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Summary 26 

⚫ Bark serves crucial roles in safeguarding trees physically and chemically, while 27 

also contributing to nutrient cycling and carbon sequestration. Despite its importance, 28 

the broader biogeographical patterns and the potential factors influencing bark C:N:P 29 

stoichiometry in forest ecosystems remain largely unknown.  30 

⚫ In this study, we compiled a comprehensive dataset comprising carbon (C), 31 

nitrogen (N), and phosphorus (P) concentrations in bark with 1240 records from 550 32 

diverse forest sites to systematically analyze the large-scale patterns and the factors 33 

controlling bark C:N:P stoichiometry.  34 

⚫ The geometric means of bark C, N, and P concentrations were found to be 35 

493.17±1.75 mg g-1, 3.91±0.09 mg g-1, and 0.2±0.01 mg g-1, respectively. 36 

Correspondingly, the C:N, C:P, and N:P mass ratios were 135.51±8.11, 37 

3313.19±210.16, and 19.16±0.6, respectively. Bark C:N:P stoichiometry exhibited 38 

conspicuous latitudinal trends, with the exception of N:P ratios. These patterns were 39 

primarily shaped by the significant impacts of climate, soil conditions, and plant 40 

functional groups. However, the impact of evolutionary history in shaping bark C:N:P 41 

stoichiometry outweigh climate, soil, and plant functional group, aligning with the 42 

biogeochemical niche (BN) hypothesis.  43 

⚫ These finding enhance our understanding of the spatial distribution of bark nutrient 44 

stoichiometry and have important implications for modelling of global forest ecosystem 45 

nutrient cycles in a changing environment.  46 
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Introduction 51 

Ecological stoichiometry refers to the balance and flow of chemical elements through 52 

biological systems and has been used to explore physiological processes of plants and 53 

other taxonomic groups and in general the functions and structure of terrestrial and 54 

aquatic ecosystems (Elser et al., 2000; Sterner & Elser, 2002; Sardans et al., 2012). 55 

Carbon (C), nitrogen (N), and phosphorous (P) are considered to be the most basic 56 

elements, which are essential for plant growth and ecosystem function (Allen & 57 

Gillooly, 2009; Marschner, 2011; Wang et al., 2022a). The stoichiometry of C, N, and 58 

P in plant organs largely reflects physiological constraints, evolutionary history, and 59 

ecological adaptation strategies (Ågren, 2004; Wang et al., 2022a; Yan et al., 2023a). 60 

Thus, evaluating C, N, and P stoichiometry patterns and their potential controlling 61 

factors at the large scales are helpful for understanding ecosystem functions and 62 

biogeochemical cycling under changing climate. The large-scale patterns of plant C:N:P 63 

stoichiometry have been widely studied from the perspective of different organs (e.g., 64 

leaf, stem, and root) at the global (McGroddy et al., 2004; Reich & Oleksyn, 2004; Yuan 65 

et al., 2011; Hu et al., 2021), national (Han et al., 2005; Tang et al., 2018; Zhang et al., 66 

2018; Wang et al., 2019; Dynarski et al., 2023), and regional scales (Liu et al., 2010; 67 

Zhao et al., 2018; Cao et al., 2020; Xiong et al., 2022). Bark contains higher nutrient 68 

concentrations than wood per unit volume (Franceschi et al., 2005; Martin et al., 2015). 69 

However, compared to plant leaves, stems and roots, a comprehensive understanding 70 

of the patterns and potential controlling factors of C:N:P stoichiometry in the bark of 71 

diverse tree species at a broad spatial scale remains unclear. 72 

Previous studies have showed that the C:N:P stoichiometry of plant organs may 73 

exhibit clear patterns along geographic or environmental gradients, and climate, soil, or 74 

plant functional type plays important roles in regulating the C:N:P stoichiometry of 75 



plant organs (Sardans & Peñuelas, 2014). For example, using global dataset, an 76 

empirical synthesis study showed that leaf C:N:P ratios were significantly correlated 77 

with latitude in forest ecosystem (McGroddy et al., 2004), and that temperature, 78 

precipitation, and soil nutrients influence the spatial variations of leaf C:N:P ratios 79 

(Reich & Oleksyn, 2004). Similar latitudinal patterns in C:N:P stoichiometry have also 80 

been observed in stems and roots in forest ecosystems (Yuan et al., 2011; Zhang et al., 81 

2018; Wang et al., 2020). Climate and plant type were the dominant factors regulating 82 

spatial variations of stem and fine-root C:N:P ratios across the forest ecosystems of 83 

China. However, whether climate, soil and plant variables are the key factors 84 

influencing global bark stoichiometry is still unknown.  85 

Bark is the outermost tissues of tree stems and branches of woody plants that can 86 

protect the living tree from cold, heat and fire (Rosell, 2016; Pausas, 2017). In addition, 87 

bark acts as a defensive barrier against herbivory and pathogens (Paine et al., 2010). 88 

For living trees, bark is here defined as all the tissues external to the vascular cambium 89 

(Esau, 1967; Rosell et al., 2014; Tuo et al., 2021). Notably, bark constitutes a significant 90 

proportion of forest biomass and plays an essential role as a carbon sink and nutrient 91 

reservoir (Rosell, 2016). In particular, the complex secondary tissue system in woody 92 

species can comprise up to 2-20% as a percent of forest biomass (Jones et al., 2019), 93 

and its associated cambium (i.e., phellogen) and living tissues (phelloderm and phloem) 94 

can store a substantial amount of nutrients (Dossa et al., 2018; Jones et al., 2019). 95 

Unfortunately, previous studies have considered stems as a single homogeneous 96 

organographic “unit”, without distinguishing between wood (xylem) and bark (or either 97 

of their component tissues). However, the available data indicate that stem tissues can 98 

differ markedly in their chemical composition as well as their structure (Dossa et al., 99 

2016) and can therefore perform very different functions (Rosell et al., 2014). For 100 



example, the living tissues in bark often participate in photosynthesis (Pfanz et al., 2002; 101 

Cernusak & Hutley, 2011) and can have high nutrient transport rates and nutrient 102 

storage capacities (Aschan & Pfanz, 2003; Scholz et al., 2007; Rosell & Olson, 2014; 103 

Rosell et al., 2014, 2016; Ryan & Asao, 2014; Staver et al., 2020; Li et al., 2022). In 104 

light of the diverse ecological functions and chemical elements of the bark, exploring 105 

C:N:P stoichiometry in bark is crucial for improving our understanding of the 106 

evolutionary history and environmental adaptations of tree species. Furthermore, 107 

considering the absence of bark roles in global biogeochemical cycling models, making 108 

sense of bark stoichiometry could provide valuable insights and aid in parameterizing 109 

and benchmarking such models. 110 

Recently, the biogeochemical niche (BN) hypothesis was proposed to investigate 111 

species’ niche space via bio-elements (Peñuelas et al., 2019; Sardans et al., 2021; 112 

Sardans et al., 2023). The BN hypothesis states that all living organisms on earth are 113 

composed of atoms from various bioelements, which are utilized in the formation of 114 

molecules, tissues, organisms, and communities. These bioelements are required in 115 

specific quantities and proportions for an organism to survive and grow. Different 116 

species have evolved unique functions and life strategies, leading to the development 117 

of distinct structures and the adoption of specific metabolic and physiological processes. 118 

Consequently, each species is anticipated to have varying requirements for each 119 

bioelement (Peñuelas et al., 2019). The species-specific elementome and BN are 120 

founded on three fundamental complementary rules. Firstly, distinct taxonomic groups 121 

exhibit different elementomes, with larger differences as taxonomic distance and 122 

evolutionary time increase. Secondly, at equilibrium, coexisting species typically 123 

possess distinct elementomes to minimize competitive pressure. Thirdly, trade-offs 124 

between adaptation to a stable environment for competition and success in more 125 



fluctuating environments result in variations in homeostasis and plasticity among 126 

species along a continuum of strategies. Recently, it has been shown that the 127 

evolutionary history has greater effect on foliar elements (Vallicrosa et al., 2022a, b) 128 

and photosynthetic traits (Yan et al., 2023b) than environment factors (i.e., climate and 129 

soil). However, the genetic legacy effects on bark elemental composition remain 130 

unknown. 131 

In this study, we compiled a large comprehensive world-wide dataset of bark C, N, and 132 

P concentrations for tree species from peer-reviewed studies to explore the patterns and 133 

potential controlling factors of bark C:N:P stoichiometry. The main objectives were to 134 

(1) reveal the bark C, N, and P concentrations and C:N:P ratios in different plant 135 

functional groups, (2) explore the latitudinal patterns of bark C:N:P ratios, (3) identify 136 

the relative contributions of climate, soil, and plant functional groups on bark C:N:P 137 

ratios; and (4) verify whether bark C:N:P stoichiometry is consistent with the BN 138 

hypothesis. This research endeavors to bridge existing knowledge gaps concerning bark 139 

C:N:P stoichiometry worldwide, enhancing our comprehension of forest stoichiometry 140 

and the pivotal role of bark in biogeochemical cycle. 141 

2. Materials and Methods 142 

2.1 Data collection 143 

We compiled a global database of bark C, N, and P concentrations for tree species from 144 

the published literatures by means of Web of Science 145 

(http://apps.webofknowledge.com), Google Scholar (http://scholar.google.com), and 146 

National Knowledge Infrastructure Database (http://cnki.net). Combinations of 147 

keywords such as “bark”, “elements”, “stoichiometry”, “carbon”, “nitrogen”, and 148 

“phosphorous” were used to search studies published from 1980 to 2022. The data were 149 

extracted from the tables, figures, and appendices. GetData Graph Digitizer v2.26 150 



software (http://getdata-graph-digitizer.com) was used to extract the data from figures 151 

when data were only presented graphically. Published data were included in data set 152 

using four stringent criteria: (1) the studies included C, N, and P concentrations of bark 153 

for tree species, (2) the bark were all tissues outside of the vascular cambium (including 154 

the phloem), (3) the collected data must include species names and detailed site 155 

information (longitude and latitude), and (4) we excluded data from fertilized or 156 

polluted sites, or from plants grown in greenhouses to avoid misattributing natural 157 

nutrient limitations due to anthropogenic impacts. These resources are also available as 158 

part of the AusTraits database (Falster et al., 2021). In total, our database contained 655 159 

observations from bark C concentration and 1240 observations from bark N and P 160 

concentrations for a total 324 tree species spanning 550 independent sampling sites 161 

worldwide (Fig. S1; A list of the literature sources can be found in the supporting 162 

information). All species were classified into two plant functional groups (broad leaved 163 

versus needle leaved species, and evergreen versus deciduous species) based on the 164 

descriptions from published literature. 165 

We retrieved climate variables, and soil properties for each site based on coordination 166 

information if the data were missed in the original literatures. Specifically, climatic 167 

variables including mean annual temperature (MAT), mean annual precipitation (MAP), 168 

solar radiation (SR), and water vapor pressure (WVP) at each site were obtained from 169 

WorldClim data website (www.worldclim.org) with a resolution of 1 km × 1 km. Aridity 170 

index (AI) was obtained from the global map of Global Aridity Index (Global-171 

Aridity_ET0) and Global Reference Evapo-Transpiration (Global-ET0) datasets  with 172 

a resolution of 1 km × 1 km (Trabucco & Zomer, 2018) 173 

(https://csidotinfo.wordpress.com/). Soil properties including soil organic carbon 174 

(SOC), total nitrogen (STN), total phosphorus (STP), pH, and soil texture (ST: silt + 175 



clay) were extracted from SoilGrids-global gridded soil information at a spatial 176 

resolution of 1 km × 1 km at 0-15cm of depth (https://soilgrids.org/). The source and 177 

detail information of all the variables used in this study were listed in Table S1. 178 

2.2 Statistical analysis 179 

Because the frequency distributions of bark C, N, and P concentrations and C:N:P ratios 180 

were highly skewed (Fig. S2), we calculated geometric means and compared their 181 

geometric means among different plant functional groups using One-way ANOVA with 182 

the Student's t test. Then, the biogeographical patterns of bark C, N, and P 183 

concentrations and C:N:P ratios were mapped at a global scale (Fig. 1). Ordinary least 184 

squares (OLS) regressions were used to explore latitudinal patterns of bark C, N, and P 185 

concentrations and C:N:P ratios at a global scale. The Pearson correlation matrix was 186 

used to analyze the relationships of bark C, N, and P concentrations and C:N:P ratios 187 

with climatic and edaphic variables (Fig. S3).  188 

To quantify the relative importance of climate (MAT, MAP, and SR), soil (SOC, STN, 189 

STP, pH and ST) and plant functional groups (broad leaved versus needle leaved species; 190 

and evergreen versus deciduous species) on bark C, N, and P concentrations and their 191 

mass ratios, we used the machine learning technique “random forest models” using the 192 

“randomForest” packages of R software (Breiman, 2001; Hapfelmeier et al., 2014). To 193 

avoid the multicollinearity among the independent variables, we conducted the variable 194 

clustering in the “Hmisc” package of R software before performing the random forest 195 

model. Specifically, for highly correlated variables (pearson’s r2> 0.6), only one of them 196 

was kept in subsequent analysis. For example, MAP & AI, MAT & WVP have high 197 

correlations, respectively (Fig. S4), MAP and MAT were retained in the subsequent 198 

analysis, with the removal of AI and WVP. To further determine the relative importance 199 

of all variables, we calculated the values of increased mean squared errors for each 200 



potential predictor in our constructed random-forest models using the “rfPermute” R 201 

package (Archer, 2021). The values were further transformed into relative importance 202 

(%) to facilitate interpretation (Fig. 4). Similarly, the significance of each predictor on 203 

the response variables was assessed using the “rfPermute” R package.  204 

To estimate the effect of phylogenetic structure on bark C, N, and P concentrations 205 

and their mass ratios of these species, we first constructed a phylogenetic tree for all 206 

recorded species in this study by using the “V. phylomaker” package (Jin & Qian, 2019) 207 

in R. Then, the parametric Blomberg’s K (Blomberg et al., 2003) and Pagel’s λ indices 208 

(Pagel, 1999) were used to assess the strength of phylogenetic signals for bark C, N, 209 

and P concentrations and their mass ratios. Parametric indices based on evolutionary 210 

models, like Blomberg’s K and Pagel’s λ, tend to be close to zero when trait evolution 211 

is random. The R package “ape”, “picante” and “phytools” were used in this analysis 212 

(Kembel et al., 2010; Revell, 2012; Paradis & Schliep, 2019).  213 

Bayesian phylogenetic linear mixed models were used to assess the relative 214 

contributions of environmental drivers and evolutionary history (i.e., phylogeny and 215 

species) to bark C, N, and P concentrations and their mass ratios. The climate (i.e., MAT, 216 

MAP, and SR) and soil variables (i.e., SOC, STN, STP, pH, ST) were set as independent 217 

variables (the fixed effects), with phylogeny and species set as random variables. If the 218 

relative weight of legacy effects (phylogeny and species) exceeds that of environmental 219 

factors (climate and soil), this would support the BN hypothesis. Phylogeny represents 220 

the long-term implications of evolutionary history, while species reflect interspecific 221 

variability that is independent of shared ancestry. This variability includes effects from 222 

recent epigenetic evolutionary mechanisms, as well as recent convergence and 223 

divergence in evolutionary processes among species that are closely related within 224 

phylogenetic clades (Peñuelas et al. 2019; Sardans et al. 2021, 2023; Yan et al., 2023b). 225 



To conduct this analysis, we employed the “MCMCglmm” R package (Hadfield, 2010). 226 

All statistical analyses were performed using R version 4.2.2 (R Core Team, 2022). 227 

3. Results 228 

3.1 Variations in bark C, N, and P stoichiometry 229 

Across global tree species, the geometric means of bark C, N, and P concentrations 230 

were 493.17±1.75 mg g-1, 3.91±0.09 mg g-1, and 0.2±0.01 mg g-1, respectively. Those 231 

of bark C:N, C:P, and N:P ratios were estimated to be 135.51±8.11, 3313.19±210.16, 232 

and 19.16±0.60, respectively (Table S2). Bark C, N, and P concentrations and C:N:P 233 

ratios varied markedly across different plant functional groups. The bark C 234 

concentration, C:N and C:P ratios of needle leaved species were significant higher than 235 

in broad leaved species, whereas broad leaved species showed the higher N and P 236 

concentrations than in needle leaved species. However, the bark N:P ratio of needle 237 

leaved and broad leaved species did not show a significant difference. For deciduous 238 

species, C concentration, C:N and C:P ratios were significant lower than those of 239 

evergreen species, whereas the bark N and P concentrations in deciduous species were 240 

higher than those in evergreen species. Meanwhile, evergreen and deciduous species 241 

showed no significant differences in bark N:P ratio (Table S2; Fig. 2). 242 

3.2 Changes in bark C, N, and P stoichiometry along latitudinal gradients 243 

Bark C, N and P concentrations and their mass ratios exhibited significant latitudinal 244 

trends, except for N:P ratio (Fig. 3). The bark C concentration, C:N and C:P ratios 245 

significantly increased with increasing latitude, whereas bark N and P concentrations 246 

decreased with increasing latitude (P < 0.001). However, no clear trend was observed 247 

for bark N:P ratio with latitude (P = 0.094). Bark C concentration was negatively 248 

correlated with all climate factors (MAT, MAP, and SR), but only positively correlated 249 

with some of soil factors (STP and pH). Bark N and P concentrations increased 250 



significantly with the increase in MAP, STP, and ST, but decreased with SR, STN, and 251 

pH. Besides, bark C:N, C:P and N:P ratios decreased with increasing SOC and ST, 252 

whereas SR and pH displayed the opposite trends (Fig. S3).  253 

3.3 The relative effects of climate, soil, and plant functional group on bark C:N:P 254 

stoichiometry 255 

The results of the better fitted random forest models demonstrated that climate, soil and 256 

plant functional group variables collectively influence bark C, N, and P concentrations 257 

and their mass ratios, and the explanatory power of random forest models were more 258 

than 50% of the total variance for bark C:N:P stoichiometry (Fig. 4). Plant functional 259 

groups had the strong influence in bark C, N, P concentrations, C:N and C:P ratios (Fig. 260 

4A-E), whereas SR was the key factor in determining the bark N:P ratio (Fig. 4F). The 261 

total relative contributions of plant functional groups to bark C concentration and C:N 262 

ratio were 38.61% and 39.99%, respectively, overriding those contribution of climate 263 

and soil variables, whereas the relative contribution of soil variables to bark N (43.11%) 264 

and P (44.06%) concentrations and C:N (36.67%) and N:P (51.03%) ratios were much 265 

higher than climate and plant functional groups. 266 

3.4 The effects of phylogenetic signals and evolutionary history on bark C:N:P 267 

stoichiometry 268 

Two phylogenetic parametric indices Blomberg’s K (range from 0.06 to 0.18) and 269 

Pagel’s λ (range from 0.40 to 0.70) were significant (p < 0.01) for bark C, N, and P 270 

concentrations and their mass ratios with the exception of Blomberg’s K value for bark 271 

C concentration (Table S3), indicating that the bark stoichiometry was strongly 272 

constrained by phylogeny. 273 

From the results of the Bayesian phylogenetic linear mixed model, we found that 274 

evolutionary history (indicated by phylogeny and species) has the largest effect on bark 275 



C, N, and P concentrations and C:N:P ratios compared to current environmental factors 276 

(climate and soil) (Table 1). Specifically, in a general view of bark C:N:P stoichiometry, 277 

evolutionary history (indicated by phylogeny and species) explained between 54-85% 278 

of the total variance, whereas current environmental factors explained only 5-14% of 279 

total variance. In addition, environmental factors played different roles in influencing 280 

bark C:N:P stoichiometry. Namely, STP had a significant effect on bark C; MAT and 281 

STN had significant effects on bark N; MAT, MAP, SR, STN, and ST have significant 282 

effects on bark P; MAP and SR had significant effects on bark C:N ratio; MAP, SR and 283 

STN had significant effects on bark C:P ratio, whereas MAT, SR, STN, STP, and ST 284 

had significant effects on bark N:P ratio (Table 1). 285 

4. Discussion 286 

4.1 The variation of bark C, N, and P stoichiometry in forest ecosystems 287 

This study presents the first report about global bark C, N, and P stoichiometry in tree 288 

species across plant functional groups. The bark C concentration of tree species in our 289 

study is higher than the C concentration of previously reported leaf, twig, and root, 290 

whereas N and P concentrations are lower than that in the global leaf, twig, and root 291 

dataset at national and global scales (Table 2). This result was consistent with the 292 

observed carbon accumulation with the tree growth (Rosell et al., 2014, 2015; Dossa et 293 

al., 2018). Throughout the ontogeny of tree species, the bark undergoes potentially 294 

dramatic changes, including maturation of thin-walled parenchyma cells into thick-295 

walled sclerotia cells and accumulation of fragmented phloem (Srivastava, 1964; Rosell 296 

et al., 2015). These processes are accompanied by changes in bark density, thickness, 297 

and water content, which may favor the carbon storage per unit of dry biomass via the 298 

accumulation of dense wall material (Rosell et al., 2015; Rosell et al., 2017), supporting 299 

the notion that the proportions of galactose, mannose and starch are higher in bark than 300 



in wood (Romero, 2014).  301 

Moreover, bark in this study encompasses both the outer bark and the inner bark, 302 

each playing distinct roles throughout a tree’s lifetime (Dossa et al., 2018). The outer 303 

bark in living trees serves to protect the underlying tissue from fire (Pausas, 2017), 304 

herbivory, and pathogens (Paine et al., 2010). Conversely, the inner bark plays a crucial 305 

role in water storage and the transportation of organic compounds, particularly those 306 

involved in photosynthesis (Ryan & Asao, 2014; Rosell et al., 2023). Consequently, the 307 

outer bark requires a higher accumulation of carbonaceous material to fulfill its 308 

protective function, while the inner bark, akin to other active organs, exhibits high 309 

levels of N and P concentrations to support plant growth and metabolic demands. 310 

However, due to the diluting effect of the outer bark, N and P concentrations throughout 311 

the bark were lower compared to other organs (Table 2).  312 

The bark C:N:P ratios were higher than those of other plant organs such as leaves, 313 

twigs, and roots reported by previous studies (Table 2). This result could be explained 314 

by higher C concentration and lower N and P concentrations in bark. Plant N:P ratios 315 

are considered to be reliable indicators of the relative nutrient limitations of N and P in 316 

terrestrial ecosystems (Koerselman & Meuleman, 1996; Güsewell, 2004; Elser et al., 317 

2010). Generally, leaf N:P ratio less than 14 tends to indicate N limitation, whereas N:P 318 

ratio greater than 16 frequently indicates P limitation (Aerts & Chapin, 2000). The 319 

higher bark N:P ratio (19.16±0.60) in our study can be interpreted to indicate that tree 320 

species tend to be more limited by P than by N, which is consistent with the previous 321 

studies with leaves (Reich & Oleksyn, 2004; Wang et al., 2022b). However, given the 322 

uncertainty of the N:P ratio as a threshold for plant nutrient limitation (Yan et al., 2017) 323 

and the divergence in nutrient use strategies of tree species from different locations 324 

(Sardans et al., 2016), whether the bark N:P can indicate N and P limitation of tree 325 



species still needs to be discussed.  326 

The bark C, N, and P concentrations and C:N:P ratios differed across different plant 327 

functional groups, supporting the interpretation that bark nutrients can be highly 328 

variable across species (Cornwell et al., 2009; Jones et al., 2019). One possible reason 329 

was that bark in this study contains phloem, the great variation in volume and 330 

proportion of the outer bark also caused great differences in the chemical elements of 331 

the bark. Our results indicate that the bark C concentration is higher in needle leaved 332 

species than that in broad leaved species, consistent with a previous study suggesting 333 

that gymnosperms often have thicker outer bark than angiosperms (Rosell et al., 2017). 334 

Needle leaved species frequently grown in cold areas with harsh environment, the bark 335 

of these species maybe increase protection (more C accumulation) to resistant low 336 

temperature (Reich, 2014; Augusto et al., 2015). In contrast, the bark N and P 337 

concentrations are higher in broad leaved than needle leaved species, supporting the 338 

notion that short-lived, fast-growing species tend to have higher N and P concentrations 339 

and lower N:P ratio than those of short-lived, slow-growing species, which have lower 340 

N and P concentrations and higher N:P ratio (Güsewell, 2004; Wang et al., 2022b). 341 

Moreover, higher bark C:N and C:P ratios were observed in needle leaved species, 342 

providing additional evidence that species with thicker bark, which is of lower density, 343 

tended to have lower P concentrations (Richardson et al., 2015; Jones et al., 2019; 344 

Rosell et al., 2023).  345 

In comparison to deciduous trees, higher concentration of bark C but lower 346 

concentrations of N and P were observed in evergreen species. We speculate that the 347 

possible reasons for this result is that this result may be attributed to the bark of 348 

evergreen trees typically being smooth, and relatively thin, but dense, resulting in a 349 

higher concentration of C. In contrast, the bark of deciduous trees may exhibit a rougher 350 



or cracked texture, aiding in trunk expansion during growth, thus leading to the lower 351 

C concentration. Additionally, to facilitate rapid expansion during the shorter growing 352 

season, the bark of deciduous trees may contain higher concentrations of N and P to 353 

meet elevated metabolic demands. However, bark characteristics may vary among 354 

individuals of the same tree species, and different tree species may exhibit similar bark 355 

characteristics (Rosell, 2016). Therefore, further investigation into the variation in bark 356 

stoichiometry across different plant functional groups is warranted in future studies. 357 

4.2 Latitudinal patterns of bark C, N, and P stoichiometry in forest ecosystems 358 

Significant latitudinal patterns were observed in bark C, N, and P stoichiometry across 359 

global forest ecosystems, except for N:P ratio (Fig. 3). However, these results were 360 

inconsistent with the findings of leaves from whole terrestrial (Reich & Oleksyn, 2004), 361 

global forest (McGroddy et al., 2004) and coastal wetland ecosystems (Hu et al., 2021). 362 

The differences between our results and the results of leaves in previous studies might 363 

be related mainly to the divergences of functions in distinct plant organs. Specifically, 364 

based on the temperature plant physiology and the soil substrate age hypothesis, Reich 365 

& Oleksyn (2004) proposed that plant leaves need to accumulate higher N and P 366 

concentration to increase metabolism rate to adjust to short growing seasons in higher 367 

latitudinal regions. While outer bark needs to increase its protective properties by 368 

accumulating secondary metabolites (mainly C), rather than increasing N and P 369 

concentrations to enhance the metabolic capacity.  370 

The latitudinal patterns observed in bark C:N:P stoichiometry are clearly influenced 371 

by environmental factors. Climate and soil variables exhibited significant correlations 372 

with bark C, N, and P concentrations and C:N:P ratios. Evidences have indicated that 373 

climate variables are the most important factors that can drive vegetation distribution, 374 

community structure and physiological metabolism to affect C:N:P stoichiometry of 375 



different plant organs at species and community level (Wright et al., 2001; Reich, 2005; 376 

Wang et al., 2020), despite these studies have been not taken into account the legacy 377 

effects. Moreover, soil physical and chemical properties also have significant 378 

correlations to bark C, N, and P concentrations and C:N:P ratios in this study. This is 379 

probably because soil conditions may influence the nutrient uptake and acquisition and 380 

then affect plant C:N:P stoichiometry (Wang et al., 2020).  381 

4.3 The driving factors of bark C, N, and P stoichiometry in forest ecosystems 382 

As shown in the results of random forest model, climate, soil, and plant functional group 383 

collectively influence the bark C, N, and P concentrations and their mass ratios (Fig. 4). 384 

It is known that climate drives plant distributions and community structures (Hu et al., 385 

2021) and alter soil nutrient availability (Wang et al., 2020), resulting in the changes in 386 

bark C:N:P stoichiometry. We also found that plant functional groups were very 387 

significant in determining bark C, N, P concentrations, C:N and C:P ratios. Plant 388 

functional groups are not only regulated by external environmental factors but also 389 

controlled by the internal vegetation attributes (Valverde-barrantes et al., 2017). These 390 

results are in line with species composition hypothesis proposed by Reich & Oleksyn 391 

(2004), suggesting that plant species was one of the most important factors regulating 392 

the variations of plant C:N:P stoichiometry. However, due to limitations in explanatory 393 

variables, we still need to further explore more potential factors (e.g., topography, 394 

microclimate, warming, N deposition, and fire) that have an impact on bark C:N:P 395 

stoichiometry.  396 

In addition, compared to climate, soil, and plant functional group, evolutionary 397 

history had an important role in explaining global bark C:N:P stoichiometry evident 398 

from the obtained results from phylogenetic signal and Bayesian phylogenetic linear 399 

mixed model analyses. First, the significant phylogenetic signals existed for bark C, N, 400 



and P concentrations and their mass ratios (Fig. S5; Table S3), consistent with the 401 

observations in leaves and fine roots (Wang et al., 2022b; You et al., 2023). Second, the 402 

results of the Bayesian phylogenetic linear mixed model indicated that legacy factors 403 

(phylogeny and species) have higher relative weight over environmental factors in 404 

explaining bark C:N:P stoichiometry (Table 1). Phylogeny reflects long-term 405 

evolutionary processes including ancient adaptation and differentiation, whereas 406 

species is related to more recent environmental selections and phenotypic changes that 407 

are not directly detectable by phylogenetic information such as epigenetic and divergent 408 

and convergent evolution processes (Sardans et al., 2021; Yan et al., 2023b). Previous 409 

studies of multi-elemental concentrations and photosynthetic traits have also 410 

consistently shown that evolutionary history plays a dominant role in explaining large-411 

scale variation in various leaf traits (Sardans et al., 2021, 2023; Vallicrosa et al., 2022a,b; 412 

Yan et al., 2023b). Our results reveal the phylogenetic relatedness of bark C:N:P 413 

stoichiometry at global scales, suggesting that bark stoichiometry is mainly regulated 414 

by long-term evolutionary processes, and thus it has singular values for each 415 

species/genotype, consistently with the BN hypothesis (Peñuelas et al., 2019; Sardans 416 

et al., 2021). Additionally, it is worth noting that the explanatory strength and 417 

significance of fixed current environmental variables were very different for bark C, N, 418 

and P and their mass ratios in Bayesian phylogenetic linear mixed model analysis (Table 419 

1). This is attributed to that various plant organs have different elemental requirements, 420 

and the assimilation of these elements is influenced by different environmental factors 421 

(Wang et al., 2020). 422 

5. Limitations and implications  423 

While the present study offers valuable insights into the global patterns and controlling 424 

factors of bark C:N:P stoichiometry in tree species, it is essential to acknowledge three 425 



main limitations. Firstly, in this study ‘bark’ encompasses all tissues outside the 426 

vascular cambium and is regarded as a homogeneous tissue (Dossa et al., 2018). 427 

However, bark typically consists of two distinct parts: the inner bark (e.g., successive 428 

periderms), responsible for photosynthate transport and storage, and the outer bark (e.g., 429 

secondary cortex), which primarily provides physical and chemical protection (Rosell, 430 

2016). These two components have significant differences in morphological 431 

characteristics, physical properties, and chemical composition, and perform entirely 432 

different functions (Rosell et al., 2014; Rosell, 2016). A prior study has pointed out that 433 

the outer bark has relatively lower nutrients than that in the inner bark, and their findings 434 

only focused on N and P stoichiometry of the inner bark and sapwood, but do not 435 

considered the outer bark (Rosell et al., 2023). Therefore, expanded dataset on the inner 436 

and outer bark globally are warranted to provide more evidence for the effects of 437 

climate and evolutionary history on shaping bark C:N:P stoichiometry in various tree 438 

species. Secondly, due to limited data from the Southern Hemisphere (i.e., Southern 439 

Africa, South America, and Southeast Asia), our understanding of the patterns and 440 

drivers of bark C:N:P stoichiometry at a global scale remains restricted. Consequently, 441 

future research in these crucial regions is warranted and necessitates further 442 

investigation. Thirdly, the study's limited inclusion of soil and climate explanatory 443 

variables may hinder the identification of additional potential factors (e.g., topography 444 

and microclimate) influencing bark C:N:P stoichiometry. Thus, further research is 445 

needed to elucidate the underlying mechanisms governing the dynamics of bark C:N:P 446 

stoichiometry under changing environments. Additionally, while all bark element data 447 

in our study are collected from natural conditions, it is important to test the responses 448 

of bark C:N:P stoichiometry to global change factors (e.g., fire, precipitation change, 449 

CO2 enrichment, and N deposition).  450 



To the best of our knowledge, this study represents the first comprehensive 451 

exploration of bark C:N:P stoichiometry in tree species at a global scale. Despite several 452 

limitations, this study holds significant implications for our understanding of ecological 453 

C:N:P stoichiometry and for modeling nutrient cycling in global forest ecosystems 454 

under changing environments. Firstly, as bark constitutes 2-20% of woody plant 455 

biomass in forests and represents significant N and P pools (Jones et al., 2019; Rosell, 456 

2019), our results will enhance the evaluation of bark's contribution to forest C storage, 457 

nutrient turnover, and biogeochemical cycles at a global scale. Secondly, since bark 458 

contains more nutrients than wood and serves as a high-quality substrate for 459 

decomposers (Dossa et al., 2018), our study may also enhance predictive models of 460 

bark decomposition in response to environmental changes. 461 
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Table 1 Summary of the Bayesian phylogenetic linear mixed model of bark C, N, and P concentrations and their mass ratios. 725 

Bayesian model 
The statistics of fixed variables 

Model statistics 
Variable Post.mean Lower 95% CI Upper 96% CI Eff.samp pMCMC 

Bark C ~ MAT + MAP 

+ SR + STN + STP + pH 

+ ST + (random = 

phylogeny + species) 

MAT -0.16  -0.34  0.02  1700  0.09  

Rm
2 ≈ 0.12 

Rc
2 ≈ 0.79 

Rp
2 ≈ 0.47 

Rs
2 ≈ 0.19 

MAP -0.04  -0.18  0.10  2030  0.59  

SR 0.04  -0.14  0.25  1700  0.69  

STN 0.04  -0.05  0.14  1700  0.40  

STP -0.11  -0.20  -0.03  1700  0.01  

pH 0.07  -0.07  0.23  1573  0.37  

ST -0.40  -0.54  -0.25  1332  <0.001 

Bark N~ MAT + MAP + 

SR + STN + STP + pH + 

ST + (random = 

phylogeny + species) 

MAT -0.03  -0.13  0.07  1700  0.56  

Rm
2 ≈ 0.06  

Rc
2 ≈ 0.75 

Rp
2 ≈ 0.41  

Rs
2 ≈ 0.28 

MAP 0.31  0.20  0.42  1700  <0.001 

SR -0.05  -0.14  0.04  1700  0.24  

STN -0.07  -0.13  -0.01  1700  0.02  

STP 0.06  -0.01  0.13  1700  0.11  

pH 0.09  -0.03  0.21  2059  0.15  

ST -0.04  -0.13  0.04  1432  0.31  

Bark P ~ MAT + MAP + 

SR + STN + STP + pH + 

ST + (random = 

phylogeny + species) 

MAT -0.25  -0.33  -0.15  948  <0.001 

Rm
2 ≈ 0.13 

Rc
2 ≈ 0.73 

Rp
2 ≈ 0.26  

Rs
2 ≈ 0.33 

MAP 0.21  0.12  0.31  1027  0.001  

SR -0.16  -0.24  -0.08  1700  <0.001 

STN -0.14  -0.20  -0.09  1700  <0.001 

STP -0.04  -0.10  0.02  1579  0.21  

pH 0.04  -0.06  0.16  1700  0.42  

ST 0.14  0.06  0.21  1378  <0.001 

Bark C:N ~ MAT + 

MAP + SR + STN + 

STP + pH + ST + 

MAT 0.00  -0.17  0.17  1700  0.95  Rm
2 ≈ 0.13 

Rc
2 ≈ 0.89 

Rp
2 ≈ 0.56 

Rs
2 ≈ 0.20 

MAP -0.33  -0.47  -0.17  1700  <0.001 

SR -0.27  -0.47  -0.05  1700  0.01  

STN 0.02  -0.06  0.11  1831  0.64  



(random = phylogeny + 

species) 
STP -0.05  -0.13  0.03  1700  0.28  

pH -0.13  -0.25  0.02  1518  0.08  

ST 0.17  0.03  0.32  1700  0.02  

Bark C:P ~ MAT + 

MAP + SR + STN + 

STP + pH + ST + 

(random = phylogeny + 

species) 

MAT -0.06  -0.21  0.08  1700  0.41  

Rm
2 ≈ 0.05  

Rc
2 ≈ 0.90 

Rp
2 ≈ 0.79  

Rs
2 ≈ 0.06 

MAP -0.13  -0.26  -0.01  1700  0.04  

SR 0.36  0.18  0.55  2023  <0.001 

STN 0.08  0.01  0.15  1356  0.04  

STP -0.04  -0.11  0.03  1700  0.31  

pH 0.06  -0.06  0.19  2604  0.33  

ST 0.04  -0.07  0.16  1361  0.44  

Bark N:P ~ MAT + 

MAP + SR + STN + 

STP + pH + ST + 

(random = phylogeny + 

species) 

MAT 0.28  0.18  0.38  1700  <0.001 

Rm
2 ≈ 0.14 

Rc
2 ≈ 0.68 

Rp
2 ≈ 0.15 

Rs
2 ≈ 0.39 

MAP 0.02  -0.09  0.12  1700  0.72  

SR 0.15  0.07  0.24  1700  <0.001 

STN 0.11  0.06  0.17  1700  <0.001 

STP 0.10  0.03  0.17  1700  0.01  

pH 0.02  -0.11  0.13  1700  0.75  

ST -0.19  -0.28  -0.11  1519  <0.001 

 726 

Note: Full names of each predictor were listed in Table S1. Rc
2, percentage of variance explained by all the model (fixed + random); Rm

2, percentage 727 

of variance explained by fixed factors; Rp
2, percentage of variance explained by phylogeny; Rs

2, percentage of variance explained by species; 728 

Post.mean, posterior mean; Eff.samp, the effective sample size; pMCMC, p-value from Monte Carlo sampling by Markov Chain. 729 

 730 

 731 



Table 2 Comparisons of the mean values of bark C, N, and P concentrations and C:N:P ratios in different plant tissues at global or national scale.  732 

Tissues Study area C (mg g-1) N (mg g-1) P (mg g-1) C: N C: P N: P Reference 

Leaf Global terrestrial ecosystems — 20.09 1.77 — — 13.8 Reich and Oleksyn (2004) 

Leaf Global forest ecosystems — — — 37.37 516.4 12.55 McGroddy et al. (2004) 

Leaf Global terrestrial ecosystems 476.1 17.4 1.23 23.4 — 12.28 Kattge et al. (2011) 

Leaf China’s terrestrial ecosystems 436.8 14.14 1.11 — — — Tang et al. (2018) 

Twig Global terrestrial ecosystems — 9.33 1.12 — — 10.16 Wang et al. (2022a) 

Twig China’s forest ecosystems 472 9.8 1.15 — — — Yao et al. (2015) 

Root Global terrestrial ecosystems 447 9.8 0.78 65.8 1415 16 Yuan et al. (2011) 

Root China’s terrestrial ecosystems 448.81 10.73 0.9 41.84 508.32 11.73 Wang et al. (2020) 

Bark Global forests ecosystems 493.17 3.91 0.2 135.51 3313.19 19.16 This study 
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Fig. 1 Global biogeographical patterns of bark C, N, and P concentrations and their mass ratios. 734 

 735 



Fig. 2 Comparisons of bark C, N, and P concentrations (A) and C:N:P ratios (B) 736 

between different plant functional groups (i.e., evergreen vs. deciduous species; broad 737 

leaved vs. needle leaved species). * p < 0.05; ** p < 0.01, *** p < 0.001, ns p > 0.05. 738 
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Fig. 3 Correlations of absolute latitudinal with bark C, N, and P concentrations (A-C) 748 

and C:N:P ratios (D-F) at a global scale.  749 

 750 

 751 

 752 



Fig. 4 Random forest model results of the relative influences of climate, soil and plant 753 

functional groups variables on bark C:N:P stoichiometry. The annular chart represents 754 

the percentages of cumulative relative contributions of climate, soil and plant functional 755 

group. MAT, mean annual temperature; MAP, mean annual precipitation; SR, solar 756 

radiation; pH, soil pH; ST, soil texture; SOC, soil organic carbon; STN, soil total nitrogen; STP, 757 

soil total phosphorous; B_N, broad leaved or needle leaved trees; E_D, evergreen or 758 

deciduous trees; * p < 0.05; ** p < 0.01; *** p < 0.001.  759 


