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Abstract: Square-root topology is one of the newest addi-
tions to the ever expanding field of topological insulators
(TIs). It characterizes systems that relate to their parent
TI through the squaring of their Hamiltonians. Extensions
to 2"-root topology, where n is the number of squaring
operations involved in retrieving the parent TL, were quick
to follow. Here, we go one step further and develop the
framework for designing general n-root TIs, with n any pos-
itive integer, using the Su—Schrieffer—Heeger (SSH) model
as the parent TI from which the higher-root versions are
constructed. The method relies on using loops of unidirec-
tional couplings as building blocks, such that the resulting
model is non-Hermitian and embedded with a generalized
chiral symmetry. Edge states are observed at the n branches
of the complex energy spectrum, appearing within what
we designate as a ring gap, shown to be irreducible to the
usual point or line gaps. We further detail on how such an
n-root model can be realistically implemented in photonic
ring systems. Near perfect unidirectional effective couplings
between the main rings can be generated via mediating link
rings with modulated gains and losses. These induce high
imaginary gauge fields that strongly suppress couplings in
one direction, while enhancing them in the other. We use
these photonic lattices to validate and benchmark the ana-
Iytical predictions. Our results introduce a new class of
high-root topological models, as well as a route for their
experimental realization.
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1 Introduction

High-root topology has emerged as a rich new branch
within the field of topological insulators (TIs). Square-root
TIs (\/T_Is) [1] were first proposed to characterize lattice
models whose parent TI, from which its topological fea-
tures are inherited, manifests itself as one of the diagonal
blocks of the squared Hamiltonian [2]-[11]. Experimental
realization of these models in different platforms followed
soon [12]-[20]. Subsequently, these systems were further
generalized to 2"-root TIs ( W) [21]-[24], meaning models
that connect to their parent TI through a sequence of n
squaring operations. The first experimental demonstrations
of quartic-root topology (n = 2) appeared recently in the
context of acoustic [25] and photonic [26] lattices. Studies
on related topics, such as those of fractionally twisted mod-
els [27] or multiplicative topological phases [28], have also
started to appear recently.

The question of whether general n-root TIs ({/T_Is),
with n € N, can be devised naturally arises. It has already
been affirmatively answered for Floquet systems [29], [30],
through a method based on subdividing the driving period
into n subperiods, each with its own associated Hamilto-
nian. However, for non-driven systems, a natural gener-
alization of 2\/T_Is to \/T_Is has been lacking so far. Here,
we bridge this gap in the literature by considering the
SSH model [31] as the parent TI, from which its higher-
root versions (\"/SS_H) are derived following a novel proce-
dure. Specifically, it involves constructing n-partite chains
from loop modules of unidirectional couplings as the build-
ing blocks. Under open boundary conditions (OBC), n edge
states, all decaying from the same edge [22], are seen to
appear in the complex energy spectrum when in the topo-
logical phase.

The main challenge regarding the experimental design
of the \/SS_H model relates to the implementation of the uni-
directional couplings in the loop modules. Although seem-
ingly exotic, non-Hermitian couplings have been a mat-
ter of intense discussion in recent years, with theoreti-
cal proposals and experimental implementations appear-
ing in many different platforms, including optical and
acoustic ring resonators [7], [32]-[38], optical fibers and
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waveguides [39]-[41], ultracold atoms [42], [43], electrical
circuits [44]-[47], modulated waveguides exploiting syn-
thetic dimensions [48], [49], and many others.

We focus here on photonic ring systems, and show that
they are a well suited candidate for the realization of these
models. We consider an array made up of a set of resonant
optical ring resonators, which constitute the main rings
of the lattice, coupled through smaller anti-resonant link
rings, as illustrated in Figure 1. The link rings feature a split
gain/loss distribution, in which the upper half of the ring has
gain characterized by a parameter h while the lower halfhas
an equal amount of loss. To avoid reflection effects, we use a
sine-like distribution for the imaginary part of the refractive
index. The anti-resonant condition for a ring mode with
propagation constant f reads: (L, —Ly) = (@2m+ Dz,
where L,, and L; are the lengths of main and link rings,
respectively, and m is the circulation. Here, we will restrict
ourselves to the clockwise (m = 1) and counter-clockwise
(m = —1) circulations. Through the presence of the link
rings, and due to their balanced gain and loss distribution,
an effective asymmetric coupling is enabled between the
same circulation m in the main rings ¢, = t ex [32], which
depends exponentially on the gain and loss parameters
and is analogous to an imaginary gauge field acting on the
system. We represent the forward coupling direction by +
and the backward direction by —. Unidirectionality in the
couplings is obtained in the limit h — oo, while Hermiticity
is restored for h = 0. For a finite h value, one is in the
intermediate situation where the hoppings occur in both
directions, but with the predominance of one over the other.
For a strong enough gauge field, nearly perfect unidirection-
ality can be achieved, as we propose below. The coupling t is
determined by the relative distance between the main rings,
which for the roots of the SSH model alternates hetween
two values in different plaquettes to achieve \3/t_l # \3/6 (this
choice of hopping notation [22], [23], [25], adopted from now
on, will become clear below, when we relate the model in
Figure 1toits cubed SSH parent system). A key characteristic
in this system is that for each pair of rings, only opposite
circulations may be coupled between them. That is, we con-
sider that the coupling of the (counter-)clockwise circulation
of a main ring with the (counter-)clockwise of a link ring
is negligible. In that sense, we can separate the system in
clockwise and counter-clockwise components for all main
rings. This assumption is valid as long as the coupling region
between main and link rings is long compared to the wave-
length of light [50], which is fulfilled for the sizes considered
in this work and is reflected in the numerical results. Addi-
tionally, a real flux of desired value can be established in
ring systems by orthogonally displacing a link ring from the
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Figure 1: Unit cell geometry of the photonic ring implementation of the
{/ﬁ model. The grey rings constitute the main rings of the effective
lattice, without gain or loss. The smaller link rings are anti-resonant to the
former, and display a sine-like distribution of the imaginary component
of the refractive index 7, as represented by the color bar on the right. The
distance between rings is different in each plaquette so that \3/t—1 # \3/t_2
The lower inset depicts the unit cell of the {/ﬁ model, where the
arrows indicate the direction of the couplings, and corresponds to an
effective description of the counter-clockwise (m = —1) circulation of the
photonic system above. For the opposite clockwise (m = 1) circulation,
an equivalent model is obtained, but with all coupling directions flipped.

line connecting the centers of the corresponding main rings,
and thus generating a phase in the coupling between them
[51].

We will begin with a brief overview of the \3/@
model and its main features. The interested reader is
referred to Supplementary Section I for the complete ana-
Iytical description of the model. Next, we will detail on how
such a model can be implemented in a photonic ring system.
After a brief discussion on the generalized \/SS_H model, we
will finish with an analysis of the photonic realization of the
\“/SS_H model. Numerical simulations on the ring systems are
performed using the commercial finite-element simulation
software COMSOL Multiphysics. All relevant parameters
necessary to reproduce the results are indicated within the
main text or Supplementary Material, or can be deduced
from them.

2 +/SSH model

The unit cell of the {/ﬁ model is depicted at the bottom
of Figure 1. Under periodic boundary conditions (PBC), and
in the ordered {|j(k))} basis, with j =1,2,...,6, the bulk
Hamiltonian of the m model can be written as

0 h 0
Hygz =0 0 hl, §)
hy 0 0
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where the lattice spacing was set to unity and all hopping
terms are unidirectional. We further assume t;, t, > 0, with-
out loss of generality. Due to its tripartite nature, composed
by the sublattices (1,2), (3,4), and (5,6), and defined by requir-
ing multiples of three hopping processes to produce intra-
sublattice couplings [52], this Hamiltonian obeys a general-
ized chiral symmetry,

3 T3H (0T = 03 Hoen (), @
Iy = diag(c,, w304, w30y, ©)

21
with w; = €' and o the 2 X 2 identity matrix.
After cubing the Hamiltonian in (1) we obtain

HY (k) = diag (Hagy (0, Hy(R), Hy(k). ®)

where

Hggyy (K) = hyhyhg

t, + te K
t+6e* G+t

= _(tl + tz)O'() + HSSH(k)’ (7

is isospectral to the other diagonal terms in (6), namely
H,(k) = hyh;hy and H,(k) = hghyh, [52]. Their eigenvalues
are given by

Egm=—q—gi¢ﬁ+%+%&c%k ®)

The three-fold degenerate spectrum of Figure 2(d) is a
reflection of the isospectrality of the three diagonal blocks.
The complex energy spectrum of the \3/@ model,
with the Hamiltonian in (1), is composed of three two-
band branches that can be derived directly from (8) as

{E;(k), w3 (0, 7 E3 (k) } In Figure 2(a)~(c), we repre-

sent this bulk energy spectrum for different values of \3/t_1,
after setting {/E = 1. The three branch structure, indicated
by the different colors, is clearly visible. From one branch,
the other two can be obtained from successive %” rotations
in the complex energy plane, as a consequence of the &’-
symmetry in (4). Additionally, the low energy bands of the
three branches become degenerate at E = 0 for k = 0. Aswe
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detail in Supplementary Section I, this actually corresponds
to an exceptional point of the spectrum, with only two asso-
ciated eigenstates. The downshifted three-fold degenerate
SSHreal spectrum of Figure 2(d) was obtained by cubing the
complex spectrum of the \S/SS_H model in Figure 2(a).

Remarkably, the spectral gap for the {/SS_H model does
not fall in the conventional categories of non-Hermitian
systems, namely those of point or line gaps [53], [54], which
are present if the Hamiltonian can be continuously flat-
tened into a unitary matrix without closing the respective
gap. Here, and since the starting (\Z/SS_H) model is directly
related to the parent (SSH) model by a cubing procedure, the
energy gap of the latter [see Figure 2(d)], present for ¢; # t,,
naturally reverts back to all three branches of the complex
spectrum [see Figure 2(a)]. This generates what we label as
a ring gap in the energy spectrum, not reducible to a point
or a line gap. In the sequence of Figure 2(a)—(c), we can see
the ring gap closing and reopening across the critical point
+/t, = +/t,. A continuous ring gap is obtained in the n - oo
limit of the \"/@ model studied below, corresponding to
an infinite number of branches forming a continuum in the
energy spectrum (see the energy spectrum of the n = 20 case
in Supplementary Section II).

We can take advantage of the existence of a ring energy
gap in the system to define a new type of polarization for our
complex spectra. The polarization is computed by filling all
states below a certain Fermi level, which is not well defined
for complex spectra. In our case, we introduce a ring Fermi
level at a certain radius |Ey| within the ring gap, such that
all states within it are considered occupied and unoccupied
otherwise. However, and for the purpose of comparing with
the polarization of the parent SSH model, we will rather
occupy the states outside the Fermi level, as depicted in
Figure 3(a) for an open chain in the topological phase. This
is justified by considering that, when cubing the root model,
the outer bands become the degenerate lower energy band
of the SSH model, as we highlight in Figure 3(b). This can
also be understood by comparing Figure 2(a)—(d). In this
vein, we define the polarization as:

o )
P=§:Z 2 j@%Oq%r &)

where e is the electron charge, j the unit cell position, « the
site number within the unit cell, I the eigenstate index, and
‘Pi(f’)l the amplitude of the left (right) eigenstate [ of the root
model at the corresponding position. The process leading to
expression (9) is detailed in Supplementary Section III. We
plot the polarization for an open \3/@ chain of N =121

unit cells at half-filling in Figure 3(c) (blue solid line), as
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(9)

Figure 2: Complex energy spectrum, in units of {/E =1, as a function of the momentum for the {/ﬁ model in (1) with (a) {/ﬁ = {/ﬁ, (b) {/E =1,
and (c) 3/t = /15, Different energy branches are indicated with different colors. (d) Cubed energy spectrum of the model in (a), which is purely real
and with each band three-fold degenerate. (e)-(h) Same as the corresponding cases above, but for {/t_1 e {/E in (1), leading to the €/$_H% model.
Different colors in (e)-(g) now distinguish the groups of three bands that become degenerate upon cubing the spectrum. The ring gaps are depicted
in light purple and appear at k = z in (a) and (c), and at k = 2z in (e) and (g), where the inner circumference of the ring reduces to a point at £ = 0.

a function of ¢, for {; = 1. We see that the polarization, in
units of e, is quantized only at the atomic limits, P(¢, = 0) =
0 and P(t, » o0) = 1/2, while being non-quantized away
from these limits, with a sharp transition at the critical gap
closing point ¢, = 1. This behavior is in agreement with that
of the \/ﬁ model [55] where, analogously, the polariza-
tion values are non-quantized across the parameters range,
whereas the difference between the atomic limits remains
quantized to 1/2, as observed here also. It is this quantized
polarization difference between atomic limits, located at
opposite sides of the transition point ¢, = 1, that serves as a
topological invariant of our root systems. For comparison,
we plot in the same Figure 3(c) the usual polarization at
half-filling for the parent SSH chain of the same size N
(red dashed line). There, the usual quantized plateaus at
P =0 (P =1/2) for the (non-)trivial region and the tran-
sition from one to the other at the gap closing point are
observed, once more demonstrating that the parent SSH
model is indeed the source of the topological features of the
root models. More details on the physical interpretation of
the polarization at both atomic limits (¢, = 0 and t, = 0) are
given in Supplementary Section IIL

We now focus on the topological edge states that can be
found within the ring gap. As described in previous works
[22], [23], the root model inherits the topological protection
from the parent system, which in our case is the Hermi-
tian SSH model. In that sense, the edge states of the \3/@

model are protected against any disorder that preserves
the chiral symmetry of the parent SSH model, which is the
protecting symmetry. As is well known, the SSH model is
protected against chiral disorder such as off-diagonal dis-
order. As such, we expect our edge states to be protected
against the types of disorder in the \"/ﬁ systems that,
when raised to the nth-power, translate as chiral disorder
for the parent SSH block. This constitutes a smaller subset
of allowed disorders when compared to those of the parent
SSH model, which has been characterized as a dilution of
the topological protection [22]. An example of such disorder
is provided in Figure 4(a), where we have added two extra
sites to the left of the chain to impose inversion symmetry. In
there, we consider disorder around /¢, = cos 6, and y/t; =
sin @, where 6, is defined so that /t,/+/t; = 2 and two
edge states per branch appear, located at opposite edges. As
indicated in the figure, the disorder is sampled from a uni-
form distribution in quartets of hopping terms, and is thus
correlated. When cubing this system, the SSH block takes
the form sketched in Figure 4(b), where the onsite energies
are sin?6); + cos20; = 1 and the disorder is off-diagonal. The
response of the edge and closest bulk states to this disor-
der is presented in Figure 4(c), where it is clear that the
edge states remain unaltered until the disorder is strong
enough to close the gap. As a direct comparison, we provide
the same plot for uncorrelated disorder where each 6, is
sampled independently in Figure 4(d), which corresponds
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Figure 3: Computing the polarization in the root and parent systems. (a) Complex energy spectrum of the open i/ﬁ chain with N = 121 unit cells for
{/ﬁ =1and {/E = 2, with the ring gap highlighted in pink. The ring Fermi level of radius |£,| is marked with a solid red line. (b) Energy spectrum of
an open SSH chain of the same size N, with lattice parameters extracted from the corresponding diagonal block of the cubed Hamiltonian of the model
in (a), with the Fermi level £} placed at half-filling, where small edge perturbations were included to place the right (left) in-gap edge state below
(above) the Fermi level. (c) Polarization in the \3/@ (blue solid line) and the SSH (red dashed line) models, as a function of t, for ¢, = 1, computed by

filling the states marked in red in (a) and (b), respectively.
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Figure 4: Correlated and uncorrelated disorder. (a) Sketch of a {/ﬁ
model with correlated disorder 8, = 6, + w; sampled in quartets of
hopping terms, as indicated by the lower segments and the different
shaded colors in the hoppings, from a uniform distribution

w; € [-W/2,W /2], and with the vertical couplings being disorder free.
(b) Sketch of the Hermitian SSH system obtained for the decoupled spinal
sublattice when cubing the Hamiltonian corresponding to (a). Due to the
correlated disorder in (a), this system displays only off-diagonal disorder.
(c), (d) Mean value (solid lines) and standard deviation (shaded region) for
the edge states (red) and the closest bulk states (blue) in the real branch
of the disordered root system for increasing strengths of (c) correlated
and (d) uncorrelated disorder, taken over 200 different realizations.

to both onsite and off-diagonal disorder for the diagonal
SSH block when cubed. For this case, it can be seen that
the robustness of the edge states is lost. This proves that the

topological protection in our model is related to the preser-
vation of the chiral symmetry of the parent SSH model. To
further visualize these results, we provide animations in the
Supplementary Material showing different realizations of
correlated and uncorrelated disorder. There, one can read-
ily see that the whole spectrum is affected by the disorder,
and only for the case of correlated disorder do the edge
states remain unaltered.

Another interesting effect occurs when a 7 magnetic
flux is uniformly distributed in the loops of the rhombus
with one type of hopping term in each unit cell. For example,
let us consider the Peierls substitution /t; — el \3/1.‘_1 at the
unit cell shown at the bottom of Figure 1. We label the
resulting system as the \3/SS_H£ model. As explained in
more detail in Supplementary Section I, and illustrated in
Figure 2(e)—(g), when this change is included in the Hamil-
tonian in (1), it induces a % relative rotation in the complex
plane between the three outer bands and the three inner
bands, and we lose the one-to-one correspondence between
an outer and an inner band that previously defined each
branch. Instead, now we distinguish between outer and
inner branches, which have a relative % phase difference.

Notice that the cubed spectrum of Figure 2(h) is shifted
up, in relation to the one in Figure 2(d), such that one of the
three-fold degenerate bands is pushed to the positive half
of the spectrum, and also that there is a relative z sliding
of the bands between the two cases. The energy gap is open
now at k = 0 in Figure 2(h). Therefore, the spectral gap of
the corresponding \S/g = child model in Figure 2(e) is also
defined as a ring gap at the k=0 point, which is the gap
closing point in Figure 2(f), with the inner circumference
of the ring reduced to a single degenerate point at zero
energy. However, the ring gap at k = 0 gets obscured if one
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employs the usual projection of the whole spectrum onto the
complex energy plane [e.g., the ring gaps of Figure 2(e)-(g)
are clearly not visible upon projecting the spectrum onto
the energy plane]. This shows how the three-dimensional
representation of the spectrum, as in Figure 2(e)—(g), is
required for the manifestation of the ring gap in the \3/@
model.

z
3

3 Photonic ring realization
of the v/SSH model

We consider rings of planar waveguides with a radius of
45pm and a width of 250 nm. For simplicity, the cores
(with refractive index fi.,,. = 3) are surrounded by air, lead-
ing to an overall high contrast, and the considered res-
onant frequency is 195.225 THz. The asymmetric effective
coupling is established through smaller anti-resonant link
rings of radius 3.24 pm and core refractive index fi,, =
3+ 0.1i sin ¢, where ¢ is the angle of the polar coordi-
nates with origin at the center of the link ring. For these
parameter values, the loss factor in t, = t e*" is computed
to be h = 2.07, implying a coupling asymmetry ratio of @ =
t_/t, = 0.016, very close to perfect unidirectionality. Proof
that this ring setup generates such a coupling is provided
in Supplementary Section IV. We display the unit cell of the
system in Figure 1, where we have considered the counter-
clockwise circulation (m = —1) for the coupling distribution
shown in the inset. To achieve the staggered distribution
of couplings present in the \3/@ model, this structure
is replicated with alternating relative ring distances d; =
0.33 pm and d, = 0.3 pm in each plaquette, which corre-
sponds to a coupling ratio of /¢, /y/t, ~ 0.6. These distances
are drawn between the outer radii of the rings. The method
to extract the couplings and the asymmetry parameter h
from the spectrum of the ring resonators is described in
Supplementary Sections V and VI, respectively. We display
the bulk spectrum of eigenfrequencies for the periodic ring
system in Figure 5(a). The spectrum agrees very well with
the theoretical results shown in Figure 2(a). As explained
above, the three-fold splitting in the complex energy plane
is a consequence of the tripartite nature of the system, as it
obeys the generalized chiral symmetry in (4). As before, the
band gap for this system can be generalized to the complex
frequency spectrum context by defining a ring gap for all ||
in a certain interval, a concept that can be directly applied
to higher-root systems as well, as we will show below.
On a separate note, although the spectra for both circula-
tions in the main rings are obtained in the simulations, we
only observe a doubly-degenerate joint spectrum. Reversing
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the circulation in the rings corresponds to a change of all
coupling directions, but the cubed system in that case is still
the SSH model. This necessarily implies that both circula-
tions yield the same spectrum, as explained in Ref. [52]. The
symmetries of the full \S/ﬁ system, which incorporates
both m = +1 circulations, are further detailed in Supple-
mentary Section IB.

A real flux can be added to the system by displacing
the link rings orthogonally to the coupling line [51], which
modifies the optical path in the upper and lower arms and
induces a phase in the coupling, as shown in Supplemen-
tary Section VI. We are particularly interested in realizing
the {/ﬁ = model by considering a z flux around the loops
involving one type of hopping terms, namely by considering
the following Peierls substitution, {/ﬂ Sels \3/t_1 . As detailed
in the previous section, this implies a sign change for one of
the bands of the parent SSH model. Relative to the \?’/ﬁ
model of Figure 5(a), we can see in Figure 5(b) that the flux
causes a z-sliding of the outer bands and a z /3 rotation
of the inner ones, again in agreement with the theoretical
results of Figure 2(e).

As one would expect from a root T, the existence of
edge states in the {/ﬁ model under OBC is inherited from
the parent system. One of the remarkable features of the
cubic-root system is that, since it possesses three times as
many bands as the parent one, it will host three times as
many in-gap states at one of the edges, namely the right
one. The absence of topological states at the left edge can be
understood as follows. Upon cubing the lattice, the resulting
SSH chain at the first sublattice will have an onsite energy
offset at the leftmost site, due to its lower coordination
number at the cubic-root level (two missing connections
at its left). This onsite energy shift converts the left edge
state into a bulk state (the converse reasoning applies to the
other two pseudo-Hermitian residual chains of the cubed
model, that is, it is their respective perturbations at the right
edge sites that drive the formation of an in-gap state there).
This mechanism of single-edge locking of the topological
modes is typical of high-root TIs, as demonstrated, e.g., for
the diamond chain (a square-root model) in [22]. For a lattice
of N =5 unit cells, keeping the relative distances in one
sublattice fixed at d, = 0.3 pm and sweeping d, across the
topological transition point yields the spectrum showcased
in Figure 5(c). The edge states are exponentially localized
around one of the ends of the lattice, with the localization
length growing as d, gets closer to d, and the states evolving
into bulk states after crossing the critical point d; = d,, that
is, after crossing to the topologically trivial regime. Three
examples for different d; are shown in Figure 5(d)-(f),
corresponding to the eigenfrequencies marked in red in



DE GRUYTER

195.2

Relw] (THz)

Im[w] (MHz) 0

195.25 1953

D. Viedma et al.: Topological n-root SSH model in a non-Hermitian photonic ring system === 57

(b) or

-6
195.25 1953

195.2
-12 195.1 195.15

Re[w] (THz)

e
'.(e)

(f)

Figure 5: Eigenfrequencies of the photonic (a) ¥/SSH model and (b) \3/SSH§ model with PBC at steps of Ak = 0.05x. The three-fold splitting along

the complex plane can be readily observed. (c) Eigenspectrum of the photonic ¥/SSH chain with OBC and N = 5 unit cells, with d, =03pumandd,
spanning both the topologically trivial and nontrivial phases, i.e., d € [0.26 pm, 0.34 um]. Three sets of edge modes appear along the ring gap.
(d)-(f) Electric field norms for the edge modes marked in red in (c), for (d) d; = 0.315 um, (e) d, = 0.325 pm, and (f) d, = 0.34 pm, respectively.

Figure 5(c). The edge states from the other two branches are
also localized around the same end of the chain, albeit with
different phases in the main rings.

4 1/SSH model

As detailed in Supplementary Section II, our method can
be generalized to produce higher-root versions of the SSH
parent model, in what we designate as the \"/@ model,
with integer n > 3. The unit cell of this system is depicted
in Figure 6. The bulk Hamiltonian of this system, H Vﬁ(k)’
exhibits n two-band branches in its complex energy spec-
trum after diagonalization, with each branch separated
from the next by a 27” angle in the energy plane due to the
generalized chiral symmetry,

Cnt TnH gL, = 0" H e (R), (10)

with the I',, operator given in Supplementary Section II and

w, = el'n . After computing H SH(k), one obtains the Hamil-

n

{/ssH
tonian of the SSH model as one of its n isospectral diago-
nal blocks. Under OBC and for an integer number of unit

2n-1 2n
2.
Tap-28 —— /7
1 . —— Vit
S B
‘o
3 1

Figure 6: Unit cell of the {/ﬁ model, composed of 2n sites and n
sublattices, indicated by different colors, of two sites each. The arrows
indicate the hopping direction, with the hopping terms assumed
unidirectional. Without loss of generality, the hopping terms to or from
the spinal dark blue sublattice sites can be different from the rung ones,
as will be the case with the photonic ring systems studied in Section 4.
As in the cubic-root case of Figure 2(e)-(g), a % phase shift between

the two branches of n bands in the complex energy spectrum can be

obtained with the Peierls substitution {/¢” — { tf”ei%,with i=1v2.

cells, the \"/@ model hosts n edge states for the topo-
logically non-trivial phase t; < t,, appearing at the energy
gap between the two bands of each branch, which globally
define the ring gap of the system. Finally, in the same way
that as one can change from the \S/ﬁ to the \3/@ z model
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Figure 7: Implementation of the 4/SSH model. (a) Unit cell for the 4/SSH model. Shorter (longer) link resonators display stronger (weaker) gain and
loss modulations. Eigenfrequencies of the photonic (b) ¥/SSH model and (c) \A/SSH% model with PBC at steps of Ak = 0.05z. (d) Eigenfrequencies of

the photonic 4/SSH chain with OBC and N = 4 unit cells, for d, = 0.33 pm and d, = 0.3 pum, where the four-fold splitting of the bands can be readily

observed. (e), (f) Electric field norms for the edge and bulk modes of the system indicated by the red point and green star, respectively, in (d).

by introducing a % Peierls phase at one of the hopping types

(shown in Section 2), the \"/ﬁg model can be realized by
applying to the hoppings in Fingure 6 the transformation
(‘/@ - (‘/@eiﬁ, with j =1V 2. Analogously, the complex
energy spectrum of the \"/@ = model will display a global
% relative shift between the inner and outer sets of energy
bands, as we show below for n =4 and in Supplemen-
tary Section IIA for n = 5.

Implementing higher-order roots in photonic ring
setups can be achieved without a significant increase in
complexity by adding additional main rings to the verti-
cal coupling link. Nonetheless, the geometrical constraints
forces one to use two different elongated link rings, which
are otherwise equivalent to the circular link rings in the
previous section. Namely, they are anti-resonant to the main
rings and have a distribution of gain and loss, with maxi-
mum values that are balanced so that the non-reciprocity
ratios are approximately equal in all couplings.

In the case of the {/@ model, the unit cell has the
shape displayed in Figure 7(a), where the long link rings are
of elliptical shape with semiaxis lengths R, = 6.85 pm and
Ry = 2.5 pm and maximum loss value of Im(7;,, ) = 0.072.
The short ring has semiaxis lengths R, = 3.2 pm and R, =
1.81 pm and maximum loss value of Im(fi;;,, ) = 0.12. We use
d; = 0.33 pm and d, = 0.3 pm as alternating distances for

both kinds of link rings in each plaquette. This leads to
the following coupling values, using the notation indicated

in Figure 6 and in units of /t,: {/t; = 0.615, \4/;{ = 0.566

and « t; = 0.918. All these couplings have a non-reciprocity
ratio of around o = 0.032. With these parameters, we sim-
ulate the system both under PBC and OBC. In Figure 7(b),
we show that the bulk spectrum of the photonic implemen-
tation of the {/ﬁ model correctly captures the four-fold
splitting of the bands along the complex plane, as well as
the ring gap between the inner and outer bands. A similar
agreement with the theoretical result is seen in Figure 7(c),
where the bulk spectrum of the photonic \"/g z is plotted.

Finally, the spectrum for OBC of the photonic {/ﬁ model
with N =4 unit cells is shown in Figure 7(d), where four
edge modes are present, as expected. The highlighted edge
mode inred is showcased in Figure 7(e), together with a bulk
mode in Figure 7(f) for comparison.

5 Conclusions

We have demonstrated a method to obtain general n-root
systems of the SSH model, which requires the usage of
unidirectional couplings to be implemented. This poses a
challenge, as non-Hermitian systems have proven to be
elusive to experimental efforts until recently, where major
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advances have been achieved [7], [32]-[49]. Among different
possible platforms, we focused on a system of photonic ring
resonators, showing it to be a very viable candidate for
the implementation of n-root TIs, since quasi-unidirectional
couplings can be realized by means of auxiliary link rings
with a non-uniform imaginary component of the refrac-
tive index. Additionally, the high versatility of this platform
makes it ideal for designing n-root systems, as it also allows,
e.g., for a very precise control over the effective magnetic
flux piercing the loops of these systems by simply adjusting
the position of the link rings.

Implementation of systems similar to the one in this
work has been accomplished with waveguide technology
[51], where the positioning of the link rings is precise enough
to allow introducing real phases in the couplings between
main rings. The key challenge in our case is the correct
engineering of the link rings. Non-Hermitian couplings in
ring systems have already been achieved in lossy acoustic
setups [34]-[36]. If no gain is considered in our system, or if
gain and loss are not perfectly balanced, the effective Hamil-
tonian picks up imaginary diagonal elements that distort
the bands. However, the main features of the model remain
unaltered. We showcase this in Supplementary Section VII.

More recently, the split gain and loss has been imple-
mented using optically pumped waveguides, where the las-
ing of different modes has been exploited [37]. The effective
coupling generated in that case is analogous to the one
employed here, and could allow to build the root systems
in an experiment. Note that the gain/loss function need not
be sine-like to achieve the results in this work, although
sharp transitions from gain to loss within the same ring may
cause reflection effects leading to small cross-circulation
couplings. This effect can cause small band splitting, but it
does not distort the properties of the whole system. Note that
instead one might separate the gain and loss regions into
different link rings instead of within a single ring [36], or
consider elongated waveguides as couplers over which the
available gain can be maximized [37], [38].

On the theoretical side, the method for the construc-
tion of n-root TIs, based on coupling loop modules of uni-
directional couplings, is completely general and therefore
not limited to the SSH model. As such, our work paves the
way for further studies generalizing the applicability of the
method to other emblematic topological and flat-band sys-
tems, and is expected to significantly broaden the scope of
high-root topology from the 2"-root models [21]-[24] studied
thus far.
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