models followed by Tukey’s tests were used
to identify the differences in CUEgy (Figure 1d) and four environmental
variables among climate zones (Figure S3, Supporting Information). This
model was constructed using the “Ime” function in the “nlme” package,
with “climate zone” and “vegetation type” as fixed factors and “sampling
site” as a random factor.

Generalized linear models examined the relationships between CUEgt
and the four environmental variables (MAP, soil MAT, LAI, and soil pH)
in the different climate zones (Figure 2a—d). The quadratic model was
used to identify the relationship between CUEgt and soil pH in the trop-
ical zone, as there was an obvious nonlinear trend between the two vari-
ables (Figure 2d). We also identified the pH threshold using a piecewise
linear-regression analysis (Figure S4; Table S2, Supporting Information).
The relationship between CUEgr and soil pH was fitted and tested with
linear models using the “segmented” package.l”?! Confidence intervals of
thresholds (breakpoints) were calculated based on 1000 bootstrap sam-
ples using the “SiZer” package.l”3] We investigated the cascading relation-
ships between the four environmental variables and CUEgy to identify the
direct and indirect effects of water, temperature, plant-derived C, and soil
nutrients on CUEgy. Based on the priori path model (Figure S5, Support-
ing Information), we applied partial least squares path modeling to identify
significant pathways where the variables had a substantial effect on CUEgr.
After standardizing the raw data using the “standardize” function, we con-
structed the models using the “innerplot” function in the “plspm” package
with default parameters.l’#] The detailed results of the final modeling for
each climate zone, including the direct and indirect effects of the variables
on the CUEgy, were presented in Tables S4-S7 (Supporting Information).

We also took two additional approaches to determine the importance
of the four environmental variables in affecting CUEgy for each climate
zone. First, an analysis of mixed-effects model selection was performed
to identify the most important predictors among the four environmental
variables affecting CUE¢y using the “glmulti” package.”>] Model selection
was based on maximume-likelihood estimation. The importance of each
predictor was calculated as the sum of the Akaike weights for the mod-
els containing that predictors (Figure S6, Supporting Information). A cut-
off value of 0.8 was set to distinguish between essential and unessential
predictors.l”>] Second, we assessed the effects of the four environmen-
tal variables on CUEgy by training random-forest models for each climate
zone using the “RandomForest” package (Figure S7, Supporting Informa-
tion). A 10-fold cross-validation was performed to determine the best mod-
els and the potential importance of the variables using the “rfcv” function.
The significance of the model and the cross-validated R? were assessed us-
ing 1500 permutations of the response variables with the “A3” package. We
calculated the increase in mean squared error (MSE) (%) for each poten-
tial predictor in the constructed random-forest models to determine the
relative importance of all environmental variables in explaining the varia-
tions of CUEgy using the “rfPermut” package. Similarly, the significance
of each predictor for the response variable was assessed using the “rfPer-
mute” package. All statistical analysis were performed using R software
(v.3.3.2).170]
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