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Summary

® Bark serves crucial roles in safeguarding trees physically and chemically, while
also contributing to nutrient cycling and carbon sequestration. Despite its importance,
the broader biogeographical patterns and the potential factors influencing bark C:N:P
stoichiometry in forest ecosystems remain largely unknown.

® In this study, we compiled a comprehensive dataset comprising carbon (C),
nitrogen (N), and phosphorus (P) concentrations in bark with 1240 records from 550
diverse forest sites to systematically analyze the large-scale patterns and the factors
controlling bark C:N:P stoichiometry.

® The geometric means of bark C, N, and P concentrations were found to be
493.17+1.75 mg ¢!, 3.91+0.09 mg g?!, and 0.2+0.01 mg g?, respectively.
Correspondingly, the C:N, C:P, and N:P mass ratios were 13551+8.11,
3313.19+210.16, and 19.16%0.6, respectively. Bark C:N:P stoichiometry exhibited
conspicuous latitudinal trends, with the exception of N:P ratios. These patterns were
primarily shaped by the significant impacts of climate, soil conditions, and plant
functional groups. However, the impact of evolutionary history in shaping bark C:N:P
stoichiometry outweigh climate, soil, and plant functional group, aligning with the
biogeochemical niche (BN) hypothesis.

® These finding enhance our understanding of the spatial distribution of bark nutrient
stoichiometry and have important implications for modelling of global forest ecosystem

nutrient cycles in a changing environment.

Key words: bark, carbon, forest ecosystems, nitrogen, phosphorus, stoichiometry.
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Introduction
Ecological stoichiometry refers to the balance and flow of chemical elements through
biological systems and has been used to explore physiological processes of plants and
other taxonomic groups and in general the functions and structure of terrestrial and
aquatic ecosystems (Elser et al., 2000; Sterner & Elser, 2002; Sardans et al., 2012).
Carbon (C), nitrogen (N), and phosphorous (P) are considered to be the most basic
elements, which are essential for plant growth and ecosystem function (Allen &
Gillooly, 2009; Marschner, 2011; Wang et al., 2022a). The stoichiometry of C, N, and
P in plant organs largely reflects physiological constraints, evolutionary history, and
ecological adaptation strategies (Agren, 2004; Wang et al., 2022a; Yan et al., 2023a).
Thus, evaluating C, N, and P stoichiometry patterns and their potential controlling
factors at the large scales are helpful for understanding ecosystem functions and
biogeochemical cycling under changing climate. The large-scale patterns of plant C:N:P
stoichiometry have been widely studied from the perspective of different organs (e.g.,
leaf, stem, and root) at the global (McGroddy et al., 2004; Reich & Oleksyn, 2004; Yuan
etal., 2011; Hu et al., 2021), national (Han et al., 2005; Tang et al., 2018; Zhang et al.,
2018; Wang et al., 2019; Dynarski et al., 2023), and regional scales (Liu et al., 2010;
Zhao et al., 2018; Cao et al., 2020; Xiong et al., 2022). Bark contains higher nutrient
concentrations than wood per unit volume (Franceschi et al., 2005; Martin et al., 2015).
However, compared to plant leaves, stems and roots, a comprehensive understanding
of the patterns and potential controlling factors of C:N:P stoichiometry in the bark of
diverse tree species at a broad spatial scale remains unclear.

Previous studies have showed that the C:N:P stoichiometry of plant organs may
exhibit clear patterns along geographic or environmental gradients, and climate, soil, or

plant functional type plays important roles in regulating the C:N:P stoichiometry of



76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

plant organs (Sardans & Pefnuelas, 2014). For example, using global dataset, an

empirical synthesis study showed that leaf C:N:P ratios were significantly correlated
with latitude in forest ecosystem (McGroddy et al., 2004), and that temperature,
precipitation, and soil nutrients influence the spatial variations of leaf C:N:P ratios
(Reich & Oleksyn, 2004). Similar latitudinal patterns in C:N:P stoichiometry have also
been observed in stems and roots in forest ecosystems (Yuan et al., 2011; Zhang et al.,
2018; Wang et al., 2020). Climate and plant type were the dominant factors regulating
spatial variations of stem and fine-root C:N:P ratios across the forest ecosystems of
China. However, whether climate, soil and plant variables are the key factors
influencing global bark stoichiometry is still unknown.

Bark is the outermost tissues of tree stems and branches of woody plants that can
protect the living tree from cold, heat and fire (Rosell, 2016; Pausas, 2017). In addition,
bark acts as a defensive barrier against herbivory and pathogens (Paine et al., 2010).
For living trees, bark is here defined as all the tissues external to the vascular cambium
(Esau, 1967; Rosell et al., 2014; Tuo et al., 2021). Notably, bark constitutes a significant
proportion of forest biomass and plays an essential role as a carbon sink and nutrient
reservoir (Rosell, 2016). In particular, the complex secondary tissue system in woody
species can comprise up to 2-20% as a percent of forest biomass (Jones et al., 2019),
and its associated cambium (i.e., phellogen) and living tissues (phelloderm and phloem)
can store a substantial amount of nutrients (Dossa et al., 2018; Jones et al., 2019).
Unfortunately, previous studies have considered stems as a single homogeneous
organographic “unit”, without distinguishing between wood (xylem) and bark (or either
of their component tissues). However, the available data indicate that stem tissues can
differ markedly in their chemical composition as well as their structure (Dossa et al.,

2016) and can therefore perform very different functions (Rosell et al., 2014). For
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example, the living tissues in bark often participate in photosynthesis (Pfanz et al., 2002;
Cernusak & Hutley, 2011) and can have high nutrient transport rates and nutrient
storage capacities (Aschan & Pfanz, 2003; Scholz et al., 2007; Rosell & Olson, 2014;
Rosell et al., 2014, 2016; Ryan & Asao, 2014; Staver et al., 2020; Li et al., 2022). In
light of the diverse ecological functions and chemical elements of the bark, exploring
C:N:P stoichiometry in bark is crucial for improving our understanding of the
evolutionary history and environmental adaptations of tree species. Furthermore,
considering the absence of bark roles in global biogeochemical cycling models, making
sense of bark stoichiometry could provide valuable insights and aid in parameterizing
and benchmarking such models.

Recently, the biogeochemical niche (BN) hypothesis was proposed to investigate
species’ niche space via bio-elements (Pefuelas et al., 2019; Sardans et al., 2021;
Sardans et al., 2023). The BN hypothesis states that all living organisms on earth are
composed of atoms from various bioelements, which are utilized in the formation of
molecules, tissues, organisms, and communities. These bioelements are required in
specific quantities and proportions for an organism to survive and grow. Different
species have evolved unique functions and life strategies, leading to the development
of distinct structures and the adoption of specific metabolic and physiological processes.
Consequently, each species is anticipated to have varying requirements for each
bioelement (Pefiuelas et al., 2019). The species-specific elementome and BN are
founded on three fundamental complementary rules. Firstly, distinct taxonomic groups
exhibit different elementomes, with larger differences as taxonomic distance and
evolutionary time increase. Secondly, at equilibrium, coexisting species typically
possess distinct elementomes to minimize competitive pressure. Thirdly, trade-offs

between adaptation to a stable environment for competition and success in more
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fluctuating environments result in variations in homeostasis and plasticity among
species along a continuum of strategies. Recently, it has been shown that the
evolutionary history has greater effect on foliar elements (Vallicrosa et al., 2022a, b)
and photosynthetic traits (Yan et al., 2023b) than environment factors (i.e., climate and
soil). However, the genetic legacy effects on bark elemental composition remain
unknown.

In this study, we compiled a large comprehensive world-wide dataset of bark C, N, and
P concentrations for tree species from peer-reviewed studies to explore the patterns and
potential controlling factors of bark C:N:P stoichiometry. The main objectives were to
(1) reveal the bark C, N, and P concentrations and C:N:P ratios in different plant
functional groups, (2) explore the latitudinal patterns of bark C:N:P ratios, (3) identify
the relative contributions of climate, soil, and plant functional groups on bark C:N:P
ratios; and (4) verify whether bark C:N:P stoichiometry is consistent with the BN
hypothesis. This research endeavors to bridge existing knowledge gaps concerning bark
C:N:P stoichiometry worldwide, enhancing our comprehension of forest stoichiometry
and the pivotal role of bark in biogeochemical cycle.

2. Materials and Methods

2.1 Data collection

We compiled a global database of bark C, N, and P concentrations for tree species from
the published literatures by means of  Web of Science
(http://apps.webofknowledge.com), Google Scholar (http://scholar.google.com), and
National Knowledge Infrastructure Database (http://cnki.net). Combinations of
keywords such as “bark”, “elements”, “stoichiometry”, “carbon”, “nitrogen”, and
“phosphorous” were used to search studies published from 1980 to 2022. The data were

extracted from the tables, figures, and appendices. GetData Graph Digitizer v2.26
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software (http://getdata-graph-digitizer.com) was used to extract the data from figures
when data were only presented graphically. Published data were included in data set
using four stringent criteria: (1) the studies included C, N, and P concentrations of bark
for tree species, (2) the bark were all tissues outside of the vascular cambium (including
the phloem), (3) the collected data must include species names and detailed site
information (longitude and latitude), and (4) we excluded data from fertilized or
polluted sites, or from plants grown in greenhouses to avoid misattributing natural
nutrient limitations due to anthropogenic impacts. These resources are also available as
part of the AusTraits database (Falster et al., 2021). In total, our database contained 655
observations from bark C concentration and 1240 observations from bark N and P
concentrations for a total 324 tree species spanning 550 independent sampling sites
worldwide (Fig. S1; A list of the literature sources can be found in the supporting
information). All species were classified into two plant functional groups (broad leaved
versus needle leaved species, and evergreen versus deciduous species) based on the
descriptions from published literature.

We retrieved climate variables, and soil properties for each site based on coordination
information if the data were missed in the original literatures. Specifically, climatic
variables including mean annual temperature (MAT), mean annual precipitation (MAP),
solar radiation (SR), and water vapor pressure (WVP) at each site were obtained from
WorldClim data website (www.worldclim.org) with a resolution of 1 km x 1 km. Aridity
index (AI) was obtained from the global map of Global Aridity Index (Global-
Aridity ETO) and Global Reference Evapo-Transpiration (Global-ET0) datasets  with
a resolution of 1 km x 1 km (Trabucco & Zomer, 2018)
(https://csidotinfo.wordpress.com/). Soil properties including soil organic carbon

(SOC), total nitrogen (STN), total phosphorus (STP), pH, and soil texture (ST: silt +
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clay) were extracted from SoilGrids-global gridded soil information at a spatial
resolution of 1 km x 1 km at 0-15cm of depth (https://soilgrids.org/). The source and
detail information of all the variables used in this study were listed in Table S1.

2.2 Statistical analysis

Because the frequency distributions of bark C, N, and P concentrations and C:N:P ratios
were highly skewed (Fig. S2), we calculated geometric means and compared their
geometric means among different plant functional groups using One-way ANOVA with
the Student's t test. Then, the biogeographical patterns of bark C, N, and P
concentrations and C:N:P ratios were mapped at a global scale (Fig. 1). Ordinary least
squares (OLS) regressions were used to explore latitudinal patterns of bark C, N, and P
concentrations and C:N:P ratios at a global scale. The Pearson correlation matrix was
used to analyze the relationships of bark C, N, and P concentrations and C:N:P ratios
with climatic and edaphic variables (Fig. S3).

To quantify the relative importance of climate (MAT, MAP, and SR), soil (SOC, STN,
STP, pH and ST) and plant functional groups (broad leaved versus needle leaved species;
and evergreen versus deciduous species) on bark C, N, and P concentrations and their
mass ratios, we used the machine learning technique “random forest models” using the
“randomForest” packages of R software (Breiman, 2001; Hapfelmeier et al., 2014). To
avoid the multicollinearity among the independent variables, we conducted the variable
clustering in the “Hmisc” package of R software before performing the random forest
model. Specifically, for highly correlated variables (pearson’s 7> 0.6), only one of them
was kept in subsequent analysis. For example, MAP & Al, MAT & WVP have high
correlations, respectively (Fig. S4), MAP and MAT were retained in the subsequent
analysis, with the removal of Al and WVP. To further determine the relative importance

of all variables, we calculated the values of increased mean squared errors for each
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potential predictor in our constructed random-forest models using the “rfPermute” R
package (Archer, 2021). The values were further transformed into relative importance
(%) to facilitate interpretation (Fig. 4). Similarly, the significance of each predictor on
the response variables was assessed using the “rfPermute” R package.

To estimate the effect of phylogenetic structure on bark C, N, and P concentrations
and their mass ratios of these species, we first constructed a phylogenetic tree for all
recorded species in this study by using the “V. phylomaker” package (Jin & Qian, 2019)
in R. Then, the parametric Blomberg’s K (Blomberg et al., 2003) and Pagel’s A indices
(Pagel, 1999) were used to assess the strength of phylogenetic signals for bark C, N,
and P concentrations and their mass ratios. Parametric indices based on evolutionary
models, like Blomberg’s K and Pagel’s A, tend to be close to zero when trait evolution
is random. The R package “ape”, “picante” and “phytools” were used in this analysis
(Kembel et al., 2010; Revell, 2012; Paradis & Schliep, 2019).

Bayesian phylogenetic linear mixed models were used to assess the relative
contributions of environmental drivers and evolutionary history (i.e., phylogeny and
species) to bark C, N, and P concentrations and their mass ratios. The climate (i.e., MAT,
MAP, and SR) and soil variables (i.e., SOC, STN, STP, pH, ST) were set as independent
variables (the fixed effects), with phylogeny and species set as random variables. If the
relative weight of legacy effects (phylogeny and species) exceeds that of environmental
factors (climate and soil), this would support the BN hypothesis. Phylogeny represents
the long-term implications of evolutionary history, while species reflect interspecific
variability that is independent of shared ancestry. This variability includes effects from
recent epigenetic evolutionary mechanisms, as well as recent convergence and
divergence in evolutionary processes among species that are closely related within

phylogenetic clades (Pefuelas et al. 2019; Sardans et al. 2021, 2023; Yan et al., 2023b).
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To conduct this analysis, we employed the “MCMCglmm” R package (Hadfield, 2010).
All statistical analyses were performed using R version 4.2.2 (R Core Team, 2022).

3. Results

3.1 Variations in bark C, N, and P stoichiometry

Across global tree species, the geometric means of bark C, N, and P concentrations
were 493.17+1.75 mg g, 3.91+0.09 mg g, and 0.2+0.01 mg g’!, respectively. Those
of bark C:N, C:P, and N:P ratios were estimated to be 135.51+8.11, 3313.19+210.16,
and 19.16+0.60, respectively (Table S2). Bark C, N, and P concentrations and C:N:P
ratios varied markedly across different plant functional groups. The bark C
concentration, C:N and C:P ratios of needle leaved species were significant higher than
in broad leaved species, whereas broad leaved species showed the higher N and P
concentrations than in needle leaved species. However, the bark N:P ratio of needle
leaved and broad leaved species did not show a significant difference. For deciduous
species, C concentration, C:N and C:P ratios were significant lower than those of
evergreen species, whereas the bark N and P concentrations in deciduous species were
higher than those in evergreen species. Meanwhile, evergreen and deciduous species
showed no significant differences in bark N:P ratio (Table S2; Fig. 2).

3.2 Changes in bark C, N, and P stoichiometry along latitudinal gradients

Bark C, N and P concentrations and their mass ratios exhibited significant latitudinal
trends, except for N:P ratio (Fig. 3). The bark C concentration, C:N and C:P ratios
significantly increased with increasing latitude, whereas bark N and P concentrations
decreased with increasing latitude (P < 0.001). However, no clear trend was observed
for bark N:P ratio with latitude (P = 0.094). Bark C concentration was negatively
correlated with all climate factors (MAT, MAP, and SR), but only positively correlated

with some of soil factors (STP and pH). Bark N and P concentrations increased
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significantly with the increase in MAP, STP, and ST, but decreased with SR, STN, and
pH. Besides, bark C:N, C:P and N:P ratios decreased with increasing SOC and ST,
whereas SR and pH displayed the opposite trends (Fig. S3).
3.3 The relative effects of climate, soil, and plant functional group on bark C:N:P
stoichiometry
The results of the better fitted random forest models demonstrated that climate, soil and
plant functional group variables collectively influence bark C, N, and P concentrations
and their mass ratios, and the explanatory power of random forest models were more
than 50% of the total variance for bark C:N:P stoichiometry (Fig. 4). Plant functional
groups had the strong influence in bark C, N, P concentrations, C:N and C:P ratios (Fig.
4A-E), whereas SR was the key factor in determining the bark N:P ratio (Fig. 4F). The
total relative contributions of plant functional groups to bark C concentration and C:N
ratio were 38.61% and 39.99%, respectively, overriding those contribution of climate
and soil variables, whereas the relative contribution of soil variables to bark N (43.11%)
and P (44.06%) concentrations and C:N (36.67%) and N:P (51.03%) ratios were much
higher than climate and plant functional groups.
3.4 The effects of phylogenetic signals and evolutionary history on bark C:N:P
stoichiometry
Two phylogenetic parametric indices Blomberg’s K (range from 0.06 to 0.18) and
Pagel’s A (range from 0.40 to 0.70) were significant (p < 0.01) for bark C, N, and P
concentrations and their mass ratios with the exception of Blomberg’s K value for bark
C concentration (Table S3), indicating that the bark stoichiometry was strongly
constrained by phylogeny.

From the results of the Bayesian phylogenetic linear mixed model, we found that

evolutionary history (indicated by phylogeny and species) has the largest effect on bark
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C, N, and P concentrations and C:N:P ratios compared to current environmental factors
(climate and soil) (Table 1). Specifically, in a general view of bark C:N:P stoichiometry,
evolutionary history (indicated by phylogeny and species) explained between 54-85%
of the total variance, whereas current environmental factors explained only 5-14% of
total variance. In addition, environmental factors played different roles in influencing
bark C:N:P stoichiometry. Namely, STP had a significant effect on bark C; MAT and
STN had significant effects on bark N; MAT, MAP, SR, STN, and ST have significant
effects on bark P; MAP and SR had significant effects on bark C:N ratio; MAP, SR and
STN had significant effects on bark C:P ratio, whereas MAT, SR, STN, STP, and ST
had significant effects on bark N:P ratio (Table 1).

4. Discussion

4.1 The variation of bark C, N, and P stoichiometry in forest ecosystems

This study presents the first report about global bark C, N, and P stoichiometry in tree
species across plant functional groups. The bark C concentration of tree species in our
study is higher than the C concentration of previously reported leaf, twig, and root,
whereas N and P concentrations are lower than that in the global leaf, twig, and root
dataset at national and global scales (Table 2). This result was consistent with the
observed carbon accumulation with the tree growth (Rosell et al., 2014, 2015; Dossa et
al., 2018). Throughout the ontogeny of tree species, the bark undergoes potentially
dramatic changes, including maturation of thin-walled parenchyma cells into thick-
walled sclerotia cells and accumulation of fragmented phloem (Srivastava, 1964; Rosell
et al., 2015). These processes are accompanied by changes in bark density, thickness,
and water content, which may favor the carbon storage per unit of dry biomass via the
accumulation of dense wall material (Rosell et al., 2015; Rosell et al., 2017), supporting

the notion that the proportions of galactose, mannose and starch are higher in bark than



301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

in wood (Romero, 2014).

Moreover, bark in this study encompasses both the outer bark and the inner bark,
each playing distinct roles throughout a tree’s lifetime (Dossa et al., 2018). The outer
bark in living trees serves to protect the underlying tissue from fire (Pausas, 2017),
herbivory, and pathogens (Paine et al., 2010). Conversely, the inner bark plays a crucial
role in water storage and the transportation of organic compounds, particularly those
involved in photosynthesis (Ryan & Asao, 2014; Rosell et al., 2023). Consequently, the
outer bark requires a higher accumulation of carbonaceous material to fulfill its
protective function, while the inner bark, akin to other active organs, exhibits high
levels of N and P concentrations to support plant growth and metabolic demands.
However, due to the diluting effect of the outer bark, N and P concentrations throughout
the bark were lower compared to other organs (Table 2).

The bark C:N:P ratios were higher than those of other plant organs such as leaves,
twigs, and roots reported by previous studies (Table 2). This result could be explained
by higher C concentration and lower N and P concentrations in bark. Plant N:P ratios
are considered to be reliable indicators of the relative nutrient limitations of N and P in
terrestrial ecosystems (Koerselman & Meuleman, 1996; Giisewell, 2004; Elser et al.,
2010). Generally, leaf N:P ratio less than 14 tends to indicate N limitation, whereas N:P
ratio greater than 16 frequently indicates P limitation (Aerts & Chapin, 2000). The
higher bark N:P ratio (19.16+0.60) in our study can be interpreted to indicate that tree
species tend to be more limited by P than by N, which is consistent with the previous
studies with leaves (Reich & Oleksyn, 2004; Wang et al., 2022b). However, given the
uncertainty of the N:P ratio as a threshold for plant nutrient limitation (Yan et al., 2017)
and the divergence in nutrient use strategies of tree species from different locations

(Sardans et al., 2016), whether the bark N:P can indicate N and P limitation of tree
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species still needs to be discussed.

The bark C, N, and P concentrations and C:N:P ratios differed across different plant
functional groups, supporting the interpretation that bark nutrients can be highly
variable across species (Cornwell et al., 2009; Jones et al., 2019). One possible reason
was that bark in this study contains phloem, the great variation in volume and
proportion of the outer bark also caused great differences in the chemical elements of
the bark. Our results indicate that the bark C concentration is higher in needle leaved
species than that in broad leaved species, consistent with a previous study suggesting
that gymnosperms often have thicker outer bark than angiosperms (Rosell et al., 2017).
Needle leaved species frequently grown in cold areas with harsh environment, the bark
of these species maybe increase protection (more C accumulation) to resistant low
temperature (Reich, 2014; Augusto et al., 2015). In contrast, the bark N and P
concentrations are higher in broad leaved than needle leaved species, supporting the
notion that short-lived, fast-growing species tend to have higher N and P concentrations
and lower N:P ratio than those of short-lived, slow-growing species, which have lower
N and P concentrations and higher N:P ratio (Giisewell, 2004; Wang et al., 2022b).
Moreover, higher bark C:N and C:P ratios were observed in needle leaved species,
providing additional evidence that species with thicker bark, which is of lower density,
tended to have lower P concentrations (Richardson et al., 2015; Jones et al., 2019;
Rosell et al., 2023).

In comparison to deciduous trees, higher concentration of bark C but lower
concentrations of N and P were observed in evergreen species. We speculate that the
possible reasons for this result is that this result may be attributed to the bark of
evergreen trees typically being smooth, and relatively thin, but dense, resulting in a

higher concentration of C. In contrast, the bark of deciduous trees may exhibit a rougher
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or cracked texture, aiding in trunk expansion during growth, thus leading to the lower
C concentration. Additionally, to facilitate rapid expansion during the shorter growing
season, the bark of deciduous trees may contain higher concentrations of N and P to
meet elevated metabolic demands. However, bark characteristics may vary among
individuals of the same tree species, and different tree species may exhibit similar bark
characteristics (Rosell, 2016). Therefore, further investigation into the variation in bark
stoichiometry across different plant functional groups is warranted in future studies.
4.2 Latitudinal patterns of bark C, N, and P stoichiometry in forest ecosystems
Significant latitudinal patterns were observed in bark C, N, and P stoichiometry across
global forest ecosystems, except for N:P ratio (Fig. 3). However, these results were
inconsistent with the findings of leaves from whole terrestrial (Reich & Oleksyn, 2004),
global forest (McGroddy et al., 2004) and coastal wetland ecosystems (Hu et al., 2021).
The differences between our results and the results of leaves in previous studies might
be related mainly to the divergences of functions in distinct plant organs. Specifically,
based on the temperature plant physiology and the soil substrate age hypothesis, Reich
& Oleksyn (2004) proposed that plant leaves need to accumulate higher N and P
concentration to increase metabolism rate to adjust to short growing seasons in higher
latitudinal regions. While outer bark needs to increase its protective properties by
accumulating secondary metabolites (mainly C), rather than increasing N and P
concentrations to enhance the metabolic capacity.

The latitudinal patterns observed in bark C:N:P stoichiometry are clearly influenced
by environmental factors. Climate and soil variables exhibited significant correlations
with bark C, N, and P concentrations and C:N:P ratios. Evidences have indicated that
climate variables are the most important factors that can drive vegetation distribution,

community structure and physiological metabolism to affect C:N:P stoichiometry of
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different plant organs at species and community level (Wright et al., 2001; Reich, 2005;
Wang et al., 2020), despite these studies have been not taken into account the legacy
effects. Moreover, soil physical and chemical properties also have significant
correlations to bark C, N, and P concentrations and C:N:P ratios in this study. This is
probably because soil conditions may influence the nutrient uptake and acquisition and
then affect plant C:N:P stoichiometry (Wang et al., 2020).
4.3 The driving factors of bark C, N, and P stoichiometry in forest ecosystems
As shown in the results of random forest model, climate, soil, and plant functional group
collectively influence the bark C, N, and P concentrations and their mass ratios (Fig. 4).
It is known that climate drives plant distributions and community structures (Hu et al.,
2021) and alter soil nutrient availability (Wang et al., 2020), resulting in the changes in
bark C:N:P stoichiometry. We also found that plant functional groups were very
significant in determining bark C, N, P concentrations, C:N and C:P ratios. Plant
functional groups are not only regulated by external environmental factors but also
controlled by the internal vegetation attributes (Valverde-barrantes et al., 2017). These
results are in line with species composition hypothesis proposed by Reich & Oleksyn
(2004), suggesting that plant species was one of the most important factors regulating
the variations of plant C:N:P stoichiometry. However, due to limitations in explanatory
variables, we still need to further explore more potential factors (e.g., topography,
microclimate, warming, N deposition, and fire) that have an impact on bark C:N:P
stoichiometry.

In addition, compared to climate, soil, and plant functional group, evolutionary
history had an important role in explaining global bark C:N:P stoichiometry evident
from the obtained results from phylogenetic signal and Bayesian phylogenetic linear

mixed model analyses. First, the significant phylogenetic signals existed for bark C, N,
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and P concentrations and their mass ratios (Fig. S5; Table S3), consistent with the
observations in leaves and fine roots (Wang et al., 2022b; You et al., 2023). Second, the
results of the Bayesian phylogenetic linear mixed model indicated that legacy factors
(phylogeny and species) have higher relative weight over environmental factors in
explaining bark C:N:P stoichiometry (Table 1). Phylogeny reflects long-term
evolutionary processes including ancient adaptation and differentiation, whereas
species is related to more recent environmental selections and phenotypic changes that
are not directly detectable by phylogenetic information such as epigenetic and divergent
and convergent evolution processes (Sardans et al., 2021; Yan et al., 2023b). Previous
studies of multi-elemental concentrations and photosynthetic traits have also
consistently shown that evolutionary history plays a dominant role in explaining large-
scale variation in various leaf traits (Sardans et al., 2021, 2023; Vallicrosa et al., 2022a,b;
Yan et al., 2023b). Our results reveal the phylogenetic relatedness of bark C:N:P
stoichiometry at global scales, suggesting that bark stoichiometry is mainly regulated
by long-term evolutionary processes, and thus it has singular values for each
species/genotype, consistently with the BN hypothesis (Pefiuelas et al., 2019; Sardans
et al., 2021). Additionally, it is worth noting that the explanatory strength and
significance of fixed current environmental variables were very different for bark C, N,
and P and their mass ratios in Bayesian phylogenetic linear mixed model analysis (Table
1). This is attributed to that various plant organs have different elemental requirements,
and the assimilation of these elements is influenced by different environmental factors
(Wang et al., 2020).

5. Limitations and implications

While the present study offers valuable insights into the global patterns and controlling

factors of bark C:N:P stoichiometry in tree species, it is essential to acknowledge three
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main limitations. Firstly, in this study ‘bark’ encompasses all tissues outside the
vascular cambium and is regarded as a homogeneous tissue (Dossa et al., 2018).
However, bark typically consists of two distinct parts: the inner bark (e.g., successive
periderms), responsible for photosynthate transport and storage, and the outer bark (e.g.,
secondary cortex), which primarily provides physical and chemical protection (Rosell,
2016). These two components have significant differences in morphological
characteristics, physical properties, and chemical composition, and perform entirely
different functions (Rosell et al., 2014; Rosell, 2016). A prior study has pointed out that
the outer bark has relatively lower nutrients than that in the inner bark, and their findings
only focused on N and P stoichiometry of the inner bark and sapwood, but do not
considered the outer bark (Rosell et al., 2023). Therefore, expanded dataset on the inner
and outer bark globally are warranted to provide more evidence for the effects of
climate and evolutionary history on shaping bark C:N:P stoichiometry in various tree
species. Secondly, due to limited data from the Southern Hemisphere (i.e., Southern
Africa, South America, and Southeast Asia), our understanding of the patterns and
drivers of bark C:N:P stoichiometry at a global scale remains restricted. Consequently,
future research in these crucial regions is warranted and necessitates further
investigation. Thirdly, the study's limited inclusion of soil and climate explanatory
variables may hinder the identification of additional potential factors (e.g., topography
and microclimate) influencing bark C:N:P stoichiometry. Thus, further research is
needed to elucidate the underlying mechanisms governing the dynamics of bark C:N:P
stoichiometry under changing environments. Additionally, while all bark element data
in our study are collected from natural conditions, it is important to test the responses
of bark C:N:P stoichiometry to global change factors (e.g., fire, precipitation change,

CO; enrichment, and N deposition).
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To the best of our knowledge, this study represents the first comprehensive
exploration of bark C:N:P stoichiometry in tree species at a global scale. Despite several
limitations, this study holds significant implications for our understanding of ecological
C:N:P stoichiometry and for modeling nutrient cycling in global forest ecosystems
under changing environments. Firstly, as bark constitutes 2-20% of woody plant
biomass in forests and represents significant N and P pools (Jones et al., 2019; Rosell,
2019), our results will enhance the evaluation of bark's contribution to forest C storage,
nutrient turnover, and biogeochemical cycles at a global scale. Secondly, since bark
contains more nutrients than wood and serves as a high-quality substrate for
decomposers (Dossa et al., 2018), our study may also enhance predictive models of

bark decomposition in response to environmental changes.
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725  Table 1 Summary of the Bayesian phylogenetic linear mixed model of bark C, N, and P concentrations and their mass ratios.

The statistics of fixed variables

Bayesian model Variable Post.mean Lower 95% CI Upper 96% CI Eff.samp pMCMC Model statistics
MAT -0.16 -0.34 0.02 1700 0.09
MAP -0.04 -0.18 0.10 2030 0.59 _
BarkC~MAT + MAP oo 0.04 0.14 0.25 1700 0.69 Ro ~ 0.02
+ SR + STN + STP + pH STN 0.04 0.05 0.14 1700 0.40 R =~ 0.79
+ ST + (random = STP 0.11 10.20 10.03 1700 0.01 Ry ~ 047
phylogeny + species) pH 0.07 -0.07 0.23 1573 0.37 R ~ 019
ST -0.40 -0.54 -0.25 1332 <0.001
MAT -0.03 -0.13 0.07 1700 0.56
MAP 0.31 0.20 0.42 1700 <0.001 )
Bark N~ MAT + MAP + - g -0.05 -0.14 0.04 1700 0.24 Rm" ~ 0.06
SR+STN +STP+pH+  opy 0.07 0.13 0.01 1700 0.02 Re =~ Q.75
ST+ (random= STP 0.06 -0.01 0.13 1700 0.11 Ry ~ 041
Phylageny + species) pH 0.09 -0.03 0.21 2059 0.15 R ~ 0.28
ST -0.04 -0.13 0.04 1432 0.31
MAT -0.25 -0.33 0.15 948 <0.001
Bark P - MAT 5 MAp « MAP 0.21 0.12 0.31 1027 0.001 R2~ 013
SR STNLSTPaors R -0.16 -0.24 -0.08 1700 <0.001 R? ~ 0.73
el o e am o awem o IO
phylogeny + species) . 0.04 -0.06 0.16 1700 0.42 R¢ ~ 0.33
ST 0.14 0.06 0.21 1378 <0.001
_ MAT 0.00 -0.17 0.17 1700 0.95 R’ ~ 0.13
EA""A‘;E-';'F; ys,ATL++ MAP 033 0.47 017 1700 <0.001 R2 ~ 0.89
SR -0.27 -0.47 -0.05 1700 0.01 R ~ 0.56

STP +pH + ST +
STN 0.02 -0.06 0.11 1831 0.64 R ~ 0.20




(random = phylogeny +  STP -0.05 -0.13 0.03 1700 0.28

species) pH -0.13 -0.25 0.02 1518 0.08

ST 0.17 0.03 0.32 1700 0.02

MAT -0.06 -0.21 0.08 1700 0.41
Bark C:P ~ MAT + MAP -0.13 -0.26 -0.01 1700 0.04 R.2 ~ 0.05
MAP + SR + STN + SR 0.36 0.18 0.55 2023 <0.001 R ~ 090
STP +pH + ST + STN 0.08 0.01 0.15 1356 0.04 R2 ~ 079
(random = phylogeny +  STP -0.04 -0.11 0.03 1700 0.31 o
species) oH 0.06 -0.06 0.19 2604 0.33 Rs" ~ 0.06

ST 0.04 -0.07 0.16 1361 0.44

MAT 0.28 0.18 0.38 1700 <0.001
Bark N'P ~ MAT + MAP 0.02 -0.09 0.12 1700 0.72 B2 014
MAP + SR + STN + SR 0.15 0.07 0.24 1700 <0.001 R”; ~ 068
STP + pH + ST + STN 0.11 0.06 0.17 1700 <0.001 R°2 - 01t
(random = phylogeny +  STP 0.10 0.03 0.17 1700 0.01 A
species) pH 0.02 -0.11 0.13 1700 0.75 Re" ~ 039

ST -0.19 -0.28 -0.11 1519 <0.001

726

727 Note: Full names of each predictor were listed in Table S1. Rc?, percentage of variance explained by all the model (fixed + random); R, percentage
728  of variance explained by fixed factors; R,?, percentage of variance explained by phylogeny; R¢?, percentage of variance explained by species;
729  Post.mean, posterior mean; Eff.samp, the effective sample size; pMCMC, p-value from Monte Carlo sampling by Markov Chain.
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732 Table 2 Comparisons of the mean values of bark C, N, and P concentrations and C:N:P ratios in different plant tissues at global or national scale.

Tissues  Study area C(mgg') N(mgg') P(mgg') C:N C:P N: P Reference

Leaf Global terrestrial ecosystems — 20.09 1.77 — — 13.8 Reich and Oleksyn (2004)
Leaf Global forest ecosystems — — — 37.37 516.4 12.55 McGroddy et al. (2004)
Leaf Global terrestrial ecosystems 476.1 17.4 1.23 23.4 — 12.28 Kattge et al. (2011)

Leaf China’s terrestrial ecosystems 436.8 14.14 1.11 — — — Tang et al. (2018)

Twig Global terrestrial ecosystems — 9.33 1.12 — — 10.16 Wang et al. (2022a)

Twig China’s forest ecosystems 472 9.8 1.15 — — — Yao et al. (2015)

Root Global terrestrial ecosystems 447 9.8 0.78 65.8 1415 16 Yuan et al. (2011)

Root China’s terrestrial ecosystems 448.81 10.73 0.9 41.84 508.32 11.73 Wang et al. (2020)

Bark Global forests ecosystems 493.17 391 0.2 13551  3313.19 19.16 This study

733
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Fig. 2 Comparisons of bark C, N, and P concentrations (A) and C:N:P ratios (B)
between different plant functional groups (i.e., evergreen vs. deciduous species; broad

leaved vs. needle leaved species). * p < 0.05; ** p <0.01, *** p <0.001, ns p > 0.05.
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748  Fig. 3 Correlations of absolute latitudinal with bark C, N, and P concentrations (A-C)
749  and C:N:P ratios (D-F) at a global scale.

750

751

752



753

754

755

756

757

758

759

(A) (B) (©)
Bark C Bark N Bark P
BN *% B_N *x B_N *ox
MAT ST SR k.
ED MAP MAT
STP STP ST
SR pH STP
MAP Climate Soil SR **  Climate Soil pH #x Climate Soil
2
STN 1 " 3o MAT = 2’ D ' STN * i LI W
ST b STN MAP *
: o
pH Plant function group S0 Plant function group soc Plant function group
soc Var explained (%): 50.60 ED Var explained (%): 53.59 ED % Var explained (%): 71.03
0 10 20 30 0 10 20 30 0 10 20 30
Relative influence (%) Relative influence (%) Relative influence (%)
D) . (E) , (F) ,
Bark C:N Bark C:P Bark N:P
BN *x B_N *x SR **
MAP SR MAT
STP ED ST
pH MAP STP
MAT MAT pH
ST Climate Soil STN **  Climate Soil STN * Climate Soil
2
SR ° 35%B% oH 28°% o MAP 35487%
51108%
ED ** STP SOC i
soc !y soc " BN 1 g
Plant function group Plant function group Plant function group
STN Var explained (%): 70.94 ST Var explained (%): 79.61 ED Var explained (%): 58.76
0 10 20 30 0 10 20 30 0 10 20 30

Relative influence (%) Relative influence (%) Relative influence (%)

Fig. 4 Random forest model results of the relative influences of climate, soil and plant
functional groups variables on bark C:N:P stoichiometry. The annular chart represents
the percentages of cumulative relative contributions of climate, soil and plant functional
group. MAT, mean annual temperature; MAP, mean annual precipitation; SR, solar
radiation; pH, soil pH; ST, soil texture; SOC, soil organic carbon; STN, soil total nitrogen; STP,
soil total phosphorous; B N, broad leaved or needle leaved trees; E D, evergreen or

deciduous trees; * p <0.05; ** p <0.01; *** p <0.001.



