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SHORT COMMUNICATION                                     

An attempt to identify milk protein fraction genotypes using unsupervised 
and supervised near-infrared spectroscopy methods

Norma S. Navarroa , Elena Albanella , Massimo De Marchib and Carmen L. Manueliana 

aDepartament de Ci�encia Animal i dels Aliments, Group de Recerca en Remugats (G2R), Universitat Aut�onoma de Barcelona, 
Bellaterra, Spain; bDipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Universit�a di Padova, Legnaro, Italy 

ABSTRACT 
The aim was to evaluate near-infrared spectroscopy (NIRS) potential to discriminate among 
b-casein (CN), j-CN and b-lactoglobulin (LG) genotypes to be used as an authentication method. 
A total of 168 milk samples with known genetic information for b-CN, j-CN and b-LG were col-
lected at the same farm and paired with the NIRS spectrum. Spectra were evaluated with an 
unsupervised method (principal component analysis, PCA) and a supervised method (partial 
least squares-discriminant analysis, PLS-DA). For the PLS-DA, data were split into a train (75%) 
and a test set (25%), and the variable in projection >1 criterion was applied to select inform-
ative wavelengths. Results obtained confirmed that milk quality was similar among genetic var-
iants. For the PCA, the observed variance explained by the first two principal components was 
94%, but samples were not clustered by their genotypes of b-CN (i.e. A1A2, A2A2), j-CN (i.e. 
AA, AB, AE, BB, BE) and b-LG (i.e. AA, AB, BB). The best accuracy for the PLS-DA models was 
reached by b-CN (train and test set, 64%), followed by b-LG (train set, 56%; test set, 52%) and 
j-CN (train set, 41%; test set, 36%). In conclusion, the PCA on milk spectra was not able to clus-
ter b-CN, j-CN and b-LG genotypes, but the PLS-DA models revealed promising results for b-CN 
and b-LG. It could be interesting to increase the number of samples to equilibrate genetic var-
iants and to apply a sampling selection method before discarding the applicability of NIRS as an 
authentication method.

HIGHLIGHTS
� Near-infrared spectroscopy discriminates b-casein (CN) and b-lactoglobulin (LG) more accur-

ately than j-CN genotypes.
� Scarce cluster ability of b-CN, j-CN and b-LG genotypes with principal component ana-

lysis (PCA).
� Partial least squares-discriminant analysis (PLS-DA) moderately discriminates b-CN and b-LG 

genotypes.
� PLS-DA lowly discriminates j-CN genotypes.
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Introduction

Nowadays, there is an interest in producing A2 milk to 
fulfil consumers’ demands because it is considered a 
healthier alternative to conventional A1 milk (Bodn�ar 
et al. 2018). The genetic variant of b-casein (CN) for 
milk A2 codes for the amino acid proline instead of 
histidine at position 67. This change prevents b-CN 
hydrolysis at this position and avoids peptide b-caso-
morphin-7 (b-CM-7) release after digestion 
(Thiruvengadam et al. 2021). The b-CM-7 has been 
associated with worsening gastrointestinal symptoms, 
cognitive traits and increasing intestinal transit time 

(Jianqin et al. 2016). Moreover, b-CN genotype variants 
impact milk production, protein yield and fat percent-
age (Bovenhuis et al. 1992). Genotypes of j-CN affect 
protein yield and content (Bovenhuis et al. 1992; 
Tsiaras et al. 2005). Genetic variants of b-lactoglobulin 
(LG) have been associated with changes in whey com-
position and properties (Tsiaras et al. 2005; Rutten 
et al. 2011), milk production, protein yield and fat per-
centage (Bovenhuis et al. 1992). Thus, all these genetic 
variations impact milk quality and technological prop-
erties of milk (�C�ıtek et al. 2021).

Genetic variants are usually identified through gen-
etic tests (Caroli et al. 2009) which are highly accurate 
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but expensive, labour-intensive and not feasible for 
large-scale screening (Xiao et al. 2022). Near-infrared 
spectroscopy (NIRS) is considered as a quick method, 
objective, non-destructive with the sample, free of 
chemical reagents, low cost and environmentally 
friendly analysis. It is routinely used in the dairy indus-
try to predict milk quality and represents an interest-
ing approach to detecting food adulteration (dos 
Santos Pereira et al. 2020). Few studies have 
attempted to apply principal component analysis 
(PCA; unsupervised method) or/and partial least 
squares-discriminant analysis (PLS-DA; supervised 
method) to infrared spectra to identify protein and 
whey milk fraction genotypes. Those studies used 
mid-infrared (MIR) spectroscopy instead of NIRS, and 
focused on b-CN and b-LG genetic variants. Daniloski 
et al. (2022) reported that the PCA plot failed to dis-
criminate among b-CN genetic variants. On the other 
hand, Rutten et al. (2011) and Xiao et al. (2022) 
obtained a 74% for b-LG and 96% for b-CN accuracy, 
respectively, when applying a PLS-DA.

Therefore, this study aimed to evaluate NIRS poten-
tial to discriminate among b-CN, j-CN and b-LG gen-
etic variants.

Materials and methods

Milk samples analysis

A total of 168 individual milk (2 � 50 mL) samples 
from Holstein-Friesian cows were collected in plastic 
tubes with preservative bronopol (Broad Spectrum 
Micro-tabs II, D&F Control Systems, San Ramon, CA) in 
June 2022 from a commercial farm located in the area 
of Barcelona, Spain (42�00011.200N 2�13016.800E). This 
farm has been selecting milk A2 and has the specific 
genotype information for b-CN (i.e. A1A2, A2A2), j-CN 
(i.e. AA, AB, AE, BB, BE) and b-LG (i.e. AA, AB, BB) pro-
vided by the Frisian Federation of Catalonia (FEFRIC, 
Barcelona, Spain). One aliquot (50 mL) was analysed by 
the Interprofessional Dairy Association of Catalonia 
(ALLIC) for gross composition (fat, protein, lactose and 
milk urea nitrogen (MUN)) by MilkoScan (FOSS, 
Hillerød, Denmark) and somatic cell count (SCC) by 
Fossomatic (FOSS, Hillerød, Denmark). As described by 
Manuelian et al. (2021), SCC was transformed into SCS 
by applying the Wiggans and Shook (1987) equation.

The other aliquot was analysed with a NIRSystems 
5000 spectrophotometer (FOSS, Hillerød, Denmark) 
equipped with a scanning monochromator working 
from 1100 to 2500 nm every 2 nm at the Agriculture 
and Animal Production laboratory of the Universitat 
Aut�onoma de Barcelona (Barcelona, Spain). Before 

scanning the samples, they were heated at 40 �C for 
10 min in a water bath (Aparatos Cient�ıficos, J.P. 
Selecta SA, Barcelona, Spain) and homogenised by 
gently rotating the bottles four times. Then, it was 
transferred into a quartz glass (diameter 4.8 cm and 
height 3.9 cm) where a gold reflector (0.5 mm path 
length) was placed. All samples were scanned in dupli-
cate, manually shaking gently between each scan, and 
the average spectrum of each sample was used. The 
absorbance was recorded as a log (1/transflectance). 
Each spectrum was then matched with the corre-
sponding milk protein genotype information.

Chemometric analysis

The chemometric analysis was conducted following 
Manuelian et al. (2021) procedure with R version 4.2.0 
(R Core Team 2022). Briefly, ‘stats’ and ‘ggbiplot’ (Vu 
2011) packages were used to perform the PCA. The 
‘DiscriMiner’ package (Sanchez 2013) was applied to 
perform the PLS-DA for two components after remov-
ing the low signal-to-noise ratio wavelength, splitting 
the dataset into a train set (75% of the observations) 
and a test set (25% of the observations), and selecting 
the wavelengths with a variable importance in projec-
tion (VIP) score >1. The PLS-DA model performance 
was assessed by calculating the error rate and 
accuracy.

Statistical analysis

The sample size was calculated with G�Power software 
ver. 3.1.9.6 (Faul et al. 2007, 2009; Heinrich Heine 
Universit€at D€usseldorf, D€usseldorf, Germany). The nor-
mality of the traits was evaluated with PROC 
UNIVARIATE of SAS ver. 9.4 (SAS Institute Inc., Cary, 
NC). A multigene approach was applied to evaluate 
milk quality through a PROC GLM of SAS ver. 9.4 as 
suggested by Bovenhuis et al. (1992). The model 
included cow b-CN, j-CN and b-LG genotypes, stage 
of lactation (i.e. class 1–4, being the first class from 3 
to 100 DIM; class 2 from 101 to 200 DIM; class 3 from 
201 to 300 DIM; and class 4 from >300 DIM), parity 
(i.e. primiparous and multiparous) and stage of 
lactation � parity as fixed effects. Results are reported 
as least squares means (LSM) and multiple compari-
sons were performed using Tukey’s adjustment when 
necessary. Significance was declared at p < .05 unless 
otherwise stated.
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Results and discussion

Database description and statistics

Average fat and protein content (Table 1) are in line 
with Sola-Larra~naga and Navarro-Blasco (2009) who 
evaluated 348 bulk milk from herds located in north-
ern Spain (Navarra region). Moreover, milk quality vari-
ability agreed with Franzoi et al. (2020), with Italian 
Holstein-Friesian individual records with similar MUN 
content, lower lactose content (4.76%), and greater fat 
(4.08%) and protein (3.31%) content, and SCS (2.59).

For b-CN, the greater number of cows A2A2 
(62.5%) than A1A2 (37.5%; Table 2) is linked to the 
selection strategy of the farm. For j-CN, genotypes AB 
and AA were the most frequent ones (33.9% and 
31.0%, respectively); and AE and BE were the least fre-
quent ones (9.5% and 8.3%, respectively; Table 2). For 
b-LG, AA was the most frequent (51.2%) and BB was 
the least frequent (8.3%; Table 2). The unbalanced fre-
quency of the genetic variants for j-CN and b-LG 
could be attributed to favouring A2A2 for b-CN as 
indicated by Comin et al. (2008) and supports the mul-
tigene statistical approach (Bovenhuis et al. 1992). In 
agreement with our results, Comin et al. (2008) also 

reported a greater frequency of AA and AB for j-CN 
when evaluating 1042 Italian Holstein cows. Some 
authors also observed that BE and EE genotypes for 
j-CN are infrequent (Comin et al. 2008; Gai et al. 
2021). In line with our results, the Gai et al. (2021) 
review indicated that genetic variant A is more fre-
quent than B for b-LG in Holstein-Friesian cows.

In the present study, milk quality parameter esti-
mates (Table 2) did not differ among b-CN and b-LG 
variants. Whereas some authors have reported higher 
protein yield and lower fat percentage in A2 than A1 
variants for b-CN, others have not identified differen-
ces in protein and fat percentage (Gai et al. 2021). 
Moreover, Cendron et al. (2021) also obtained similar 
fat, protein, MUN and SCS between A1A2 and A2A2 
genotypes of b-CN in Italian Holstein. Nevertheless, 
Albarella et al. (2020) found significant differences in 
protein percentage in b-CN genotypes in the autoch-
thonous agerolese cattle breed. In line with our 
results, Botaro et al. (2008) also described a similar 
milk composition among the b-LG genetic variants (i.e. 
AA, AB, BB) in Holstein cows. However, Cendron et al. 
(2021) reported greater fat percentage, MUN and SCS 
in genetic b-LG variant BB than AA. The lower protein 
content for BE than AB variants of j-CN (p ¼ .031) 
agreed with Cendron et al. (2021) results; however, we 
cannot discard that the observed differences were 
related to the lower number of cows with the BE vari-
ant. Although Heck et al. (2009) and Cendron et al. 
(2021) also reported similar milk fat percentage among 
j-CN genotypes as we did, Cendron et al. (2021) 
reported significantly lower protein and MUN, and a 

Table 1. Descriptive statistics of milk quality traits.
Traita N Mean SD Minimum Maximum CV, %

Milk composition
Fat, % 162 3.28 0.65 1.74 5.32 20
Protein, % 164 3.15 0.30 2.38 3.02 10
Lactose, % 161 5.18 0.28 4.31 5.84 5
MUN, mg/L 162 193.34 53.56 48.00 369.00 28

SCS, score 164 1.76 1.63 −0.32 7.69 93
aMUN: milk urine nitrogen; SCS: somatic cell score.

Table 2. Least squares means (±SE) of milk quality1 traits for the main effects.
Fixed effect2 n Fat, % Protein, % Lactose, % MUN, mg/L SCS

b-CN genotypes
A1A2 63 3.36 ± 0.10 3.20 ± 0.04 5.17 ± 0.04 200.3 ± 8.2 1.79 ± 0.23
A2A2 105 3.27 ± 0.10 3.16 ± 0.04 5.23 ± 0.04 196.2 ± 8.2 1.89 ± 0.23

j-CN genotypes
AA 52 3.41 ± 0.11 3.16 ± 0.04ab 5.11 ± 0.05 187.4 ± 8.9 2.103 ± 0.246
AB 57 3.30 ± 0.11 3.30 ± 0.04a 5.14 ± 0.05 192.6 ± 9.1 2.099 ± 0.252
AE 16 3.36 ± 0.18 3.15 ± 0.07ab 5.29 ± 0.08 206.9 ± 14.5 1.792 ± 0.404
BB 29 3.43 ± 0.14 3.27 ± 0.05ab 5.20 ± 0.06 199.0 ± 11.1 1.492 ± 0.307
BE 14 3.10 ± 0.19 3.03 ± 0.08b 5.25 ± 0.08 205.2 ± 15.8 1.732 ± 0.439

b-LG genotypes
AA 86 3.20 ± 0.08 3.13 ± 0.03 5.218 ± 0.031 193.4 ± 6.2 1.71 ± 0.17
AB 68 3.39 ± 0.09 3.12 ± 0.04 5.223 ± 0.037 212.4 ± 7.3 1.65 ± 0.20
BB 14 3.36 ± 0.18 3.29 ± 0.07 5.155 ± 0.076 188.9 ± 14.3 2.17 ± 0.40

Lactation stage
3–100 d 49 3.33 ± 0.12ab 2.99 ± 0.05c 5.21 ± 0.05 175.7 ± 9.4b 1.64 ± 0.26
101–200 d 37 3.03 ± 0.12b 3.12 ± 0.05bc 5.26 ± 0.05 196.1 ± 10.0ab 1.72 ± 0.28
201–300 d 51 3.23 ± 0.10b 3.20 ± 0.04b 5.16 ± 0.04 194.7 ± 8.2ab 1.92 ± 0.23
>300 d 31 3.69 ± 0.13a 3.42 ± 0.05a 5.17 ± 0.05 226. ± 10.6a 2.08 ± 0.30

Parity
Primiparous 87 3.24 ± 0.09 3.21 ± 0.04 5.30 ± 0.04a 200.7 ± 7.3 1.19 ± 0.21b

Multiparous 81 3.40 ± 0.09 3.15 ± 0.04 5.10 ± 0.04b 195.8 ± 7.6 2.50 ± 0.20a

1MUN: milk urine nitrogen; SCS: somatic cell score.
2b-CN: b-casein; j-CN: j-casein; b-LG: b-lactoglobulin.
a,bSuperscript letters within trait and effect are significantly different (p < .05).
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greater SCS for AA than AB variants. In agreement 
with our results, Albarella et al. (2020) did not find dif-
ferences in milk from the agerolese breed for AB and 
BB variants. Differences observed across lactation and 
parities are in agreement with the literature, and we 
are not going to discuss them further.

PCA and PLS-DA

The two first principal components (PC1 ¼ 78.0%; 
PC2 ¼ 16.3%) of the PCA applied to the NIR spectra 
explained 94.3% of the observed variance, but were 
unable to cluster b-CN, j-CN and b-LG genotypes 
(Figure 1). Similar results were reported by Daniloski 
et al. (2022) for b-CN where overlapping clusters were 
observed when evaluating 114 milk samples from 
Australian Holstein-Friesian. However, those authors 
improved the PCA model’s performance by selecting 
only five samples of each variant that were separated 
enough to avoid overlaps. We are not aware of any 
other study trying to cluster samples based on protein 
fraction genetics applying PCA to infrared spectra.

The average spectra of the samples presented a 
peak around 1200 nm, a slightly broad peak between 
1380 nm and 1550 nm, a small peak around 1750 nm, 
and two broad peaks between 1860 and 2220 nm and 
between 2300 and 2498 nm (Figure 2). For b-CN, VIP 
was >1 from 1100 nm to 1116 nm; 1190 nm to 
1222 nm; 1692 nm to 1774 nm; 1888 nm to 2002 nm; 
2408 nm; 2410 nm; 2414 nm to 2422 nm; and 2430 nm 
to 2490 nm (Figure 2). For j-CN, the VIP was >1 from 
1100 nm to 1138 nm; 1888 nm to 2018 nm; and 
2380 nm to 2498 nm (Figure 2). For b-LG the, VIP was 
>1 from 1708 nm to 1736 nm; 1880 nm to 2084 nm; 
and 2382 nm to 2498 nm (Figure 2). Those VIP peaks 
identified in all three fractions around 1940 nm have 
been linked to water (Coppa et al. 2010); around 
2000 nm and 2400 nm to protein and fat content, 
respectively (Mohamed et al. 2021); and around 
2466 nm to protein (N�u~nez-S�anchez et al. 2016). 
Moreover, those VIP peaks in b-CN and j-CN fractions 
around 1700 nm have been associated with fat and 
protein content (Mohamed et al. 2021). Additionally, 
the VIP peak in b-CN fraction around 1200 nm has 
been associated with fat content (N�u~nez-S�anchez et al. 
2016).

The best PLS-DA model based on the accuracy of 
the test set was observed for b-CN (64%), followed by 
b-LG (53%) and j-CN (36%; Table 3). In contrast with 
our results, Xiao et al. (2022) obtained a greater accur-
acy in discriminating A1 and A2 milk in the test set 
(96%) using 754 MIR spectra of Chinese Holstein cows 

reared on the same farm. Although Daniloski et al. 
(2022) observed that the PLS-DA analysis with a subset 
of samples (30 out of 114) was able to separate milk 
samples collected in the same farm into different 
groups based on their b-CN variants, they stressed 
that this could be purely by chance due to the 
selected samples included in the final model. Similarly, 
Rutten et al. (2011) also reported a better accuracy for 

Figure 1. Standardised plot of first (PC1) and second (PC2) 
principal components for b-casein (b-CN), j-casein (j-CN) and 
b-lactoglobulin (b-LG). The ellipse represents 95% confidence 
interval.
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b-LG variants in the test set (74%) using MIR in 3826 
milk samples from Dutch Holstein-Friesian cows col-
lected in different farms. To the best of our know-
ledge, there are no studies regarding j-CN genotype 
discrimination analysis.

Conclusions

Our results demonstrated the difficulties of using NIRS 
to cluster milk samples with an unsupervised method 
such as the PCA based on their genotypes for b-CN, 
j-CN and b-LG when milk quality is similar. The super-
vised method PLS-DA led to slightly better results 
depending on the fractions evaluated, revealing prom-
ising results for b-CN and b-LG. The best accuracy was 
achieved for b-CN, reaching up to 64% when dealing 
with A1A2 and A2A2 milk. The accuracy decreased for 
b-LG, but it still was above 50% considering the three 
variants. The worst results were obtained for j-CN, 
which included five variants. We cannot discard that 

the decrease in the accuracy of the models could be 
related to the unbalanced number of samples for the 
different variants of each fraction. Further research try-
ing to equilibrate variants’ representativeness within 
each fraction could be advisable before discarding 
NIRS as an authentication method. Moreover, it could 
be interesting to apply sample selection techniques to 
identify samples with different genetic variants that 
are farther in the PCA to also improve the models.
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