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ABSTRACT

The Eocene to Miocene clastic wedge of the south Pyreneansbasin constitutes a
reference model to understand thefprogressive evolution of sediment provenance and
source-to-sink dynamics_.inma foreland basin. We present new detrital zircon (DZ) U-Pb
and U-Pb-He (ZHe) doubledating data from the Jaca basiniand the Ebro basin, providing
insights into the evolution of the sedimentary systems that record a major tectonic and
drainage reorganization from the late Eocene to Miocene. Three distinct DZ U-Pb
signatures have been identified: (i) Variscan dominated; (ii) mixed Cadomian-Variscan;
(iii) Cadomian dominated; and two DZ ZHe signatures (i) Pyrenean dominated; (ii) pre-
Pyrenean dominated. Coupling DZ U-Pb, ZHe, and petrographic data allows us to
discriminate among distinct Pyrenean sources as well as to understand how DZ
signatures are propagated in a source-to-sink system. Our results indicate that while the

eastern Jaca basin was fed from eastern source areas located in the central and eastern
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Pyrenees, the western Jaca basin was fed from the Basque massifs and the Urbasa-Andia

Sierra (Basque-Cantabrian Pyrenees).

INTRODUCTION

Sedimentary provenance analyses are key to deciphering source-to-sink patterns and
the links between tectonics and sedimentation, particularly in foreland basins related to
collisional orogens (Dickinson 1970; Steidtmann and Schmitt 1988; Garzanti et al. 2004).
Foreland basins record the erosional and exhumational history of their source areas,
providing valuable insights into the chronology of the deformation and unroofing of the
related orogen (Fosdick et al. 2015; labaume et al. 2016; Thomson et al. 2017; Odlum

et al. 2019).

Detrital zircon (DZ) U-Pb and (U-Th)/He double-dating allows us to obtain crystallization
and cooling timing constraints of the sourcesareas feeding the basin. Since zircon is one
of the most ubiquitous heavy_minerals in crustal rocks, being)highly resistant to
weathering and diagenetic processes, DZ signaturés havesbecome a powerful and
widely-applied provenance tool worldwide in.the last decades (Reiners et al. 2005; Nie
et al. 2012; Saylor et al. 2012). However, the resolution of this kind of studies might be
limited due multiple source areas with similar or monotonous DZ age distributions, and
recycling and/or cannibalization of older siliciclastic sedimentary rocks that might bias
the reconstruction of the source area (Dickinson et al. 2009; Garzanti et al. 2013).
Although extensive literature deals with the U-Pb signatures of direct sources, the role
of sediment recycling in the propagation of DZ signatures is poorly constrained
(Schwartz et al. 2019). Therefore, it is crucial to integrate as many provenance tools as

possible (i.e., sandstone petrography, heavy mineral analysis, detrital geochronology
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and detrital thermochronology) in order to decipher the true complexity of the study

case (Thomson et al. 2019; Coll et al. 2022).

Due to its extraordinarily well-preserved sedimentary record, the South Pyrenean basin
is a reference model for foreland basins worldwide. The Lutetian to Miocene deposits
of its western part -known as the Jaca basin- provide an excellent natural laboratory to
study sediment recycling as well as the interplay between active source areas and
sediment routing (Michael 2013; Thomson et al. 2017; Roigé et al. 2016; Roigé et al.

2017; Coll et al. 2020; Coll et al. 2022).

The paleogeography of the South Pyreneanbasin has been well established from several
works that have studied its_stratigraphy, sedimentelogy. and tectonics (e.g. Soler-
Sampere and Puigdefabregas 1970; Puigdefabregas,1975; Mutti 1985; Barnolas and
Teixell 1994; Payros et al. " 1999; Oms et al. 2003; Remacha et al. 2005; Labaume et al.
2016; Oliva-Urcia et al. 2019; Vinyoles et al. 2021), as well as'from provenance studies
focused on the clastic infill,(Fontana et'al. 1989; Gupta and Pickering 2008; Caja et al.
2010; Whitchurch et al. 2041; Filleaudeau et‘al. 2012; Michael 2013; Roigé et al. 2016;
Gdémez-Gras et al. 2017; Roigé et al. 2017; Thomson‘et al. 2017; Coll et al. 2020; Coll et
al. 2022). All this research allows us to constrain the occurrence of distinct axially-fed
eastern-sourced systems mainly supplied by Paleozoic basement rocks and Mesozoic
carbonates from the central and eastern Pyrenees (i.e. Roigé et al. 2016). During the
early foredeep stages of the basin, the Hecho Group turbidites (early Eocene-middle
Eocene) were fed through these axially east-sourced systems (Mutti et al. 1972).
However, the activity of the Gavarnie and Guarga thrusts (Fig. 1) uplifted these turbidite

deposits and promoted their erosion during Priabonian to Miocene times, which were
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recycled into transverse-fed north-sourced alluvial systems (Campodarbe and Bernués
Formations) of the southern Jaca basin (Puigdefabregas 1975; Teixell and Garcia-
Sansegundo 1995; Labaume et al. 2016; Roigé et al 2016; Roigé et al. 2017; Coll et al.

2022).

In the eastern Jaca basin, the provenance of the sedimentary systems is well constrained
by sandstone petrography and heavy mineral analysis (Roigé et al. 2016; Roigé et al.
2017; Coll et al. 2020; Coll et al. 2022). Nonetheless, provenance studies using DZ
signatures are only focused on the northern margin deposits (Roigé 2018). By contrast,
in the western Jaca basin, the<provenance of the late Eocéne-Miocene siliciclastic
systems is poorly constrained (Puigdefabregas 1975; Payros et al. 1997; Astibia et al.
2005), and no quantitative data‘exists regarding sandstone detrital modes, heavy

minerals, and DZ geochronologic signatures.

Our study aims to investigate the impact of the major reconfigurationof the catchment
areas by applying DZ U-PbsandZHe analysis in the southern/margin and western area of
the Jaca basin and the Ebro basin. This is the first-time applying U-Pb and ZHe double
dating in the non-volcanic detrital zircons of the Jaca basin. In this work we (1)
characterize the DZ U-Pb signatures recorded by deltaic, fluvial and alluvial fan systems
of the eastern and western Jaca and Ebro basins, (2) characterize the zircon (U-Th)/He
provenance signatures to constrain the exhumational history of the source areas, (3)
compare these results with the more proximal, time equivalents of the nearby Ainsa and

Tremp-Graus basins.

Our work has important applications to collision orogens where different source areas

can produce similar compositional signatures, by contributing to the knowledge of the
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propagation and interplay of DZ signatures during recycling processes. This study also
highlights the importance of integrating these techniques with petrographic data, in
order to constrain sediment provenance and sediment dispersal patterns, and to avoid

biased interpretations or undesired low resolution.

GEOLOGICAL SETTING AND STRATIGRAPHIC FRAMEWORK

The Jaca basin constitutes the western part of the South Pyrenean prowedge foreland
basin (Fig. 1). From the late Cretaceous to early Miocene, the Eurasian and Iberian plate
collision led to the formation of the Pyrenean fold-and-thrust belt, which grew
diachronously as a result of the oblique character of the collision(Puigdefabregas et al.
1992; Teixell et al. 2018; Vergés et.al. 2002; Mouthereau et al. 2014). The core of the
belt (known as the Axial'Zone)is made offbasement-involved stacked thrust sheets,
flanked to the north by the North Pyrenean Zone (where the, pre-collisional rift axis is
still preserved; Lagabrielle et al. 2010; Fig. 1A). The Cenozoic Sedimentary deposits that
occur further north constitute the retro-wedge foreland basin (Aquitanian basin). In the
South Pyrenean Zone, thedeformation was.accommodated by an imbricate thrust fan
(Camara and Klimowitz 1985; Labaume et al. 1985;/Teixell 1996; Labaume et al. 2016;
Mufioz et al. 2018), which in the-west central Pyrenees is constituted by four main thrust
sheets. From north to south, these thrust sheets are: (a) the Lakora-Eaux-Chaudes, (b)
the Gavarnie, (c) the Broto, and (d) the Guarga thrusts (Fig. 1B). These thrust sheets
involve the Paleozoic basement, a pre-alpine Paleozoic and Mesozoic sedimentary
cover, and a late Cretaceous to early Miocene foreland basin, which is bordered to the
south by the External Sierras thrust front. To the south, the Ebro basin records the final

stages of the Pyrenean exhumation (i.e. Hirst and Nichols 1986; Rat et al. 2022). At the
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western edge of the Pyrenees the Basque massifs (Fig. 1A) constitute the junction of the
Pyrenees-Cantabrian orogenic system (Lescoutre et al. 2020 and references therein).
These massifs are composed by Paleozoic rocks overlain by Permian to Cretaceous rocks

which are mainly represented by sedimentary deposits.

The Axial Zone is constituted by Paleozoic rocks, which are mainly represented by (a)
upper Neoproterozoic to Permian sedimentary rocks (i.e. Margalef et al. 2016), (b)
Cambro-Ordovician gneisses and Carboniferous-Permian granitic rocks and (c) Cambrian
to Devonian low-grade metamorphic rocks (Capaldi et al. 2022, and references within).
These Paleozoic rocks are unconformably overlain by Permo-Triassic red beds or
Cretaceous limestones. Thé pre-orogenic Mesozoic,successioniin the South Pyrenean
thrust sheets includes the Triassic Keuper faciesswhichhare involved in thrust sheet
propagation, acting as an evaporite detachment level during extension and contraction,
and featuring salt diapirism processes in the central Pyrenees(Saura et al. 2016; Burrel
and Teixell 2021; Burrel et al. 2022;'Hudec et al. 2021)/The rest of the succession is
made up of thick Jurassic-Cretaceous carbonaterand sandstone-shale successions. The
South Pyrenean foreland basin is an assemblage of synorogenic rocks, related to the late
Santonian-early Miocene shortening, that recorded a major drainage reorganization in
the mid-late Eocene: the progression of the fold-and-thrust belt deformation triggered
a shift from a predominantly axial drainage network to a series of transverse systems
(Whitchurch et al. 2011). This shift was expressed by the fluvio-deltaic environments of
the Ager and Tremp-Graus basins (eastern sector of the South Pyrenean basin, Fig. 1A)
that funneled sediments to the west, where the slope and deep-marine environments

of the Ainsa and Jaca basins (the Hecho Group turbidites) developed during the
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underfilled foreland basin stage (Nijman and Nio 1975; Mutti 1985; Bentham et al. 1992;
Caja et al. 2010). With the growth of the orogen, these environments were progressively
replaced from east to west, during the mid to late Eocene, by deltaic deposits, and by
fluvio-alluvial environments during Oligocene-Miocene times (Graus, Campodarbe and

Bernués Formations.) (Puigdefabregas 1975; Dreyer et al. 1999).

The Eastern Jaca Basin

The end of the turbiditic sedimentation (Hecho Group turbidites; early Eocene-middle
Eocene) in the Jaca basin was followed by mixed deltaic and fluvial environments
(Puigdefabregas 1975). In the eastern'Jaca'basin, the first deltaic:system is represented
by the Sabifidnigo Sandstane Fermation (Bartonian) which prograded from east to west
(Mangin 1960). The stratigraphic section continues with the Pamplona Marls Formation
(Figs. 2, 3), which constitutes the prodelta deposits of the) Belsué-Atarés deltaic
Formation (Puigdefabregas, 1975). During the Bartonian-Priabonian, the Belsué-Atarés
delta prograded from east:to. west sourced from the central and eastern Pyrenees (Roigé
et al. 2017; Coll et al. 2021). Towards the north-western part of the basin, the Belsué-
Atarés Formation passes to the Priabonian* Martés and Giliendulain Formations
(Puigdefabregas 1975). All these deltaic environments were progressively substituted by
the fluvial to alluvial Campodarbe Formation (Bartonian-Chattian; Puigdefabregas 1975;
Boya 2018; Roigé et al. 2019), which marked the endorheic basin stage and the onset of
terrestrial sedimentation throughout the entire basin at 36 Ma (Barnolas and Gil-Pefia.

2001; Costa et al. 2010; Orti et al. 1986; Payros et al. 2000).

The Campodarbe Formation (Mutti et al. 1972) is a fluvial to alluvial succession
(Bartonian-Chattian), where at least two main sediment routing systems can be

7
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identified (Puigdefabregas 1975). In the northern margin, an east-derived axial fluvial
system, entering the Jaca basin through the southeastern margin, interacted with a
north-derived transverse alluvial fan system, mainly controlled by the activity of the
Gavarnie thrust, and mostly derived from the recycling of the former lower to middle
Eocene Hecho Group turbidites (Puigdefabregas 1975; Roigé et al. 2016; Roigé et al.
2017; Coll et al. 2020). By contrast, the sedimentation in the southern edge was
dominated by two axially-fed fluvial systems sourced from the central and eastern
Pyrenees (Coll et al. 2022), and strongly controlled by growing tectonic structures of the
External Sierras (Puigdefabregas 1975; Jolley 1988; Hogan 1993; Hogan and Burbank
1996; Labaume et al. 2016; Labaume'and Teixell. 2018). The'last stages of the basin infill
are marked by the Bernués'Formation (Chattian-Aquitanian; Puigdefabregas 1975;
Arenas 1993; Roigé et al. 2019), a complex of alluvial fan deposits sourced from the

north of the basin (Figs. 2, 3).

As the orogenic deformation progressed to the south, the External'Sierras thrust front
(Soler-Sampere and Puigdefabregas1970; Labaume et al. 1985; Teixell 1996; Oliva-Urcia
et al. 2016;) became strongly emergent (Oligocene-Miocene), and split the Campodarbe
Formation in the Jaca basin to the north from the Ebro basin to the south (Fig. 3). The
activity of the Guarga thrust sheet triggered the formation of the north-derived Luna
alluvial fan system, sourced from the recycling of the Jaca basin and the Axial Zone
further north, and from the Basque massifs to the northwest (Puigdefabregas 1975;

Arenas et al. 2001; Roige et al. 2019).

The Western Jaca Basin
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Towards the western sector of the Jaca basin, time-equivalent deposits are constituted,
from base to top, by: the Ezkaba Sandstone Formation, the Pamplona Marls Formation,
the Ardanatz Formation, the Illundain marls Formation, the Yesa turbidites, the

Guendulain Formation, and the Campodarbe and Bernués Formations (Figs. 2, 3).

The Bartonian Ezkaba Sandstone Formation (western time-equivalent deposits of the
deltaic Sabifanigo Formation in the east; Puigdefabregas 1975; Payros et al. 1997) is a
channel-levee turbidite system developed at the base of the Bartonian-Priabonian
Pamplona Marls Formation (Mangin 1960; Astibia et al. 2005) in the northwestern sector
of the basin, and it is sourced«from/the Basque massifs (Payros et al. 1997). The
Pamplona Marls Formation, the Ardanatz Formatien (Bartonian) and the Bartonian-
Priabonian Ilundain Marls Formation correspond te prodelta, delta front, and restricted
platform environments that' were related to.theprogradation of the Belsué-Atarés delta

in the eastern Jaca basin (Puigdefabregas 1975; Astibia et al. 2005; Astibia et al. 2014).

The Ardanatz Formation (Bartonian) is‘a set of flood-influenced delta-front sandstone
lobes interbedded at the base of the llundain'Marls Formation (Astibia et al. 2005). The
general distribution of facies (shallow-water environments to the west and turbiditic
channels to the east) suggests no link with the Belsué-Atarés delta (Puigdefabregas
1975). To the east, another formation has been related to the progradation of the
Belsué-Atarés delta, the Yesa turbidites (Priabonian), which occur at the top of the

Pamplona marls (Puigdefabregas 1975).

The Priabonian Guendulain Formation (Payros et al. 2000) constitute a series of coastal
deposits divided in three distinct members: the lower evaporite, the middle sabkha

marl, and the upper Liédena Sandstone Formation. The latter, constitutes a wave-
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dominated delta containing the last deposits with marine influence in the Jaca basin

(Puigdefabregas, 1975).

The overlying Campodarbe and Bernués Formations (Bartonian to Miocene) represent
the development of fully terrestrial fluvio-lacustrine and alluvial environments
throughout the basin (Puigdefabregas, 1975). In the lzaga syncline area, the
Campodarbe Formation is constituted by lacustrine deposits (Zabalza facies;
Puigdefabregas 1975) until the irruption of the Izaga alluvial fan, sourced from northern

areas comprising Paleocene-Eocene sedimentary rocks (Puigdefabregas 1975).

GEOCHRONOLOGIC AND THERMOCHONOLOGIC CHARACTERIZATION OF POTENTIAL

SOURCE AREAS

U-Pb Characterization ofthe Source Area

In order to comprehend the DZ U-Phssignatures from the Jaca basinj.it is necessary to
review the age signatures of the different possible sources./These can be the different
tectonic domains of the central and westérn Pyrenees, which include Paleozoic
metasedimentary and igneous basement of the Axial Zone and Basque massifs, the
preorogenic Mesozoic sedimentary cover successions, and the early synorogenic late

Cretaceous to middle Eocene deposits.

The clastic metasedimentary succession of the Axial Zone (Cambrian-Ordovician-
Silurian-Devonian) displays DZ U-Pb signatures dominated by >700 Ma age modes, with
an important Cadomian/Pan-African component (520-700Ma), and a subsidiary 420-520
Ma population (Hart et al. 2016; Margalef. 2016). Orthogneissic rocks of the crystalline

core of the Pyrenees mainly yield Ordovician protolith ages ranging from 485 to 450 Ma

10
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(Denéle et al. 2007; Martinez et al. 2011). Carboniferous strata contain dominant
recycled Cambro-Devonian DZ signatures and syndepositional volcanic zircons of 325-
360 Ma (Martinez et al. 2015; Hart et al. 2016). Variscan igneous plutons yield ages
ranging from 280-315 Ma (Whitchurch et al 2011, and references within). Permo-Triassic
clastic deposits display dominant Cadomian (520-700 Ma) and >700 Ma age
components, with scarce Variscan ages (Hart et al. 2016). Permian and late Triassic mafic
volcanic and subvolcanic rocks in the region are present but unlikely to significantly
contribute with zircon grains. Cretaceous sedimentary rocks display different DZ U-Pb
signatures depending on the location‘and the stratigraphic level. Scarce data available
show that Variscan-dominated agescan be found in the clastic early.and late Cretaceous
deposits from the central andeastern Pyrenees (Filleaudeau.et al. 2012; Thomson et al.
2016; Odlum et al. 2019) and North Mauledn basin (NPZ; Hart et al. 2016), whereas
Cadomian-dominated occurs in the early Cretaceous of the Méendibelza massif (NPZ), in
the late Cretaceous of the North/Mauledén basin (Hart et.al. 2016), and in the late
Cretaceous Aren Formation, (Central Pyrenees; Whitchurch et al. 2011) or Adraén
Formation in the (Baga area, Odlum et al. 2019). Moreover, Paleocene-Eocene Deposits
of the south-central Pyrenean basin (Ainsa, Trempjand Ager basins; Fig. 1) show variable
DZ distributions, which reflect the provenance evolution experienced by these
sedimentary systems, alternating dominant Cadomian and Cambro-Devonian ages with
Variscan components trough time (Whitchurch et al. 2011; Filleaudeau et al. 2012;
Thomson et al. 2017; Odlum et al. 2019; Thomson et al. 2019). Finally, Oligo-Miocene
calc-alkaline magmatism reported from the Mediterranean basin related to the opening
of the Valencia Gulf (Marti et al. 1992; Sabat et al. 1995) could supply Cenozoic

syndepositional zircons through ash airfall(Roigé et al. 2019).
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In addition to the different age modes displayed by the different rocks, their zircon
fertility may also have an impact on the DZ populations (Moecher and Samson 2006;
Dickinson 2008; Malusa et al. 2016). A qualitative approach to the Pyrenean case
(Thomson et al. 2017) infers the highest zircon fertility for the Variscan granitoids,
whereas in the fine-grained Cambro-Ordovician metasedimentary formations moderate
fertility is expected (Hart et al. 2016). By contrast, Triassic sandstones (dominantly
arkosic) might display a high zircon fertility as they were sourced from the crystalline
basement. Cretaceous to Paleocene formations (mainly carbonates), are expected to
have a very low zircon fertility, although siliciclastic sandstones might display moderate
to high fertility. We assume_that the Eocene clastic formations (including the Hecho
Group turbidites) have moderate zircon fertility,.depending on their contents of
carbonate (low fertility) vssiliciclastic (high fertility) grains. Moreover, turbidite layers
sourced from felsic igneous rocks will produce higher zircon fertility than those sourced
from metasedimentary basement nocks, and zircons produced by fine-grained Paleozoic
metasediments (Neoproterozoic-dominated) are expected to be smaller than those

delivered from plutonic rocks (Variscan-dominated).

(U-Th)/He characterization of the Source Area

Pyrenean ZHe ages (20-85 Ma) record cooling related to Pyrenean shortening and
exhumation during plate convergence and are restricted to the thermally reset Paleozoic
igneous-metamorphic basement (Axial Zone and North Pyrenean Zone) exhumed during
the Pyrenean Orogeny (Whitchurch et al. 2011; Filleaudeau et al. 2012; Thomson et al.
2017). Cretaceous ZHe ages (85-155 Ma) are related to rifting-hyperextension and the

HT-LP metamorphism occurring along the lberia-Eurasia divergent plate boundary
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(Lagabrielle et al. 2010). Such ages have been found in the syn-rift sedimentary units of
the Pedraforca thrust sheet and the inverted Organya basin (Odlum et al. 2019), as well
as in the late Cretaceous of the North Pyrenean Zone, where the pre-collisional rift
architecture is still preserved (Bosch et al. 2016). Liasic ZHe ages (180-201 Ma) can be
attributed to widespread ophitic magmatism and the magmatic episode associated with
the central Atlantic magmatic province (Marzoli et al. 1999; Mothereau et al. 2014).
Permo-Triassic (201-295 Ma) and Variscan (>295 Ma) ZHe ages can be attributed to non-
reset zircon grains originally sourced from the former Ebro massif into the Cretaceous-

Eocene South Pyrenean foreland basini(cratonic margin).

METHODOLOGY.

Twenty-five sandstone samples(2-4 Kg) from seven stratigraphic profiles were collected
in the field (see supplementary file S1). In order to avoid hydraulic-sorting effects that
might bias the analytical results, medium-grained sandstones were targeted, avoiding
locally reworked deposits(Malusa et al.;2016; Garzantietals, 2008; Garzanti et al., 2009;
Garzanti et al., 2019; Ando;, 2020). In addition, samples from each depositional system
were collected from similar facies to minimize_ hydraulic-sorting effects related to

different processes within the same depositional environment.

Following standard heavy mineral separation methods, samples were crushed with a
Retsch Disc Mill DM 200 and submitted to Struers Metason 200 ultrasound machine (5
minutes) to help desegregation of well-cemented sands and clay coatings. The <500um
window was obtained through dry sieving with a digital electromagnetic sieve shaker
BA-200. The recovery of the heavy fraction was done in two steps, using a Holman-

Wilfley laboratory shaker table, and by the centrifuging method (using nontoxic dense
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liguid Na-polytungstate; 3.10g/cm3) and partial freezing with liquid nitrogen (Ando,
2020). Finally, zircons were obtained using a Frantz isodynamic magnetic separation.
Mineral separation was performed at the Thin Section Lab of the Department of Geology

of the Universitat Autonoma de Barcelona.

Zircon U-Pb Geochronology

Zircon grains were mounted onto double-sided adhesive plastic pucks and left
unpolished for depth-profile analysis (Campbell et al. 2005; Hart et al. 2017). For each
sample, at least 120 zircons were_selected randomly and analyzed using the laser
ablation-inductively coupled " plasma-mass spectrometry:. (LA-ICP-MS) U-Pb
geochronology, in order to obtain a statistically robust and.representative provenance
dataset (Vermeesch, 2004). U-Pb analysis’ was, performed using a PhotonMachine
Analyte G.2 excimer laser with a HeLex 238 sample cell and a Thermo Scientific Element2
ICP-MS. GJ1 was used as a primarystandard (Jackson et al. 2004), andPlesovice (Slama
et al., 2008) was used as_a:secondary standard, to obtain data quality control. A 30 um
laser spot ablated 15 umideep pits on the flatprism plane of the zircon grains. Data were
reduced using VizualAgeTM data reduction scheme for the loliteTM on Igor ProTM
software (Paton et al. 2011). During data reduction, individual analyses were deleted if
the grains were not zircon or there was evidence of errors in analysis. 206Pb/238U ages
are used for grains younger than 850 Ma, while 207Pb/206Pb ages are used for grains
older than 850 Ma. Individual zircon ages were excluded if there was a 206Pb/238U 20
error greater than 10%, or 206Pb/238U and 207Pb/235U discordance greater than 10%

for grains younger than 850 Ma or 206Pb/238U age and 206Pb/207Pb discordance
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greater than 20% for grains older than 850 Ma. All the ages are presented with two

sigma absolute errors.

Zircon (U-Th)/He Thermochronology

After U-Pb DZ signature characterization, ten samples were selected for (U-Th)/He DZ
Analysis. Six to nineteen concordant single-age zircons free of uranium zonation (per
sample) were targeted for double dating analysis, based on of U-Pb age components
relative abundance and the criteria for (U-Th)/He analysis (Farley 2002; Saylor et al.
2012; Hart 2015; Hart et al. 2017). Grains were individually packed into platinum (Pt) foil
packets and were heated and. degassed under ultra-high. vacuum. Total He
concentration was measured on‘a quadrupole mass spectrometer. Completely degassed
grains were removed from Pt packets and dissolved with a combination of Hf and HNO3.
Dissolved grains were analyzed on a Thermo Scientific Element2:ICP-MS for absolute U,
Th, and Sm concentrations (Wolfe and Stockli 2010). Fish Canyon Tuffizircons were run
with unknown grains to moenitor data quality (Reiners 2005)¢ Astandard error of 8% was
applied to all measurements. Each crystal was morphometrically measured for alpha-
ejection corrections, following the equations from Farley et al (1996), and assuming a
grain geometry and that the second grain width is equal to the width measured.
Partially/fractured or completely broken grains during unpacking from Pt packets, as
well as grains containing fluid inclusions, were excluded from the analysis. Incomplete
dissolved grains were also excluded. All U-Pb and He analyses were conducted at the

UTChron Laboratory at the University of Texas at Austin.

Statistical Analysis
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We applied multi-dimensional scaling and correspondence analysis as exploratory
compositional data analysis tools to assess similarities/dissimilarities between samples
(Vermeesch 2013; 2018). Results are displayed as biplots to facilitate the visualization
and results interpretation. Statistical treatment was done using the Provenance R-
package (Vermeesch et al. 2016; Vermeesch 2018) and allowed the distinction between

distinctive U-Pb and (U-Th)/He components signatures.

RESULTS

DZ U-Pb geochronological signatures

DZ U-Pb age populations (Table 1) are grouped into twelve U-Pb age components:
Cenozoic (0-66 Ma), late Mesozoic (66-180 Ma), (Permo-Triassic (180-280 Ma), Late
Variscan (280-310 Ma); Early Variscan (310-370 Ma), Cambro-Devonian (370-520 Ma),
Cadomian (520-700 Ma), Neoproterozoicy (700-900 Ma),( Kibaran (900-1200 Ma),
Mesoproterozoic (1200-1500 Ma), Paleoproterozoic (1500-2200:,,Ma), and Archean
(2200-4600 Ma). DZ U-Pb ages are plotted as kerhel density estimators (KDE) and

histograms, and as percentages of the 12 U-Pb components (Table 1; Figs. 4, 5).

In the eastern Jaca basin, the Belsué-Atarés deltaic and Campodarbe fluvial Formations
(Bartonian-Priabonian) cropping out in the southern slopes of the External Sierras
constitute the lowermost analyzed deposits (Rodellar section; Fig. 3). These formations
display the highest amounts of Variscan aged zircons (> 50%, samples ROD1 and ROD3)
among all the analyzed samples (Table 1; Figs. 2, 4). Upsection and to the west, the
fluvial Bartonian to Priabonian Campodarbe Formation (samples BIB-1, BEMO-12 and

GAL-5) records a prominent Variscan age component (20-30%), but Cambro-Devonian
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and Cadomian U-Pb age components increase (up to 40%) (Monrepds and Biban
sections, Fig. 4). By contrast, the uppermost parts of the late Eocene-early Miocene
Campodarbe and Bernués Formations (samples ROD4, BIB5, BEMO17 and GAL10), are
characterized by minor Variscan age U-Pb components (10-15%) with a dominance of
Cambro-Devonian and Cadomian components (>50%), and this trend is consistent in all
the sections of the eastern Jaca basin (Fig. 4). In the Luesia section (Ebro basin), the
fluvial Campodarbe Formation (samples LUE9 and LUE7) shows the same evolution of
the DZ-U-Pb signatures upsection. By contrast, the youngest analyzed deposits (sample
LUE2, Uncastillo Formation; Ebro basin) display an important Variscan age component

(up to 30%) (Fig. 4).

In the western Jaca basin, (Fig. 5), the entire succession from the Ezkaba to the Bernués
Formations (Bartonian to Miocene) is dominatéd by Cadomian and Cambro-Devonian
age components (40-60%) (Yesa and lzaga sections, Fig. 3),.similar to the youngest
deposits of the eastern Jaca basin'(Fig. 4). Therefore; the Variscan dominated to
Cadomian dominated<evolution of the DZ U-Phssignatures in the eastern Jaca basin is

not observed in the western.sector of the basin.

Multidimensional scaling and correspondence analysis (Fig. 6) allow to classify the
analyzed samples into three distinct DZ U-Pb age signatures based on age populations
(Figs. 6A, 6B) and age components (Figs. 6C, 6D): (i) Variscan dominated, characterized
by more than 50% of Variscan age components (early Variscan + late Variscan), (ii) mixed
Cadomian-Variscan, characterized by an important Variscan age component, but with
higher abundances of Cadomian and Cambro-Devonian age components, and finally, (iii)

Cadomian dominated, characterized by the dominance of Cadomian and Cambro-
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Devonian age components (>50%) and the lowest abundance of Variscan age

components.

DZ (U-Th)/He Thermochronological Signatures

DZ (U-Th)/He age populations (Table 2) are grouped into five (U-Th)/He events age:
Pyrenean Orogeny (20-85 Ma), Cretaceous rifting (85-155 Ma), Liasic Cooling (180-201
Ma), Permo-Triassic Rifting (201-280 Ma), and Variscan Orogeny (280-390 Ma). Results
are displayed as detrital zircon U-Pb-He double dating plots, and percentages of the five

(U-Th)/He events age (Table 2; Fig. 7).

The Bartonian to Miocenerclastic infill of the eastern Jaca basin (Belsué-Atarés,
Campodarbe, and Bernués Formations) displays Pyrenean dominated ZHe signatures
with subsidiary Cretaceous rifting and Permo-Triassic ZHe cooling ages (Fig. 7). The time
equivalent deposits in the Ebro basin (samples LUE9 and LUE2 from the Luesia section)
also show Pyrenean dominated ZHe_signatures with subsidiary Cretaceous rifting and
Permo-Triassic ZHe cooling ages, and also Variscan orogenysages (Fig. 7). By contrast,
the Bartonian to Miocene, sedimentary record of the western Jaca basin is clearly
represented by pre-Pyrenean dominated ZHe, with only minor Pyrenean cooling ages in
some of the samples. ZHe signatures of these samples are always dominated by Permo-
Triassic cooling ages, with complementary Cretaceous rifting ages and some Variscan
orogeny ages. It is important to highlight that all the samples from the western Jaca
basin display ZHe Liassic cooling ages, which are absent in the eastern Jaca and Ebro

basins (Fig. 7).
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Multidimensional scaling and correspondence analysis (Fig. 8) allow us to identify two
distinct DZ ZHe signatures based on ZHe age populations (Figs. 8A, 8B) and components
(Figs. 8C, 8D): (i) Pyrenean Orogeny ZHe ages dominated, characterized by more than
75% of ZHe Pyrenean ages, and (ii) pre-Pyrenean Orogeny ZHe dominated signatures,
characterized by 0-15% of ZHe Pyrenean ages, major Permo-Triassic, and subsidiary

Cretaceous rifting, Liasic cooling and Variscan orogeny ages.

DISCUSSION

DZ U-Pb Age.Component Signatures

The Eastern Jaca Basin

A high abundance of Variscansage components is displayed in the Bartonian to
Priabonian Belsué-Atarés® delta and fluvial Campodarbe Formation of the
southeasternmost edge of the easterndaca basin (Rodellar section; Fig..6). This Variscan-
dominated DZ suite can be attributed,toe’a high contribution/of Variscan granitoids and
also Cretaceous sedimentary rocks containingVariscan-enriched age signatures (Hart et
al. 2016; Filleaudeau et al. 2012), both sourced:\from'the central and eastern Pyrenees
through easterly-sourced axial systems (Coll et al. 2022). This is supported by the high
amounts of K-feldspars and plutonic rock fragments, which are observed by sandstone
petrography in these deposits (Roigé 2018; Coll et al. 2022). Upsection and to the west
(Biban, Monrepds and Gdéllego sections; Fig. 6), the decrease in Variscan age
components and the increase of Cambro-Devonian and Cadomian age components can
be linked to the drainage area reorganization that produced a shift from a plutonic-

dominated towards a metamorphic-dominated source area (Michael 2013; Coll et al.
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2022). Hence, we infer that the increase of sediment influx from metamorphic sources
together with the decrease of granitic sources produced the shift from Variscan-
dominated to mixed Cadomian-Variscan DZ U-Pb signatures. This can be linked with the
Cambro-Devonian metasedimentary succession from the Pyrenees, characterized by an
important Cadomian age component (Hart et al. 2016; Margalef et al. 2016), and with
the Carboniferous and Triassic sedimentary rocks dominated by Cadomian and scarce
Variscan age components (Hart et al. 2016; Martinez et al. 2016). The same trends both
in DZ U-Pb age components (Michael 2013; Thomson et al. 2017) and petrofacies (Coll
et al. 2022) are observed in the time=-equivalent Escanilla Formation of the Ainsa basin,
indicating that this sediment routing system (Michael, 2013):fed the eastern Jaca basin
during late Eocene-Oligocene'times (as also indicated by heavy mineral analysis from

Coll et al., 2022).

Upsection, the uppermost Campodarbe and Bernués Formations)(late Eocene-early
Miocene) are characterized by €adoemian-dominated U-Pb age signatures (Fig. 6) that
can be linked to the‘onset of sediment transport by northerly-derived transverse
systems, consistent with \paleocurrent orientations and sandstone petrography
(Puigdefabregas 1975; Roigé et al. 2016). The source area of these systems was mainly
the Eocene turbidites of the Hecho Group, and also the Mesozoic and Paleozoic rocks
from the North Pyrenean Zone (Roigé et al. 2017). The Cadomian-dominated U-Pb age
signature of the north-sourced alluvial fans, which contain abundant hybrid sandstone
turbidite pebbles derived from the recycling of the Hecho Group turbidites
(Puigdefabregas, 1975), contrasts with the Variscan-dominated signal that dominates

most of the Hecho Group turbidites (Roigé 2018). This demonstrates the complexity of
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predicting DZ populations in settings with important recycling processes (Garzanti et al.
2013). Enhanced erosion of the North Pyrenean source area (Cadomian-dominated;
Hart et al 2016), located at the head-waters of the drainage network of these alluvial
fans (Roigé et al. 2023), or higher erosion of Cadomian-dominated Hecho Group
turbidites (uppermost part) are here proposed as possible explanations for this

contrasting signature between the turbidites and the alluvial fans.

The Western Jaca Basin

In the western Jaca basin (Figs. 2,,.3), all the sedimentary clastic systems display
monotonous DZ U-Pb Cadomian-dominated- signatures (Fig. 6), similar to the north-
sourced, transversely-fed systems of the eastern Jaca basin, except for the Liédena

sandstone in the Izaga area, which show mixed Variscan-Cadomian signatures.

Petrographic data from the lzaga profile (Coll 2022) reveals that the Ezkaba sandstone
(Bartonian), the Ardanatz (Bartonian){ and the Liédena sandstone (Priabonian)
Formations have a similar sandstone composition, characterized by abundant K-feldspar
and fresh, unaltered plagioclase, intrabasinal.bioclasts, and carbonate rock fragments
that include Turonian wackestone rock fragments containing phitonellid tests. Some
metamorphic and siliciclastic sandstone rock fragments, and scarce plutonic rock
fragments, are also observed. This petrographic assemblage points to a source area
constituted by late Cretaceous sedimentary cover and Paleozoic siliciclastic sandstones
and metasediments (Coll 2022). The abundance of feldspars must be related to the
recycling of Carboniferous sedimentary cover (the siliciclastic turbidites of the Culm
facies) extensively outcropping in the Basque massifs, which is in accordance with

Payros (1997), who inferred a siliciclastic source area located to the north, in the
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Paleozoic Basque massifs for the Ezkaba sandstone (Fig. 9A). The Ezkaba, Ardanatz and
Liédena Formations show DZ U-Pb Cadomian dominated signatures, which can be
related to recycling of Carboniferous flysch deposits (dominated by Cadomian ages,
Martinez et al. 2015), Ordovician-Devonian metasedimentary (Cambro-Devonian and
Proterozoic U-Pb ages), and late Cretaceous sedimentary cover (Cadomian-dominated
and mixed Variscan-Cadomian signatures), located in the North Pyrenean Zone (Hart et

al. 2016).

Upsection, in the Priabonian to Chattian Campodarbe Formation (Figs. 5, 6), the same
DZ U-Pb signatures and the abundance of K-feldspar and plagioclase persist (Coll 2022).
Nevertheless, an important provenance change 4s evidenced by calcarenite rock
fragments, silicified grains with idiomorphic_dolemite erystals, and carbonate rock
fragments, which can be related to the eroesionf the sedimentary succession cropping
out in the Urbasa-Andia Sierra (Payros.A997; Tarifio 2006); located to the west-
northwest of the study area (Fig. 9B). Therefore, in the/Oligocene, the Urbasa-Andia

Sierra started to deliver sediments to the lzaga.area.

Finally, in the upper lzaga alluvial fan deposits, the abasence of feldspar and
metamorphic grains indicates a lack of contribution from the Basque massifs, indicating
that the Urbasa-Andia Sierra remained the only source (Fig. 9B). Therefore, since no U-
Pb ages exist from this source area, and no shift is observed in the U-Pb DZ age
signatures, sources in this area are inferred to be characterized by Cadomian dominated

U-Pb signatures.

The Yesa profile also displays monotonous DZ U-Pb age signatures throughout the whole

section (Figs. 5, 6). Nonetheless, the Yesa turbidites show a sandstone petrography suite
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with Mesozoic carbonate rock fragments (late Cretaceous mudstone-wackestone rock
fragments containing phitonellid tests), K-feldspar, fresh unaltered plagioclase, and
subsidiary metamorphic rock fragments, which highlight contributions from the Basque
massifs and the surrounding Mesozoic sedimentary cover (Coll 2022). By contrast,
Tertiary carbonate rock fragments, bioclasts and hybrid sandstone rock fragments
(upper Hecho Group turbidites) point to sources located in the hanging wall of the Leyre

thrust (NE).

Upsection, in the Yesa profile (Fig. 3), the Liédena sandstone shows a provenance
change to Cadomian-dominatedfU-Pb' signatures. In contrast to the lzaga area, the
Liédena sandstone shows' abundant. metamorphic reck fragments, Permo-Triassic
siliciclastic sandstone and siltstone‘rock fragmentsscrystalline carbonates, and scarce K-
feldspar (Coll 2022). The similarity with the easterly-sourced Campodarbe Formation
(Coll et al. 2022), and northwest-directed paleocurrents (Puigdefabregas 1975) indicate
an eastern source for this area.However, easterly-sourced systems'in the eastern Jaca
basin display Mixed Cadomian-Variscan U-Pb_signatures. Hence, we infer that higher
contributions of Permo-Triassic and metamaorphic rock fragments from the eastern
Pyrenees could be linked to higher amounts of Cadomian-aged zircons in the Liédena

Formation (east-sourced in this area).

The overlying Campodarbe Formation shows an interplay between contributions from
the Basque massifs delivering K-feldspar, fresh unaltered plagioclase and silicified rock
fragments, and eastern Pyrenean sources supplying abundant metamorphic rock
fragments, as well as rock fragments derived from Permo-Triassic sandstones and

siltstones and crystalline limestones (Coll 2022). DZ U-Pb signatures still show
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Cadomian-dominated signatures resulting from higher sediment contributions from the
Basque massifs and minor supply from eastern sources. By contrast, although the top of
the Campodarbe Formation still shows the same Cadomian-dominated signatures, there
is no influence from eastern sources, as evidenced by the lack of metamorphic rock
fragments and rock fragments from recycled Triassic sandstones, and instead records
contributions from the Basque massifs and the recycling of the Eocene turbidite basin

located to the north.

The Ebro Basin

In the Ebro Basin (Luesia section, Figs. 3, 5)'the Campodarbe Formation shows a shift
from Variscan-enriched to Variscan-impoverished DZ«U-Pb,signatures. This shift is the
same DZ U-Pb trend recorded in'the easterndaca basin, which corresponds to the change
from east-source axially-fed systems to north-sourced transverse-fed systems (Coll et al.
2022). However, the overlying Miocéne kuna fan system (Uncastillo Formation) shows a
mixed Cadomian-VariscansDZ signature. The source area/has been identified in the
Basque massifs basement (Fig. 8B) and the earlier foreland deposits (Hecho Group and
Campodarbe Formations; Hirst and Nichols 1986; Coll et al. 2022). The mixed Cadomian-
Variscan U-Pb signatures of the Luna fan (Fig. 6), could be related to the recycling of the
mixed Cadomian-Variscan Campodarbe and Variscan-dominated Upper Hecho Group

turbidites, as evidenced by sandstone petrography detrital modes (Coll et al. 2022).

DZ ZHe Signatures

In the eastern Jaca basin (Monrepds and Gallego sections; Fig. 3), the Campodarbe

Formation in the Gallego section displays ZHe signatures dominated with Pyrenean
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cooling ages, containing subsidiary Permo-Tiassic and Cretaceous rifting cooling age
components (Figs. 7, 8). However, the Campodarbe Formation in the Monrepds section

only shows Pyrenean cooling age components.

These distinct signatures must reflect to the occurrence of two different easterly-
sourced axially-fed systems. This is also evidenced by distinctive heavy-mineral
provenance signatures, which show one system (Monrepds section) dominated by
epidote, and the other one (Géllego section) dominated by ultrastable apatite, zircon,
tourmaline, and rutile (Coll et al. 2022). The Campodarbe Formation in the eastern part
of the Jaca basin (Monrepds section) was fed by the fluvial Escanilla Formation (Ainsa
basin), which is devoid of ZHe Permo-Triassic cooling age components (Thomson et al.
2017), and constituted one of the axially-fed systems sourced from the central Pyrenees.
The other axially-fed system fed the western_ fluvial Campodarbe Formation (Gallego
section), sourced from the eastern Pyrenees (Coll et al. 2022), where Cretaceous rifting
and Permo-Triassic age cooling’components are contained in the late Cretaceous-
Garumnian deposits (Odlum et ‘al. 2019). Moreover, Pyrenean ZHe cooling ages
encountered in the eastern-Pyrenean sourced system are older than in the central-
Pyrenean sourced system (Table 2). Therefore, ZHe provenance signatures reinforce the
idea of two different sediment routing system, sourced from the central and eastern

Pyrenees (Coll et al. 2022).

The youngest analyzed deposits in the Jaca basin, the north-sourced Bernués Formation,
show ZHe Pyrenean dominated cooling signatures (Fig. 8), with subsidiary Cretaceous

rifting and Permo-Triassic cooling age components that could be related to Cretaceous
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sedimentary rocks occurring in the North Pyrenean Zone, which mainly contain these DZ

ZHe age signatures (i.e. the Maastrichtian; Bosch et al. 2016).

In the western Jaca basin (lzaga area), ZHe signatures are markedly different from the
ones encountered in the eastern Jaca basin. The analyzed samples show ZHe pre-
Pyrenean dominated cooling ages (mainly Permo-Triassic; Figs. 7, 8), pointing to the
Basque massifs and Urbasa-Andia Sierra sources, which is in accordance with
petrographic data (Coll 2022) and DZ U-Pb signatures. In the southern edge of the
Basque massifs (Alduides massif), the Ordovician-Devonian Paleozoic basement shows
ZHe signatures dominated by Cretaceous rifting cooling ages with Liasic and Permo-
Triassic cooling age components (Hartet al. 2017). Therefore, the uppermost part of the
present-day eroded Paleozoic basement (mainlysCarboniferous) must have sourced
zircon grains from shallow crustal depths above'the partial retention zone, with cooling
ages older than Pyrenean orogenesis, likeithe ones sourced from the Ebro Massif and
contained in the late Cretaceous’siliciclastic formations (Filleaudeau et al 2012, Odlum
et al 2019). The increase of sediment recycling towards the uppermost part of the Izaga
section, evidenced by the higher proportions of sandstone rock fragments (Coll 2022),
does not have an impact on the distribution of the ZHe cooling ages which remain

constant through all the section (Fig. 7).

Finally, the Uncastillo Formation in the Ebro basin (Luesia section; Fig. 2) displays
Pyrenean-dominated ZHe ages (Figs. 7, 8) with subordinate Permo-Triassic and Variscan
ZHe cooling age components. Since this alluvial fan records the erosion of the Hecho
Group turbidites, the Jaca thrust sheet top basin, and the Basque massifs (Hirst and

Nichols 1986; Coll et al. 2022), ZHe Pyrenean cooling ages must be linked to the recycling
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of earlier foreland basin deposits (Hecho Group and Campodarbe Formations)
containing Pyrenean ZHe cooling ages, whereas Permo-Triassic and Variscan cooling age
components must be linked to the Paleozoic and Mesozoic sedimentary cover occurring

in the Basque massifs and NPZ.

Therefore, the dominance of pre-Pyrenean or Pyrenean ZHe cooling ages in the Jaca
basin deposits is linked to the contribution of two source area domains with a clear
differentiated exhumational history (i.e. the Basque Massifs and the Pyrenees) rather
than the evolution of a single source area.Synthesis of the South Pyrenean Sediment

Routing Systems

The Eastern Jaca Basin

During late Lutetian to Bartonian times, deltaic sedimentation in the southern Jaca basin
(Fig. 9) was mainly derived from eastern source,areas through a unique fluvial system
during the first sedimentation stage (Collfet al. 2022). These sources were the Paleozoic
basement (mostly Variscan granitoids) and the Mesozoic and Paleogene sedimentary
cover of the growing central Pyrenees. In the northern Jaca basin, deltaic sedimentation
was represented by the Sabifidnigo delta, which records the initial erosion of the west-

central Pyrenes (Roigé et al. 2016).

From early Priabonian onwards, two distinct axially-fed fluvial systems from the central
and eastern Pyrenees respectively, one dominated by epidote, and the other
characterized by the absence of epidote and subsidiary Cretaceous rifting and Permo-
Triassic ZHe cooling ages, were delivering sediment to the basin (see Coll et al. 2022 for

heavy mineral contents). Both systems were sourced from Variscan granitoids and a
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Mesozoic sedimentary cover, and evolved, during the Priabonian, to a more dominant
metamorphic composition during the Priabonian persisting until Chattian times (Coll et

al. 2022). ZHe Pyrenean signatures dominate both of these systems (Fig. 7).

The youngest deposits of the Jaca basin (uppermost Campodarbe and Bernués
Formations), record the recycling of the uppermost sedimentary systems of the former
Eocene turbidite basin (Fig. 9) with contributions from the North Pyrenean Zone (Roigé

et al. 2017; Coll et al. 2022).

The Western Jaca Basin

In the Bartonian, the Ezkabaschannel-levee complex records the first input of northerly-
derived systems sourced from the Basque massifs (Payros et al. 1997), mainly from
Carboniferous Culm facies with contributions from a Cretaceous sedimentary cover (Fig.
9). The overlying Ardanatz delta still registers the Basque massifs:as an active source,
which extended its influence to.the west during the sedimentation of the Priabonian
Yesa turbidites. However, during. the last stages of the Priabonian sedimentation
(Liédena sandstone), a strong interplay between Western and Eastern Pyrenean, as well
as west-central Pyrenean sources occurred in the limit between the eastern and western

Jaca basin.

During the deposition of the middle Campodarbe Formation (Rupelian), eastern and
western Pyrenean sources influenced the sedimentation in the Yesa area, whereas the
Izaga area started to receive contributions from the Urbasa-Andia Sierra. In the Chattian-

Aquitanian, whereas the Yesa area was fed from the west, west-central, central-eastern
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Pyrenean sources, the Urbasa-Andia sources dominated in the lzaga area and

contributions from the Basque massifs stopped in this part of the basin (Fig. 9).

The Ebro Basin

During Priabonian-Rupelian times, the lower Campodarbe Formation in the Ebro basin
was fed from eastern Pyrenean sources, which are the same source areas as the time-
equivalent deposits in the present-day Gallego Valley (eastern Jaca basin). Northerly-
sourced systems, which during the Eocene were restricted to the Jaca basin, reached
the Ebro basin during Chattian. Finally, the Aquitanian Luna alluvial fan system was
sourced from the erosion of the Eocene turbidite basin, the wedge top Jaca basin, and

the Basque massifs (Roigé et ale2019) (Fig. 9).

Insights into the Propagation of DZ U-Pb Age Signatures

The main controlling factors influencing the DZ geochronologic and thermochronologic
signatures in clastic successions are source rock age distributions, source rock zircon
fertility, lithologic erodibility, signal modulation by sediment transport and the relative
contribution of each lithology to the analyzed grain-size window (e.g. Malusa et al. 2016;
Capaldi et al. 2017; Jackson et al. 2019). DZ U-Pb age signatures of potential sources and
zircon fertility should be obtained from the analysis of each lithology in the source areas,
and the relative contribution of source areas can only be inferred from detailed
sandstone petrography. In our work, source rock age distributions and zircon fertility
have been described in section 2.2, and detailed sandstone petrography from Coll et al.

(2022) has been used to assess the relative contribution of each lithology.
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In the southern margin of the Jaca basin, sedimentary systems with a high granitic
component (Belsué-Atarés, Rodellar section) display U-Pb Variscan dominated
signatures, which do not change in the overlying systems of the Campodarbe Formation
that were influenced by a metamorphic source area with a scarce granitic component
(Coll et al. 2022). Further west, the Belsué-Atarés Formation in the Monrepds section is
characterized by mixed Cadomian-Variscan U-Pb age signatures, which also do not
change in the overlying systems (Campodarbe Formation). In both situations, the fact
that no correlation exists between the abundance of granitic rock fragments and
Variscan U-Pb age components imply:a non-granitic lithology in the source area that
provided enough Variscan zircons to©offset the persistenceofithe other U-Pb signatures.
Therefore, we infer the Cretaceous sedimentary cover.as an important contributor of
Variscan zircons, which can,be characterized by U-Pb. Variscan-dominated signatures
(Filleaudeau et al., 2012; Odlum et al., 2029). The contribution of this source is
supported by the presence of carbonate rock fragments observed in both petrofacies,
and highlights that recycling ‘of sedimentary cover rocks /can contribute to the
propagation of Variscan/DZ age componeénts. This, demonstrates that provenance
analysis solely based on U-Pb ages without considering the role of recycling in the
propagation of U-Pb age signatures might lead to misinterpretations regarding the
nature of the source areas in foreland basins (e.g. Jackson et al. 2019, Schwartz et al.

2019).

The recycling of the Hecho Group turbidites of the northern Jaca basin, characterized by
Variscan-dominated (Banaston and lower Jaca turbidite systems) to Cadomian-

dominated (middle-upper Jaca turbidite systems) signatures (Roigé 2018) should
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propagate, at least, mixed Cadomian-Variscan signatures due to their high abundance
in the sand fraction (Coll et al. 2022). However, the alluvial fans recycling the Hecho
Group turbidites (hybrid clast-dominated north-sourced systems) display Cadomian-
dominated signatures. Even if inferring low zircon fertility for the Hecho Group turbidites
source (although moderate-high fertility is expected according to Roigé et al. 2023),
their higher contribution in front of Paleozoic metasedimentary and siliciclastic
sandstone sources (Cadomian-dominated age signatures) would be enough to produce
mixed Cadomian-Variscan signatures. Even if we assume that the second most
represented source in the north-sourced systems (the Cretaceous sedimentary cover)
delivered Cadomian-dominated signatures (Hart et al. 2016), the, representation of
these rocks in the source‘area would not be volumetrically.enough to mask Variscan-
enriched signatures, as evidenced by the limited proportions of Mesozoic rocks
fragments in the alluvial fans (Roigé et al.,2017). Therefore;”DZ U-Pb highlights
Cadomian-dominated signatures derived from major recycling ofi.the turbidite basin is

linked to main contributions'to the middle-upper Jacaturbidite systems.

Conversely, in the western, Jaca basin, monotonous DZ U-Pb Cadomian-dominated
signatures are displayed in all the analyzed deposits. This contrasts with the several
compositional changes recorded by sandstone petrography in these deposits.
Therefore, we can infer that DZ U-Pb fails to discriminate between the different source
areas. However, U-Pb provenance signatures highlight the recycling of the
Carboniferous sedimentary cover. K-feldspar, plagioclase and subsidiary plutonic rock
fragments might indicate a granitic source that could be related to Ordovician gneisses

or Variscan granitoids from the Paleozoic basement of the Basque massifs. However, in
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this case, the high contribution from these crystalline sources together with high zircon
fertility would strongly increase Cambro-Devonian (gneiss) or Variscan age signatures
(granites). Nevertheless, since Variscan or Cambro-Devonian dominated signatures are
not observed, DZ U-Pb indicates recycling of detrital Carboniferous zircons instead of a
direct granitic/gneissic source. Late Variscan ages would be derived from Cretaceous
and Paleocene-Eocene sediments also present in the source areas. In conclusion, DZ U-

Pb in the western Jaca basin highlights the role of recycled versus direct sources.

Finally, in the Ebro basin, provenance constraints from sandstone petrography allow a
better understanding of DZ U-Pbssignature propagation. The Miocene Luna alluvial fan
(Fig. 8B) system is sourced from the Basque massifs and theirecycling of the Hecho
Group turbidites and Campodarbé Formation (Hirst and.Nichols 1986; Arenas 1993,
Roigé et al. 2019). In this case, the mixed{Cadomian-Variscan signatures reflect
contributions from the Campodarbe Formation, as well as fromthe Variscan-dominated
Banastén and lower Jaca turbidite systems. The onset of Miocene sedimentation in the
Ebro basin probably was accompanied by a major.incision on these formations in the
hinterland, increasing contributions from this source and leading to an increase in

Variscan age components in the Luna alluvial fan.

Summarizing, in the western Jaca basin provenance analysis solely based on DZ U-Pb has
failed to highlight the interplay between western Pyrenean, eastern Pyrenean, and
west-central Pyrenean sources (Fig. 6), as well as to discriminate recycled versus first
cycle sources. In the Pyrenees, DZ U-Pb signatures stand as a good proxy to distinguish
between Variscan granites, Ordovician gneiss, Cambro-Devonian metasedimentary, and

Carboniferous to Permo-Triassic sources due to their well-known provenance
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signatures. However, when Cretaceous, Paleocene and Eocene contributions are
underrepresented, to unequivocally unravel provenance may become unrealistic.
Although integration with DZ ZHe signatures can aid to reduce the ambiguity of
provenance signals, a good control of the source area lithology contribution based on
sandstone detrital modes is necessary to fully understand how DZ age signatures are
propagated and to avoid biased provenance inferences. So, DZ age signatures highly
increase their power as a reliable provenance indicator when coupled with petrographic
data. Therefore, studies combining sandstone petrography, U-Pb, and ZHe provenance
signatures stand as the most powerful tool to obtain the highest resolution in
sedimentary provenance analysis while interpretations based solely on single-method

approaches must be taken with caution.

CONCLUSIONS

The integration of the three distinct DZ U-Pb signatures (Variscan-dominated, mixed
Cadomian-Variscan, and.sCadomian-dominated) and» two ZHe cooling signatures
(Pyrenean-dominated, ‘and pre-Pyrenean deminated) defined in this work, combined
with sandstone petrography, allowed to characterize different routing systems with

distinct source areas in the Jaca basin of the South Pyrenean foreland.

DZ U-Pb and (U-Th)/He data of Bartonian to Miocene deltaic to fluvial-alluvial deposits
indicate that the eastern and western Jaca basins have different provenance signatures.
While the eastern Jaca basin was sourced from the central and eastern Pyrenees to the
east of the basin, and recorded the evolution of these source areas until the onset of

north-derived systems recycling an earlier turbidite foredeep, the western Jaca basin
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was mainly sourced by the western Pyrenees (Basque massifs and the thrust units of the

Urbasa-Andia Sierra).

Our work demonstrates that the western sources extended their influence to the Yesa
area through the Ardanatz, Yesa turbidites and Campodarbe Formations, which is in
contrast with previous interpretations that linked these systems to the progradation of
the Belsué-Atarés delta system of the eastern Jaca basin. Moreover, our data highlights
the interplay between different zones of the Pyrenean domain in the Yesa area during
the sedimentation of the fluvial Campodarbe Formation, which also contradicts the
classical view of an east-sourced fluvial system transferring sediment to the western

Jaca basin.

Coupling DZ U-Pb, (U-Th)/He and sandstone petrography allow to understand the
propagation of DZ signatures and to identify the role of direct.vs.recycled sources. Our
results indicate that zircon U-Pb signatures are more likely to reflectirecycled sources
than first-cycle sources. On;the other'hand, complementing petrographic data with DZ
signatures permits to highlight the contribations from specific sources such as the
uppermost Hecho Group turbidites of the Eocené, recycled foreland basin or the
Carboniferous cover of the Basque massifs. Our work highlights the power of coupling
sandstone petrography with DZ geochronology and thermochronology to constrain
sediment sources and avoid biased provenance interpretations in foreland basins fed

from recycling sedimentary rocks in growing orogens.
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FIGURE CAPTIONS

Figure 1. (A) Simplified geological map of the Pyrenees (redrawn from Teixell et al.
1996), showing the location of the study area (grey frames, detailed maps in Fig. 2). Grey
line indicates cross-section in Figure 1B. (B) Crustal cross-section of the west-central
Pyrenees (simplified from Teixell et al. 2016), showing both the South Pyrenean Zone

and the North Pyrenean Zone. SPTF: South Pyrenean Frontal Thrust.
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Figure 2. Geological maps of the Jaca basin (modified from Puigdefabregas 1975). (A)
Geological maps of the eastern Jaca basin. (B) Geological maps of the western Jaca basin.
Yellow-purple lines show the location of the study sections. Numbers refer to each
section: (1) Rodellar section; (2) Biban section; (3) Monrepds section, (4) Gallego section,
(5) Luesia section, (6) Yesa section, and (7) lzaga section. Squares indicate the position
of samples collected in alluvial deposits, circles indicate samples from fluvial deposits,
triangles refer to samples from deltaic environments, while diamonds indicate turbidite

deposits. Black stroke indicates U-Pb samples and white stroke double-dated samples.

Figure 3. General stratigraphic cross-section sketch with symbols and labels
representing the relative position of the analyzed samples. Squares indicate the position
of samples collected in alluvial deposits, circles indicate samples from fluvial deposits,
triangles refer to samples from deltaic environments, while diamonds indicate turbidite

deposits. Black stroke indicates U-Pb samples and white stroke double-dated samples.

Figure 4. DZ U-Pb results for the eastern Jaca basin. DZ U-Pb results are represented as
Kernel density estimators (Nonadaptative, bandwidth of 8 Ma), histogram diagrams

from 0 to 1300 Ma. (Bin width of 20 Ma.), and pie percentage charts.

Figure 5. DZ U-Pb results for the western Jaca basin and Ebro basin. DZ U-Pb results are
represented as Kernel density estimators (Non-adaptative, bandwidth of 8 Ma),

histogram diagrams from 0 to 1300 Ma. (Bin width of 20 Ma.), and pie percentage charts.

Figure 6. (A and B) MDS of U-Pb ages (C and D) CA of U-Pb age components. Sample
shapes refer to a certain provenance/source areas, which are CEPS: Central Eastern

Pyrenean sourced; WPS: Western Pyrenean Sourced (Basque massifs or Basque
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massifs+Urbasa-Andia Sierra or Urbassa-Andia Sierra); WCPS: West Central Pyrenean
Sourced (Eocene Turbidite basin+Internal Sierras+North Pyrenean Zone or Eocene
Turbidite basin+Internal Sierras+North Pyrenean Zone+laca thrust sheet top basin);
WPS+WCPS: Pyrenean Sourced Western Pyrenean Sourced (Basque massifs or Basque
massifs+Urbasa-Andia Sierra or Urbassa-Andia Sierra) + West Central Pyrenean Sourced
(Eocene Turbidite basin+Internal Sierras+North Pyrenean Zone or Eocene Turbidite

basin+Internal Sierras+North Pyrenean Zone+Jaca thrust sheet top basin).

Figure 7. (U-Th)/He results of the analyzed samples represented as pie diagrams and
scatterplot of (U-Th)/He age versus U-Pb age for double-dated grains. The main cooling
events are abbreviated in each diagram as: P.O. Pyrenean Orogeny; C.R. Cretaceous

Rifting; L.C. Liassic Cooling; P.T.R. Permo-Triassic Rifting; V.O. Variscan Orogeny.

Figure 8. (A and B) Multi-Dimensional Scaling (MDS) of (U-Th)/He ages (C and D)
Correspondence Analysis (CA) of (U-Th)/He age components. Sample shapes refer to a
certain provenance/source areas, which are CEPS: Central Eastern Pyrenean sourced;
WPS: Western Pyrenean Sourced (Basque massifs or Basque massifs+Urbasa-Andia
Sierra or Urbasa-Andia Sierra); WCPS: West Central Pyrenean Sourced (Eocene Turbidite
basin+Internal Sierras+North Pyrenean Zone or Eocene Turbidite basin+Internal
Sierras+North Pyrenean Zone+laca thrust sheet top basin); WPS+WCPS: Pyrenean
Sourced Western Pyrenean Sourced (Basque massifs or Basque massifs+Urbasa-Andia
Sierra or Urbasa-Andia Sierra) + West Central Pyrenean Sourced (Eocene Turbidite
basin+Iinternal Sierras+North Pyrenean Zone or Eocene Turbidite basin+Internal

Sierras+North Pyrenean Zone+Jaca thrust sheet top basin).
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Figure 9. Paleogeographic interpretation of the sediment routing systems functioning of
the Jaca basin. (A) During Bartonian times, the eastern Jaca basin was dominated by the
Sabindnigo delta to the north, which received from a northern source area rich in
sandstone and carbonate rocks and Cadomian-dominated DZ U-Pb signatures (Roige et
al. 2023). To the south of the eastern Jaca basin, the Belsué-Atarés delta was sourced
from the central Pyrenees which delivered plutonic rock fragments, Variscan-dominated
DZ U-Pb ages and Pyrenean cooling ages. In contrast, the western Jaca basin
accumulated turbiditic sedimentation derived from the Basque Massifs, which produced
abundant feldspar grains, Cadomian-dominated DZ U-Pb signatures and Pre-Pyrenean
ZHe cooling ages. (B) During Oligocene times, terrestrial environments dominated the
Jaca basin. The eastern sector was dominated by alluvial systems which deeply recycled
the former turbidite deposits (Cadomian-dominated DZ U-Pb signatures), while the
western sector of the basin concentrated alluvial fans sourced from the Urbasa-Andia
Sierras that delivered carbonate rock fragments, Cadomian-dominated DZ U-Pb
signatures and Pre-Pyrenean cooling ages. In the Ebro basin, the Luna alluvial fan
received contributions from the Basque Massifs and the Eocene foreland deposits
(Cadomian-dominated DZ U-Pb signatures and Pyrenean and Pre-Pyrenean ZHe cooling

ages).

TABLES

Table 1. Detrital zircon U-Pb results summarized in component percentages.

Table 2. Detrital zircon (U-Th)/He results summarized in component percentages.

SUPPLEMENTARY DATA
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S1 List of analysed samples and locations.

S2 Extended Zircon U-Pb LA-ICP-MS methodology.

$3 Reduced detrital zircon U-Pb dataset for all sample analyses.

S4 Reduced detrital zircon double dating (U-Th)/(He-Pb) data for all sample analyses.

56



| -40 | -3° | -20 | -10 |o° | 10 | 20 |30

Basque Massifs

Urbasa-Andia .
Sierra.. WesternJaca Basin

Eastern Jaca Basin

Cenozoic in forelands - Mesozoic

- Pyrenean Cenozoic - Paleozoic

B) SOUTH PYRENEAN ZONE NORTH
EBRO BASIN—> <—————JACABASIN > < AXIAL ZONE —> <—PYRENEAN ZONE
Penia Oroel and Santa Orosia  Hecho Group
San Juan de la Pena fans fan turbidites
SSW 5P<T Lakora thrust  NNE

U. Oligocene-Miocene molasse

U. Eocene-L.Oligocene molasse

- Eocene flysch and limestone



B) Western sector of the Jaca basin

&

Jaca basin

| . L N .
."':H_ 4 b "
" | - " B
% LN :
Y : .
. 2+ i ]
i L
ol PR f e
. . . p\; b T l& i b . L e .
H % ; "':‘_ r_. % ! ' " — - .__ i
] by \ * i |
n L ' \\ 3 h - h - el \
. ) & o Iy .| I - [} -I|- -1. - r I - " .
B " B o N ! N ! 5 W L
" i = L5 5 L ¥ i <5
i 'S = & . - -
.'.."-.ll . . .w
] N
|

- Larrés Marls Fm.
(Middle Eocene)

. (Early to middle Eocene)

- Paleocene-Eocene
carbonates

- Mesozoic

O Turbidite samples
M Rodellar @ Biban

- Sobrarbe/Belsué-Atarés/Martés
Fms. (Middle Eocene-late Eocene)

[ ] Campodarbe/Escanilla Fm:s.
(Middle Eocene-Oligocene)

= Pamplona/llundain Bl Guendulain Fm. [ ] Uncastillo/Graus Fm.
Marls Fm. (Middle Eocene) (Late Eocene) (Oligocene-Miocene)
- Ezkaba - Yesa turbidites :
Bernués Fm.
Sandstone Fm. (Middle Eocene) (Late Eocene) [ (Oligocene-Miocene)
- Sabinanigo Sandstone - Ardanatz Sst.
/Urroz Fms. (Middle Eocene) (Middle Eocene)

J Analysed sections

[1 Alluvial samples
©® Yesa @ lzaga

/\ Deltaic samples O Fluvial samples
@ Monrepés  @DGéllego  ® Luesia




NwW

@ 1za-10

Western Jaca basin

Eastern Jaca basin
@ GaL10

Oligocene/Miocene

Eocene

Oligocene/Miocene

| COreitien

o
&
g
g
Z
o

EXTERNAL SIERRAS

Rupelan

Eocene

\Lutetan\Bartonian | Priabonian

carbonates

- Mesozoic

[ Paleocene-Eocene [ Larrés Marls Fm.  [I] Ezkaba

|:| Hecho Gr.

Sandstone Fm.

- Sabifianigo Sandstone

/Urroz Fms.

|:| Ardanatz Sst.

|:| Arguis/Pamplona/
llundain Marls Fm.

- Belsué-Atarés
/Martés Fms.

i Yesa turbidites

- Guendulain Fm.

D Campodarbe Fm.

Bernués and
Uncastillo Fms.

OTurbidite samples

A Deltaic samples

O Fluvial samples

D Alluvial samples

@ Rodellar section
@ Bibdn section
@ Monrepés section

Analysed sections:
@ Gdllego section
@ Luesia section

@ Yesa section
@ Izaga section

[==] Deltaic formations
E=] Limestone platforms
[=] Hecho Group turbidites

Molassic conglomerates
[E] Fluvial formations
Marly formations




DZ U-Pb age components
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2. Biban Section. U/Pb detrital zircon signatures
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4. Gallego Section. U/Pb detrital zircon signatures
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1. Rodellar Section. U/Pb detrital zircon signatures
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3. Monrepds Section. U/Pb detrital zircon signatures
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6. Yesa Section. U/Pb detrital zircon signatures
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5. Luesia Section. U/Pb detrital zircon signatures
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7. 1zaga Section. U/Pb detrital zircon signatures
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Detrital zircon signatures of the eastern Jaca basin
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Detrital zircon signatures of the western Jaca basin
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Detrital zircon signatures of the Ebro basin: Luesia section
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Late Permo- Late Early

. Cenozoic
Sample Formation n Mesozoic  Triassic Variscan Variscan
0-66 Ma 66-180 Ma 180-280 Ma 280-310 Ma 310-370 Ma
RD1 Belsué-Atarés Fm. 126 0.0 0.0 3.2 21.4 29.4
RD3 Campodarbe Fm. 118 0.0 0.0 0.0 24.6 28.0
RD4 Graus Fm. 129 0.0 0.0 0.0 6.2 16.3
NC1 Belsué-Atarés Fm. 131 0.0 0.0 0.8 7.6 19.8
BB1 Campodarbe Fm. 125 0.0 0.0 0.8 11.2 20.0
BB5 Campodarbe Fm. 126 0.0 0.0 1.6 4.0 4.0
BM3 Belsué-Atarés Fm. 87 0.0 0.0 0.0 8.0 17.2
BM12 Campodarbe Fm. 121 0.0 0.0 1.7 9.1 22.3
BM17 Bernués Fm. 127 0.0 0.0 24 5.5 5.5
GL2 Campodarbe Fm. 130 0.0 0.0 1.5 7.7 131
GL5 Campodarbe Fm. 139 0.0 0.0 14 11.5 21.6
GL7 Campodarbe Fm. 129 0.0 0.0 0.8 8.5 14.7
GL10 Bernués Fm. 146 0.7 0.0 0.0 10.3 4.8
LU9 Campodarbe Fm. 127 0.0 0.0 0.0 13.4 18.9
LU7 Campodarbe Fm. 125 0.0 0.0 0.0 8.0 6.4
LU2 Uncastillo Fm. 134 0.0 0.0 1.5 11.2 14.2
YS1 Yesa turbidites 116 0.0 0.0 1.7 6.9 2.6
YS2 Liédena Sst. 130 0.0 0.0 1.5 5.4 7.7
YS3 Campodarbe Fm. 128 0.0 0.0 0.8 8.6 94
YS5 Campodarbe Fm. 130 0.0 0.0 0.8 7.7 3.8
EK2 Ezkaba Fm. 139 0.0 0.0 1.4 2.2 6.5
1Z1 Ardanatz Sst. 128 0.0 0.0 0.8 4.7 3.9
125 Liédena Sst. 140 0.0 0.0 0.0 71 14.3
1Z3 Campodarbe Fm. 145 0.0 0.0 0.7 5.5 2.8

1210 Bernués Fm. 146 0.0 0.0 0.7 7.5 6.2




Cambro- Neo- Meso- Paleo-

Cadomian Kibaran Archean
Devonian proterozoic proterozoic proterozoic
370-520 Ma 520-700 Ma 700-900 Ma 900-1200 Ma 1200-1500 Ma 1500-2200 Ma 2200-4600 Ma
7.9 21.4 4.0 4.8 1.6 2.4 4.0
12.7 13.6 3.4 6.8 0.8 5.9 4.2
17.8 26.4 8.5 7.8 0.8 8.5 7.8
15.3 26.7 8.4 10.7 0.8 4.6 5.3
15.2 24.8 3.2 9.6 24 8.0 4.8
16.7 38.9 5.6 11.9 1.6 6.3 9.5
17.2 391 3.4 3.4 1.1 5.7 4.6
14.0 27.3 8.3 7.4 0.8 5.0 4.1
14.2 29.9 9.4 11.8 0.0 11.8 9.4
14.6 34.6 6.2 8.5 0.0 6.9 6.9
16.5 23.0 5.0 7.2 0.0 8.6 5.0
14.0 31.8 10.1 7.8 0.0 54 7.0
15.8 37.0 9.6 6.8 0.0 8.2 6.8
11.8 22.0 7.1 13.4 0.0 9.4 3.9
16.8 36.8 5.6 11.2 0.0 8.0 7.2
14.2 27.6 7.5 14.2 1.5 5.2 3.0
12.9 414 6.0 5.2 0.9 13.8 8.6
18.5 33.8 9.2 6.9 3.8 7.7 5.4
13.3 34.4 7.8 13.3 1.6 6.3 4.7
15.4 41.5 5.4 11.5 0.8 9.2 3.8
17.3 331 7.2 151 0.7 94 7.2
11.7 43.8 7.8 10.2 0.8 10.9 5.5
15.7 36.4 5.0 5.7 14 8.6 5.7
13.1 41.4 9.0 11.7 21 9.7 4.1

9.6 32.9 4.8 15.8 2.1 15.1 5.5




Pyrenean Cretaceous
Sample Formation Section n Orogeny Rifting
(20-85 Ma) (85-155 Ma)
BM3 Belsué-Atarés Fm. Monrepds 17 76.5 11.8
BM12 Campodarbe Fm. Monrepds 16 100.0 0.0
GL5 Campodarbe Fm. Géllego 19 78.9 15.8
GL10 Bernués Fm. Gallego 13 76.9 7.7
LU9 Campodarbe Fm. Luesia 13 92.3 7.7
LU2 Uncastillo Fm. Luesia 14 78.6 0.0
EK2 Ezkaba Fm. Izaga 8 0.0 25.0
1Z5 Liédena Sst. Izaga 8 12.5 12.5
1Z3 Campodarbe Fm. Izaga 8 0.0 12.5
1Z10 Bernués Fm. Izaga 6 16.7 33.3




Liasic Permo-Triassic Variscan

Cooling Rifting Orogeny
(180-201 Ma) (201-295 Ma) (>295 Ma)
0.0 11.8 0.0
0.0 0.0 0.0
0.0 5.3 0.0
0.0 15.4 0.0
0.0 0.0 0.0
0.0 14.3 7.1
12.5 62.5 0.0
12.5 50.0 12.5
25.0 37.5 250

16.7 33.3 0.0




