
This is the **submitted version** of the journal article:

Nan, Bingfei; Chang, Cheng; Li, Zhihao; [et al.]. «Nanocrystal-based thermoelectric SnTe-NaSbSe₂ alloys with strengthened band convergence and reduced thermal conductivity». *Chemical Engineering Journal*, Vol. 492 (July 2024), art. 152367. DOI 10.1016/j.cej.2024.152367

This version is available at <https://ddd.uab.cat/record/302105>

under the terms of the IN COPYRIGHT license

1 **Nanocrystal-based thermoelectric SnTe-NaSbSe₂ alloys with**
2 **strengthened band convergence and reduced thermal conductivity**

3
4 Bingfei Nan ^{a, b}, Cheng Chang ^c, Nilotpal Kapuria ^{d, e, *}, Xu Han ^f, Mengyao Li ^g, Kevin M. Ryan
5 ^d, Jordi Arbiol ^{f, h}, Andreu Cabot ^{a, h, *}

6 ^a Catalonia Institute for Energy Research—IREC, Sant Adrià de Besòs, Barcelona 08930, Spain

7 ^b Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain

8 ^c School of Materials Science and Engineering, Beihang University, Beijing 100191, China.

9 ^d Department of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX
10 Limerick, Ireland

11 ^e Indiana University, Department of Chemistry 800 E. Kirkwood, CHEM Bloomington, IN
12 47405-7102

13 ^f Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra,
14 Catalonia 08193, Catalonia, Spain

15 ^g Key Laboratory of Material Physics of Ministry of Education, School of Physics and
16 Microelectronics, Zhengzhou University, Zhengzhou 450001, China

17 ^h ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain

18 Email: nkapuria@iu.edu (N. Kapuria), acabot@irec.cat (A. Cabot).

19

20 **ABSTRACT**

21 Ternary I-V-VI₂ colloidal NaSbSe₂ nanocrystals are herein used to improve the performance of
22 lead-free SnTe thermoelectric materials. We showcase a versatile bottom-up engineering
23 approach to produce SnTe-NaSbSe₂ alloys from the rapid hot press of colloidal nanocrystal
24 building blocks. The incorporation of NaSbSe₂ nanocrystals significantly enhances the Seebeck
25 coefficient of SnTe. Besides, Sn vacancies, substitution point defects, dislocations, and strains
26 generated by the NaSbSe₂ nanoparticles incorporation result in a dramatic reduction of the
27 lattice thermal conductivity below the amorphous limit of pure SnTe, down to 0.38 W m⁻¹K⁻¹.
28 As a consequence, power factors enhance up to 1.77 mW m⁻¹K⁻², which is ~193% higher than

29 that of the pristine SnTe, and thermoelectric figures of merit up to 1.15 at 823 K for
30 $(\text{SnTe})_{0.85}(\text{NaSbSe}_2)_{0.15}$ are achieved.

31

32 **Keywords:** Thermoelectric; Nanocrystals; SnTe; NaSbSe₂; alloy; Sn vacancies

33

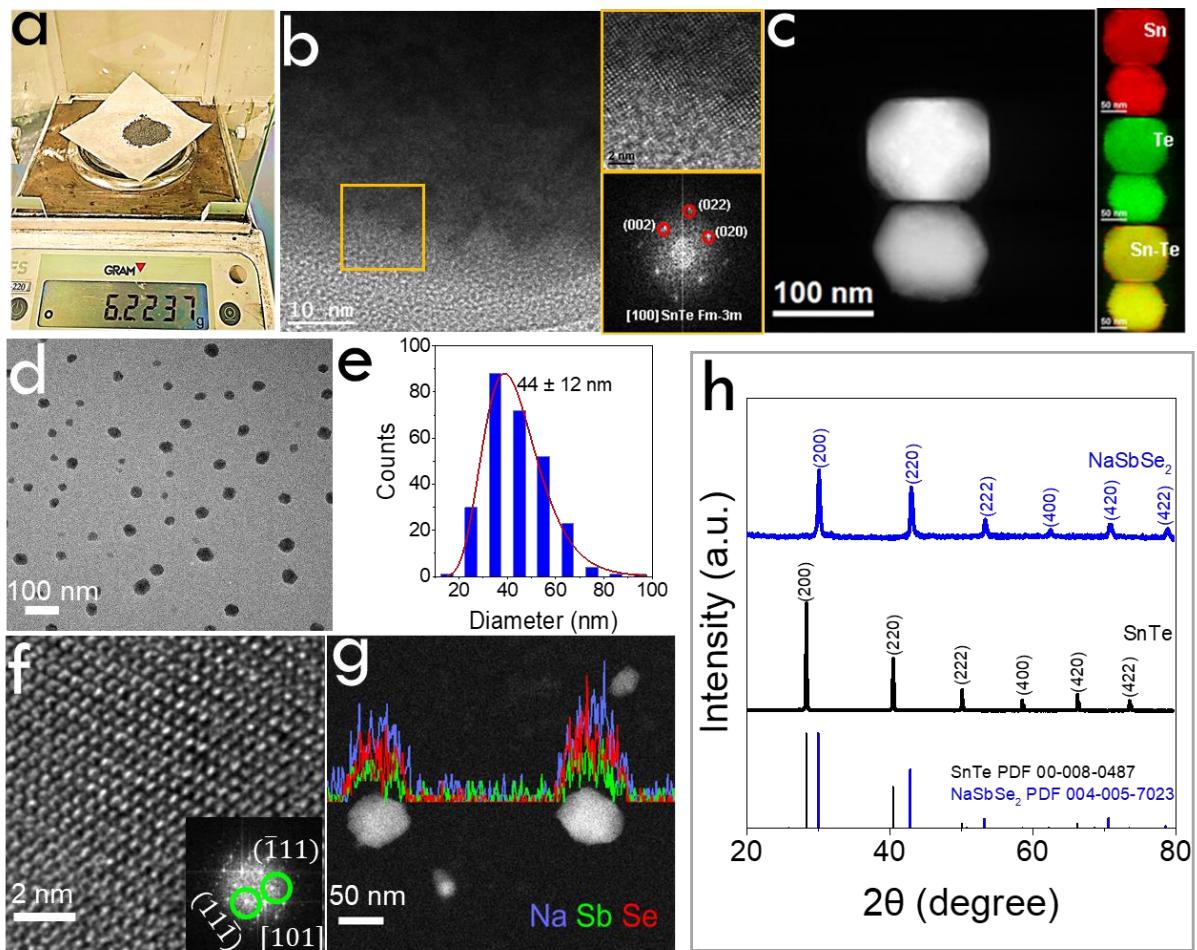
34 **1. Introduction**

35 Thermoelectric (TE) technology enables direct conversion of heat into electricity and vice
36 versa. Thus, TE devices can be used for waste heat recovery and solid-state cooling [1-5]. The
37 performance of TE materials is quantified by a figure of merit, $ZT = \frac{\sigma S^2 T}{\kappa_{\text{ele}} + \kappa_{\text{lat}}}$, where σ , S , T ,
38 κ_{ele} , and κ_{lat} are the electrical conductivity, Seebeck coefficient, absolute temperature, electronic
39 thermal conductivity, and lattice thermal conductivity, respectively. The sum of the
40 contributions from κ_{ele} and κ_{lat} is the total thermal conductivity κ_{tot} . Given the strong coupling
41 among S , σ , and κ_{e} , improving these parameters individually to enhance zT effectively is a huge
42 challenge. Being κ_{lat} a less dependent parameter, several strategies to reduce κ_{lat} have been put
43 into practice [6, 7].

44 PbTe is one of the main TE materials for medium-temperature applications. However, its
45 industrialization is limited by Pb toxicity. SnTe is a Pb-free analogy to PbTe that is also
46 characterized by a *p*-type conductivity, but a moderate Seebeck coefficient generally limits its
47 TE performance. This limited Seebeck coefficient is related to two main parameters. On the
48 one hand, SnTe is usually characterized by too high intrinsic hole concentration associated with
49 a high density of Sn vacancies (10^{20} – 10^{21} cm⁻³) that results in moderate Seebeck coefficients
50 and high electronic thermal conductivity [8]. On the other hand, within SnTe, the relatively
51 large energy gap between the L and Σ bands, $\Delta E_{\text{L}-\Sigma} \sim 0.3$ eV in SnTe limits the contribution of
52 the high valley degenerate Σ -band, which again results in poorer Seebeck coefficients compared
53 to PbTe [9]. To overcome these limitations, several cationic dopants have been introduced into
54 SnTe, including Ag [10], Na[11], Zn [12], In [13], Sb [14], Bi [15], Mg [16], Ga [17] and V
55 [18]. While atomic doping has shown some success in reducing the overall thermal conductivity,
56 the enhancement of the Seebeck coefficient has been moderate.

57 An alternative approach to improve the TE performance of SnTe is combining this material

58 with a second compound into an alloy or a composite. The introduction of additional phases
59 generally creates a variety of defects that enhance phonon scattering, but its effect on the power
60 factor is usually limited. A particularly interesting case is the combination of tin chalcogenides
61 with I–V–VI₂ compounds (I= Ag, Li, Na; V=Sb, Bi; and VI=Se, Te). These alloys/composites,
62 which were first explored in the 1960s [19], demonstrate notable performance when using
63 I–V–VI₂ compounds such as AgSbSe₂ [20], AgSbTe₂ [21, 22], AgBiSe₂ [23], AgBiTe₂ [24, 25],
64 NaSbTe₂ and NaBiTe₂ [8, 26, 27]. In these rock-salt-based I–V–VI₂ compounds, there is strong
65 hybridization and repulsion between the lone ns² pair electrons of group V cations and the p-
66 orbitals of group VI₂ anions, resulting in strong phonon-phonon interactions [26, 28]. For
67 instance, Slade et al. showed that alloying SnTe with NaSbTe₂ significantly increases the
68 concentration of Sn vacancies [8]. Contrary to the usual expectation that an increase in
69 vacancies and thus hole concentration would decrease the Seebeck coefficient, their research
70 found the opposite effect. The higher Sn vacancy concentration results in a convergence of the
71 valence band and a reduction in the bandgap increasing the Seebeck coefficient. Benefiting
72 from the favorable effects of band convergence, vacancy-enhanced hole concentration, and
73 lattice softening, a high ZT value of 1.2 at 800–900 K was achieved.

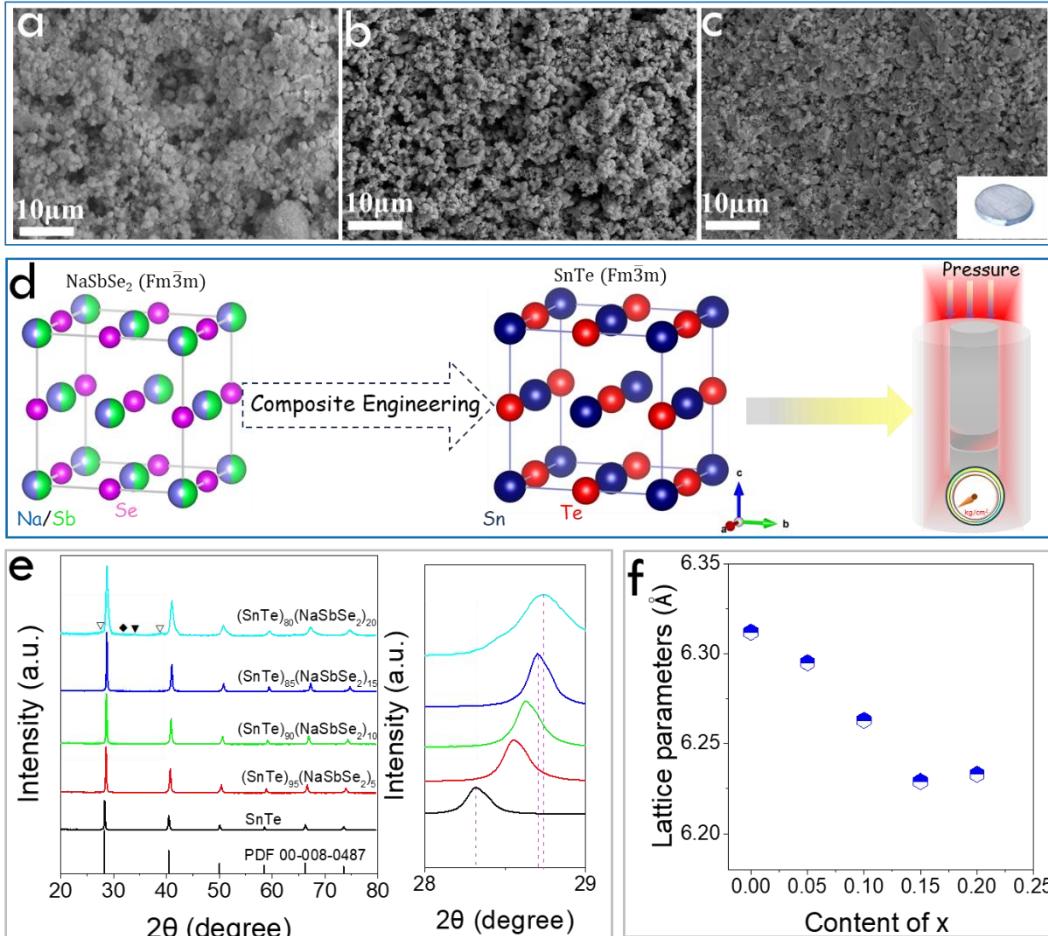

74 As an alternative to NaSbTe₂, the Te-free NaSbSe₂ shows promising potential in areas such
75 as solar cells [29, 30], and like other similar compounds such as NaSbTe₂ and NaBiTe₂ is known
76 to exist in a cation-disordered NaCl-like cubic structure. Inspired by the valence band
77 convergence, band gap narrowing, and low sound velocity of SnTe/NaSbTe₂ alloys, it is of
78 interest to examine whether the introduction of other rock-salt compounds can optimize the
79 thermal and electrical properties of SnTe [31-34].

80 Our previous research has demonstrated that controlling the chemical composition of TE
81 materials at the nanoscale through multi-component alloy engineering can effectively improve
82 the TE properties of the materials [31, 35-37]. This work for the first time demonstrates a
83 feasible approach to engineering a SnTe alloy with I-V-VI₂ compounds, mainly using colloidal
84 NaSbSe₂ nanocrystals (NCs) as building blocks. We further show the formed alloys to be
85 characterized by exceptional transport properties and TE performance.

86 **2. Results and discussion**

87 Gram-scale batches of SnTe nanoparticles (NPs) were produced using a high-yield and
88 scalable thermal decomposition approach at 280 °C. As described in the experimental methods
89 (Supporting Information, SI), to prepare SnTe NPs, Sn^{2+} ion salts were first coordinated with
90 oleylamine (OAm) to form Sn-OAm complexes and afterward combined with tri-n-
91 octylphosphine telluride (TOPTe). The obtained precursor was quickly heated to 280 °C and
92 kept in an Ar atmosphere for 1 h to obtain SnTe NPs with good crystallinity. The synthesis
93 method used was highly scalable, allowing the facile production of ~6.2 g of high-quality SnTe
94 NCs per batch (Figure 1a). Figure 1b shows a high-resolution transmission electron microscopy
95 (HRTEM) micrograph of the produced SnTe NCs. The fast Fourier transform (FFT) of the
96 HRTEM image reveals that this nanostructure has a crystal phase that can be assigned to the
97 cubic rock-salt SnTe phase (space group=Fm $\bar{3}$ m) with $a=b=c=6.2900 \text{ \AA}$. Most of the obtained
98 SnTe NCs display irregular but faceted morphologies and a size of about ~100 nm, as shown
99 by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM,
100 Figures 1c and S1). Electron energy loss spectroscopy (EELS) chemical composition maps
101 obtained from the red squared regions in the HAADF-STEM micrograph show a homogeneous
102 distribution of Sn and Te. Powder X-ray diffraction (XRD) patterns revealed all diffraction
103 peaks to match well with the cubic rock-salt crystal structure of SnTe (space group Fm $\bar{3}$ m, PDF
104 00-008-0487, Figure 1h), which is also consistent with the results derived from HRTEM
105 analyses.

106 NaSbSe₂ NCs were produced using a colloidal hot injection route [34]. Briefly, a sodium
107 oleate solution was combined with metal Sb acetate in a mixed solvent system of OAm and 1-
108 octadecene (ODE), and degassed at 105 °C for 1h to remove low-boiling point impurities.
109 Subsequently, a thiol-Se complex was injected at 240 °C under an Ar atmosphere. Detailed
110 procedures can be found in the experimental section (SI). NaSbSe₂ NCs show a spherical shape
111 with an average size of ~44 ± 12 nm (Figure 1d, e). Figure 1f shows an HRTEM image of the
112 produced NaSbSe₂ NCs. STEM-EDS line profiles show the presence of Na, Sb, and Se in the
113 NCs (Figure 1g), and Na:Sb:Se stoichiometry of 1:1:2 is confirmed by SEM-EDS analysis
114 (Figure S2). XRD patterns in Figure 1h exhibit the NaSbSe₂ NCs to have the expected cubic
115 rock-salt crystal structure (space group Fm $\bar{3}$ m, PDF 004-005-7023).

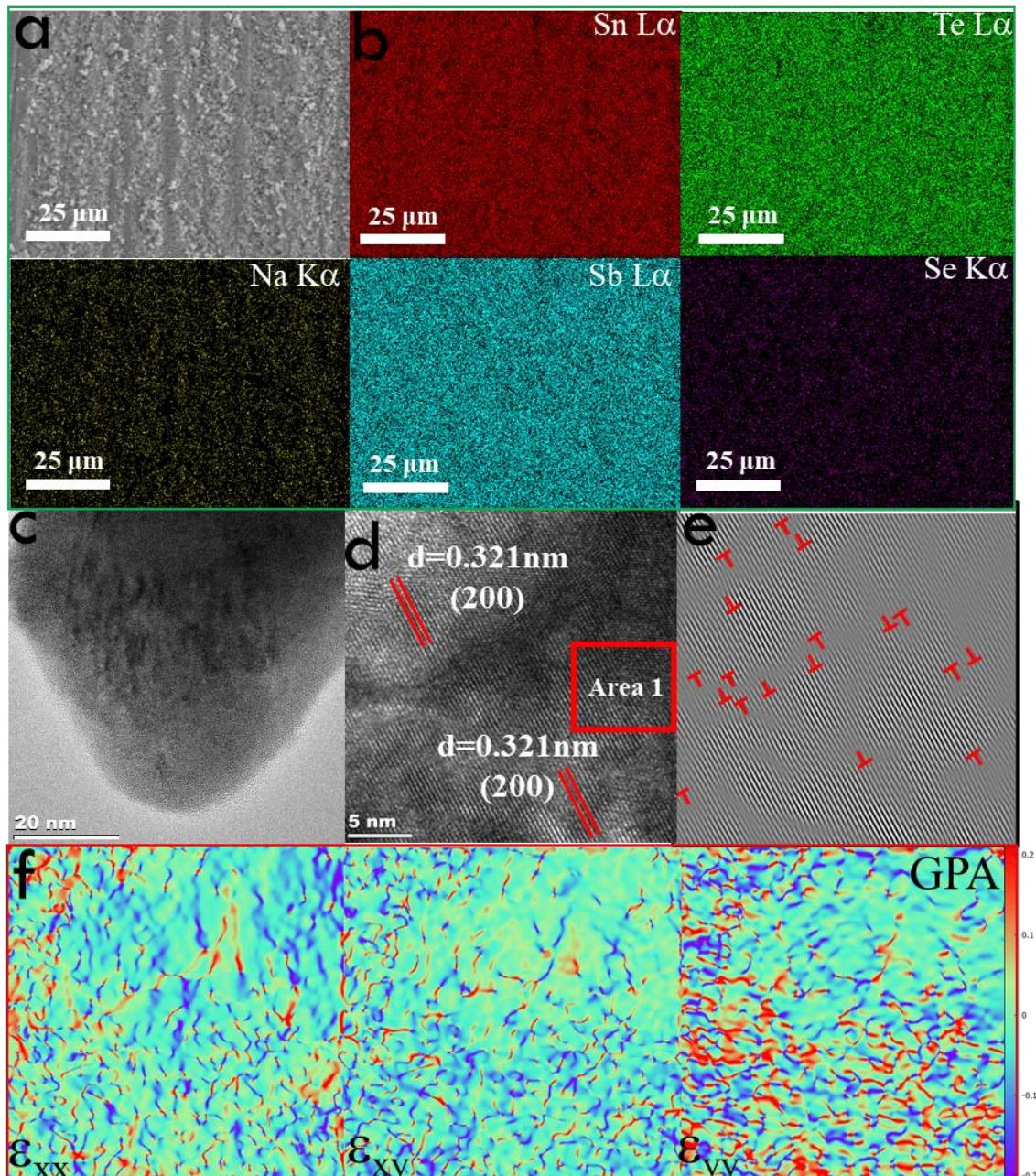


116

117 **Figure 1.** (a) Photograph of the amount of dried SnTe powders obtained in a single batch. (b) HRTEM
 118 micrograph, power spectrum, and detail of the orange squared region. From the crystalline domain,
 119 the SnTe lattice fringe distances were measured to be 0.318 nm, 0.223 nm, and 0.314 nm, at
 120 45.06° and 90.40° which could be interpreted as the cubic SnTe phase, visualized along its [100]
 121 zone axis. (c) EELS chemical composition maps obtained from the area of the STEM micrograph.
 122 Individual Sn M_{4,5}-edges at 485 eV (red), Te M_{4,5}-edges at 572 (green), and Sn-Te. (d) TEM image of
 123 the NaSbSe₂ NCs. (e) Size distribution of the NaSbSe₂ NCs. (f) HRTEM image of a of NaSbSe₂ NCs,
 124 The inset shows the fast Fourier transform (FFT) of the corresponding HRTEM image. (g) The blue,
 125 green, and red lines in the representative STEM-EDS line scan profiles correspond to signals from Na,
 126 Sb and Se atoms, respectively. (h) Powder X-ray diffraction patterns (XRD) of the SnTe and NaSbSe₂
 127 phases.

128

129 $(\text{SnTe})_{1-x}(\text{NaSbSe}_2)_x$ materials were produced by mixing proper molar ratios ($x=0, 0.05,$
130 $0.10, 0.15$ and 0.20) of the colloidal SnTe and NaSbSe₂ NCs in hexane. The solvent was
131 afterward removed by evaporation. SEM micrographs of the dried powders show a
132 homogeneous mixture of the two phases (Figure 2a and Figure S3). After the solvent
133 evaporation process, the obtained $(\text{SnTe})_{1-x}(\text{NaSbSe}_2)_x$ powders were annealed at high
134 temperatures to remove organic residues. The annealed particles almost maintain their
135 uniformly dispersed geometries and single SnTe crystalline phase (Figure 2b, Figure S4 and S5).
136 Subsequently, the powders were hot-pressed into round-like pellet alloys (Figure 2d). The fresh
137 SEM fracture surface of a pellet shows that the consolidated particles have no obvious grain
138 growth after hot pressing (Figure 2c and Figure S6). Besides, EDS composition maps prove
139 that the content of various elements is consistent with the nominal composition (Table S1).
140 XRD analysis was used to examine whether the annealed mixture of SnTe and NaSbSe₂ forms
141 an alloy after the sintering process. The XRD patterns of $(\text{SnTe})_{1-x}(\text{NaSbSe}_2)_x$ pellets are shown
142 in Figure 2e. All the XRD patterns can be indexed with the NaCl-structure of SnTe (space group
143 $\text{Fm}\bar{3}\text{m}$), with no diffraction peaks of NaSbSe₂ being discerned even in the $x=0.15$ sample. Only
144 the enlarged XRD pattern of the sintered $(\text{SnTe})_{0.8}(\text{NaSbSe}_2)_{0.2}$ pellet shows minor secondary
145 phase peaks that could be assigned to Te- or Sb-based phases (Figure S7). As observed in the
146 enlarged XRD view of the 2θ between 28° and 29° , the (200) diffraction peaks of $(\text{SnTe})_{1-}$
147 $x(\text{NaSbSe}_2)_x$ samples shift to a higher angle compared to bare SnTe, indicating that the lattice
148 parameter gradually shrinks with the incorporation of an increasing NaSbSe₂ content. This
149 lattice shrinkage can be attributed to the incorporation of Na, Sb, and Se into the SnTe lattice
150 taking into account that the ionic radius of Na^+ (0.97 Å) and Sb^{3+} (~ 0.76 Å) are smaller than
151 that of Sn^{2+} (1.18 Å) [38, 39], and the ionic radius of Se^{2-} (~ 1.84 Å) is smaller than that of Te^{2-}
152 (~ 2.07 Å) [40]. SnTe and NaSbSe₂ have similar cubic structures, and their lattice constants are
153 6.29 and 5.97 Å, respectively. As shown in Figure 2f, the SnTe lattice shrinkage with an
154 increasing amount of NaSbSe₂ follows Vegard's law in the whole range tested except for $x=0.20$
155 (Figure 2f) [41]. The $x=0.20$ sample surprisingly deviates from the linear trend of the lattice
156 parameters in Figure 2f, which indicates that the solubility limit of NaSbSe₂ in SnTe has been
157 reached. This result is consistent with observing minor secondary phases for this high NaSbSe₂
158 concentration.

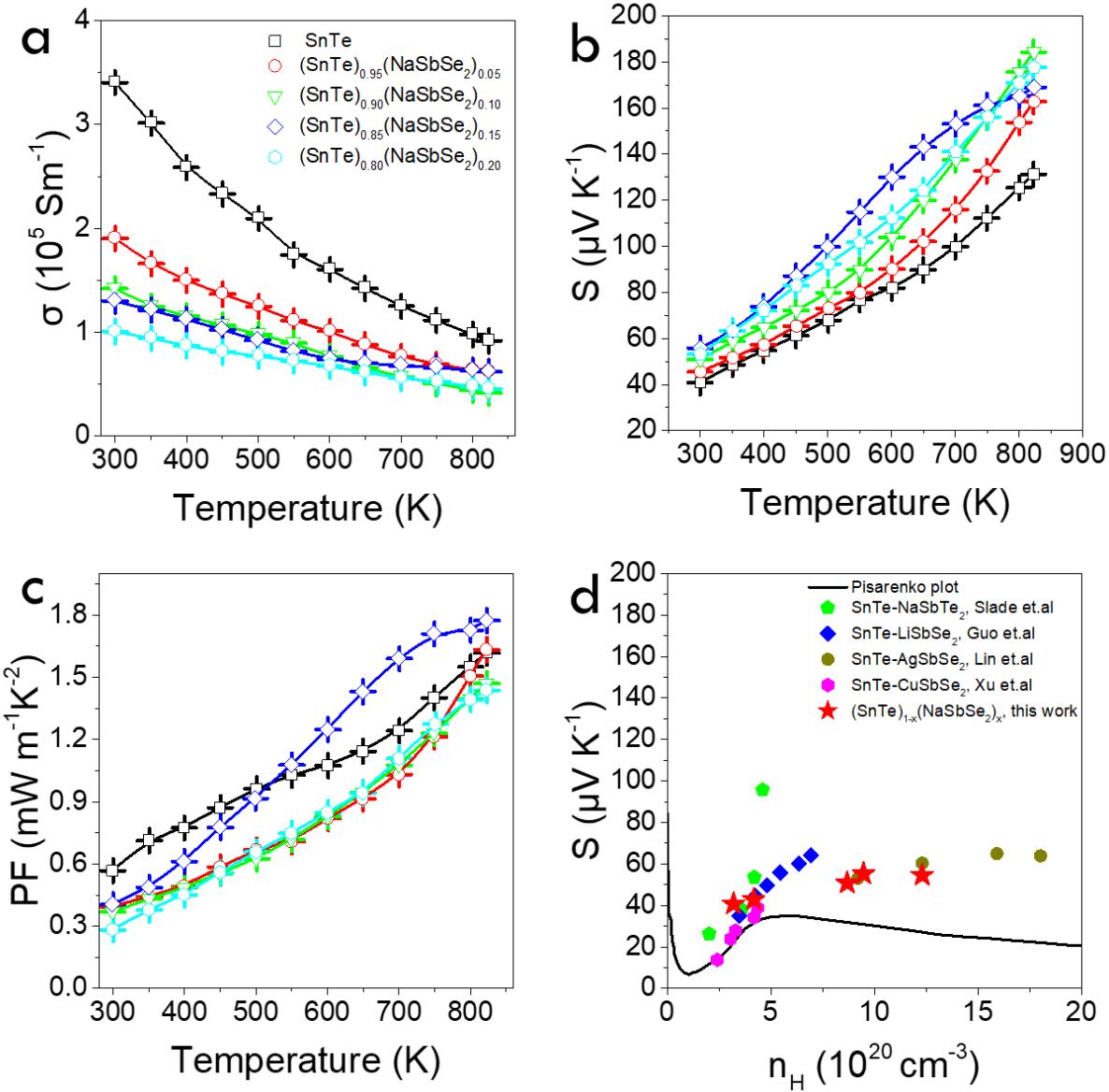

159

160 **Figure 2.** (a-c) SEM image of the (a) dried mixture, (b) annealed mixing powders, and (c) fractured
 161 pellet surface of (SnTe)_{0.85}(NaSbSe₂)_{0.15}. The inset is the corresponding pellet with a diameter of 10 mm.
 162 (d) Schematic rock-salt crystal structures of the cubic SnTe and NaSbSe₂. (e) XRD patterns for sintered
 163 (SnTe)_{1-x}(NaSbSe₂)_x (x=0, 0.05, 0.10, 0.15 and 0.20) pellets and enlarged XRD peaks corresponding to
 164 (200) at 2θ between 28°-29°. (f) Calculated lattice parameters for (SnTe)_{1-x}(NaSbSe₂)_x (x=0, 0.05, 0.10,
 165 0.15 and 0.20).

166

167 SEM-EDS analysis of the (SnTe)_{0.85}(NaSbSe₂)_{0.15} shows Sn, Te, Na, Sb, and Se to be
 168 evenly distributed within the pellet (Figure 3a and b). As shown in the HRTEM image of Figure
 169 3c, some dark contrast areas are assigned to strain clusters caused by severe lattice distortion
 170 [42]. Besides, the HRTEM micrograph of Figure 3d identifies an interplanar spacing distance
 171 of ~0.321 nm corresponding to the (200) planes of cubic SnTe. The inverse fast Fourier
 172 transform (IFFT) image in Figure 3f shows dense dislocations (marked as “ \perp ”), which can
 173 effectively increase phonon scattering. In contrast, the HRTEM analysis of undoped SnTe

174 shows a defect-free ordered lattice (Figure S8). These results demonstrate that incorporating
 175 NaSbSe₂ promotes the formation of dislocations in the alloys. In addition, the geometric phase
 176 analysis (GPA) verifies the presence of strains in the different directions of ϵ_{xx} , ϵ_{xy} , and ϵ_{yy} . The
 177 obvious strains in the (SnTe)_{0.85}(NaSbSe₂)_{0.15} sample in Figure 3f are caused by substitution
 178 point defects and possible vacancies [43]. These strain fields are believed to hamper phonon
 179 propagation and reduce lattice thermal conductivity [44].


180 **Figure 3.** (a) SEM image of the polished surface of the sintered (SnTe)_{0.85}(NaSbSe₂)_{0.15} pellet, and (b)
 181 the corresponding EDS mappings of Sn, Te, Na, Sb, and Se, respectively. (c,d) HRTEM images. (e) IFFT
 182

183 image of the selected red region area 1 in (d). (f) GPA results from (d) showing the strain maps of tensors
184 ε_{xx} , ε_{xy} , and ε_{yy} .

185
186 The electronic transport properties of $(\text{SnTe})_{1-x}(\text{NaSbSe}_2)_x$ ($x=0, 0.05, 0.10, 0.15$ and 0.20)
187 samples are plotted in Figure 4a. The electrical conductivity of all these samples decreases
188 monotonically with increasing temperature, exhibiting a degenerate semiconductor behavior.
189 As expected, the electrical conductivity drops significantly with increasing the NaSbSe_2
190 fraction at room temperature. For instance, the undoped SnTe sample without NaSbSe_2 has a
191 large electrical conductivity of $3.40 \times 10^5 \text{ S m}^{-1}$ at room temperature, which decreases from
192 $1.90 \times 10^5 \text{ S m}^{-1}$ to $1.01 \times 10^5 \text{ S m}^{-1}$ with increasing NaSbSe_2 loadings from 0.05 to 0.20 . The
193 room-temperature Hall carrier concentrations p_H is shown in Table S2. The carrier concentration
194 of $(\text{SnTe})_{1-x}(\text{NaSbSe}_2)_x$ samples increases with the NaSbSe_2 fraction, from $3.20 \times 10^{20} \text{ cm}^{-3}$ for
195 un-doped SnTe to $1.23 \times 10^{21} \text{ cm}^{-3}$ after NaSbSe_2 content of 0.20 . In contrast, the charge carrier
196 mobility strongly decreases with the introduction of NaSbSe_2 , resulting in reduced electrical
197 conductivity. Previous studies have shown that Na doping in the SnTe matrix increases Sn
198 vacancies and, thus, the carrier concentration [11]. Here, we observed that introducing Na and
199 Sb into Sn sites reduces the formation energy of Sn vacancies, thereby ultimately increasing the
200 hole carrier concentration of the alloys [22]. Similar enhancement of carrier concentrations and
201 decreased mobilities are found in the SnTe -based TE studies such as LiSbTe_2 [45], NaSbTe_2 [8],
202 CuSbSe_2 [27], AgSbSe_2 [20, 46] and AgSbTe_2 [21, 22, 47].

203 Figure 4b shows the temperature dependence of the Seebeck coefficient for $(\text{SnTe})_{1-x}(\text{NaSbSe}_2)_x$ ($x=0, 0.05, 0.10, 0.15$ and 0.20) pellets. All samples exhibit *p*-type characteristics
204 with positive Seebeck coefficients, indicating that holes dominate the electronic transport. For
205 each $(\text{SnTe})_{1-x}(\text{NaSbSe}_2)_x$ sample, the Seebeck coefficient monotonically enhances with
206 temperature. The Seebeck coefficient values at 823 K increase from $131.2 \mu\text{V K}^{-1}$ for pristine
207 SnTe to $184.3 \mu\text{V K}^{-1}$ for $(\text{SnTe})_{0.90}(\text{NaSbSe}_2)_{0.10}$. However, only for the $(\text{SnTe})_{0.85}(\text{NaSbSe}_2)_{0.15}$
208 sample in the high-temperature region, a significant improvement in the power factor after the
209 introduction of NaSbSe_2 is obtained. It is attributed to the significantly reduced electrical
210 conductivity that largely neutralizes the increase of the Seebeck coefficient (Figure 4c). At 823
211 K, the power factor improves from 1.62 for pure SnTe to $1.77 \text{ mW m}^{-1}\text{K}^{-2}$ for

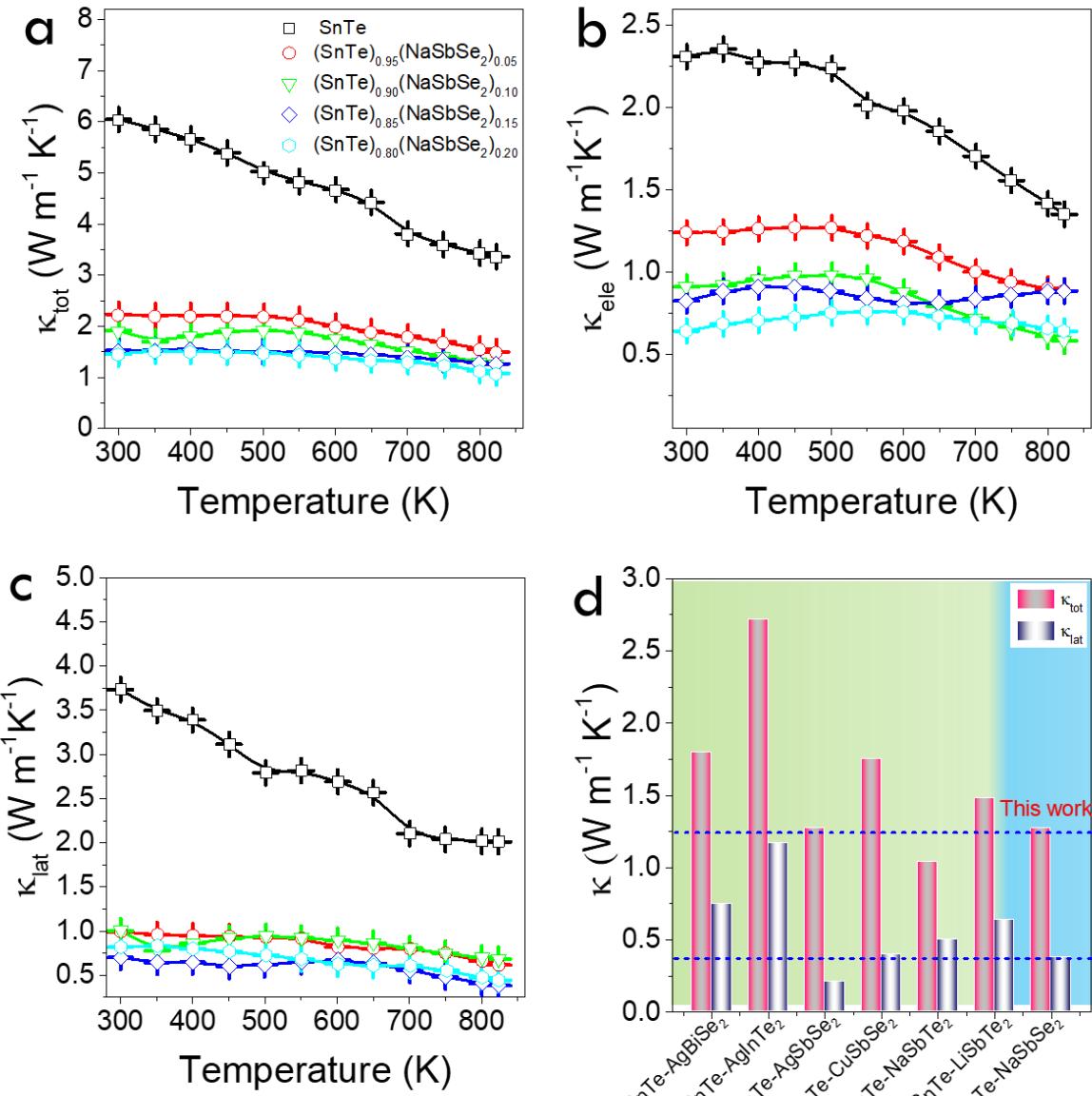
213 $(\text{SnTe})_{0.85}(\text{NaSbSe}_2)_{0.15}$. The Seebeck coefficient as a function of carrier concentration at room
 214 temperature based on the two-valence band model is shown in Figure 4d. The Seebeck
 215 coefficient values of the alloys at room temperature are higher than the theoretical Pisarenko
 216 curve (solid black line), which is associated with the reached band convergence [13, 26, 48].

217
 218 **Figure 4.** Temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient, and (c) power
 219 factor of $(\text{SnTe})_{1-x}(\text{NaSbSe}_2)_x$ ($x=0, 0.05, 0.10, 0.15$ and 0.20). (d) Seebeck coefficient as a function of
 220 carrier concentration at room temperature. The theoretical Pisarenko curve (solid line) is based on the
 221 two valence band model, and comparative data include SnTe-NaSbTe_2 [8], SnTe-LiSbSe_2 [45], SnTe-
 222 AgSbSe_2 [20], and SnTe-CuSbSe_2 [27] is included.

223
 224 As shown in Figure 5a, the total thermal conductivity (κ_{tot}) significantly declines as the

225 NaSbSe₂ fraction increases. The total thermal conductivity drops sharply from 3.36 W m⁻¹ K⁻¹
 226 for pristine SnTe to 1.50 W m⁻¹ K⁻¹ for (SnTe)_{0.95}(NaSbSe₂)_{0.05} at 823 K, which further
 227 decreases to 1.27 W m⁻¹ K⁻¹ at x=0.15 and 1.09 W m⁻¹ K⁻¹ at x=0.20. At ambient temperature,
 228 the κ_{tot} value of 6.05 W m⁻¹ K⁻¹ obtained before incorporating NaSbSe₂ is decreased to 2.23 W
 229 m⁻¹ K⁻¹ for the (SnTe)_{0.95}(NaSbSe₂)_{0.05} sample, which represents a decline of 171% compared
 230 to undoped SnTe. The dramatic reduction of κ_{tot} is attributed to the suppression of both
 231 electronic and lattice contributions. The electronic thermal conductivity (κ_{ele}) can be calculated
 232 by the Wiedemann-Franz formula $\kappa_{\text{ele}} = L\sigma T$, where L, σ , and T are the Lorentz number,
 233 electrical conductivity, and absolute temperature, respectively. The Lorentz number L is
 234 obtained from a single parabolic band (SPB) model, thus calculated according to the
 235 equation $L = 1.5 + \exp\left[-\frac{|S|}{116}\right] \times 10^{-8} \text{ V}^2\text{K}^{-2}$ [49]. The resultant temperature dependence
 236 Lorenz number is shown in Figure S9. The calculated κ_{ele} is plotted in Figure 5b. In addition,
 237 the contribution of lattice thermal conductivity (κ_{lat}) to the total thermal conductivity is
 238 calculated through $\kappa_{\text{lat}} = \kappa_{\text{tot}} - \kappa_{\text{ele}}$. The incorporation of NaSbSe₂ significantly decreased the
 239 lattice thermal conductivity (Figure 5c), down to a minimum of 0.38 W m⁻¹ K⁻¹ for
 240 (SnTe)_{0.85}(NaSbSe₂)_{0.15} at 823 K, which is even lower than the Debye–Cahill amorphous limit
 241 ($\kappa_{\text{lat, min}} = 0.4 \text{ W m}^{-1} \text{ K}^{-1}$) at high temperature for SnTe (Figure 5c) [50]. Figure 5d compares
 242 the thermal conductivity of previously reported SnTe-I–V–VI₂-alloys [8, 20, 23, 27, 41, 45].
 243

244 The lattice thermal conductivity is a relatively independent parameter, which can be
 245 reduced to a minimum through microstructural defects engineering [51]. To further clarify the
 246 origin of the decreased lattice thermal conductivity in (SnTe)_{1-x}(NaSbSe₂)_x samples, the lattice
 247 thermal conductivity can be described as follows [52]:
 248

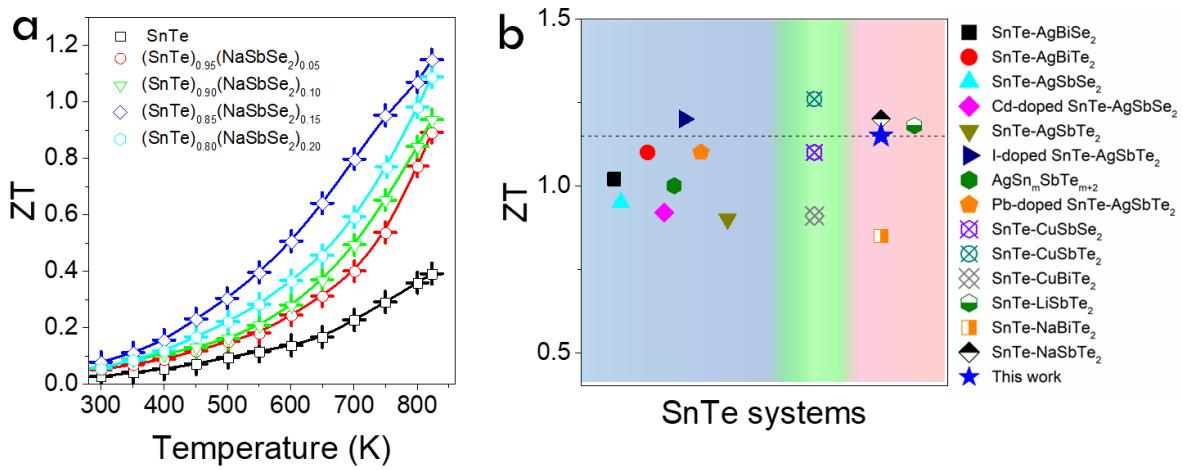

$$\kappa_{\text{lat}} = \frac{1}{3} C_V v_g l = \frac{1}{3} C_V v_g^2 \tau \quad (l = v_g \tau)$$

249 where C_V , v_g , l , and τ denote total heat capacity at constant volume, phonon group velocity,
 250 phonon mean free path (MFP), and phonon relaxation time, respectively. Achieving lower
 251 values of κ_{lat} requires low C_V , slow v_g , and short τ . The usual strategy to minimize τ for
 252 reducing κ_{lat} is mainly to introduce multi-scale phonon scattering centers. Common phonon
 253 scattering centers include point defects (substitutions, interstitials, and vacancies), dislocations
 and strains, nanostructure precipitates, and grain boundaries [53]. Phonons are scattered at

254 different rates depending on their frequency on these different defects. For instance, high-
255 frequency phonons (characterized by short wavelengths) can be effectively scattered by point
256 defects, dislocations, and strains can effectively scatter mid-frequency phonons, and long-
257 wavelength phonons can be scattered by grain boundaries and interphases [54]. The total
258 phonon scattering relaxation τ_{tot}

259
$$\tau^{-1} = \tau_{PD}^{-1} + \tau_{NP}^{-1} + \tau_{PP}^{-1} + \tau_{IF}^{-1} + \tau_{DC}^{-1} \dots$$

260 where τ_{PD} , τ_{NP} , τ_{PP} , τ_{IF} , and τ_{DC} are the relaxation time caused by the point defects,
261 nanoprecipitates, phonon–phonon interactions, interfaces, and dislocation scattering,
262 respectively. In $(\text{SnTe})_{1-x}(\text{NaSbSe}_2)_x$ ($x=0.05, 0.10, 0.15$, and 0.20) samples, the disordered
263 cationic positions should be randomly occupied by Sn, Na, and Sb, while Se atoms replace part
264 of the anionic Te positions. The presence of multiple different atoms in the same position creates
265 more considerable disorder in the system that causes significant phonon scattering [55]. Besides,
266 the presence of strain clusters and dense dislocations was confirmed by the HRTEM images
267 discussed previously. Thus, overall, the incorporation of NaSbSe_2 NCs into SnTe introduces
268 various phonon scattering centers such as Sn vacancies, substitution point defects, dislocations,
269 strains, and some impurities in case of $x=0.20$, which enable a dramatic reduction in κ_{lat}
270 through scattering phonons in a wide wavelength range, which, in general, contributes to
271 improving the ZT value [53].


272

273 **Figure 5.** Temperature dependence of (a) total thermal conductivity, (b) electrical thermal conductivity,
274 and (c) lattice thermal conductivity of $(\text{SnTe})_{1-x}(\text{NaSbSe}_2)_x$ ($x=0, 0.05, 0.10, 0.15$ and 0.20). (d)
275 Comparison of the total thermal conductivity and lattice thermal conductivity of SnTe-based TE
276 materials: SnTe-AgBiSe₂ [23], SnTe-AgInTe₂ [41], SnTe-AgSbSe₂ [20], SnTe-CuSbSe₂ [27], SnTe-
277 NaSbTe₂ [8], SnTe-LiSbTe₂ [45].

278

279 The temperature-dependent TE ZT values of $(\text{SnTe})_{1-x}(\text{NaSbSe}_2)_x$ ($x=0, 0.05, 0.10, 0.15$,
280 and 0.20) samples are plotted in Figure 6a. All the $(\text{SnTe})_{1-x}(\text{NaSbSe}_2)_x$ samples display higher
281 ZT values than pristine SnTe due to the band convergence and especially the enhanced phonon
282 scattering brought by the NaSbSe₂ incorporation. $(\text{SnTe})_{0.85}(\text{NaSbSe}_2)_{0.15}$ reached a peak ZT

value of 1.15 at 823 K, which is \sim 193% higher than intrinsic SnTe. Besides, the obtained ZT values reported here overcome those of most state-of-the-art SnTe-(I-V-VI₂) materials, as summarized in Figure 6b. Additionally, the TE performance of the (SnTe)_{0.85}(NaSbSe₂)_{0.15} sample is stable over the entire measurement temperature range due to its good thermal stability (Figure S10). The above results demonstrate the feasibility of boosting the TE performance of SnTe by synergistically enhancing phonon scattering and band convergence.

289

290 **Figure 6.** Temperature dependence of (a) ZT value of (SnTe)_{1-x}(NaSbSe₂)_x alloys (x=0, 0.05, 0.10, 0.15, and 0.20). (b) Comparison of maximum ZT values of the (SnTe)_{0.85}(NaSbSe₂)_{0.15} and previously reported SnTe-based systems (AgBiSe₂[23], AgBiTe₂ [56], AgSbSe₂ [20], Cd-AgSbSe₂[46], AgSbTe₂/I-doped AgSbTe₂ [22], AgSn_mSbTe_{m+2} [57], Pb-doped AgSbTe₂ [21], CuSbSe₂ [27], CuSbTe₂/CuBiTe₂ [58], LiSbTe₂ [45], NaSbTe₂/NaBiTe₂ [8]).

295

296 3. Conclusions

297 In summary, a series of (SnTe)_{1-x}(NaSbSe₂)_x alloys (x=0, 0.05, 0.10, 0.15, and 0.20) was 298 prepared via the solution mixing, annealing, and hot-pressing of SnTe NPs and NaSbSe₂ NCs. 299 Experimental results indicate that NaSbSe₂ NCs alloyed with SnTe NPs can significantly 300 increase the Seebeck coefficient of SnTe due to band convergence. Besides, the incorporation 301 of NaSbSe₂ substantially reduces the thermal conductivity of SnTe. This phenomenon is 302 explained by considering the addition of NaSbSe₂ NCs leading to the occurrence of multiscale 303 defects, such as Sn vacancies, substitutions, dislocations, strain, and even secondary phases. 304 Overall, an ultralow lattice thermal conductivity value of 0.38 W m⁻¹K⁻¹ at 823 K was obtained

305 for the $(\text{SnTe})_{0.85}(\text{NaSbSe}_2)_{0.15}$ sample. Ultimately, ZT values up to 1.15 at 823 K were achieved
306 for the $(\text{SnTe})_{0.85}(\text{NaSbSe}_2)_{0.15}$ sample, which also showed high thermal stability.

307

308

309 **Declaration of Competing Interest**

310 The authors declare no competing financial interest.

311

312

313 **CRediT authorship contribution statement**

314 Bingfei Nan designed and carried out experiments and wrote a first version of the
315 manuscript. Cheng Chang, Nilotpal Kapuria, Xu Han, Mengyao Li, Kevin M. Ryan, Jordi
316 Arbiol performed characterization of materials and analyzed the obtained data. Andreu Cabot
317 revise the final version of the manuscript.

318

319

320 **Data Availability**

321 Data will be made available on request.

322

323

324 **Acknowledgments**

325 B.F.N. thanks the China Scholarship Council (CSC) for the scholarship support and
326 acknowledges funding from the FWF “Lise Meitner Fellowship” grant agreement M 2889-N.
327 N.K. acknowledges funding from Irish Research Council (IRC) under Grant Number
328 IRCLA/2017/285. K.M.R. acknowledges Science Foundation Ireland (SFI) under the Principal
329 Investigator Program under contract no. 16/IA/4629 and under grant no. SFI 16/M-ERA/3419.
330 ICN2 acknowledges funding from Generalitat de Catalunya 2021SGR00457. This study is part
331 of the Advanced Materials programme and was supported by MCIN with funding from
332 European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat de Catalunya. ICN2 is
333 supported by the Severo Ochoa program from Spanish MCIN / AEI (Grant No.: CEX2021-
334 001214-S) and is funded by the CERCA Programme / Generalitat de Catalunya. ICN2 is
335 founding member of e-DREAM.X [59].

336

337

338 **Appendix A. Supporting information**

339 Supplementary data associated with this article can be found in the online version at XXX.

340

341

342 **References**

- 343 [1] Z. Bu, X. Zhang, Y. Hu, Z. Chen, S. Lin, W. Li, C. Xiao, Y. Pei, A record thermoelectric efficiency in tellurium-
344 free modules for low-grade waste heat recovery, *Nat. Commun.* 13(1) (2022) 237.
- 345 [2] Z. Liang, C. Xu, S. Song, X. Shi, W. Ren, Z. Ren, Enhanced Thermoelectric Performance of p-Type Mg₃Sb₂
346 for Reliable and Low-Cost all-Mg₃Sb₂-Based Thermoelectric Low-Grade Heat Recovery, *Adv. Funct. Mater.*
347 (2022) 2210016.
- 348 [3] B. Qin, L.-D. Zhao, Moving fast makes for better cooling, *Science* 378(6622) (2022) 832-833.
- 349 [4] B. Qin, D. Wang, X. Liu, Y. Qin, J.-F. Dong, J. Luo, J.-W. Li, W. Liu, G. Tan, X. Tang, J.-F. Li, J. He, L.-D.
350 Zhao, Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments,
351 *Science* 373(6554) (2021) 556-561.
- 352 [5] Z. Zhou, Y. Huang, B. Wei, Y. Yang, D. Yu, Y. Zheng, D. He, W. Zhang, M. Zou, J.-L. Lan, J. He, C.-W. Nan,
353 Y.-H. Lin, Compositing effects for high thermoelectric performance of Cu₂Se-based materials, *Nat. Commun.*
354 14(1) (2023) 2410.
- 355 [6] W. Li, S. Lin, X. Zhang, Z. Chen, X. Xu, Y. Pei, Thermoelectric Properties of Cu₂SnSe₄ with Intrinsic Vacancy,
356 *Chem. Mater.* 28(17) (2016) 6227-6232.
- 357 [7] Y. Wu, P. Nan, Z. Chen, Z. Zeng, R. Liu, H. Dong, L. Xie, Y. Xiao, Z. Chen, H. Gu, W. Li, Y. Chen, B. Ge, Y.
358 Pei, Thermoelectric Enhancements in PbTe Alloys Due to Dislocation-Induced Strains and Converged Bands,
359 *Adv. Sci.* 7(12) (2020) 1902628.
- 360 [8] T.J. Slade, K. Pal, J.A. Grovogui, T.P. Bailey, J. Male, J.F. Khouri, X. Zhou, D.Y. Chung, G.J. Snyder, C. Uher,
361 V.P. Dravid, C. Wolverton, M.G. Kanatzidis, Contrasting SnTe–NaSbTe₂ and SnTe–NaBiTe₂ Thermoelectric
362 Alloys: High Performance Facilitated by Increased Cation Vacancies and Lattice Softening, *J. Am. Chem.
363 Soc.* 142(28) (2020) 12524-12535.
- 364 [9] Z. Chen, X. Guo, F. Zhang, Q. Shi, M. Tang, R. Ang, Routes for advancing SnTe thermoelectrics, *J. Mater.
365 Chem. A* 8(33) (2020) 16790-16813.
- 366 [10] M.H. Lee, D.-G. Byeon, J.-S. Rhyee, B. Ryu, Defect chemistry and enhancement of thermoelectric
367 performance in Ag-doped Sn_{1+δ-x}Ag_xTe, *J. Mater. Chem. A* 5(5) (2017) 2235-2242.
- 368 [11] A. Abbas, M. Nisar, Z.H. Zheng, F. Li, B. Jabar, G. Liang, P. Fan, Y.-X. Chen, Achieving High Thermoelectric
369 Performance of Eco-Friendly SnTe-Based Materials by Selective Alloying and Defect Modulation, *ACS Appl.
370 Mater. Interfaces* 14 (2022) 25802-25811.
- 371 [12] D.K. Bhat, U.S. Shenoy, Zn: a versatile resonant dopant for SnTe thermoelectrics, *Mater. Today Phys.* 11
372 (2019) 100158.
- 373 [13] Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, Z. Ren, High
374 thermoelectric performance by resonant dopant indium in nanostructured SnTe, *Proc. Natl. Acad. Sci. U.S.A.*
375 110(33) (2013) 13261-13266.
- 376 [14] A. Banik, B. Vishal, S. Perumal, R. Datta, K. Biswas, The origin of low thermal conductivity in Sn_{1-x}Sb_xTe:
377 phonon scattering via layered intergrowth nanostructures, *Energy Environ. Sci.* 9(6) (2016) 2011-2019.
- 378 [15] Z. Zhou, J. Yang, Q. Jiang, Y. Luo, D. Zhang, Y. Ren, X. He, J. Xin, Multiple effects of Bi doping in enhancing

379 the thermoelectric properties of SnTe, *J. Mater. Chem. A* 4(34) (2016) 13171-13175.

380 [16] A. Banik, U.S. Shenoy, S. Anand, U.V. Waghmare, K. Biswas, Mg Alloying in SnTe Facilitates Valence Band
381 Convergence and Optimizes Thermoelectric Properties, *Chem. Mater.* 27(2) (2015) 581-587.

382 [17] R. Al Rahal Al Orabi, J. Hwang, C.-C. Lin, R. Gautier, B. Fontaine, W. Kim, J.-S. Rhyee, D. Wee, M. Fornari,
383 Ultralow Lattice Thermal Conductivity and Enhanced Thermoelectric Performance in SnTe:Ga Materials,
384 *Chem. Mater.* 29(2) (2017) 612-620.

385 [18] U.S. Shenoy, D.K. Bhat, Vanadium: A Protean Dopant in SnTe for Augmenting Its Thermoelectric
386 Performance, *ACS Sustainable Chem. Eng.* 9(38) (2021) 13033-13038.

387 [19] X. Shi, Z. Ren, When IV-VI Meets I-V-VI₂: A Reinvigorating Thermoelectric Strategy for Tin
388 Monochalcogenides, *ChemNanoMat* 9(1) (2023) e202200396.

389 [20] S.-X. Lin, X. Tan, H. Shao, J. Xu, Q. Wu, G.-Q. Liu, W.-H. Zhang, J. Jiang, Ultralow Lattice Thermal
390 Conductivity in SnTe by Manipulating the Electron-Phonon Coupling, *J. Phys. Chem. C* 123(26) (2019)
391 15996-16002.

392 [21] T. Hong, D. Wang, B. Qin, X. Zhang, Y. Chen, X. Gao, L.-D. Zhao, Band convergence and nanostructure
393 modulations lead to high thermoelectric performance in SnPb_{0.04}Te-y% AgSbTe₂, *Mater. Today Phys.* 21
394 (2021) 100505.

395 [22] G. Tan, S. Hao, R.C. Hanus, X. Zhang, S. Anand, T.P. Bailey, A.J.E. Rettie, X. Su, C. Uher, V.P. Dravid, G.J.
396 Snyder, C. Wolverton, M.G. Kanatzidis, High Thermoelectric Performance in SnTe-AgSbTe₂ Alloys from
397 Lattice Softening, Giant Phonon-Vacancy Scattering, and Valence Band Convergence, *ACS Energy Lett.* 3(3)
398 (2018) 705-712.

399 [23] Q. Zhang, Z. Guo, X. Tan, L. Mao, Y. Yin, Y. Xiao, H. Hu, C. Tan, Q. Wu, G.-Q. Liu, J. Xu, J. Jiang, Effects
400 of AgBiSe₂ on thermoelectric properties of SnTe, *Chem. Eng. J.* 390 (2020) 124585.

401 [24] Z. Guo, G. Wu, X. Tan, R. Wang, Z. Yan, Q. Zhang, K. Song, P. Sun, H. Hu, C. Cui, G.-Q. Liu, J. Jiang,
402 Synergistic Manipulation of Interdependent Thermoelectric Parameters in SnTe-AgBiTe₂ Alloys by Mn
403 Doping, *ACS Appl. Mater. Interfaces* 14(25) (2022) 29032-29038.

404 [25] J. Yang, J. Cai, R. Wang, Z. Guo, X. Tan, G. Liu, Z. Ge, J. Jiang, Entropy Engineering Realized Ultralow
405 Thermal Conductivity and High Seebeck Coefficient in Lead-Free SnTe, *ACS Appl. Energy Mater.* 4(11)
406 (2021) 12738-12744.

407 [26] M. Zhang, X. Tang, N. Li, G. Wang, G. Wang, A. Liu, X. Lu, X. Zhou, Synergistically promoted thermoelectric
408 performance of SnTe by alloying with NaBiTe₂, *Appl. Phys. Lett.* 116(17) (2020) 173902.

409 [27] H. Xu, H. Wan, R. Xu, Z. Hu, X. Liang, Z. Li, J. Song, Enhancing the thermoelectric performance of SnTe-
410 CuSbSe₂ with an ultra-low lattice thermal conductivity, *J. Mater. Chem. A* 11 (2023) 4310-4318.

411 [28] M.D. Nielsen, V. Ozolins, J.P. Heremans, Lone pair electrons minimize lattice thermal conductivity, *Energy*
412 *Environ. Sci.* 6(2) (2013) 570-578.

413 [29] C.-M. Dai, P. Xu, M. Huang, Z.-H. Cai, D. Han, Y. Wu, S. Chen, NaSbSe₂ as a promising light-absorber
414 semiconductor in solar cells: First-principles insights, *APL Mater.* 7(8) (2019) 081122.

415 [30] A. Putatunda, G. Xing, J. Sun, Y. Li, D.J. Singh, Thermoelectric properties of layered NaSbSe₂, *J. Phys.*
416 *Condens. Mat.* 30(22) (2018) 225501.

417 [31] B. Nan, X. Song, C. Chang, K. Xiao, Y. Zhang, L. Yang, S. Horta, J. Li, K.H. Lim, M. Ibáñez, A. Cabot,
418 Bottom-Up Synthesis of SnTe-Based Thermoelectric Composites, *ACS Appl. Mater. Interfaces* 15(19) (2023)
419 23380-23389.

420 [32] Y. Liu, M. Li, S. Wan, K.H. Lim, Y. Zhang, M. Li, J. Li, M. Ibáñez, M. Hong, A. Cabot, Surface Chemistry
421 and Band Engineering in AgSbSe₂: Toward High Thermoelectric Performance, *ACS Nano* 17(12) (2023)
422 11923-11934.

423 [33] C. Xing, Y. Zhang, K. Xiao, X. Han, Y. Liu, B. Nan, M.G. Ramon, K.H. Lim, J. Li, J. Arbiol, B. Poudel, A.
424 Nozariasbmarz, W. Li, M. Ibáñez, A. Cabot, Thermoelectric Performance of Surface-Engineered $\text{Cu}_{1.5-x}\text{Te}-$
425 Cu_2Se Nanocomposites, *ACS Nano* 17(9) (2023) 8442–8452.

426 [34] N. Kapuria, B. Nan, T.E. Adegoke, U. Bangert, A. Cabot, S. Singh, K.M. Ryan, Colloidal Synthesis of
427 Multinary Alkali-Metal Chalcogenides Containing Bi and Sb: An Emerging Class of I–V–VI₂ Nanocrystals
428 with Tunable Composition and Interesting Properties, *Chem. Mater.* 35(12) (2023) 4810–4820.

429 [35] Y. Zhang, C. Xing, Y. Liu, M. Li, K. Xiao, P. Guardia, S. Lee, X. Han, A. Ostovari Moghaddam, J. Josep Roa,
430 J. Arbiol, M. Ibáñez, K. Pan, M. Prato, Y. Xie, A. Cabot, Influence of copper telluride nanodomains on the
431 transport properties of n-type bismuth telluride, *Chem. Eng. J.* 418 (2021) 129374.

432 [36] Y. Zhang, Y. Liu, M. Calcabrini, C. Xing, X. Han, J. Arbiol, D. Cadavid, M. Ibáñez, A. Cabot, Bismuth
433 telluride-copper telluride nanocomposites from heterostructured building blocks, *J. Mater. Chem. C* 8 (2020)
434 14092–14099.

435 [37] M. Ibáñez, Z. Luo, A. Genç, L. Piveteau, S. Ortega, D. Cadavid, O. Dobrozhany, Y. Liu, M. Nachtegaal, M.
436 Zebarjadi, J. Arbiol, M.V. Kovalenko, A. Cabot, High-performance thermoelectric nanocomposites from
437 nanocrystal building blocks, *Nat. Commun.* 7(1) (2016) 10766.

438 [38] R. Moshwan, W.-D. Liu, X.-L. Shi, Q. Sun, H. Gao, Y.-P. Wang, J. Zou, Z.-G. Chen, Outstanding
439 thermoelectric properties of solvothermal-synthesized $\text{Sn}_{1-3x}\text{In}_x\text{Ag}_{2x}\text{Te}$ micro-crystals through defect
440 engineering and band tuning, *J. Mater. Chem. A* 8(7) (2020) 3978–3987.

441 [39] S. Duan, W. Xue, H. Yao, X. Wang, C. Wang, S. Li, Z. Zhang, L. Yin, X. Bao, L. Huang, X. Wang, C. Chen,
442 J. Sui, Y. Chen, J. Mao, F. Cao, Y. Wang, Q. Zhang, Achieving High Thermoelectric Performance by NaSbTe_2
443 Alloying in GeTe for Simultaneous Suppression of Ge Vacancies and Band Tailoring, *Adv. Energy Mater.*
444 12(3) (2022) 2103385.

445 [40] L. Wang, S. Chang, S. Zheng, T. Fang, W. Cui, P.-p. Bai, L. Yue, Z.-G. Chen, Thermoelectric Performance of
446 Se/Cd Codoped SnTe via Microwave Solvothermal Method, *ACS Appl. Mater. Interfaces* 9(27) (2017)
447 22612–22619.

448 [41] A. Banik, U.S. Shenoy, S. Saha, U.V. Waghmare, K. Biswas, High Power Factor and Enhanced Thermoelectric
449 Performance of SnTe-AgInTe₂: Synergistic Effect of Resonance Level and Valence Band Convergence, *J. Am.*
450 *Chem. Soc.* 138(39) (2016) 13068–13075.

451 [42] P. Peng, C. Wang, S. Cui, C. Wang, J. Chen, M. Hao, X. Huang, X. Wang, Y. Wang, Z. Cheng, J. Wang,
452 Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in SnTe by Alloying
453 with MnSb_2Se_4 , *ACS Appl. Mater. Interfaces* 15(38) (2023) 45016–45025.

454 [43] L. Fu, K. Jin, D. Zhang, C. Zhang, H. Nie, Z. Zhen, P. Xiong, M. Huang, J. He, B. Xu, Rashba effect and
455 point-defect engineering synergistically improve thermoelectric performance of the entropy-stabilized
456 $\text{Sn}_{0.8}\text{Ge}_{0.2}\text{Te}_{0.8}\text{Se}_{0.2}$ alloy, *J. Mater. Chem. A* (2023).

457 [44] J. Dong, Y. Jiang, Y. Sun, J. Liu, J. Pei, W. Li, X.Y. Tan, L. Hu, N. Jia, B. Xu, Q. Li, J.-F. Li, Q. Yan, M.G.
458 Kanatzidis, Discordant Distortion in Cubic GeMnTe₂ and High Thermoelectric Properties of GeMnTe₂₋
459 x%SbTe, *J. Am. Chem. Soc.* 145 (3) (2023) 1988–1996.

460 [45] F. Guo, J. Zhu, B. Cui, Y. Sun, X. Zhang, W. Cai, J. Sui, Compromise of thermoelectric and mechanical
461 properties in LiSbTe_2 and LiBiTe_2 alloyed SnTe, *Acta Mater.* 231 (2022) 117922.

462 [46] J. He, J. Xu, X. Tan, G.-Q. Liu, H. Shao, Z. Liu, H. Jiang, J. Jiang, Synthesis of SnTe/AgSbSe₂ nanocomposite
463 as a promising lead-free thermoelectric material, *J. Materiomics* 2(2) (2016) 165–171.

464 [47] Y. Liu, X. Zhang, P. Nan, B. Zou, Q. Zhang, Y. Hou, S. Li, Y. Gong, Q. Liu, B. Ge, O. Cojocaru-Mirédin, Y.
465 Yu, Y. Zhang, G. Chen, M. Wuttig, G. Tang, Improved Solubility in Metavalently Bonded Solid Leads to

466 Band Alignment, Ultralow Thermal Conductivity, and High Thermoelectric Performance in SnTe, *Adv. Funct.*
467 *Mater.* 32(47) (2022) 2209980.

468 [48] G. Tan, F. Shi, S. Hao, H. Chi, L.-D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Codoping
469 in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band
470 Convergence, *J. Am. Chem. Soc.* 137(15) (2015) 5100-5112.

471 [49] H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck
472 coefficient measurement, *APL Mater.* 3(4) (2015) 041506.

473 [50] D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, *Phys.*
474 *Rev. B* 46(10) (1992) 6131-6140.

475 [51] Z. Guo, Y.-K. Zhu, M. Liu, X. Dong, B. Sun, F. Guo, Q. Zhang, J. Li, W. Gao, Y.-d. Fu, W. Cai, J. Sui, Z. Liu,
476 Cubic phase stabilization and thermoelectric performance optimization in AgBiSe₂-SnTe system, *Mater.*
477 *Today Phys.* (2023) 101238.

478 [52] B. Qin, D. Wang, L.-D. Zhao, Slowing down the heat in thermoelectrics, *InfoMat* 3(7) (2021) 755-789.

479 [53] Z. Chen, X. Zhang, Y. Pei, Manipulation of Phonon Transport in Thermoelectrics, *Adv. Mater.* 30(17) (2018)
480 1705617.

481 [54] Y. Shtern, A. Sherchenkov, M. Shtern, M. Rogachev, D. Pepelyaev, Challenges and perspective recent trends
482 of enhancing the efficiency of thermoelectric materials on the basis of PbTe, *Mater. Today Commun.* 37 (2023)
483 107083.

484 [55] M. Dutta, K. Pal, M. Etter, U.V. Waghmare, K. Biswas, Emphasizing in Cubic (SnSe)_{0.5}(AgSbSe₂)_{0.5}:
485 Dynamical Off-Centering of Anion Leads to Low Thermal Conductivity and High Thermoelectric
486 Performance, *J. Am. Chem. Soc.* 143(40) (2021) 16839-16848.

487 [56] G. Tan, F. Shi, H. Sun, L.-D. Zhao, C. Uher, V.P. Dravid, M.G. Kanatzidis, SnTe-AgBiTe₂ as an efficient
488 thermoelectric material with low thermal conductivity, *J. Mater. Chem. A* 2(48) (2014) 20849-20854.

489 [57] M.-K. Han, J. Androulakis, S.-J. Kim, M.G. Kanatzidis, Lead-Free Thermoelectrics: High Figure of Merit in
490 p-type AgSn_mSbTe_{m+2}, *Adv. Energy Mater.* 2(1) (2012) 157-161.

491 [58] W. He, N. Li, H. Wang, G. Wang, G. Wang, X. Lu, X. Zhou, Multiple Effects Promoting the Thermoelectric
492 Performance of SnTe by Alloying with CuSbTe₂ and CuBiTe₂, *ACS Appl. Mater. Interfaces* 13(44) (2021)
493 52775-52782.

494 [59] J. Arbiol, R. Ciancio, R.E. Dunin-Borkowski, R. Holmestad, A.I. Kirkland, M. Kociak, G. Kothleitner, E.
495 Snoeck, J. Verbeeck, e-DREAM: the European Distributed Research Infrastructure for Advanced Electron
496 Microscopy, *Microscopy and Microanalysis* 28(S1) (2022) 2900-2902.

497