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Effects Identifies PSKH2 as Involved in the 
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BACKGROUND: Factor V (FV) is a key molecular player in the coagulation cascade. FV plasma levels have been associated with 
several human diseases, including thrombosis, bleeding, and diabetic complications. So far, 2 genes have been robustly 
found through genome-wide association analyses to contribute to the inter-individual variability of plasma FV levels: structural 
F5 gene and PLXDC2.

METHODS AND RESULTS: The authors used the underestimated Brown-Forsythe methodology implemented in the QuickTest 
software to search for non-additive genetic effects that could contribute to the inter-individual variability of FV plasma activ-
ity. QUICKTEST was applied to 4 independent genome-wide association studies studies (LURIC [Ludwigshafen RIsk and 
Cardiovascular Health Study], MARTHA [Marseille Thrombosis Association], MEGA [Multiple Environmental and Genetic 
Assessment], and RETROVE [Riesgo de Enfermedad Tromboembolica Venosa]) totaling 4505 participants of European an-
cestry with measured FV plasma levels. Results obtained in the 4 cohorts were meta-analyzed using a fixed-effect model. 
Additional analyses involved exploring haplotype and gene×gene interactions in downstream investigations. A genome-wide 
significant signal at the PSKH2 locus on chr8q21.3 with lead variant rs75463553 with no evidence for heterogeneity across 
cohorts was observed (P=0.518). Although rs75463553 did not show an association with mean FV levels (P=0.49), it demon-
strated a robust significant (P=3.38x10−9) association with the variance of FV plasma levels. Further analyses confirmed the 
reported association of PSKH2 with neutrophil biology and revealed that rs75463553 likely interacts with two loci, GRIN2A 
and POM121L12, known for their involvement in smoking biology.

CONCLUSIONS: This comprehensive approach identifies the role of PSKH2 as a novel molecular player in the genetic regulation 
of FV, shedding light on the contribution of neutrophils to FV biology.
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Factor V (FV) is a central protein of the coagulation 
cascade. By acting as a cofactor for activated fac-
tor X, FV facilitates the conversion of prothrombin 

to thrombin,1 which, in turn, converts fibrinogen into 
fibrin, the main component of blood clots, and also ac-
tivates platelets. Mainly expressed in the liver, FV can 
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also be stored and released by platelets,2 which pro-
vide a surface for the coagulation reactions to occur 
and can contribute to amplify the coagulation process. 
There is natural variability in FV levels, and increased/
decreased FV levels have been observed in several 
conditions including mainly bleeding3–6 and throm-
botic disorders7,8 but also in infections,9 inflammation,10 
pregnancy,11,12 hormone contraceptives usage,13 and 
impaired liver dysfunction.14

Understanding the exact sources of variability of FV 
levels is crucial for better identification of individuals at 
higher risk of clotting disorders and for better target-
ing appropriate preventive and therapeutic strategies. 
Age, sex, smoking,15 obesity,16 and, to lesser extent, 
medication use17 are the main environmental variables 

known to influence FV plasma levels. Genetic factors 
have also been demonstrated to contribute to the 
inter-individual FV variability including single-nucleotide 
polymorphisms (SNPs) at F5 and PLXDC2 loci.18 The 
implication of F5 SNPs in the regulation of FV plasma 
levels dates back to the end of the 1 990s19 when the 
HR2 haplotype tagged by rs6 027 was identified. More 
recently, the F5 rs4524 was also shown to influence 
plasma FV levels independently of the rs6 027.18 The 
first genome-wide association study (GWAS) on FV lev-
els, based on ≈1700 individuals identified the PLXDC2 
locus as a second genetic player in FV regulation.18 
Altogether, these 3 loci explain <15% of the variability 
in plasma FV levels, suggesting that additional molec-
ular determinants could be involved in its regulation. 
With the aim of characterizing novel genomic regula-
tors of FV plasma levels, we deployed a large-scale 
agnostic genome-wide search for non-additive ge-
netic effects associated with FV plasma levels using 
the Brown-Forsythe (BF) methodology implemented 
in the QuickTest software.20 While initially developed 
for detecting parent-of-origin effects (POEs), this meth-
odology can also detect loci prone to gene × gene or 
gene × environment interactions, making it a valuable 
tool to complement standard genome-wide associa-
tion analysis. POE is a specific kind of genomic im-
printing21,22 and several studies suggest that such 
epigenetic mechanisms could impact key genes of the 
coagulation cascade,23,24 including PLXDC2.25 In this 
work, the BF methodology was applied to genome-
wide genotype data available in 4 study populations 
totaling 4 505 individuals with measured FV plasma 
levels.

METHODS
This work builds on 4 independent study populations 
of unrelated individuals, all of European ancestry, that 
are part of the CHARGE (Cohorts for Heart and Aging 
Research in Genomic Epidemiology) Consortium.26 
They include the LURIC (Ludwigshafen Risk and 
Cardiovascular Health) study,27 composed of 1833 in-
dividuals among whom 100 reported venous throm-
bosis (VT); a subsample of 1011 participants from the 
MARTHA (Marseille Thrombosis Association) study,28 
which consists of 1 592 patients with VT; a subsam-
ple of 865 participants from the MEGA (Multiple 
Environmental and Genetic Assessment) study,29 
comprising 1289 patients with VT; and the RETROVE 
(Riesgo de Enfermedad Tromboembolica Venosa)30 
study, which included a sample of 398 patients with 
VT and 398 controls. All participants were phenotyped 
for plasma FV activity and genotyped for genome-
wide polymorphisms using high-throughput DNA 
arrays. Genotype data were further imputed using 
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What Is New?
•	 We demonstrated the role of the PSKH2 locus 

in the genetic regulation of factor V plasma 
levels.

•	 We observed that PSKH2 genetic variants were 
associated with neutrophils only in individuals 
exhibiting high platelet counts.

What Question Should Be Addressed 
Next?
•	 PSKH2 variant(s) responsible for the observed 

association remain to be identified.
•	 The exact role of α-granules of platelets in the 

relationship between PSKH2 and factor V regu-
lation remains to be elucidated.
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different reference panels. Detailed descriptions of the 
phenotype and genotype measurements are given in 
Table S1 together with additional details on imputation 
and genotype quality controls.

Research has been performed in accordance 
with the Declaration of Helsinki and all partici-
pating studies were approved by the respective 
institutional ethics committees: the ethics commit-
tee at the Medical Association of Rheinland-Pfalz 
(Aerztekammer Rheinland-Pfalz) for the LURIC study, 
the “Mediterranean I Committee for the Protection 
of Individuals” (reference: 12 61) for the MARTHA 
study, the “Medical ethics committee of the Leiden 
University Medical Center” for the MEGA study, and 
the "Institutional review board of the Hospital de la 
Santa Creu i Sant Pau (Barcelona, Spain) for the 
RETROVE study (approval number 04/2012).

Written informed consent was obtained from all par-
ticipants to be included in the genetic investigations.

Summary statistics of the POE meta-analysis are 
available in the GWAS catalog under accession num-
ber GCST90446466. Other data are available upon re-
quest from the corresponding author.

Statistical Analysis
The BF methodology implemented in the 
QuickTest program

Standard GWAS are generally performed for detect-
ing SNPs with additive allele effects on a trait of inter-
est. The statistical modeling can thus be expressed, in 
case of a quantitative trait Y, as:

with G = {0,1,2} according to the number of tested al-
leles carried by an individual. This model assumes the 
absence of POE for the tested allele while POE would 
imply that the effect of the tested allele would depend on 
whether it has been inherited from the father or from the 
mother. In that case, a POE model could be written as:

where βm and βp corresponds to the maternal and pa-
ternal effects, respectively, if they are identifiable. In the 
absence of family data, these effects cannot be distin-
guished and therefore cannot be estimated. To solve this 
problem, Hoggart et al.20 proposed an appealing meth-
odology to allow the detection of POE in genotype data 
of unrelated individuals only. By rewriting model (2) as:

where π is a random variable following a Bernoulli dis-
tribution with parameter ½ (50% of alleles coming from 
the paternal and 50% from the maternal transmission), 
they observed that, in the presence of POE, the phe-
notypic variance in heterozygous individuals should be 
higher than the phenotypic variances in the 2 groups of 
homozygotes:

They then proposed to use the BF test,31 a robust 
version of the Levene test, to assess whether the phe-
notypic variance in heterozygote carriers of a given 
SNP is significantly higher than the phenotypic vari-
ances observed in homozygotes. They further showed 
that this BF test is equivalent to performing a linear 
model where the absolute deviation of the phenotype 
from the intra-genotype median is regressed on a bi-
nary variable indicating whether an individual i is het-
erozygote at the tested j SNP.

A positive and significant value for the γ regression 
coefficient associated with this indicator variable is a 
sign of POE.

They implemented this BF framework in the 
QuickTest program (https://​wp.​unil.​ch/​sgg/​progr​am/​
quick​test/​), which can easily be applied to large GWAS 
genotype data sets to detect POE acting on a quan-
titative trait. Of note, as highlighted by Hoggart et al, 
while the presence of POE can lead to a significant BF 
test, the inverse is not necessarily true, as a significant 
BF test can also be caused by other phenomena such 
as haplotype effects, gene × gene or gene × environ-
ment interactions.

For the present work, all SNPs with imputation 
quality r2 > 0.5, minor allele frequency >0.005, and a 
number of heterozygous individuals >20 were tested 
through the BF methodology in relation to FV activ-
ity. Analyses were adjusted for age, sex, and main 
principal components derived from genome-wide 
genotype data to account for uncontrolled population 
stratification. Additional adjustment on case–control 
status was performed in the LURIC and RETROVE 
trials.

The QuickTest software was applied in each study 
and results were then meta-analyzed using a fixed-
effect meta-analysis as implemented in GWAMA 
software.32

(1)E(Y |G) = � + �G

(2)E (Y ∣G) = � +
1

2
(�m + �p)G

E(Y |G = 0) = �

E(Y |G = 1) = � + ��m + (1 − �)�p

E(Y |G = 2) = � + �m + �p

Var(Y |G = 0) = Var(Y |G = 2) = �2

Var(Y |G = 1) = �2 +
1

4

(
�m−�p

)2

∣ yij − ỹ.j ∣ = � + γ�(Individual i is heterozygous for genotype j) + �

https://wp.unil.ch/sgg/program/quicktest/
https://wp.unil.ch/sgg/program/quicktest/
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Heterogeneity across study populations was as-
sessed by Cochran Q statistic and I2 index.

Genome-wide statistical significance was consid-
ered at BF P values < 5x10−8.

Search for gene × gene interactions

To further investigate the possible source explaining each 
genome-wide significant BF signal, we sought SNPs 
that could modulate FV activity differentially according 
to the heterozygote status at the lead SNP identified 
by the QuickTest analysis. For this, in each contribut-
ing study population, we conducted a genome-wide 
interaction analysis based on a linear model where FV 
activity was regressed for age, sex, genetically derived 
principal components, heterozygote status at the lead 
BF SNP, any SNP, and an interaction term between the 
latter 2 components. All SNPs with imputation quality 
r2 < 0.5 and minor allele frequency <0.005 were ex-
cluded from the analyses. These genome-wide inter-
action analyses were conducted using Plink2 (www.​
cog-​genom​ics.​org/​plink/​2.​0/​).33

For each tested SNP, interaction terms were then 
meta-analyzed across the 4 studies using a fixed-
effect meta-analysis as implemented in the GWAMA 
software.32

RESULTS
In total, 4505 individuals were studied in this work. A 
brief description of the general characteristics of the 4 
contributing studies is given in Table 1.

A total of 7,300,264 SNPs were tested in relation 
to FV activity through the BF framework. A Manhattan 
plot summarizing the statistical findings is shown 
in Figure. The associated Quantile-Quantile plot is 
given in Figure  S1. One locus, chr8q21.3, reached 
the prespecified genome-wide statistical threshold of 
5 × 10−8. The lead SNP was rs75463553 and its POE γ 

coefficient was 0.129±0.022 (P=3.38 × 10−9). As shown 
in Table 2, the POE γ coefficients were homogeneous 
among the 4 contributing studies as were the allele fre-
quencies. We observed that the variance in FV activity 
was higher in carriers of the G/T genotype compared 
with the combined groups of G/G and T/T genotypes, 
while no association with mean FV levels was observed 
(P=0.49 in the combined 4 studies).

Of note, no POE signal was observed at the F5 
rs6027 and rs4524 (P>0.95 for both) nor the PLXDC2 
rs927826 (P=0.68) polymorphisms previously re-
ported to associate with plasma FV mean levels.18 
This would suggest that non-additive allele effects are 
unlikely to exist at these 2 loci in relation to plasma FV 
activity.

rs75463553 maps to an intronic region of the non-
coding RNA LOC105375623, located downstream 
to SLC7A13 and upstream to ATP6V0D2. Neither of 
these loci has an obvious link to the regulation of FV. 
rs75463553 is in strong linkage disequilibrium with 6 
other nearby SNPs with genome-wide significant BF 
P values (Figure S2–Table S2). These 6 SNPs gener-
ate 3 haplotypes, with a frequency of >1%. None of 
them are associated with mean FV activity (Table S3), 
suggesting that the detected BF signal was unlikely 
attributable to linkage disequilibrium effects between 
nearby SNPs.

rs75463553 also exhibits moderate linkage disequi-
librium (r2 > 0.40, |D′| >0.80) with other SNPs, spanning 
from PSKH2 to WWP1 (Figure S2). PSKH2 encoding 
for a protein serine kinase is a good biological candi-
date to contribute to FV regulation. First, the PSKH2 
locus has been implicated in the regulation of neutrophil 
counts,34 whose activation has been shown to asso-
ciate with increased F5 expression in individuals with 
inflammatory disorders.35 Second, the release of α-
granules from platelets, recognized as 1 of 2 possible 
sources of circulating FV,36,37 is associated with neutro-
phil activation.38–40 In addition, in the GoDMC database 

Table 1.  Brief Description of the Studied Populations

LURIC MARTHA MEGA RETROVE

Total, n 1833 1011 865 796

VT cases, % 5.4 100 100 50

Age (SD), y 62.3 (10.8) 47.6 (15.7) 47.6 (12.9) 54.4 (19.9)

Women, n (%) 537 (29) 633 (63) 444 (51) 406 (51)

FV, U/dL 1.13 (0.22) 1.07 (0.23) 0.95 (0.19) 0.99 (0.20)

Platelet count, 109/L 231.1 (66.7) 256.4 (68.9) NA 235.3 (62.4)

Neutrophil count* 59.6 (9.46) 61.1 (8.91) NA 58.1 (9.7)

Smoking at sampling, n (%) 342 (18) 167 (18) NA 129 (16)

FV indicates factor V; LURIC, Ludwigshafen Risk and Cardiovascular Health Study; MARTHA, Marburg and Thompson’s Atherosclerosis Study; MEGA, 
Multi-Ethnic Genotyping Array; NA, not available; RETROVE, Retrospective Analysis of Genetic Variants and Clinical Outcomes in Patients With Vascular 
Disease; and VT venous thrombosis.

*Percentage compared with total white blood cell count.

http://www.cog-genomics.org/plink/2.0/
http://www.cog-genomics.org/plink/2.0/
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(http://​mqtldb.​godmc.​org.​uk/​index​ ),41 rs75​463553 
demonstrates strong associations with whole blood 
DNA methylation at several CpG sites at the PSKH2 
locus (Figure S3) such as cg00001099 (P=5.4 × 10−291), 
cg26186954 (P=7.54 × 10−185), and cg20982735 
(P=1.13 × 10−157). DNA methylation is one of the epigen-
etic mechanisms related to POEs,42 and identification of 

such effects is an objective of the QuickTest program 
used in this study.

We therefore investigated the association of 
rs75463553 with neutrophil counts in the LURIC, 
MARTHA, and RETROVE studies. The pattern of asso-
ciations between rs75463553 and neutrophils was ho-
mogeneous across LURIC, MARTHA, and RETROVE 

Figure.  Manhattan plot of 4 studies involving unrelated European individuals for detecting parent-of-
origin effect on factor V plasma levels (n=4505).
 

Table 2.  Association of rs75463553 With Phenotypic Mean and Variance of FV Activity

LURIC MARTHA MEGA RETROVE

Total, n 1833 1011 865 796

Minor allele frequency (G/T) 0.145 0.117 0.156 0.106

Imputation r2 0.980 0.960 0.975 0.982

Number

GG 1338 779 614 635

GT 463 222 235 153

TT 32 10 16 8

FV activity, mean

GG 1.132 1.056 0.958 0.990

GT 1.142 1.097 0.946 0.998

TT 1.059 1.082 0.912 1.119

FV activity, SD

GG 0.212 0.224 0.176 0.192

GT 0.228 0.264 0.217 0.220

TT 0.185 0.261 0.157 0.292

POE γ 0.098±0.033 0.181±0.049 0.152±0.050 0.115±0.055

P value 1.661×10−3 1.042×10−4 1.307×10−3 1.913×10−2

The parent-of-origin effect (POE) γ did not show any evidence of heterogeneity among cohorts (I2 = 0, P=0.518).
FV indicates factor V; LURIC, Ludwigshafen Risk and Cardiovascular Health Study; MARTHA, Marburg and Thompson’s Atherosclerosis Study; MEGA, 

Multi-Ethnic Genotyping Array; and RETROVE, Retrospective Analysis of Genetic Variants and Clinical Outcomes in Patients With Vascular Disease.

http://mqtldb.godmc.org.uk/index
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trials and compatible with a recessive effect of the 
rs75463553-T allele (Table 3). Indeed, we observed a 
trend for neutrophil counts being higher in homozygote 
carriers of the rs75463553-T allele (Table 3). However, 
this association was mainly observed in individuals 
with high platelets counts. As shown in Table 3, when 
the combined sample was divided according to the 
median of platelets observed in the global population, 
rs75463553-TT carriers with platelet counts above the 
median exhibited a significantly (P=0.0023) higher neu-
trophil count, while no association (P=0.59) was ob-
served in the group of individuals with lower platelet 
counts. Surprisingly, we observed that the significant 
association was mainly restricted to smokers (Table 4). 
However, no such interactive effects were observed 
on FV activity (data not shown), suggesting that the 
complex relationship between rs75463553, platelets, 
and neutrophil count would unlikely explain the sta-
tistical BF signal observed on FV activity. Consistent 
with this hypothesis, the observation that the effect of 
rs75463553 on FV variability, as assessed by the BF 
methodology, remains significant in relation to platelets 

and smoking (Table S4), except in smokers with high 
platelet counts, supports this finding.

Of note, in the LURIC, MARTHA, and RETROVE 
trials, where neutrophil and platelet counts were mea-
sured, FV activity did not exhibit a significant correla-
tion with either parameter (Table S5).

We then further explored whether the original de-
tected BF signal could be explained by the interaction 
of rs75463553 with other SNPs. The genome-wide 
scan conducted in the 4 contributing studies identified 
one genome-wide significant (P=2.6 × 10−8) interaction 
(Table S6, Figure S4). In heterozygous carriers of the 
rs75463553-T allele, carrying the rs7190785-A allele at 
GRIN2A on chromosome 16p13.2 was associated with 
increased FV activity (β=0.05±0.01, P=2.52 × 10−8). 
By contrast, no association was observed for the 
rs7190785 allele in individuals with GG or TT genotypes 
at rs75463553 (β=−0.01±0.01, P=0.22). This phenom-
enon was consistent in the LURIC, MARTHA, and 
MEGA studies but not in the RETROVE trial (Table S7). 
It is worth noting that a second interaction signal nearly 
reached genome-wide significance (P=6.27 × 10−8), 

Table 3.  Association of rs75463553 With Neutrophil Counts in the LURIC, MARTHA, and RETROVE Studies According 
Platelet Count

All population Platelets ≤230 Platelets >230

LURIC MARTHA RETROVE LURIC MARTHA RETROVE LURIC MARTHA RETROVE

GG 4.21 (1.54) 
N=1312

3.95 (1.43) 
N=675

3.93 (1.54) 
N=635

3.89 (1.38) 
N=728

3.62 (1.24)
N=239

3.67 (1.39) 
N=318

4.60 (1.63)
N=584

4.13 (1.49)
N=436

4.19 (1.64)
N=317

GT 4.17 (1.57) 
N=455

4.08 (1.59) 
N=186

3.93 (1.64) 
N=153

3.92 (1.52)
N=255

3.59 (1.52)
N=72

3.54 (1.33)
N=73

4.49 (1.58)
N=200

4.38 (1.56)
N=114

4.29 (1.82)
N=80

TT 4.43 (2.11) 
N=33

4.87 (2.79) 
N=10

3.75 (1.51) 
N=8

3.71 (0.94)
N=21

4.02 (0.94)
N=3

3.19 (0.37)
N=6

5.68 (2.94)
N=12

5.24 (3.30)
N=7

5.43 (2.79)
N=2

β±SE P* β=0.26±0.27 
P=0.343

β=0.92±0.47 
P=0.053

β=−0.16±0.35 
P=0.654

β=−0.18±0.32
P=0.571

β=0.42±0.76
P=0.581

β=−0.24±0.35
P=0.497

β=1.09±0.48
P=0.023

β=1.09±0.59
P=0.063

β=0.53±0.76
P=0.480

Combined β β=+ 0.31±0.22 P=0.146 β=−0.137±0.25 P=0.59 β=+ 1.08±0.35 P=0.0023

LURIC indicates Ludwigshafen Risk and Cardiovascular Health Study; MARTHA, Marburg and Thompson’s Atherosclerosis Study; MEGA, Multi-Ethnic 
Genotyping Array; RETROVE, Retrospective Analysis of Genetic Variants and Clinical Outcomes in Patients With Vascular Disease; and SE, standard error.

*Association was tested using a linear model adjusted for age and sex under the assumption of recessive genetic effect β.

Table 4.  Association of rs75463553 With Neutrophil Counts According to Platelet Counts and Smoking in the LURIC, 
MARTHA, and RETROVE Studies Combined

Platelets ≤230 Platelets >230

Non smokers Smokers Non smokers Smokers

rs75463553

GG/GT 3.59 (1.30)
N=945

4.04 (1.47)
N=741

4.1 (1.52)
N=1044

4.77 (1.65)
N=688

TT 3.49 (0.83)
N=16

3.81 (0.92)
N=14

4.19 (1.5)
N=11

6.97 (3.44)
N=10

β±SE
P value*

β=− 0.032±0.323
P=0.921

β=− 0.227±0.394
P=0.564

β=+ 0.084±0.457
P=0.853

β=+ 2.17±0.538
P=6.07 10−5

LURIC indicates Ludwigshafen Risk and Cardiovascular Health Study; MARTHA, Marburg and Thompson’s Atherosclerosis Study; MEGA, Multi-Ethnic 
Genotyping Array; RETROVE, Retrospective Analysis of Genetic Variants and Clinical Outcomes in Patients With Vascular Disease; and SE, standard error.

*Association was tested using a linear model adjusted for age, sex, and cohort under the assumption of a recessive TT genetic effect.
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mapping to the POM121L12 locus on chr7p12.1, which, 
like GRIN2A, has been observed in several GWAS to 
be associated with smoking phenotypes.43–45

DISCUSSION
This work was motivated by the search of non-additive 
genetic effects that could contribute to the inter-
individual variability of FV plasma activity. To achieve 
this objective, we used an underestimated methodol-
ogy with great potential, that leverages existing GWAS 
data in a very efficient and quick manner, as it was 
implemented in the easy-to-use QuickTest software.20 
Even if the method was initially proposed to detect 
POE effects, it also has potential to detect non-additive 
genetic effects that could be caused by gene × gene 
or gene × environment interactions. Its application here 
provides evidence for the presence of gene × smoking 
interaction in the modulation of FV plasma activity.

The application of this methodology to 4505 in-
dividuals phenotyped for FV activity and with GWAS 
data identified SNPs at the 8q21.3 locus significantly 
associated with the variability of FV activity. Using 
publicly available resources, we observed that the 
lead SNP at this locus, rs75463553, was associated 
with DNA methylation levels at several CpG sites in 
the PSKH2 gene. PSKH2 encodes a protein serine 
kinase, about which little is known. Some genetic 
studies have linked PSKH2 SNPs with neutrophil34,46 
and myeloid leukocyte34 counts, whose roles in co-
agulation and thrombotic pathways have been highly 
discussed in the literature38,39,47. In our work, we ob-
served an association between rs75463553 and neu-
trophil counts, but this association could not explain 
the genome-wide signal we detected. We sought to 
investigate whether this signal could be caused by 
POEs in a family study, but we were only able to as-
sess this hypothesis in a sample of 21 families from the 
GAIT1 (Genetic Analysis of Idiopathic Thrombophilia) 
study48 Unfortunately, only 26 informative meioses 
were available to test for a differential paternal–ma-
ternal effect of the rs75463553 and no statistical as-
sociation was observed (Table S8). Of note, PSKH2 
was not detected to be prone to POE using an alter-
native methodology based on sequencing data and 
applied to several phenotypes, including neutrophil 
counts, from the UK Biobank.49 This would suggest 
that the signal we detected using the QuickTest soft-
ware could be attributable to other phenomena rather 
than POE. In line with this hypothesis are the candi-
date gene × gene interactions we identified with 2 loci, 
GRIN2A and POM121L12, which have been proposed 
to be involved in smoking phenotypes in previous 
GWAS.43–45 Unfortunately, smoking status at the time 
of blood sampling was not available in all contributing 

studies and therefore it was not possible to assess 
whether the observed signal was attributable to com-
plex interactions between several polymorphisms 
and smoking. Similarly, our studies had limited in-
formation about additional environmental covariates, 
which prevented us from performing more exhaustive 
gene × environment interaction analyses and from de-
termining whether the PSKH2 locus statistical signal 
could underline such epistasis phenomena. Another 
limitation of this work pertains to its restriction to 
European-ancestry populations. It would be valuable 
to determine whether cross-ancestry studies could 
help clarify the observed association as it is some-
times the case in the context of standard GWAS.

Importantly, a significant proportion (≈20%) of circu-
lating FV is found within the α-granules of platelets.36,37 
It would be interesting to assess whether the variability 
in the source of circulating FV could help explain the 
statistical signal we observed at the PSKH2 locus, in 
particular in view of the enhanced effects we observed 
in individuals with high platelet counts. However, ex-
ploring this hypothesis would require the measurement 
of intra-platelet FV, which, unfortunately, is not possible 
using the biobanked platelet-free plasma.

In conclusion, this work provides strong statistical 
argument supporting the role of the PSKH2 locus in 
the variability of FV activity. However, more in-depth in-
vestigations are now needed to characterize the exact 
underlying mechanisms. In addition, this work also 
emphasizes how to leverage existing large GWAS data 
sets to detect non-additive allele effects using the BF 
methodology, as implemented in the QuickTest pro-
gram, which could explain part of the missing heritabil-
ity that still exists for most complex phenotypes.
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