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Abstract: Square-root topology is one of the newest addi-

tions to the ever expanding field of topological insulators

(TIs). It characterizes systems that relate to their parent

TI through the squaring of their Hamiltonians. Extensions

to 2n-root topology, where n is the number of squaring

operations involved in retrieving the parent TI, were quick

to follow. Here, we go one step further and develop the

framework for designing general n-root TIs, with n any pos-

itive integer, using the Su–Schrieffer–Heeger (SSH) model

as the parent TI from which the higher-root versions are

constructed. The method relies on using loops of unidirec-

tional couplings as building blocks, such that the resulting

model is non-Hermitian and embedded with a generalized

chiral symmetry. Edge states are observed at the n branches

of the complex energy spectrum, appearing within what

we designate as a ring gap, shown to be irreducible to the

usual point or line gaps. We further detail on how such an

n-root model can be realistically implemented in photonic

ring systems.Near perfect unidirectional effective couplings

between themain rings can be generated viamediating link

rings with modulated gains and losses. These induce high

imaginary gauge fields that strongly suppress couplings in

one direction, while enhancing them in the other. We use

these photonic lattices to validate and benchmark the ana-

lytical predictions. Our results introduce a new class of

high-root topological models, as well as a route for their

experimental realization.
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1 Introduction

High-root topology has emerged as a rich new branch

within the field of topological insulators (TIs). Square-root

TIs (
√
TIs) [1] were first proposed to characterize lattice

models whose parent TI, from which its topological fea-

tures are inherited, manifests itself as one of the diagonal

blocks of the squared Hamiltonian [2]–[11]. Experimental

realization of these models in different platforms followed

soon [12]–[20]. Subsequently, these systems were further

generalized to 2n-root TIs (
2n
√
TIs) [21]–[24], meaningmodels

that connect to their parent TI through a sequence of n

squaring operations. The first experimental demonstrations

of quartic-root topology (n = 2) appeared recently in the

context of acoustic [25] and photonic [26] lattices. Studies

on related topics, such as those of fractionally twisted mod-

els [27] or multiplicative topological phases [28], have also

started to appear recently.

The question of whether general n-root TIs (
n
√
TIs),

with n ∈ ℕ, can be devised naturally arises. It has already

been affirmatively answered for Floquet systems [29], [30],

through a method based on subdividing the driving period

into n subperiods, each with its own associated Hamilto-

nian. However, for non-driven systems, a natural gener-

alization of
2n
√
TIs to

n
√
TIs has been lacking so far. Here,

we bridge this gap in the literature by considering the

SSH model [31] as the parent TI, from which its higher-

root versions (
n
√
SSH) are derived following a novel proce-

dure. Specifically, it involves constructing n-partite chains

from loop modules of unidirectional couplings as the build-

ing blocks. Under open boundary conditions (OBC), n edge

states, all decaying from the same edge [22], are seen to

appear in the complex energy spectrum when in the topo-

logical phase.

The main challenge regarding the experimental design

of the
n
√
SSHmodel relates to the implementation of the uni-

directional couplings in the loop modules. Although seem-

ingly exotic, non-Hermitian couplings have been a mat-

ter of intense discussion in recent years, with theoreti-

cal proposals and experimental implementations appear-

ing in many different platforms, including optical and

acoustic ring resonators [7], [32]–[38], optical fibers and
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waveguides [39]–[41], ultracold atoms [42], [43], electrical

circuits [44]–[47], modulated waveguides exploiting syn-

thetic dimensions [48], [49], and many others.

We focus here on photonic ring systems, and show that

they are a well suited candidate for the realization of these

models. We consider an array made up of a set of resonant

optical ring resonators, which constitute the main rings

of the lattice, coupled through smaller anti-resonant link

rings, as illustrated in Figure 1. The link rings feature a split

gain/loss distribution, inwhich the upper half of the ring has

gain characterized by a parameterhwhile the lower half has

an equal amount of loss. To avoid reflection effects, we use a

sine-like distribution for the imaginary part of the refractive

index. The anti-resonant condition for a ring mode with

propagation constant 𝛽 reads: 𝛽
(
LL − LM

)
= (2m+ 1)𝜋,

where LM and LL are the lengths of main and link rings,

respectively, and m is the circulation. Here, we will restrict

ourselves to the clockwise (m = 1) and counter-clockwise

(m = −1) circulations. Through the presence of the link

rings, and due to their balanced gain and loss distribution,

an effective asymmetric coupling is enabled between the

same circulation m in the main rings t± = t e±h [32], which

depends exponentially on the gain and loss parameters

and is analogous to an imaginary gauge field acting on the

system. We represent the forward coupling direction by +
and the backward direction by −. Unidirectionality in the

couplings is obtained in the limit h→∞, while Hermiticity

is restored for h = 0. For a finite h value, one is in the

intermediate situation where the hoppings occur in both

directions, but with the predominance of one over the other.

For a strong enough gauge field, nearly perfect unidirection-

ality can be achieved, as we propose below. The coupling t is

determined by the relative distance between themain rings,

which for the roots of the SSH model alternates between

two values in different plaquettes to achieve 3
√
t1 ≠

3
√
t2 (this

choice of hopping notation [22], [23], [25], adopted from now

on, will become clear below, when we relate the model in

Figure 1 to its cubed SSHparent system). A key characteristic

in this system is that for each pair of rings, only opposite

circulations may be coupled between them. That is, we con-

sider that the coupling of the (counter-)clockwise circulation

of a main ring with the (counter-)clockwise of a link ring

is negligible. In that sense, we can separate the system in

clockwise and counter-clockwise components for all main

rings. This assumption is valid as long as the coupling region

between main and link rings is long compared to the wave-

length of light [50], which is fulfilled for the sizes considered

in this work and is reflected in the numerical results. Addi-

tionally, a real flux of desired value can be established in

ring systems by orthogonally displacing a link ring from the

Figure 1: Unit cell geometry of the photonic ring implementation of the
3
√
SSH model. The grey rings constitute the main rings of the effective

lattice, without gain or loss. The smaller link rings are anti-resonant to the

former, and display a sine-like distribution of the imaginary component

of the refractive index ñ, as represented by the color bar on the right. The

distance between rings is different in each plaquette so that 3
√
t1 ≠

3
√
t2.

The lower inset depicts the unit cell of the
3
√
SSH model, where the

arrows indicate the direction of the couplings, and corresponds to an

effective description of the counter-clockwise (m = −1) circulation of the
photonic system above. For the opposite clockwise (m = 1) circulation,

an equivalent model is obtained, but with all coupling directions flipped.

line connecting the centers of the correspondingmain rings,

and thus generating a phase in the coupling between them

[51].

We will begin with a brief overview of the
3
√
SSH

model and its main features. The interested reader is

referred to Supplementary Section I for the complete ana-

lytical description of the model. Next, we will detail on how

such amodel can be implemented in a photonic ring system.

After a brief discussion on the generalized
n
√
SSHmodel, we

will finish with an analysis of the photonic realization of the
4
√
SSHmodel. Numerical simulations on the ring systems are

performed using the commercial finite-element simulation

software COMSOL Multiphysics. All relevant parameters

necessary to reproduce the results are indicated within the

main text or Supplementary Material, or can be deduced

from them.

2
3
√
SSH model

The unit cell of the
3
√
SSH model is depicted at the bottom

of Figure 1. Under periodic boundary conditions (PBC), and

in the ordered {|j(k)⟩} basis, with j = 1, 2, . . . , 6, the bulk

Hamiltonian of the
3
√
SSH model can be written as

H 3
√
SSH

(k) =
⎛⎜⎜⎜⎝

0 h1 0

0 0 h2

h3 0 0

⎞⎟⎟⎟⎠
, (1)
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h1 = h†
3
= −

(
3
√
t1

3
√
t2e

−ik

3
√
t1

3
√
t2

)
, (2)

h2 = −
(

3
√
t1 0

0 3
√
t2

)
, (3)

where the lattice spacing was set to unity and all hopping

terms are unidirectional. We further assume t1, t2 ≥ 0, with-

out loss of generality. Due to its tripartite nature, composed

by the sublattices (1,2), (3,4), and (5,6), and defined by requir-

ing multiples of three hopping processes to produce intra-

sublattice couplings [52], this Hamiltonian obeys a general-

ized chiral symmetry,

C 3: Γ3H 3
√
SSH

(k)Γ−1
3

= 𝜔−1
3
H 3

√
SSH

(k), (4)

Γ3 = diag
(
𝜎0, 𝜔3𝜎0, 𝜔

−1
3
𝜎0
)
, (5)

with 𝜔3 = ei
2𝜋

3 and 𝜎0 the 2 × 2 identity matrix.

After cubing the Hamiltonian in (1) we obtain

H3
3
√
SSH

(k) = diag
(
HSSH′ (k),H2(k),H3(k)

)
, (6)

where

HSSH′ (k) = h1h2h3

= −
(

t1 + t2 t1 + t2e
−ik

t1 + t2e
ik t1 + t2

)

= −(t1 + t2)𝜎0 + HSSH(k), (7)

is isospectral to the other diagonal terms in (6), namely

H2(k) = h2h3h1 and H3(k) = h3h1h2 [52]. Their eigenvalues

are given by

E±(k) = −t1 − t2 ±
√
t2
1
+ t2

2
+ 2t1t2 cos k. (8)

The three-fold degenerate spectrum of Figure 2(d) is a

reflection of the isospectrality of the three diagonal blocks.

The complex energy spectrum of the
3
√
SSH model,

with the Hamiltonian in (1), is composed of three two-

band branches that can be derived directly from (8) as{
E

1

3

±(k), 𝜔3E
1

3

±(k), 𝜔
−1
3
E

1

3

±(k)

}
. In Figure 2(a)–(c), we repre-

sent this bulk energy spectrum for different values of 3
√
t1,

after setting 3
√
t2 = 1. The three branch structure, indicated

by the different colors, is clearly visible. From one branch,

the other two can be obtained from successive 2𝜋

3
rotations

in the complex energy plane, as a consequence of the C 3-

symmetry in (4). Additionally, the low energy bands of the

three branches become degenerate at E = 0 for k = 0. Aswe

detail in Supplementary Section I, this actually corresponds

to an exceptional point of the spectrum, with only two asso-

ciated eigenstates. The downshifted three-fold degenerate

SSH real spectrum of Figure 2(d) was obtained by cubing the

complex spectrum of the
3
√
SSH model in Figure 2(a).

Remarkably, the spectral gap for the
3
√
SSH model does

not fall in the conventional categories of non-Hermitian

systems, namely those of point or line gaps [53], [54], which

are present if the Hamiltonian can be continuously flat-

tened into a unitary matrix without closing the respective

gap. Here, and since the starting (
3
√
SSH) model is directly

related to the parent (SSH)model by a cubing procedure, the

energy gap of the latter [see Figure 2(d)], present for t1 ≠ t2,

naturally reverts back to all three branches of the complex

spectrum [see Figure 2(a)]. This generates what we label as

a ring gap in the energy spectrum, not reducible to a point

or a line gap. In the sequence of Figure 2(a)–(c), we can see

the ring gap closing and reopening across the critical point
3
√
t1 = 3

√
t2. A continuous ring gap is obtained in the n→∞

limit of the
n
√
SSH model studied below, corresponding to

an infinite number of branches forming a continuum in the

energy spectrum (see the energy spectrumof then = 20 case

in Supplementary Section II).

We can take advantage of the existence of a ring energy

gap in the system to define a new type of polarization for our

complex spectra. The polarization is computed by filling all

states below a certain Fermi level, which is not well defined

for complex spectra. In our case, we introduce a ring Fermi

level at a certain radius |EF| within the ring gap, such that

all states within it are considered occupied and unoccupied

otherwise. However, and for the purpose of comparing with

the polarization of the parent SSH model, we will rather

occupy the states outside the Fermi level, as depicted in

Figure 3(a) for an open chain in the topological phase. This

is justified by considering that, when cubing the root model,

the outer bands become the degenerate lower energy band

of the SSH model, as we highlight in Figure 3(b). This can

also be understood by comparing Figure 2(a)–(d). In this

vein, we define the polarization as:

 = e

N

N−1
2∑

j=− N−1
2

6∑
𝛼=1

6N∑
l=3N+1

j
(
ΨL

j,𝛼,l

)∗
ΨR

j,𝛼,l
, (9)

where e is the electron charge, j the unit cell position, 𝛼 the

site number within the unit cell, l the eigenstate index, and

ΨL(R)

j,𝛼,l
the amplitude of the left (right) eigenstate l of the root

model at the corresponding position. The process leading to

expression (9) is detailed in Supplementary Section III. We

plot the polarization for an open
3
√
SSH chain of N = 121

unit cells at half-filling in Figure 3(c) (blue solid line), as
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Complex energy spectrum, in units of 3
√
t2 = 1, as a function of the momentum for the

3
√
SSH model in (1) with (a) 3

√
t1 =

3
√
0.5, (b) 3

√
t1 = 1,

and (c) 3
√
t1 =

3
√
1.5. Different energy branches are indicated with different colors. (d) Cubed energy spectrum of the model in (a), which is purely real

and with each band three-fold degenerate. (e)–(h) Same as the corresponding cases above, but for 3
√
t1 → ei

𝜋
3 3
√
t1 in (1), leading to the

3
√
SSH 𝜋

3
model.

Different colors in (e)–(g) now distinguish the groups of three bands that become degenerate upon cubing the spectrum. The ring gaps are depicted

in light purple and appear at k = 𝜋 in (a) and (c), and at k = 2𝜋 in (e) and (g), where the inner circumference of the ring reduces to a point at E = 0.

a function of t2 for t1 = 1. We see that the polarization, in

units of e, is quantized only at the atomic limits,(t2 = 0) =
0 and (t2 →∞) = 1∕2, while being non-quantized away

from these limits, with a sharp transition at the critical gap

closing point t2 = 1. This behavior is in agreement with that

of the
√
SSH model [55] where, analogously, the polariza-

tion values are non-quantized across the parameters range,

whereas the difference between the atomic limits remains

quantized to 1/2, as observed here also. It is this quantized

polarization difference between atomic limits, located at

opposite sides of the transition point t2 = 1, that serves as a

topological invariant of our root systems. For comparison,

we plot in the same Figure 3(c) the usual polarization at

half-filling for the parent SSH chain of the same size N

(red dashed line). There, the usual quantized plateaus at

 = 0 ( = 1∕2) for the (non-)trivial region and the tran-

sition from one to the other at the gap closing point are

observed, once more demonstrating that the parent SSH

model is indeed the source of the topological features of the

root models. More details on the physical interpretation of

the polarization at both atomic limits (t1 = 0 and t2 = 0) are

given in Supplementary Section III.

We now focus on the topological edge states that can be

found within the ring gap. As described in previous works

[22], [23], the root model inherits the topological protection

from the parent system, which in our case is the Hermi-

tian SSH model. In that sense, the edge states of the
3
√
SSH

model are protected against any disorder that preserves

the chiral symmetry of the parent SSH model, which is the

protecting symmetry. As is well known, the SSH model is

protected against chiral disorder such as off-diagonal dis-

order. As such, we expect our edge states to be protected

against the types of disorder in the
n
√
SSH systems that,

when raised to the nth-power, translate as chiral disorder

for the parent SSH block. This constitutes a smaller subset

of allowed disorders when compared to those of the parent

SSH model, which has been characterized as a dilution of

the topological protection [22]. An example of such disorder

is provided in Figure 4(a), where we have added two extra

sites to the left of the chain to impose inversion symmetry. In

there, we consider disorder around 3
√
t1 = cos 𝜃c and

3
√
t1 =

sin 𝜃c, where 𝜃c is defined so that 3
√
t2∕ 3

√
t1 = 2 and two

edge states per branch appear, located at opposite edges. As

indicated in the figure, the disorder is sampled from a uni-

form distribution in quartets of hopping terms, and is thus

correlated. When cubing this system, the SSH block takes

the form sketched in Figure 4(b), where the onsite energies

are sin2𝜃i + cos2𝜃i = 1 and the disorder is off-diagonal. The

response of the edge and closest bulk states to this disor-

der is presented in Figure 4(c), where it is clear that the

edge states remain unaltered until the disorder is strong

enough to close the gap. As a direct comparison, we provide

the same plot for uncorrelated disorder where each 𝜃i is

sampled independently in Figure 4(d), which corresponds
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(a) (b) (c)

Figure 3: Computing the polarization in the root and parent systems. (a) Complex energy spectrum of the open
3
√
SSH chain with N = 121 unit cells for

3
√
t1 = 1 and 3

√
t2 = 2, with the ring gap highlighted in pink. The ring Fermi level of radius |E

F
| is marked with a solid red line. (b) Energy spectrum of

an open SSH chain of the same size N, with lattice parameters extracted from the corresponding diagonal block of the cubed Hamiltonian of the model

in (a), with the Fermi level E′
F
placed at half-filling, where small edge perturbations were included to place the right (left) in-gap edge state below

(above) the Fermi level. (c) Polarization in the
3
√
SSH (blue solid line) and the SSH (red dashed line) models, as a function of t2 for t1 = 1, computed by

filling the states marked in red in (a) and (b), respectively.

(a)

(b)

(c) (d)

Figure 4: Correlated and uncorrelated disorder. (a) Sketch of a
3
√
SSH

model with correlated disorder 𝜃
i
= 𝜃

c
+𝑤

i
sampled in quartets of

hopping terms, as indicated by the lower segments and the different

shaded colors in the hoppings, from a uniform distribution

𝑤
i
∈

[
−W∕2,W∕2

]
, and with the vertical couplings being disorder free.

(b) Sketch of the Hermitian SSH system obtained for the decoupled spinal

sublattice when cubing the Hamiltonian corresponding to (a). Due to the

correlated disorder in (a), this system displays only off-diagonal disorder.

(c), (d) Mean value (solid lines) and standard deviation (shaded region) for

the edge states (red) and the closest bulk states (blue) in the real branch

of the disordered root system for increasing strengths of (c) correlated

and (d) uncorrelated disorder, taken over 200 different realizations.

to both onsite and off-diagonal disorder for the diagonal

SSH block when cubed. For this case, it can be seen that

the robustness of the edge states is lost. This proves that the

topological protection in our model is related to the preser-

vation of the chiral symmetry of the parent SSH model. To

further visualize these results, we provide animations in the

Supplementary Material showing different realizations of

correlated and uncorrelated disorder. There, one can read-

ily see that the whole spectrum is affected by the disorder,

and only for the case of correlated disorder do the edge

states remain unaltered.

Another interesting effect occurs when a 𝜋 magnetic

flux is uniformly distributed in the loops of the rhombus

with one type of hopping term in each unit cell. For example,

let us consider the Peierls substitution 3
√
t1 → ei

𝜋

3 3
√
t1 at the

unit cell shown at the bottom of Figure 1. We label the

resulting system as the
3
√
SSH 𝜋

3
model. As explained in

more detail in Supplementary Section I, and illustrated in

Figure 2(e)–(g), when this change is included in the Hamil-

tonian in (1), it induces a 𝜋

3
relative rotation in the complex

plane between the three outer bands and the three inner

bands, and we lose the one-to-one correspondence between

an outer and an inner band that previously defined each

branch. Instead, now we distinguish between outer and

inner branches, which have a relative 𝜋

3
phase difference.

Notice that the cubed spectrum of Figure 2(h) is shifted

up, in relation to the one in Figure 2(d), such that one of the

three-fold degenerate bands is pushed to the positive half

of the spectrum, and also that there is a relative 𝜋 sliding

of the bands between the two cases. The energy gap is open

now at k = 0 in Figure 2(h). Therefore, the spectral gap of

the corresponding
3
√
SSH 𝜋

3
child model in Figure 2(e) is also

defined as a ring gap at the k = 0 point, which is the gap

closing point in Figure 2(f), with the inner circumference

of the ring reduced to a single degenerate point at zero

energy. However, the ring gap at k = 0 gets obscured if one
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employs the usual projection of thewhole spectrumonto the

complex energy plane [e.g., the ring gaps of Figure 2(e)–(g)

are clearly not visible upon projecting the spectrum onto

the energy plane]. This shows how the three-dimensional

representation of the spectrum, as in Figure 2(e)–(g), is

required for themanifestation of the ring gap in the
3
√
SSH 𝜋

3

model.

3 Photonic ring realization

of the
3
√
SSH model

We consider rings of planar waveguides with a radius of

4.5 μm and a width of 250 nm. For simplicity, the cores

(with refractive index ñcore = 3) are surrounded by air, lead-

ing to an overall high contrast, and the considered res-

onant frequency is 195.225 THz. The asymmetric effective

coupling is established through smaller anti-resonant link

rings of radius 3.24 μm and core refractive index ñlink =
3+ 0.1i sin 𝜑, where 𝜑 is the angle of the polar coordi-

nates with origin at the center of the link ring. For these

parameter values, the loss factor in t± = t e±h is computed

to be h = 2.07, implying a coupling asymmetry ratio of 𝛼 ≡

t−∕t+ = 0.016, very close to perfect unidirectionality. Proof

that this ring setup generates such a coupling is provided

in Supplementary Section IV. We display the unit cell of the

system in Figure 1, where we have considered the counter-

clockwise circulation (m = −1) for the coupling distribution
shown in the inset. To achieve the staggered distribution

of couplings present in the
3
√
SSH model, this structure

is replicated with alternating relative ring distances d1 =
0.33 μm and d2 = 0.3 μm in each plaquette, which corre-

sponds to a coupling ratio of 3
√
t1∕ 3

√
t2 ≃ 0.6. These distances

are drawn between the outer radii of the rings. The method

to extract the couplings and the asymmetry parameter h

from the spectrum of the ring resonators is described in

Supplementary Sections V and VI, respectively. We display

the bulk spectrum of eigenfrequencies for the periodic ring

system in Figure 5(a). The spectrum agrees very well with

the theoretical results shown in Figure 2(a). As explained

above, the three-fold splitting in the complex energy plane

is a consequence of the tripartite nature of the system, as it

obeys the generalized chiral symmetry in (4). As before, the

band gap for this system can be generalized to the complex

frequency spectrumcontext by defining a ring gap for all |𝜔|
in a certain interval, a concept that can be directly applied

to higher-root systems as well, as we will show below.

On a separate note, although the spectra for both circula-

tions in the main rings are obtained in the simulations, we

only observe a doubly-degenerate joint spectrum. Reversing

the circulation in the rings corresponds to a change of all

coupling directions, but the cubed system in that case is still

the SSH model. This necessarily implies that both circula-

tions yield the same spectrum, as explained in Ref. [52]. The

symmetries of the full
3
√
SSH system, which incorporates

both m = ±1 circulations, are further detailed in Supple-

mentary Section IB.

A real flux can be added to the system by displacing

the link rings orthogonally to the coupling line [51], which

modifies the optical path in the upper and lower arms and

induces a phase in the coupling, as shown in Supplemen-

tary Section VI. We are particularly interested in realizing

the
3
√
SSH 𝜋

3
model by considering a 𝜋 flux around the loops

involving one type of hopping terms, namely by considering

the following Peierls substitution, 3
√
t1 → ei

𝜋

3 3
√
t1. As detailed

in the previous section, this implies a sign change for one of

the bands of the parent SSH model. Relative to the
3
√
SSH

model of Figure 5(a), we can see in Figure 5(b) that the flux

causes a 𝜋-sliding of the outer bands and a 𝜋∕3 rotation
of the inner ones, again in agreement with the theoretical

results of Figure 2(e).

As one would expect from a root TI, the existence of

edge states in the
3
√
SSH model under OBC is inherited from

the parent system. One of the remarkable features of the

cubic-root system is that, since it possesses three times as

many bands as the parent one, it will host three times as

many in-gap states at one of the edges, namely the right

one. The absence of topological states at the left edge can be

understood as follows. Upon cubing the lattice, the resulting

SSH chain at the first sublattice will have an onsite energy

offset at the leftmost site, due to its lower coordination

number at the cubic-root level (two missing connections

at its left). This onsite energy shift converts the left edge

state into a bulk state (the converse reasoning applies to the

other two pseudo-Hermitian residual chains of the cubed

model, that is, it is their respective perturbations at the right

edge sites that drive the formation of an in-gap state there).

This mechanism of single-edge locking of the topological

modes is typical of high-root TIs, as demonstrated, e.g., for

the diamond chain (a square-rootmodel) in [22]. For a lattice

of N = 5 unit cells, keeping the relative distances in one

sublattice fixed at d2 = 0.3 μm and sweeping d1 across the

topological transition point yields the spectrum showcased

in Figure 5(c). The edge states are exponentially localized

around one of the ends of the lattice, with the localization

length growing as d1 gets closer to d2 and the states evolving

into bulk states after crossing the critical point d1 = d2, that

is, after crossing to the topologically trivial regime. Three

examples for different d1 are shown in Figure 5(d)–(f),

corresponding to the eigenfrequencies marked in red in
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(a)

(c)

(b)

(d)
(e)

(f)

Figure 5: Eigenfrequencies of the photonic (a)
3
√
SSH model and (b)

3
√
SSH 𝜋

3
model with PBC at steps ofΔk = 0.05𝜋. The three-fold splitting along

the complex plane can be readily observed. (c) Eigenspectrum of the photonic
3
√
SSH chain with OBC and N = 5 unit cells, with d2 = 0.3 μm and d1

spanning both the topologically trivial and nontrivial phases, i.e., d ∈ [0.26 μm, 0.34 μm]. Three sets of edge modes appear along the ring gap.
(d)–(f) Electric field norms for the edge modes marked in red in (c), for (d) d1 = 0.315 μm, (e) d1 = 0.325 μm, and (f) d1 = 0.34 μm, respectively.

Figure 5(c). The edge states from the other two branches are

also localized around the same end of the chain, albeit with

different phases in the main rings.

4
n

√
SSH model

As detailed in Supplementary Section II, our method can

be generalized to produce higher-root versions of the SSH

parent model, in what we designate as the
n
√
SSH model,

with integer n > 3. The unit cell of this system is depicted

in Figure 6. The bulk Hamiltonian of this system, H n
√
SSH

(k),

exhibits n two-band branches in its complex energy spec-

trum after diagonalization, with each branch separated

from the next by a 2𝜋

n
angle in the energy plane due to the

generalized chiral symmetry,

C n: ΓnH n
√
SSH

(k)Γ−1
n

= 𝜔−1
n
H n

√
SSH

(k), (10)

with the Γn operator given in Supplementary Section II and

𝜔n = ei
2𝜋

n . After computingHn
n
√
SSH

(k), one obtains theHamil-

tonian of the SSH model as one of its n isospectral diago-

nal blocks. Under OBC and for an integer number of unit

Figure 6: Unit cell of the
n
√
SSH model, composed of 2n sites and n

sublattices, indicated by different colors, of two sites each. The arrows

indicate the hopping direction, with the hopping terms assumed

unidirectional. Without loss of generality, the hopping terms to or from

the spinal dark blue sublattice sites can be different from the rung ones,

as will be the case with the photonic ring systems studied in Section 4.

As in the cubic-root case of Figure 2(e)–(g), a
𝜋

n
phase shift between

the two branches of n bands in the complex energy spectrum can be

obtained with the Peierls substitution n

√
t
(′)
i
→ n

√
t
(′)
i
ei

𝜋
n , with i = 1 ∨ 2.

cells, the
n
√
SSH model hosts n edge states for the topo-

logically non-trivial phase t1 < t2, appearing at the energy

gap between the two bands of each branch, which globally

define the ring gap of the system. Finally, in the same way

that as one can change from the
3
√
SSH to the

3
√
SSH 𝜋

3
model
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(a)

(d)

(b)

(e) (f)

(c)

Figure 7: Implementation of the
4
√
SSH model. (a) Unit cell for the

4
√
SSH model. Shorter (longer) link resonators display stronger (weaker) gain and

loss modulations. Eigenfrequencies of the photonic (b)
4
√
SSH model and (c)

4
√
SSH 𝜋

4
model with PBC at steps ofΔk = 0.05𝜋. (d) Eigenfrequencies of

the photonic
4
√
SSH chain with OBC and N = 4 unit cells, for d1 = 0.33 μm and d2 = 0.3 μm, where the four-fold splitting of the bands can be readily

observed. (e), (f) Electric field norms for the edge and bulk modes of the system indicated by the red point and green star, respectively, in (d).

by introducing a 𝜋

3
Peierls phase at one of the hopping types

(shown in Section 2), the
n
√
SSH 𝜋

n
model can be realized by

applying to the hoppings in Figure 6 the transformation

n

√
t(′)
j
→ n

√
t(′)
j
ei

𝜋

n , with j = 1 ∨ 2. Analogously, the complex

energy spectrum of the
n
√
SSH 𝜋

n
model will display a global

𝜋

n
relative shift between the inner and outer sets of energy

bands, as we show below for n = 4 and in Supplemen-

tary Section IIA for n = 5.

Implementing higher-order roots in photonic ring

setups can be achieved without a significant increase in

complexity by adding additional main rings to the verti-

cal coupling link. Nonetheless, the geometrical constraints

forces one to use two different elongated link rings, which

are otherwise equivalent to the circular link rings in the

previous section. Namely, they are anti-resonant to themain

rings and have a distribution of gain and loss, with maxi-

mum values that are balanced so that the non-reciprocity

ratios are approximately equal in all couplings.

In the case of the
4
√
SSH model, the unit cell has the

shape displayed in Figure 7(a), where the long link rings are

of elliptical shape with semiaxis lengths Ra1 = 6.85 μm and

Rb1 = 2.5 μm and maximum loss value of Im(ñlink) = 0.072.

The short ring has semiaxis lengths Ra2 = 3.2 μm and Ra2 =
1.81 μm andmaximum loss value of Im(ñlink) = 0.12. We use

d1 = 0.33 μm and d2 = 0.3 μm as alternating distances for

both kinds of link rings in each plaquette. This leads to

the following coupling values, using the notation indicated

in Figure 6 and in units of 4
√
t2:

4
√
t1 = 0.615, 4

√
t′
1
= 0.566

and 4

√
t′
2
= 0.918. All these couplings have a non-reciprocity

ratio of around 𝛼 = 0.032. With these parameters, we sim-

ulate the system both under PBC and OBC. In Figure 7(b),

we show that the bulk spectrum of the photonic implemen-

tation of the
4
√
SSH model correctly captures the four-fold

splitting of the bands along the complex plane, as well as

the ring gap between the inner and outer bands. A similar

agreement with the theoretical result is seen in Figure 7(c),

where the bulk spectrum of the photonic
4
√
SSH 𝜋

4
is plotted.

Finally, the spectrum for OBC of the photonic
4
√
SSH model

with N = 4 unit cells is shown in Figure 7(d), where four

edge modes are present, as expected. The highlighted edge

mode in red is showcased in Figure 7(e), togetherwith a bulk

mode in Figure 7(f) for comparison.

5 Conclusions

We have demonstrated a method to obtain general n-root

systems of the SSH model, which requires the usage of

unidirectional couplings to be implemented. This poses a

challenge, as non-Hermitian systems have proven to be

elusive to experimental efforts until recently, where major
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advances havebeenachieved [7], [32]–[49]. Amongdifferent

possible platforms, we focused on a system of photonic ring

resonators, showing it to be a very viable candidate for

the implementation of n-root TIs, since quasi-unidirectional

couplings can be realized by means of auxiliary link rings

with a non-uniform imaginary component of the refrac-

tive index. Additionally, the high versatility of this platform

makes it ideal for designing n-root systems, as it also allows,

e.g., for a very precise control over the effective magnetic

flux piercing the loops of these systems by simply adjusting

the position of the link rings.

Implementation of systems similar to the one in this

work has been accomplished with waveguide technology

[51], where the positioning of the link rings is precise enough

to allow introducing real phases in the couplings between

main rings. The key challenge in our case is the correct

engineering of the link rings. Non-Hermitian couplings in

ring systems have already been achieved in lossy acoustic

setups [34]–[36]. If no gain is considered in our system, or if

gain and loss are not perfectly balanced, the effectiveHamil-

tonian picks up imaginary diagonal elements that distort

the bands. However, the main features of the model remain

unaltered. We showcase this in Supplementary Section VII.

More recently, the split gain and loss has been imple-

mented using optically pumped waveguides, where the las-

ing of different modes has been exploited [37]. The effective

coupling generated in that case is analogous to the one

employed here, and could allow to build the root systems

in an experiment. Note that the gain/loss function need not

be sine-like to achieve the results in this work, although

sharp transitions from gain to loss within the same ringmay

cause reflection effects leading to small cross-circulation

couplings. This effect can cause small band splitting, but it

does not distort the properties of thewhole system.Note that

instead one might separate the gain and loss regions into

different link rings instead of within a single ring [36], or

consider elongated waveguides as couplers over which the

available gain can be maximized [37], [38].

On the theoretical side, the method for the construc-

tion of n-root TIs, based on coupling loop modules of uni-

directional couplings, is completely general and therefore

not limited to the SSH model. As such, our work paves the

way for further studies generalizing the applicability of the

method to other emblematic topological and flat-band sys-

tems, and is expected to significantly broaden the scope of

high-root topology from the 2n-rootmodels [21]–[24] studied

thus far.
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