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A B S T R A C T

Homicide involving multiple victims has a significant negative effect on society. Criminal profiling consists of
determining the traits of an unknown offender based on those of the crime and the victims, with a view to their
identification. To provide the most likely profile of the perpetrator of a multi-victim homicide, we propose a
predictive model of supervised machine learning based on a Bayesian Network. Conventional classifiers can
generate the perpetrator’s profile according to the traits of each of the victims of the same homicide, but
the profiles may differ from one another. To address this issue, we consider the Multi-Instance (MI) learning
framework, in which the victims of the same incident form a bag, and each bag is associated with a unique
label for each of the perpetrator’s features. We introduce the unanimity MI assumption in this domain, and
accordingly allocate a label to the bag based on the labels and probabilities the Bayesian Network has assigned
its instances, using a combination rule from those of the ensemble of classifiers. We apply this methodology to
the Federal Bureau of Investigation (FBI) homicide database to compare three combination rules empirically
in the validation process, as well as theoretically, using the one that ultimately proves to be the best to build
the final model, which is then applied in some illustrative examples to achieve the criminal profile.
1. Introduction

Due to its brutality and the fear it instills, homicide is one of the
most serious sorts of crime, being also one of the main causes of death
in the United States of America (U.S.), following Fowler, Leavitt, Betz,
Yuan, and Dahlberg (2021). We must shed light and clarify the statistics
to comprehend the scope of homicides in the U.S. According to data
from the Federal Bureau of Investigation (FBI), there were 14,244
homicides on average per year from 2000 to 2021, with a rate of
4.58 per 100,000 inhabitants. To put it in a global context, following
the United Nations Office on Drugs and Crime, in 2017 the homicide
rate per 100,000 inhabitants was much lower in the vast majority
of European countries, such as Spain, with 0.7, the United Kingdom
with 1.2 or France, with 1.3. On the other hand, the countries of the
American continent have much higher rates in general. For example,
Costa Rica had 12.18 and Mexico, 25.71. So, we could say that on a
global scale, the U.S. has a medium homicide incidence rate, although
the harsh reality is that if we compare the U.S. with other developed
countries, its rate is significantly higher.

Murder and manslaughter are two distinct legal offenses that are
included in ‘‘homicide’’, as explained in Newburn (2013). The distinc-
tion between them is that murder implies that the victim was intended
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to be killed with malice aforethought, while manslaughter is the lesser
form of homicide, which happens when death results even if there was
no conscious desire to murder. Many U.S. states distinguish between
two types of manslaughter: voluntary and involuntary, the first corre-
sponding to the deliberate killing of another person during a sudden
altercation, when they were provoked and were unable to control the
situation, when they had some sort of diminished capacity due to a
mental health issue, or when they had the sincere but ultimately irra-
tional belief that using deadly force was necessary for self-defense. A
person who kills another person unlawfully by criminal negligence, that
is, without intending to do so, is said to have committed involuntary
manslaughter.

In addition, we can divide homicides into four large groups, at-
tending to the number of victims per event or incident (time-place
combination), and the number of events per perpetrator: single, multi-
ple/mass, spree and serial. Single and multiple/mass homicides occur
in a single event, the first with a single victim, the multiple with 2 or 3
victims, and the mass with more than 3. The difference between serial
murder and the multiple/mass homicide is that although in both cases
there are multiple victims, the latter occurs in a single act while serial
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murder occurs at separate times and places, including a period of inac-
tivity. This differentiation was established by FBI agent Robert Ressler
in 1974, who also coined the term ‘‘serial killer’’. Following Sutton and
Keatley (2021), the spree murder also kills different victims in different
locations, but there is no cool-off period between them. Specifically, in
this work we are interested in developing a new methodology that can
be used to study multi-victim homicides (both, murders and voluntary
manslaughter, with multiple/mass victims), committed in the same
time and place and registered as a single incident or event. We apply
this methodology to the case study of the FBI homicide database, which
covers a period of 35 years, from 1980 to 2014, with data from all 51
states of the union.

Regardless of its incidence in terms of frequency or number of cases,
multi-victim homicide is a crime with a high impact on society that can
be considered a persistent public health problem in the U.S. (see Fowler
et al., 2021). Hence, any instrument that can assist in identifying the
profile of the perpetrator of such a homicide will be valuable for both
law enforcement personnel responsible for upholding the law, and for
legislators who design targeted policies aiming at eliminating this social
blight.

Criminal profiling
In general, criminal profiling is a technique that makes it possible

to identify the traits of a criminal in relation to their crimes and
victims, the patterns of relationships between homicide victims and
their killer being of the utmost interest. It is frequently used to try to
provide details about a serial killer that could aid in their identification
and capture (Kocsis, 2006). But it can also be used for other types
of homicides, as we do in this work. We will not attempt to develop
a profile for a specific series of murders carried out by the same
person. Instead, we will develop a predictive model that will give
investigators the most likely profile of the killer in the event of a multi-
victim homicide. According to Fox (2022), homicides make up nearly
a quarter of the crimes appeared in the offender profile publications,
demonstrating the interest in profiling this kind of offender, who is also
the criminal most typically portrayed in movies and television.

Criminal profiling is generally based solely (or mainly) on the exper-
tise of investigators and forensic psychologists, and will then inevitably
be subject to cultural biases or prejudices, inaccuracies, and misinter-
pretations (see Kocsis, 2006; Palermo & Kocsis, 2004; Turvey, 2002),
although lately it is evolving towards a more rigorous process, adding
geographic analysis techniques, for example. To avoid the weaknesses
of this classic approach, machine learning methodologies can be used
to build objective and quantitative decision making tools to support
profiling investigations, as in Brahan, Lam, Chan, and Leung (1998),
Gottschalk (2006) and Strano (2004). This is possible today by taking
advantage of the opportunity to access the impressive computing power
of current computers, and criminal databases of solved crimes, such as
the one used in this work, which is the FBI database of solved homicides
in the U.S.

Our objective is to develop a Machine Learning tool (a knowledge-
based expert system) to predict certain characteristics of the perpetrator
from those of the homicide victims, learned from a real database, which
can help profile perpetrators of multi-victim homicides (considering
that this type of homicide represents a challenge compared to single-
victim homicides, as we will discuss later). Specifically, this tool will
be a probabilistic classifier that learns the dependency relationships
between these features and uses them to make the most plausible
predictions for those that are unknown among them, which will be
those corresponding to the perpetrator of the crime. As the profile of
the aggressor consists of different characteristics (output variables) to
be predicted, that is, different variables or criteria according to which
to classify the perpetrator (age, race, . . . ), we have to predict the value
of more than one target variable, which may or may not be correlated
(multi-label classification). To do this, we use a Bayesian Network (BN
2

from now on), which is a probabilistic classifier that has the capacity to
capture the interdependence relationships between all the variables of
the model, including the output variables, and that allows considering
more than one as output variables to be predicted from the rest.

Multi-instance (MI) classification
The usual classifiers can provide a profile of the perpetrator ac-

cording to the characteristics of each of the victims of the multi-victim
homicide, but the profiles may differ from each other. This poses a ma-
jor problem as they have to give a single profile altogether. Somehow,
we have to get them to ‘‘agree’’ on what their murderer looks like, and
that is the challenge we face in this research. As a solution, we propose
to consider the victims of the same incident as forming a bag. In this
way, it could be considered that we move in the multi-instance (MI)
classification environment described in Alpaydin, Cheplygina, Loog, and
Tax (2015), in which each bag is associated with a unique label (for
each of the output variables).

Multi-instance (MI) learning was introduced by Dietterich, Lathrop,
and Lozano-Pérez (1997) for drug activity prediction, and is generally
applied in contexts where data is formed in terms of bags or sets of
instances, these bags being the ones that carry the labels and not so the
individual instances. In this setting, the standard MI assumption (see Al-
paydin et al., 2015; Carbonneau, Cheplygina, Granger, & Gagnon, 2018;
Foulds & Frank, 2010), which assumes a binary classification task,
states that the labels of the bags are determined by the disjunction of
the labels of the instances in the manner described below: each instance
has a hidden class tag that can be either + or −, and + is assigned to a
bag if and only if one or more instances that make up the bag are + .

The objective of the paper is to build a predictive model to assign
the labels at the bag level, with the particularity that it cannot be done
directly, but first the predictive model must be built at the instance
level and, later, the label will be assigned to each bag from the labels
and probabilities assigned to the instances that compose it. For what
reason? Because each victim contributes an instance or case to the
database, providing information on each of the variables. That is, each
victim determines a case him/herself and cannot be considered as an
incomplete part of a whole, as in the standard MI assumption.

Related works

In general, the standard MI assumption is useful in situations where
it is appropriate to describe an object by a set of parts, each of which
is an instance carrying only a portion of the information needed for
classification. This is the case, for example, of visual recognition, where
the image to be recognized is usually divided into small fragments,
or in text categorization, where the instances correspond to the small
paragraphs into which the text is divided. But even in these cases, the
MI assumption is not guaranteed to hold and is generally too restrictive
to handle real-life situations, as explained by Küçükasci and Baydogan
in Küçükasci and Baydogan (2018), where encoding strategies are
introduced to represent the bags using the frequency of the instances
in each of the pieces into which the feature space is partitioned. Some
other authors have relaxed this assumption by allowing other different
interactions between the labels of the instances and the label assigned
to the bag they belong to. For example, Alpaydin et al. (2015) consider
that some of the instances can carry a label but it is not known which of
the bag can, which forces the MI approach to be adapted to a situation
halfway between the pure instance-level approach and the bag-level
classification. In addition, to address a problem of detecting failures in
industrially manufactured entities, Graur, Maris, Potolea, Dinsoreanu,
and Lemnaru (2018) introduce two approaches to solve MI learning
problems in which the MI assumption is not met. We join these authors
in their heterodox vision of MI, but in a different situation from the one
they consider, so we will have to make different premises, in line with
Foulds and Frank (2010). These premises are grouped under the name
of unanimity MI assumption below.

On the other hand, there are different scientific papers in which a

knowledge-based approach of the issue of criminal profiling is carried
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out. What we will do now is briefly comment on some of the works
carried out by other authors, without claiming to be exhaustive, to
highlight the differences with ours. The first works, to our knowledge,
on the application of BN to criminal profiling are those of Baumgartner,
Ferrari, and Salfati (2005) and Baumgartner, Ferrari, and Palermo
(2008). In them, a BN is generated from a dataset of single-victim
homicides, but previously the collection of alternative structures to
consider is restricted using expert knowledge. The database is tiny (a
few hundred cases) despite the big amount of variables (36 victim
characteristics plus 21 criminal traits), and contrast to the 𝐾-fold
ross-validation technique we use, the validation is carried out by split-
alidation, which prevents a statistical study to compare the suggested
odel with others. Despite this flaw, these works remain to be a

eference for the use of the BN methodology for profiling. This method-
logy has also been applied by Delgado, González, Sotoca, and Tibau
2016, 2018) to the study of profiles of forest arsonists to understand
heir motivation, constructing archetypes that help identify the culprits,
ased on the data provided by the Spanish government.

Using homicide data recorded for one year in the National Incident-
ased Reporting System U.S. database, Yang and Olafsson (2011) con-
truct various machine learning classifiers, including Decision Trees,
andom Forests, Support Vector Machines and Neural Networks, to
redict the relationship between murder victims and offenders. They
re limited to the context of single-label classification since they only
onsider one variable in the murderer’s profile, which is the rela-
ionship with the victim. Instead, we also forecast other aspects of
he perpetrator (multi-label classification). Furthermore, they carry out
heir single-label multi-class classification by dividing it into several
impler binary classification tasks. The point is that their solution
annot always be properly translated to the original multi-class one.
owever, BNs allow multi-label multi-class classification to be carried
ut naturally, without the need of any artifice. Finally, the authors also
se split-validation, which does not allow for a robust statistical study
o adequately compare the four classifiers.

Another interesting study is presented in Fowler et al. (2021),
ooking at multi-victim homicides in the U.S. With the help of bivariate
tatistical methods like chi-square tests and post-hoc pairwise compar-
sons with Bonferroni corrections, as well as Exploratory Data Analysis,
he authors looked at the characteristics of mass, multiple, and single-
ictim homicides. Their findings are based on a database of homicides
rom 35 of the 51 states, which covers a period of 15 years (from
003 to 2017). Therefore, this study’s spatio-temporal window is visibly
arrower than ours. Yet, they have variables that we do not, such as
he incident’s location, which is a very valuable information.

To wrap up this succinct overview, we note that Pecino-Latorre,
érez-Fuentes, and Patró-Hernández (2019) utilize the Classification
nd Regression Trees (CART) methodology to determine the charac-
eristics of homicides using a database of 448 homicide cases in Spain.
he authors develop a different model for each of the six target output
ariables they consider, thus missing the chance to improve the model’s
redictive power by taking use of potential dependencies between
hem. In other words, they employ the simplest method for solving a
ulti-label classification –binary relevance– which ignores any potential

elationship between labels. The Bayesian Networks methodology that
e have used in our work enables to not overlook these dependencies.

aper contributions

The main contributions of this paper are as follows:

1. In line with the specific problem under investigation, which is
criminal profiling of homicides with multiple victims, we present
two relevant conditions tailored to the context of MI learning
that we have jointly called unanimity MI assumption. This
assumption is applicable to any problem domain corresponding
to events identified with bags, each of them composed of several
3

individuals or elements. Each individual is identified with an
instance or case, and all those involved in the same event are
part of the corresponding bag. The conditions are:

(i) the instances cannot be considered as part of a whole
(each of them does not cover an aspect or part of the event
in which they are involved, but the total),

(ii) each instance is assigned a label, but with the restriction
that the labels of all instances that make up a bag must
match, hence the term ‘‘unanimity’’ in its name. The same
label is then assigned to the bag.

2. We built a predictive Machine Learning model leveraging the
methodology of the combination rules of the ensembles of classi-
fiers to predict the profile of a perpetrator involved in a multiple
homicide. With this approach, a single classifier is used to pre-
dict the characteristics of the perpetrator based on the attributes
of the victims. To implement the classification following the
unanimity MI assumption introduced in the previous item, we
present a predictive Machine Learning model that has been
designed following these two steps:

(a) Classifier construction: since each instance has a label as-
signed to it, this step can and is done at the instance
level by learning a classifier as in single-instance learning,
bypassing that the instances are grouped into bags.

(b) Prediction: Once the classifier is built, the prediction and
its validation procedure will be carried out at the bag
level, since the objective is the labeling of the bags. To
do this, we use the labels and probability distributions
assigned by the classifier to each of the instances that
make up any new (unseen) bag, to assign it a label using
a suitable algorithm. This algorithm is a combination
rule (or scheme) specific to the ensemble of classifiers
(explained in Section 2.3 below).

Our approach is original, since focusing on multi-victim homi-
cides, it applies an innovative Supervised Machine Learning
methodology that combines a probabilistic classifier (specifi-
cally, a Bayesian Network, although others could be used as
well) at the instance level, with the MI learning approach com-
bined with ensembling. The details will be revealed throughout
the work.

3. Application of the Predictive Model to the FBI homicide
database: the predictive model developed is rigorously applied
to the FBI’s comprehensive database of criminal homicides.
This real-world application demonstrates the model’s ability
to analyze and predict homicidal offender profiles based on
victim-related features. By deploying the model with real data,
the paper underscores its practicality and relevance within the
domains of law enforcement and criminal profiling.

In summary, the paper makes specialized assumptions for MI learn-
ing, creates a new machine learning predictive model that employs
a combination rule for the ensemble of classifiers, and validates the
model’s performance by applying it to the FBI homicide database. These
contributions collectively advance the understanding and application of
machine learning methodologies to predict perpetrator characteristics
in multiple homicide situations.

The organization of the rest of the paper is as follows: in Sec-
tion 2 we present the data set, the Bayesian Networks as probabilistic
classifiers and the ensembling of combiners to be used in the sequel,
as well as the validation procedure. Section 3 shows the results we
have obtained, both for the Bayesian Network as predictive model,
and for the prediction at the bag level, comparing three combination
schemes through the different output variables, using the performance
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Table 1
The 16 variables in the final database. (1) and (2) are used to exclude some cases and
then removed (Fig. 1) while (3) is used to construct the new variable Bag, which is an
auxiliary, and is then removed. Variables marked with (d) have been discretized, while
those marked with (r) have been recoded. Variables in blue are those of the victim,
variables of crime are in teal, and those of the perpetrator are in red, including their
relationship to the victims.

Variables in the original database Incorporated

Removed Mantained Modified

Record.ID State Victim.Age(d) Bag
Agency.Code Year Victim.Race(r)

Agency.Name Month Victim.Count(r)

Agency.Type Victim.Sex Perpetrator.Age(d)

City Victim.Ethnicity Perpetrator.Race(r)

Crime.Solved(1) Perpetrator.Sex Perpetrator.Count(r)

Crime.Type(2) Perpetrator.Ethnicity Weapon(r)

Record.Source Relationship(r)
Incident(3)

metrics that we have introduced. We discuss our findings and conclude
in Section 4, while the appendices include some tables (Appendix A)
and figures (Appendix B). In Appendix C can be found the pseudo-
code for the algorithms that implement the combination schemes and
a comparison of their accuracy in the binary case.

2. Materials and methods

2.1. The data set

Data source
We got the FBI data through the kaggle repository.1 The most com-

prehensive U.S. homicide database currently available, this database
includes murders from the FBI’s Supplementary Homicide Report and
covers a 35-year period, from 1980 to 2014 inclusive. It is compiled by
the Murder Accountability Project, founded by Thomas Hargrove, to
whom we wish to thank. Initially, the data included information on 24
variables for 638,454 cases (now and hereafter, a ‘‘case’’ or ‘‘instance’’
is identified with a victim).

Exclusion criteria
Different criteria have been used to exclude cases and variables,

until forming the final database with 36,269 cases and 16 variables. Re-
garding the cases, Fig. 1 explains how the selection of those that make
up the final database has been carried out. Regarding the variables,
some have been eliminated, others have been modified and a new one
has also been created and incorporated. We list them in Table 1 and
give details in the Data description subsection below.

Data description
Now we describe the variables in the database (Table 1) and,

in particular, we explain the preprocessing phase in which we have
modified eight of them, six by recoding, and two by discretization.
We also explain the construction of the auxiliary variable Bag, which
has been incorporated into the final database. Table A.11 shows the
relative frequencies (in percentages) of each category of the different

1 https://www.kaggle.com/datasets/murderaccountability/homicide-
reports?resource=download.
4

Fig. 1. Flowchart of the exclusion of victims from the initial database. To exclude
unsolved cases we use the ‘‘Crime.Solved’’ variable in the original database, while to
exclude victims of manslaughter by negligence we use the ‘‘Crime.Type’’ variable.

variables, distinguishing between the homicides with multiple (2 or 3)
and massive (4 or more) victims.

State: The 51 states of the union contribute cases to the database, with
California contributing the most (5300) and South Dakota the least
(40), in absolute terms.

Year: The data covers a 35-year period, from 1980 to 2014, peaking in
1992 with 1307 victims and reaching the absolute minimum in 2014,
with just 844.

Month: The distribution of cases per months is quite balanced, varying
between 2722 in November and 3305 in January.

Sex: The vast majority of the perpetrators are men (94.0% male, 6.0%
female), with which the database is very unbalanced with respect to
the variable Perpetrator.Sex, while as regards the victims, the
variable Victim.Sex is much more balanced, with 61.4% male, and
38.6% female. This fact evidences the sociological reality that women

https://www.kaggle.com/datasets/murderaccountability/homicide-reports?resource=download
https://www.kaggle.com/datasets/murderaccountability/homicide-reports?resource=download
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continue to be victims much more frequently than perpetrators of
serious crimes, especially homicides with various victims.

Ethhicity and Race: The terms race and ethnicity are mutually in-
ependent, according to the U.S. Office of Management and Budget
efinition adhered to by the U.S. Census Bureau. Regardless of race,
thnicity makes a distinction between people who claim to have ances-
ral origins in Spain or Latin America (Hispanic or Latino), and those
ho do not (non-Hispanic).2 In 2020, 62 million of residents in the
.S., or 18.7% of the population, identified as Hispanic, of whom 12.5
illion or 20.3% self-identified as White only3 down from the 2019
merican Community Survey, when 38.3 million, or 65.5% of Latinos
elf-identified as White.4 In the datasets at hand, the vast majority of
ndividuals categorized as Hispanic are also White.

Specifically, of the 3784 victims registered as Hispanic in our final
atabase, 3723 are know to be White (98.4%), while of the 10,255
on-Hispanics, 6348 are registered as White (61.9%). From the 1643
ispanic perpetrators, 1616 (98.4%) are recorded as White, and from

he 4558 perpetrators known to be non-Hispanic, 2565 are recorded
s White, representing 56.3%. However, for the reasons mentioned
bove, we have kept ethnicity and race as two distinct variables, for both
ictims and perpetrator, rather than merging them into one. However,
ur predictive model will capture the actual dependency between them.

We have grouped race into three groups: White, Black (or African
merican), and a third category, Native-Islander, which includes both
sian and Pacific Islander on the one hand, and Native American
nd Alaska Native on the other (this grouping has been motivated
y the scarcity of individuals of each of these races in the database,
hich together represent 3.55% of the perpetrators, and 3.79% of the
ictims).

ge: Regarding age, it has been discretized into ranges or intervals,
ccording to a criterion of approximate equity between them, taking
nto account that the frequency in the central intervals will naturally
e higher than in the extremes, and distinguishing the minority of legal
ge (18 years), but with some differences that we want to highlight
etween the authors and the victims. In both cases, ages 99 years

and over have been coded as ‘‘Unknown’’. The main difference is that
we have also recoded as ‘‘Unknown’’ the ages of the perpetrators in
case they are less than 10 in the original database. Although this is
arbitrary, it has been motivated by the fact that some of the ages were
suspiciously low, being 0 years in many cases, which suggests an error
in data collection. Furthermore, due to the scarcity of cases in those
ages, for the aggressor we have merged into a single category the
intervals from 50 to 64 years, and 65 or more, which remain as different
intervals for the age of the victims. It is logical that the perpetrator’s
age moves towards the central age ranges with respect to that of the
victims, having low frequencies in the lower range (10–17, 6.7%) and
in the upper range (≥50, 8.6%).

Count: Despite their names, Perpetrator.Count and Victim.
Count are variables with very different meanings in the FBI database.
Indeed, whereas Victim.Count is, for any victim, the total number
of victims of the same incident discounting this victim, and has been
recoded as 1, 2 (multiple homicide) and >2 (mass homicide), for any
perpetrator, Perpetrator.Count appears to be, although it is not
perfectly clear from the database documentation provided by the FBI,
the number of previous incidents in which the perpetrator had been

2 Nancy L. Fisher (1996). Cultural and Ethnic Diversity: A Guide for
enetics Professionals. Johns Hopkins University Press. p. 19. ISBN 978-0-
018-5346-3. https://books.google.es/books?id=mqXlA7e4VN8C&pg=PA19&
edir_esc=y#v=onepage&q&f=false.

3 https://www.census.gov/data/tables/2020/dec/2020-redistricting-
upplementary-tables.html.

4 https://www.census.gov/acs/www/data/data-tables-and-tools/data-
5

rofiles/.
involved, and has been recoded as binary with values 0 and 1, the
latter being the category that groups any number of previous incidents
greater than 0.

Weapon: Our intention was to group some of the categories of this
variable, corresponding to the means used by the perpetrator to commit
the homicide, by similarity, if they were rare. But due to its great
variability, we have only done in these two cases: we have grouped in
Long_hung both rifle and shotgun, and we have merged Drugs
and Poisson in a single category. Finally, we have 12 categories (plus
he Unknown).

elationship: Since it influences the type of aggressiveness, the rela-
ionship between the perpetrator and the victims of an homicide has
een considered as a cornerstone in the majority of studies on homi-
ides, as in Yang and Olafsson (2011). In this work we have grouped
his variable into four categories: IPV (Intimate Partner Violence),
amily (homicide committed by relatives, including in-laws, which
annot be considered IPV, such as, for example, son, daughter, father,
other, sister, brother, . . . ), aquaintance (where the perpetrator is
friend, neighbor, employee or employer, . . . ) and stranger (com-
itted by a person who does not know or is known by the victims). Our

lassification is slightly different from that of Yang and Olafsson (2011),
here the category Close to family includes other homicides in

addition to IPV, which we have considered as a category by itself,
due to its special social relevance and criminological interest, although
it only applies to the 12.3% of the perpetrators of our database. The
rest of categories correspond to stranger (22.4%), family (25.9%)
and acquaintance (39.4%), the percentages corresponding to the
perpetrators for whom the relationship to the victims was known.

Bag: This auxiliary variable has been introduced as an essential tool
to uniquely identify the cases (victims) of the same event, all of them
with the same perpetrator, assigning them a distinct number. There are
15,862 different bags (referred to different incidents or perpetrators),
with 4236 victims mass homicide victims killed in 858 incidents (av-
erage of 4.9 victims/incident), and 32,033 multiple homicide victims
killed in 15,004 incidents (average of 2.1 victims/incident).

2.2. The probabilistic classifier

As mentioned in the Introduction, we will use a probabilistic classi-
fier to predict each of the output variables for each of the victims that
are part of the same incident (bag), and apply a combination rule to
obtain the joint prediction for the bag. Of the different methodologies
used in Machine Learning to learn classifiers from a database of solved
cases, we consider probabilistic classifiers because they not only predict
the label, but also estimate the probability distribution over the set of
possible labels. As such a classifier we build a Bayesian Network with
all the model variables except Bag, both input variables corresponding
to the event: Year, Month, State and Weapon, and to the charac-
teristics of the victim: Sex, Age, Race, Ethnicity and Count,
as well as the output, which are the characteristics of the murderer:
Sex, Age, Race, Ethnicity, Count and Relationship (see
Table 1).

The probabilistic relationships between the variables that affect a
phenomenon – in this case, a multi-victim homicide – can be rep-
resented graphically by BNs (Koller & Friedman, 2009), which are
graphical models utilized for probabilistic inference. A standard BN
is a model that depicts the joint probability distribution 𝑃 of a set
f random variables (discrete or categorical), which are represented
raphically as nodes in a directed acyclic graph (DAG). The Markov
ondition asserts that each node in the DAG is independent of those
odes that are not its descendants, provided that the values taken by its
arents are known. Directed arcs between nodes entail conditional (not
ecessarily causal) dependencies that are governed by this condition.

The updating of probabilities with the BN from a specific piece of
vidence is referred to as Bayesian Inference; we compute a posteriori

https://books.google.es/books?id=mqXlA7e4VN8C&pg=PA19&redir_esc=y#v=onepage&q&f=false
https://books.google.es/books?id=mqXlA7e4VN8C&pg=PA19&redir_esc=y#v=onepage&q&f=false
https://www.census.gov/data/tables/2020/dec/2020-redistricting-supplementary-tables.html
https://www.census.gov/data/tables/2020/dec/2020-redistricting-supplementary-tables.html
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
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Fig. 2. Scheme of classification differences at the instance and bag levels. 𝐶1 , … , 𝐶𝑛 are the 𝑛 different classifiers ensembled at the instance level, while 𝐶 is the only one classifier
used at the bag level, whose predictions for the 𝑛 instances are ensembled.
probabilities from the evidences and the a priori probabilities. Accord-
ing to the Maximum A Posteriori (MAP) criterion, the prediction of a
query variable given an evidence is its instantiation with the highest
a posteriori probability, and this probability is referred to as the confi-
dence level (CL) of the prediction. We employ the Maximum Likelihood
Estimation (MLE) approach to estimate the parameters, which are the
conditional probabilities of any variable to its parents, and the marginal
probabilities of the root nodes, which are the nodes without parents in
the DAG. With the restriction that no directed arcs are allowed from
any input variable to any output variables, we learn the structure of the
BN using the Hill-Climbing Score-Based Structure Learning algorithm,
which provides a pseudo-optimal DAG that (locally) maximizes the
Bayesian Information Criterion (BIC) score. For this we use the hc
function from the R package bnlearn by Scutari (2010). Learning
and prediction algorithms have been implemented in the R language (R
Core Team, 2013), with the help of bnlearn.

2.3. Ensembling for the MI learning with the unanimity MI assumption

Ensemble of classifiers (also known as ‘‘combined classifiers’’) is a
method that has been widely applied in classification learning to create
a new classifier by merging a set of base classifiers in accordance with
a rule or scheme.

The algorithm that we propose here follows the same line, but
instead of combining, given an instance, the predictions that different
classifiers provide for it, what it does is use a single classifier and
combine the predictions that it provides for the different instances that
make up each of the bags, with which the predictions at the bag level
are obtained, as schematically represented in Fig. 2. In fact, we will
use an ensemble algorithm to combine the predictions given by the
classifier for the different instances that form a bag (the victims of
the same incident/perpetrator), for any target variable. To do this, we
must choose the combination scheme that we will apply. We consider
three different rules (more details can be found in Appendix C, see
also Delgado (2022)):

1. Majority Vote MV: the most well-known, straightforward, and
widely used hard voting rule, which selects the label with the
highest number of votes from the predicted for each instance of
the bag.
6

2. Ensemble Average EA: from the perspective of predictive power, it
is the most effective soft voting rule, choosing the label with the
highest average of the predicted probabilities that the classifier
assigns for each instance of the bag.

3. Confidence Level based Majority Vote CL-MV: a semi-hard voting
rule halfway between MV and EA. Each label has a counter
that sums the predicted probability assigned to that class by the
classifier for all the instances in the bag for which that label is
the predicted one (and 0 otherwise). CL-MV is just going with
the prediction for the label that maximizes the counter. If 𝑛 is
odd and the label predicted for each instance is right with a high
enough probability, this combination strategy performs better in
the binary classification setting (𝑟 = 2) when compared to MV,
according to Delgado (2022), where in a sensitivity analysis, it
has also been compared with EA and found to be significantly
more resilient to probability estimation error.

Note that in the context of the unanimity MI assumption, it makes
no sense to use trainable combination schemes that have additional
parameters needing to be trained, such as those that give different
weights to different predictions. This is due, in particular, to the fact
that we do not know a priori what the number of instances forming a
bag is, nor do we have a clear criteria to prioritize some instances over
others, which would serve to assign them different weights.

2.4. Validation procedure

We choose to perform a 𝐾-fold cross-validation procedure with 𝐾 =
10 (see Bishop) to validate and compare the different predictive models.
In this way, we obtain a confusion matrix for any model and any
𝑘 = 1,… , 𝐾, and from them we can calculate the following measures
of performance: accuracy and Matthews Correlation Coefficient (MCC),
introduced in the binary case by Matthews (1975), and extended to the
multi-class setting by Gorodkin (2004), for all the output variables.

The Mean Absolute Error (MAE) (see Cardoso and Sousa (2011))
is applied for ordinal classification when Perpetrator.Age is pre-
dicted, which is a categorical variable of a quantitative nature that has
been discretized into 5 intervals: [10, 18), [18, 25), [25, 35), [35, 50), ≥
50 .
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Fig. 3. DAG of the Bayesian Network used as classifier  for the prediction at the instance level, before the use of the combination schemes for the unanimity MI assumption. In
lue the nodes corresponding to the output (perpetrator) variables.
. Results

.1. The Bayesian network

In Fig. 3 we show the relationships between the characteristics of
he victim and the crime, on the one hand, and the perpetrator, on the
ther, captured by the DAG of the BN learned from the entire database,
t the instance level.

We can use the arc.strength function from the bnlearn pack-
ge to obtain a measure of the strength of the probabilistic relationships
xpressed by the directed arcs of the BN, and obtain that all arcs have
very significant value of strength. We can establish which variables

lay the main role in the model using measures of centrality and/or
etweenness taken from the area of Network Analysis applied to the
AG in Fig. 3.

Graph’s important (influential) nodes are identified using centrality
ndicators in the fields of Graph Theory and Network Analysis, where
‘importance’’ here is defined as a measure of node’s contribution to
he cohesiveness of the network. We adopt the degree of centrality of
reeman (Freeman, 1977) and the basic standard betweenness measure
y Borgatti and Everett (2006) as indicators. Their values, which are
alculated for each variable, are provided in Table 2.

The variables highlighted in Table 2: Relationship, Victim.
thnicity and Perpetrator.Race, followed by Victim.Age
nd Perpetrator.Age, act as gateways, and the arcs connecting
hem as bridges through which information flows from one set of
ariables in the model to another.

.2. Predicting at the bag level

In Table 3 we record the average of the 𝐾 = 10 values obtained by
7

-fold cross-validation for any of the metrics, the output variables and
Table 2
(Normalized to sum up 100) Freeman’s degree of centrality and measure of basic
standard betweenness for the variables in the model. In bold, the three most influential
variables and their values of centrality and betweenness.

Variable Freeman’s centrality (%) Betweenness (%)

State 4.16667 0
Year 2.08333 0
Month 0 0
Victim.Sex 4.16667 0
Victim.Race 6.250000 3.24074
Victim.Ethnicity 10.416667 22.22222
Victim.Age 8.33333 13.88889
Victim.Count 4.16667 0
Weapon 4.16667 5.55556
Perpetrator.Sex 4.16667 0
Perpetrator.Race 12.500000 24.07407
Perpetrator.Ethnicity 6.250000 3.24074
Perpetrator.Age 8.33333 6.94444
Perpetrator.Count 6.350000 0
Relationship 18.750000 20.83333

the different combination rules for the ensemble used for the unanimity
MI assumption (CL-MV, MV and EA). The corresponding boxplots are
found in Figs. B.4–B.5. From a descriptive point of view, we can observe
a clear advantage for the CL-MV ensemble combination scheme with all
the metrics: accuracy, MAE and MCC.

The question now is whether these differences observed at a descrip-
tive level are statistically significant or not. To figure it out we need
to perform some statistical hypothesis testing. In this sense, Table 4
reports whether any of the combination schemes, the one registered
in the row, is statistically significantly better (𝑝-value < 0.10) than
the one registered in the column, according to the different metrics
used in the experiment. We use the Holm-Bonferroni correction for
multiple comparisons to avoid detecting significant differences that are



Expert Systems With Applications 237 (2024) 121593R. Delgado and H. Sánchez-Delgado

M

f

i

S
t
t
b
p
T
a
t

2
p
r
f
w

q
t

Table 3
Mean values of the metrics obtained by 𝐾-fold cross-validation for any of the output
variables, using the different combination rules for the ensemble used in the unanimity
I assumption (CL-MV, MV and EA). By row, we indicate the order from best (1) to

worst (3).
Mean accuracy

CL-MV MV EA

Race 0.6161285 (1) 0.5476253 (3) 0.5551590 (2)
Ethnicity 0.5931035 (2) 0.5391634 (3) 0.6120940 (1)
Age 0.3781464 (1) 0.3596979 (2) 0.2307187 (3)
Count 0.5851616 (1) 0.5622917 (3) 0.5790462 (2)
Relationship 0.4398548 (2) 0.4189362 (3) 0.4434323 (1)

Mean MAE

CL-MV MV EA

Age 448.2 (1) 460.5 (2) 634.1 (3)

Mean MCC

CL-MV MV EA

Race 0.3089283 (1) 0.21792450 (3) 0.27643789 (2)
Ethnicity 0.2167372 (2) 0.0451777 (3) 0.25091453 (1)
Age 0.1343040 (1) 0.10409507 (2) 0.01568847 (3)
Count 0.1797634 (2) 0.13375927 (3) 0.18797883(1)
Relationship 0.2286003 (1) 0.19496783 (3) 0.22395685 (2)

Table 4
p-values for the comparison of the mean values of the metrics used, with the Holm-
Bonferroni correction for multiple comparisons. Alternative hypothesis: the combination
scheme of the row is better than that of the column.
Accuracy CL-MV MV EA
Row > Column

CL-MV
Race: 0.0017** Race: 0.0063**
Age: 0.016* Age: 2.5 × 10−7***
Relationship: 0.066****

MV Age: 1.7 × 10−6***
EA Relationship: 0.079****

MAE CL-MV MV EA
Row < Column

CL-MV Age: 0.024* Age: 5.2 × 10−9***
MV Age: 1.4 × 10−7***

MCC CL-MV MV EA
Row > Column

CL-MV
Race: 0.012*
Age: 0.00574** Age: 9.9 × 10−6***
Relationship: 0.031*

MV Age: 0.00023***

* Only significant p-values are recorded: at 5%.
** Only significant p-values are recorded: at 1%.
*** Only significant p-values are recorded: 1h.
**** Denotes a slight significance, at 10%.

not truly significant, using the pairwise Wilcoxon signed-rank test or
the Student’s t-test to compare pairs of samples corresponding to the
same run, as appropriate according to the Shapiro–Wilk normality test,
which has been performed previously.

All in all, the CL-MV combination scheme is clearly the best of those
considered, since none of the others surpassed it with any of the target
variables. More specifically, from Table 4 we can state that there are
no significant results for the variables Count or Ethnicity, and that
for the rest of output variables:

• Accuracy : CL-MV outperforms the other combination schemes for
the variables Race and Age, and outperforms MV for the variable
Relationship.

• MAE (for the variable Age): CL-MV outperforms both MV and EA.
• MCC: CL-MV combination scheme shows to be better than MV for
Race and Relationship, and better than both MV and EA for
Age.
8

o

To evaluate the impact of various incident or victim factors on the
forecasted profile of the unknown offender, we have thus decided, in
light of these results, to employ the final predictive model built using
the CL-MV combination scheme from the complete database.

An example of application
Just to give an example, imagining one particular incident out of

the myriad of them that could occur in reality, let us consider that
the incident is a mass homicide with 4 non-Hispanic victims, all under
10 years of age, a male (victim V2) and three females, who were killed
with a firearm (State, Year and Month have not been included as
input information about the incident). We carry out two sensitivity
studies in this example, as an illustration of the potentiality of the
model to generate knowledge.

Sensitivity study 1. Table 5 shows the predicted characteristics for
the perpetrator obtained with our predictive model, using CL-MV,
with their associated confidence level, if the race of the victims were
changed, one by one, from 4 White to 4 Black.

We can observe how the predicted race for the perpetrator moves
accordingly from White to Black, how the predicted age decreases and
how the predicted relationship goes from ‘‘family’’ to ‘‘acquaintance’’
(the sex of the perpetrator is always predicted to be male, and so has
been omitted, and the same goes for the variable Count, which is
always predicted to be 0, and the variable Ethnicity, predicted to
be non-Hispanic). Table 6 shows the confidence of the individual-level
predictions for any of the incident victims, based on their race.

Algorithm 2 (Appendix C) with the CL-MV combination rule uses the
information in Table 6 to derive the predicted perpetrator profile for the
entire incident that is reported in Table 5. For example, in Setting 1.1,
with respect to Relationship, three of the victims (V1, V3 and V4)
predict Family with the same confidence level 0.4127566, while the
ourth predicts Stranger with 0.383445. Using Algorithm 2 with CL-

MV to obtain the predicted label for the incident with the four victims,
we compare the sum of the confidence levels assigned to Family by
the victims: 3 × 0.4127566 = 1.2382698, with the corresponding sum
assigned to Stranger: 0.383445, resulting in the prediction being
Family, where 1.2382698/(1.2382698 + 0.383445) = 0.7635558 is
ts confidence level, as recorded in Table 5.

ensitivity study 2. Another possibility would be to study the evolu-
ion of the predicted profile of the perpetrator in the example, when
he race of the four victims is White but their ethnicity changes, one
y one, from non-Hispanic to Hispanic, as shown in Table 7. Now the
redicted race of the perpetrator is always White, and then omitted.
able 8 shows, analogously to Table 6, the confidence of the predictions
t the individual level for any of the victims of the incident, based on
heir ethnicity.

In the sensitivity study 2, to predict Relationship in Setting
.3 (Table 7), for example, we observe in Table 8 that V1 and V2
redict Stranger with confidence levels 0.2959600 and 0.4218292,
espectively, while the rest of the victims predict Family, with con-
idence 0.4127566 each. To use CL-MV in Algorithm 2 (Appendix C),
e compare the sum of the confidence levels assigned to Stranger,

which is 0.7177892, and the sum for Family, 0.8255132. The re-
sulting prediction is the one corresponding to the largest, which is
Family, with confidence level 0.8255132/(0.8255132 + 0.7177892)
= 0.5349005.

We observe from Tables 5, 7 that the predicted race/ethnicity of the
perpetrator matches that of the majority of the victims, with the confi-
dence level increasing as the number of victims of that race/ethnicity
does the same. The predicted age of the perpetrator tends to be lower if
the victims are Black than White, but if they are White, it is not affected
by 𝑒thnicity. The predicted relationship changes from ‘‘family’’ to ‘‘ac-
uaintance’’ if the victims’ majority race is Black, and to ‘‘stranger’’ if
heir ethnicity is Hispanic (of race White). We can see that depending
n the proportion of races and ethnicities in the group, this mass
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Table 5
Sensitivity study 1: Example of predicted perpetrator profile using CL-MV, for an incident with four non-
Hispanic victims (mass homicide), <10 years old, when the weapon is a firearm, as the race of the victims
varies, one by one, from White to Black.

Mass homicide. Sensitivity study 1

Victim Predicted perpetrator profile (incident)

Race Race Age Relationship

Setting 1.1 V1. White, V2. White White [25,35) Family
V3. White, V4. White 1 1 0.7635558

Setting 1.2 V1. Black, V2. White White [25,35) Family
V3. White, V4. White 0.7527732 0.7243044 0.5589648

Setting 1.3 V1. Black, V2. Black White [18,25) Family
V3. White, V4. White 0.5123915 0.5520587 0.5737075

Setting 1.4 V1. Black, V2. Black Black [18,25) Acquaintance
V3. Black, V4. White 0.7416863 0.7836611 0.4140512

Setting 1.5 V1. Black, V2. Black Black [18,25) Acquaintance
V3. Black, V4. Black 1 1 0.699362
Table 6
Sensitivity study 1: Individual predictions for any of the four victims in the example (mass homicide), based on
the victim’s race. In parentheses, the corresponding confidence level of the individual prediction.

Mass homicide. Sensitivity study 1

Victim Race Individual predicted perpetrator profile for each victim

Race Age Relationship

V1 White White (0.8932712) [25,35) (0.2883954) Family (0.4127566)
Black Black (0.8646841) [18,25) (0.3338198) Acquaintance (0.2679026)

V2 White White (0.8463076) [25,35) (0.3002172) Stranger (0.383445)
Black Black (0.8354481) [18,25) (0.3770374) Stranger (0.3454937)

V3 White White (0.8932712) [25,35) (0.2883954) Family (0.4127566)
Black Black (0.8646841) [18,25) (0.3338198) Acquaintance (0.2679026)

V4 White White (0.8932712) [25,35) (0.2883954) Family (0.4127566)
Black Black (0.8646841) [18,25) (0.3338198) Acquaintance (0.2679026)
Table 7
Sensitivity study 2: Analogous to the example in Table 5 with four White victims (mass homicide) as their ethnicities vary,
one by one, from non-Hispanic to Hispanic.

Mass homicide. Sensitivity study 2

Victim Predicted perpetrator profile (incident)

Ethnicity Ethnicity Age Relationship

Setting 2.1 V1. non-Hispanic, V2. non-Hispanic Non-Hispanic [25,35) Family
V3. non-Hispanic, V4. non-Hispanic 1 1 0.7635558

Setting 2.2 V1. Hispanic, V2. non-Hispanic Non-Hispanic [25,35) Family
V3. non-Hispanic, V4. non-Hispanic 0.7807124 1 0.5485436

Setting 2.3 V1. Hispanic, V2. Hispanic Non-Hispanic [25,35) Family
V3. non-Hispanic, V4. non-Hispanic 0.543309 1 0.5349005

Setting 2.4 V1. Hispanic, V2. Hispanic Hispanic [25,35) Stranger
V3. Hispanic, V4. non-Hispanic 0.7158239 1 0.710652

Setting 2.5 V1. Hispanic, V2. Hispanic Hispanic [25,35) Stranger
V3. Hispanic, V4. Hispanic 1 1 1
Table 8
Sensitivity study 2: Individual predictions for any of the four victims in the example (mass homicide), based on the ethnicity
of the victim. In parentheses, the corresponding confidence level of the individual prediction.

Mass homicide. Sensitivity study 2

Victim Etnicity Individual predicted perpetrator profile for each victim

Etnicity Age Relationship

V1 Non-Hispanic Non-Hispanic (0.9290091) [25,35) (0.2883954) Family (0.4127566)
Hispanic Hispanic (0.7783224) [25,35) (0.2965019) Stranger (0.2959600)

V2 Non-Hispanic Non-Hispanic (0.9129823) [25,35) (0.3002172) Stranger (0.383445)
Hispanic Hispanic (0.7834779) [25,35) (0.3035398) Stranger (0.4218292)

V3 Non-Hispanic Non-Hispanic (0.9290091) [25,35) (0.2883954) Family (0.4127566)
Hispanic Hispanic (0.7783224) [25,35) (0.2965019) Stranger (0.2959600)

V4 Non-Hispanic Non-Hispanic (0.9290091) [25,35) (0.2883954) Family (0.4127566)
Hispanic Hispanic (0.7783224) [25,35) (0.2965019) Stranger (0.2959600)
9
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Table 9
Example of predicted perpetrator profile using CL-MV, for an incident with three non-
Hispanic victims (multiple homicide), <10 years old, when the weapon is a firearm, as
he race of the victims varies, one by one, from White to Black.
Multiple homicide. Sensitivity study 1

Victim Predicted perpetrator profile

Race Race Age Relationship

V1. White, V2. White White [35,50) Family
V3. White 1 0.6741045 0.7402884

V1. Black, V2. White White [25,35) Family
V3. White 0.6670902 0.6685955 0.7046505

V1. Black, V2. Black Black [18,25) Family
V3. White 0.655939 0.3615387 0.6756024

V1. Black, V2. Black Black [25,35) Family
V3. Black 1 0.6440647 0.6264575

Table 10
Analogous to the example in Table 9 with three White victims (multiple homicide) as
their ethnicity varies, one by one, from non-Hispanic to Hispanic.

Multiple homicide. Sensitivity study 2

Victim Predicted perpetrator profile

Ethnicity Ethnicity Age Relationship

V1. non-Hispanic, V2. non-Hispanic Non-Hispanic [35,50) Family
V3. non-Hispanic 1 0.6741045 0.7402884

V1. Hispanic, V2. non-Hispanic Non-Hispanic [25,35) Family
V3. non-Hispanic 0.7057269 0.6579581 0.6998363

V1. Hispanic, V2. Hispanic Hispanic [25,35) Family
V3. non-Hispanic, 0.6245493 0.6593685 0.6809751

V1. Hispanic, V2. Hispanic Hispanic [25,35) Family
V3. Hispanic 1 1 0.6239864

homicide could fit into the two scenarios described in the Discussion
section in Fowler et al. (2021): homicides within the family, with a
large number of minor victims (scenario 1) and homicides in public
places such as schools, with most of the victims being young people
and children, strangers or acquaintance to the perpetrator (scenario 2).

To quantify the association between the ethnic origin of the victims
and the perpetrator, for example, we can calculate from Table 7 the
Odds Ratio (OR) in favor of the non-Hispanic prediction for the per-
petrator’s ethnic origin, when the number of non-Hispanic victims is
reduced from 3 (Setting 2.2) to 2 (Setting 2.3):

OR =
0.543309∕(1 − 0.543309)
0.7807124∕(1 − 0.7807124)

= 0.3341546 ≈ 0.33

that being less than 1 means that the reduction in the number of non-
Hispanic victims reduces the odds in favor of the non-Hispanic ethnicity
of the perpetrator. But it goes further, since OR quantifies this reduction
in odds, and tells us that it happens to be a third, approximately. Just
one more example: from Table 5, the OR in favor of a relationship of
‘‘acquaintance’’ when the number of Black victims goes from 3 (Setting
1.4) to 4 (Setting 1.5) is:

OR =
0.699362∕(1 − 0.699362)
0.4140512∕(1 − 0.4140512)

= 3.29293 ≈ 3.3

which means that the increase in the number of Black victims raises
the odds in favor of ‘‘acquaintance’’, and quantifies this increase (more
than triple).

What would have happened if instead of 4 victims, the incident
had only 3 and was therefore a multiple homicide? Analogous to what
we did in the mass homicide example, we now assume 3 non-Hispanic
victims in the same incident, all under the age of 10, one male (victim
V2) and two females, who were killed with a firearm. Tables 9–10 show
the predicted perpetrator characteristics and associated confidence lev-
els for the entire incident in two sensitivity studies, as the race or the
10

ethnicity of the victims changes.
Comparing Tables 9–10 with Tables 5–7 we observe a higher pre-
dicted age in the case of the multiple homicides, and that the predicted
relationship between victims and perpetrator is always ‘‘family’’, re-
gardless of the number of White/Black and non-Hispanic/Hispanic
victims, unlike mass homicides, for which the prediction was ‘‘acquain-
tance’’ when the number of Black victims is majority, or ‘‘stranger’’,
when the majority of the victims were Hispanic. One of the two
scenarios mentioned above, scenario 1, could be used to frame this
multiple homicide.

4. Discussion and conclusions

In this study, we describe a knowledge-based expert system de-
signed to assist in profiling homicide offenders, that is, to forecast their
attributes (sex, age, race, ethnicity, count and relationship to victims),
when there are multiple victims in a single incident. This profile is
predicted based on the victim’s characteristics (age, sex, race, ethnicity)
and the incident’s details (state, year, month and weapon), and it can be
crucial early in the investigation so that law enforcement investigators
can more accurately identify the unknown perpetrator. Rather than
replace criminologists’ capacity to profile suspects, smart software is
intended to assist them in their goal of improving their effectiveness at
preventing crime.

To address the issue of predicting the profile of the perpetrator
of a multi-victim homicide, we adopt the MI learning paradigm. By
definition, neither the pure instance-level approach, where instances
are not considered as part of a bag for the classification task, nor the
construction of a classifier exclusively at the bag-level without taking
instances into account, can be used to solve this problem. Rather, the
classifier, which in our case is a BN, must be built at the instance-level,
and the labels and probabilities that have been assigned to each in-
stance of the same bag must then be somehow combined to produce the
tag for the bag as a whole. And this is where the combination schemes
of the ensemble of classifiers methodology come into play, handling a
MI problem that pure instance-level classifiers cannot address on their
own.

The hybrid strategy known as CL-MV (semi-hard voting) has the best
overall performance, according to our methodological comparison of
the three combination rules: the soft-voting majority vote MV, the hard-
voting ensemble average EA, and the hybrid approach CL-MV. Indeed,
CL-MV performs better than the other for all the variables for which
statistically significant differences are detected, with the performance
metrics accuracy and MCC, in general, and MAE for the ordinal dis-
cretized variable Age. We also delved into the interpretability of the
model, based on the DAG of the Bayesian Network from which it has
been built. The most ‘‘influential’’ variables, as determined by several
measures of centrality and betweenness, were found to be: Relation-
ship, Victim.Ethnicity and Perpetrator.Race. The expert
system not only enables profiling but also generates knowledge that is
provided objectively and quantitatively. For instance, we can infer from
the example presented in Tables 5–7 that the predicted relationship is
more likely to be ‘‘acquaintance’’ if the victims are primarily Black, or
‘‘stranger’’ if they are predominantly Hispanic, as opposed to ‘‘family’’,
if the victims are White and non-Hispanic. The Odds Ratio, which is
obtained from the probabilities estimated with the model, can be used
to quickly determine the strength of the association between the input
and the output variables.

We believe that in some settings, such as multi-victim homicides,
the unanimity MI assumption is an effective approach. We have re-
vealed that the CL-MV criterion, as a rule to combine the labels and
probabilities assigned to the instances in the same bag, has produced
encouraging results when applied to the FBI homicide database in the
U.S. The predictive model may self-adapt to other police databases,
from other countries, or to other sorts of crimes with multiple victims,
such as assaults, robberies, kidnappings, etc. because it was built with

a Machine Learning methodology that learns from the database from
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which it feeds. Although the topic of predicting the profile of the
perpetrator in a multi-victim homicide is a particular case, we are
certain that this work will have more useful applications. For instance,
predicting the qualities of a teacher or school based on the traits of the
students, who make up a bag. Perhaps those of the creator of a piece of
art when determining its authorship, or those of a sports coach based
on the characteristics of the team members, . . .

Ultimately, this research may be valuable because we developed
an expert system that could be implemented to make it easier for law
enforcement officers to use it for practical applications, such as early
prevention of criminal recidivism, since aiding in the elaboration of
criminal profiling will facilitate to identify and apprehend the culprits,
preventing them from committing another homicide. We concur with
the sentiment expressed in the Discussion of Fowler et al. (2021) in
that preventing a mass homicide, especially if it involved a shooting,
could have positive effects on preventing further crime, due to its
potential contagion effect for almost two weeks (see also Towers,
Gomez-Lievano, Khan, Mubayi, and Castillo-Chavez (2015)). At the
same time, it also appears to be a solid starting point for upcoming
criminological inquiries. Comparing the forecasted traits of the offender
before and after the implementation of a legal measure that might have
an effect on homicides might be instructive, for example.

The local data-driven machine learning methodology for determin-
ing a perpetrator’s profile in a multi-victim homicide described in this
paper, seems to be a useful and promising tool with significant crimi-
nological applicability insofar, as it can assist criminologists to create
incident-tailored profiles, and authorities to better manage available
resources.
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Appendix A. Data set: table of relative frequencies (in %)

See Table A.11

Appendix B. Additional figures
11

See Figs. B.4 and B.5
Table A.11
Relative frequencies (%) of the characteristics of the victim, of the perpetrator, and of
the weapon, depending on whether the homicide is multiple or massive. Note that for
the perpetrator, the age ranges 50–64 and ≥65 have been merged into ≥50, and that
the minimum age is 10. It is remarkable, though not unexpected, that while comprising
merely about 6% of the offenders, women constitute over 37% of the victims.

Characteristics of Victim Perpetrator

Multiple Mass Multiple Mass

Sex Female 37.54% 46.29% 6.07% 5.28%
Male 62.46% 53.71% 93.93% 94.72%

Age

<10 9.21% 21.28%
10–17 8.58% 12.16% 6.66% 7.10%
18–24 21.33% 15.81% 29.52% 28.29%
25–34 23.23% 17.84% 31.32% 30.21%
35–49 19.94% 18.28% 24.02% 24.68%
50–64 10.81% 9.31% 8.48% 9.72%≥65 6.90% 5.32%

Race
Native-Islander 3.64% 5.00% 3.56% 3.45%
Black 32.49% 28.12% 38.19% 37.70%
White 63.87% 66.88% 58.25% 58.85%

Ethnicity Hispanic 27.51% 21.82% 26.75% 24.45%
Non-Hispanic 72.49% 78.18% 73.25% 75.55%

1 81.20% 0.00%
Count 2 18.80% 0.00%
(victim) >2 0.00% 100.00%

Count 0 76.12% 76.53%
(perpetrator) 1 23.88% 23.47%

Relationship

Acquaintance 39.38% 39.88%
Family 25.87% 25.87%
IPV 12.25% 12.90%
Stranger 22.50% 21.35%

Weapon Multiple Mass Weapon Multiple Mass

Blunt Object 4.47% 4.58% Firearm 6.63% 5.95%
Drowning 0.32% 0.40% Handgun 54.95% 54.98%
Drugs-Poisson 0.32% 0.00% Knife 11.28% 10.41%
Explosives 0.29% 0.34% Long hung 15.60% 17.39%
Fall 0.01% 0.06% Strangulation 0.97% 0.57%
Fire 4.12% 4.52% Suffocation 1.01% 0.80%

Appendix C. The combination schemes

For the sake of completeness, the pseudo-code of the algorithms for
the implementation of the combination schemes MV, EA and CL-MV
are below (see Delgado (2022)). To predict an output variable at the
bag level for a bag composed of 𝑛 instances 𝐸1,… , 𝐸𝑛, first, we need to
obtain the prediction for each of the instances by Algorithm 1, whose
output feeds the others.

Algorithm 1 Instance prediction
Input instances 𝐸1,… , 𝐸𝑛 forming a bag, classifier , output variable

classes 𝑦1,… , 𝑦𝑟
Output the predicted classes 𝑦∗𝑗 for any instance 𝐸𝑗 , and the probability

distributions {𝑝𝑗𝑘, 𝑘 = 1,… , 𝑟}, 𝑗 = 1,… , 𝑛

1: for 𝑗 in 1 ∶ 𝑛 do
2: for 𝑘 in 1 ∶ 𝑟 do
3: compute 𝑝𝑗𝑘 (probability assigned by  to 𝑦𝑘, given evidence 𝐸𝑗)

4: 𝑗𝑚𝑎𝑥 = arg max𝑘=1,…,𝑟 𝑝𝑗𝑘
5: 𝑦∗𝑗 = 𝑦𝑗𝑚𝑎𝑥 (predicted class for instance 𝐸𝑗 with the MAP criterion)

return {𝑦∗𝑗 , 𝑗 = 1,… , 𝑛} and {𝑝𝑗𝑘, 𝑘 = 1,… , 𝑟, 𝑗 = 1,… , 𝑛}

Note that Algorithm 1 enables the prediction of any output variable
for each instance using the Maximum A Posteriori (MAP) criterion.
This involves assigning the class with the maximum probability. Sub-
sequently, Algorithm 2 presented below facilitates the combination
of predictions acquired for individual instances within a bag, using a
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v

=

𝑔

Fig. B.4. Boxplots for the accuracy (the higher the better) of the ensembles at the bag level, using the different combination schemes: CL-MV, MV, and EA, for each of the output
ariables, from the data obtained in the validation procedure, and boxplot of MAE for the ordinal output variable Perpetrator.Age (the smaller the better). Consistent with

Table 4, CL-MV shows greater accuracy compared to MV across Race, Age and Relationship variables, and compared to EA across Race and Age. Notably, neither MV nor EA
outperforms CL-MV across any output variables. Concerning Age, CL-MV exhibits significantly lower MAE than EA and slightly lower than MV.
specific combination rule. where combination ∈ {MV, EA, CL-MV}
and function 𝑔𝑘 in step 3 of Algorithm 2 is 1

𝑛
∑𝑛

𝑗=1 𝑝𝑗𝑘 if combination
EA, and otherwise,

𝑘 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑦(𝑘) = ∅
#𝑦(𝑘) if 𝑦(𝑘) ≠ ∅, for 𝚌𝚘𝚖𝚋𝚒𝚗𝚊𝚝𝚒𝚘𝚗 = MV
∑

𝑗∈𝑦(𝑘) 𝑝𝑗𝑘 if 𝑦(𝑘) ≠ ∅, for 𝚌𝚘𝚖𝚋𝚒𝚗𝚊𝚝𝚒𝚘𝚗 = CL-MV.

In words, EA selects the predicted class for the bag by maximizing
the average (or sum) of the probabilities assigned to each class by the
12

classifier across all 𝑛 instances comprising the bag. On the other hand,
MV designates the bag’s class based on the most frequently chosen class
among the instances. Meanwhile, CL-MV assigns the bag’s prediction
by maximizing the sum of probabilities assigned to each class by the
classifier, but only considering the instances, out of 𝑛, that opted for
that particular class.

Remark. MV offers the benefit that once we know the prediction
of any of the instances, we do not need to maintain any other in-
formation, which is advantageous from a computational perspective
and saves storage space. EA is more computationally and storage-

demanding because it must save and use every probability distribution
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Fig. B.5. Boxplots for the MCC of the ensembles at the bag level, with combination schemes: CL-MV, MV and EA, for the output variables. The higher the better. As indicated by
Table 4, CL-MV demonstrates greater MCC than MV for Race, Age and Relationship, and also outperforms EA for Age. Notably, neither MV nor EA outperforms CL-MV in terms
of MCC across the output variables.
value assigned by the classifier to the class prediction for any instance.
Halfway between them since only uses the maximum of the probability
distribution for any instance, is CL-MV.

Comparing the combination schemes through accuracy in the bi-
nary case

Following Delgado (2022) we compare in the binary case the ac-
curacy of the different combination rules we are considering, with an
odd number of instances forming the bag, if the predictions given by
the classifier for any of the instances forming a bag are right or wrong
independently of each other. Let 𝑝 ∈ (0, 1) denote the probability that
13
the classifier provides the correct class label for any of the instances.
Accuracy for the different combination schemes is (see Delgado, 2022):

𝐴𝑐𝑐MV =
𝑛
∑

𝓁=⌊𝑛∕2⌋+1

(

𝑛
𝓁

)

𝑝𝓁 (1 − 𝑝)𝑛−𝓁 ,

𝐴𝑐𝑐CL-MV =
𝑛
∑

𝓁=⌊(1−𝑝) 𝑛⌋+1

(

𝑛
𝓁

)

𝑝𝓁 (1 − 𝑝)𝑛−𝓁 ,

𝐴𝑐𝑐EA = 𝑝 (independently of 𝑛, by construction),

where ⌊𝑥⌋ denotes the integer part or floor of 𝑥. In Delgado (2022) the
following result is stated and proved, and we reproduce it here adapted
to our unanimity MI assumption context.
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Fig. C.6. Scheme of the statement of Proposition 2: comparing the accuracy of the different combination schemes in the binary case (𝑟 = 2) with 𝑛 = 3, for 𝑝 ∈ (0, 1).
Algorithm 2 Combination scheme (Algorithms 1–3 Delgado, 2022)
Input the output of Algorithm 1
Output the predicted class 𝑦∗combination for the bag

1: for 𝑘 in 1 ∶ 𝑟 do
2: 𝑦(𝑘) = {𝑗 = 1,… , 𝑛 ∶ 𝑦∗𝑗 = 𝑦𝑘} (indices of instances with predicted

class 𝑦𝑘)
3: 𝑔𝑘
4: 𝓁 = arg max𝑘=1,…,𝑟 𝑔𝑘 (the class that maximizes function 𝑔)
5: 𝑦∗combination = 𝑦𝓁
return 𝑦∗combination

Proposition 1 (Proposition 2 Delgado, 2022). In the binary case and with
an odd number of instances giving rise to a bag, 𝑛, we have that

⎧

⎪

⎨

⎪

⎩

If 𝑝 ≤ 𝑛−1
2 𝑛 , then 𝐴𝑐𝑐CL-MV < 𝐴𝑐𝑐MV,

If 𝑛−1
2 𝑛 < 𝑝 ≤ 𝑛+1

2 𝑛 , then 𝐴𝑐𝑐CL-MV = 𝐴𝑐𝑐MV,
If 𝑝 > 𝑛+1

2 𝑛 , then 𝐴𝑐𝑐CL-MV > 𝐴𝑐𝑐MV.

It can be seen (Condorcet Jury Theorem, 1785, as reproduced in
Shapley & Grofman, 1984) that

(a) if 𝑝 > 0.5, lim𝑛→∞ 𝐴𝑐𝑐𝑀𝑉 = 1 and it is monotonically increasing,
(b) if 𝑝 = 0.5, 𝐴𝑐𝑐𝑀𝑉 = 0.5 = 𝐴𝑐𝑐EA for all 𝑛,
(c) if 𝑝 < 0.5, lim𝑛→∞ 𝐴𝑐𝑐𝑀𝑉 = 0 and it is monotonically decreasing,

that is, while for 𝑝 = 0.5 MV and EA have the same accuracy, we can
expect MV to show improvement over EA only if 𝑝 > 0.5.

In the particular case 𝑛 = 3, to be more specific in a concrete
example, we have that

𝐴𝑐𝑐MV = 3 𝑝2 (1 − 𝑝) + 𝑝3 ,

𝐴𝑐𝑐CL-MV =

⎧

⎪

⎨

⎪

⎩

𝑝3 if 𝑝 ≤ 1
3

3 𝑝2 (1 − 𝑝) + 𝑝3 if 1
3 < 𝑝 ≤ 2

3
3 𝑝 (1 − 𝑝)2 + 3 𝑝2 (1 − 𝑝) + 𝑝3 if 𝑝 ≥ 2

3 .

The following result establishes the comparison between them, and
shows that CL-MV is better (it has greater accuracy) than MV, and both
are better than EA, when the probability that each instance of the bag
gives the correct label, 𝑝, is large enough. Its proof is a simple exercise
and is therefore omitted, while a schematic of the result can be seen in
Fig. C.6.

Proposition 2. In the binary case and with 𝑛 = 3, we have that

CL-MV vs. MV
⎧

⎪

⎨

⎪

⎩

If 𝑝 ≤ 1
3 , then 𝐴𝑐𝑐CL-MV < 𝐴𝑐𝑐MV,

If 1
3 < 𝑝 ≤ 2

3 , then 𝐴𝑐𝑐CL-MV = 𝐴𝑐𝑐MV,
If 𝑝 > 2

3 , then 𝐴𝑐𝑐CL-MV > 𝐴𝑐𝑐MV.

MV vs. EA

⎧

⎪

⎪

⎨

⎪

⎪

If 𝑝 < 1
2 , then 𝐴𝑐𝑐MV < 𝐴𝑐𝑐EA,

If 𝑝 = 1
2 , then 𝐴𝑐𝑐MV = 𝐴𝑐𝑐EA,

If 𝑝 > 1 , then 𝐴𝑐𝑐MV > 𝐴𝑐𝑐EA.
14
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