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Abstract
We compute the contact manifold of null geodesics of the family of spacetimes{(

S
2 × S

1, g◦ − d2

c2
dt2

)}
d,c∈N+ coprime

, with g◦ the round metric on S
2 and t the S

1-

coordinate. We find that these are the lens spaces L(2c, 1) together with the pushforward of
the canonical contact structure on STS

2 ∼= L(2, 1) under the natural projection L(2, 1) →
L(2c, 1). We extend this computation to Z × S

1 for Z a Zoll manifold. On the other hand,
motivated by these examples, we show how Engel geometry can be used to describe the man-
ifold of null geodesics of a certain class of three-dimensional spacetimes, by considering the
Cartan deprolongation of their Lorentz prolongation. We characterize the three-dimensional
contact manifolds that are contactomorphic to the space of null geodesics of a spacetime.
The characterization consists in the existence of an overlying Engel manifold with a certain
foliation and, in this case, we also retrieve the spacetime.

1 Introduction

A spacetime is a Lorentzian manifold together with a choice of a global timelike vector
field, that is, a vector field of negative length at all points. For a spacetime, its space of null
geodesics N consists of the family of unparametrized geodesics with null tangent vectors
at all points [16, 20]. When N is a manifold, it can be equipped with a canonical contact
structure H (see [17, 18]).
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The contact structureH has proved to be essential in the theory, yielding important results
on causality, providing, for instance, obstructions to two events (points) being on the same
non-spacelike curve [6, 7, 14]. The spaces of null geodesics and their contact structures
were computed explicitly in some noncompact cases [2, 10] and the question of whether
two spacetimes with diffeomorphic spaces of null geodesics must be diffeomorphic was
addressed, under the name of reconstruction, in [3]. Until very recently, the only explicit
cases whereN was known to be a manifold were globally hyperbolic spacetimes, which are
diffeomorphic to C ×R for a Cauchy hypersurface C [4] and for whichN ∼= ST C [17], and
Zoll (or Zollfrei) manifolds [11, 23], whose null geodesics are all periodic. In the last years
this subject has attracted more attention with the negative answer to Guillemin’s conjecture
that every Zoll 3-dimensional spacetime is covered by S

2 × R [22], and new classes of
examples for which N is a manifold [12, 13]. However, to the best of our knowledge, there
are hardly any explicit calculations of spaces of null geodesics and their contact structures
for compact spacetimes or results on the possibility of retrieving the spacetime from its space
of null geodesics.

Firstly, we consider the spacetimes (S2 × S
1, gc/d) for the family of metrics gc/d =

g◦ − d2

c2
dt2 with c, d ∈ N

+, where g◦ is the round metric on S2 and t is the angle coordinate

on S
1. Its space of null geodesics Nc/d and its contact structure are described in terms of

the lens spaces L(2c, 1) for gcd(c, d) = 1, by using a quaternionic approach to the Hopf
fibration and STS

2 that we develop in Sect. 3.2. We prove,

Theorem 3.5 For any c, d ≥ 1 with gcd(c, d) = 1,

Nc/d ∼= L(2c, 1).

Theorem 3.14 The canonical contact structure H on STS
2 ∼= N1/d is the canonical contact

structure χ on STS
2. In general, the canonical contact structure H on L(2c, 1) ∼= Nc/d for

c > 1 and gcd(c, d) = 1, is r∗χ , where r : STS
2 → L(2c, 1) is the projection.

Note that, for c > 2, the manifold L(2c, 1) is not presented as the unit tangent bundle of a
manifold. Moreover, the study of S2 × S

1 allows us to prove an analogue of Theorem 3.14

for the class of compact spacetimes {(Z × S
1, gZ − d2

c2
dt2)}c,d∈N+ , with Z a Zoll manifold

(Proposition 3.17).
Secondly, we bring methods of Engel geometry to deal with the spaces of null geodesics

of three-dimensional spacetimes. An Engel structure on a four-dimensional manifold Q is
a rank-two distribution D that generates a rank-three distribution E := [D,D] satisfying
[E, E] = T Q, where we are referring to the bracket of sections. The distribution D defines a
unique line distribution W, known as kernel, by the property [W, E] ⊆ E, which completes
a flag W ⊂ D ⊂ E ⊂ T Q. There exists a canonical (Cartan) prolongation from a contact
three-manifold (N , ξ) to obtain an Engel distribution on S(ξ). Similarly, given a three-
dimensional Lorentzian manifold (M, g), one can canonically define an Engel structure on
the projectivization of the bundle of null vectors PC of M . In Proposition 4.7, we compute
the kernel of the Lorentz prolongation of an arbitrary Lorentzian three-manifold. We have
later learnt that this computation is also made, with different techniques, in the preprint [24,
Thm. 1.3], but with no mention to the contact structure (which we discuss in Theorem 4.8
below).

Next, by considering theCartan deprolongation of theLorentz prolongation of a spacetime,
we show,
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On the space of null geodesics... Page 3 of 22 15

Theorem 4.8 Let M be a three-dimensional spacetime. Then,

N ∼= PC/W.

In addition, if N is a manifold and p : PC → PC/W ∼= N is a submersion, the canonical
contact structure on N is

H ∼= p∗E.
Finally, we make use this theorem to make a first step towards the characterization of the

three-dimensional contact manifolds that are the space of null geodesics of a spacetime by
the existence of a certain Engel manifold together with a foliation, and retrieve the spacetime.

Theorem 4.9 A three-dimensional contact manifold (N , ξ) is contactomorphic to the space
of null geodesics of a spacetime if and only if there exists an Engel manifold (Q,D) with
Engel flag W ⊂ D ⊂ E ⊂ T Q such that

N ∼= Q/W and ξ ∼= p∗E, (10)

for p : Q → Q/W the projection, and Q admits an oriented foliation by circles F such that

(i) for all S ∈ F and x ∈ S, we have Tx S ⊕ Wx = Dx ,
(ii) the space of leaves M := Q/F is a manifold and the projection q : Q → M is a

submersion,
(iii) for every S ∈ F, the image q∗D|S is a cone in the vector space Tq(S)M and the map

x ∈ S �→ q∗Dx is injective.

In addition, if the above conditions are satisfied, (N , ξ) is contactomorphic to the space
of null geodesics of (Q/F, g), where g is a metric on Q/F with bundle of cones q∗D.

The main objects at play and our results are visually presented as follows.

(PC,
∼D) (S(ξ),D)

(M, g) (N , ξ)
Thm.4.8

Cor.4.14

Thm.4.10

Lorentz prolongation

Space of null geodesics

Cartan prolongation

Corollary 4.14 deals with the relation between the Cartan and Lorentz prolongations, and
opens the interesting question of the relation between the several Engel manifolds having the
same Cartan deprolongation.

2 Definitions and basic properties

2.1 The space of null geodesics of a spacetime

Wework throughout the paper in the category of smoothmanifolds. For aLorentzianmanifold
(M, g), a nonzero vector v ∈ T M is said to be timelike, spacelike or null if g(v, v) is,
respectively, negative, positive or zero. A smooth curve γ : I → M is timelike, spacelike
or null if its velocity vector γ̇ is so everywhere. Likewise, we talk about timelike, spacelike
and null submanifolds or vector fields.

The set of null vectors on a Lorentzian manifold M has the structure of a smooth bundle
π : C → M , whose fibres consist of two hemicones. We denote such a choice by C+.
A differentiable choice of one of such hemicones, when possible, makes M time-oriented.
Time-orientability is equivalent to the existence of a global timelike vector field X ∈ X(M).
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15 Page 4 of 22 A. Marín-Salvador, R. Rubio

Definition 2.1 A spacetime is a time-oriented connected Lorentzian manifold of dimension
≥ 3.

Definition 2.2 The space of null geodesics N of a spacetime (M, g) is

N := {γ (I ) | γ : I → M is a maximal geodesic with γ̇ ⊂ C+}.
The space N can be constructed as the leaf space for a distribution on C+. Recall that

the geodesic spray Xg ∈ X(T M) is the vector field on T M whose integral lines are γ̇ (t) ∈
Tγ (t)M for γ : I → M a geodesic, whereas the Euler vector field � ∈ X(T M) is defined as

�(v) = T0c(∂s),

with v ∈ Tx M and c : R → Tx M given by c(s) = esv, and whose differential at 0 we
denote by T0c. Note that c is an integral line of �. The geodesic spray and the Euler field are
tangent to the bundle C+ and define an integrable distribution 〈Xg,�〉 (see [2]). Note that,
by quotienting C+ by the Euler field, we obtain the projectivization of the bundle C+, which
is relevant as we only care about unparametrized null geodesics. Then, by quotienting by the
geodesic spray, we identify directions in different projectivized cones for which there exists
a geodesic in M going through both of them. Thus, we have

N ∼= C+/〈Xg,�〉. (11)

From now on, we will consider the case in which N is a manifold.

Remark 2.3 A sufficient condition for N to be a manifold is found in [2] (namely, when the
spacetime (M, g) is strongly causal and null-pseudo-convex).

2.2 The canonical contact structure

Recall that a contact structure on a (2n + 1)−manifold N is a codimension-one distribution
ξ ⊂ T N which is given, at least locally, as the kernel of a one-form α satisfying that the top
form α ∧ (dα)n vanishes nowhere. We give two examples that will be relevant later.

Example 2.4 For anymanifold M , its unit cotangent bundle π̃ : ST ∗M → M has a canonical
contact structure (see, for instance, [9, Lem. 1.2.3]). A point ω ∈ ST ∗M may be regarded as
a linear form ω̃ ∈ T ∗

π̃(ω)
M up to positive rescaling, which is determined by the hyperplane

lω = ker ω̃ ⊂ Tπ̃(ω)M . The canonical contact distribution on ST ∗M is

ξω := (Tωπ̃)−1 (lω) .

Example 2.5 The unit tangent bundle π : ST M → M of a Riemannian manifold (M, g),
which we define as ST M := {u ∈ T M | g(u, u) = 1}, has a canonical contact structure
coming from ξ for ST ∗M as in Example 2.4. Regard g as a map T M → T ∗M and consider
the contact structure

χ := (
g−1)

∗ ξ.

Namely, for u ∈ ST M we have

χu = ((
g−1)

∗ ξ
)

u
=

(
Tg(u)

(
g−1) ◦ (

Tg(u)π̃
)−1

) (
lg(u)

)

= (Tu(g ◦ π̃))−1 (
ker g(u)

) = (Tuπ)−1(〈u〉⊥),

where 〈u〉⊥ denotes the orthogonal subspace to u in Tπ(u)M with respect to g.
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For the smooth manifold N, there is a canonical contact structure defined in terms of the
so-called skies of the spacetime.

Definition 2.6 Let (M, g) be a spacetime and x ∈ M . The sky of x is

Sx = {γ ∈ N | x ∈ γ ⊂ M}.
Note that, for any x ∈ M , the sky Sx is in correspondence with the projectivization of

the cone Cx . Hence, if m = dim M , we have Sx ∼= S
m−2.

Definition 2.7 The canonical contact structure on the manifold of null geodesics N is the
codimension-one distribution H defined as follows. For γ ∈ H, let x, y ∈ γ such that they
cannot be joined by a one-parameter family of geodesics. Then,

Hγ = TγSx ⊕ TγSy .

Note that the existence of two such points x and y follows from the fact that the exponential
map provides a local diffeomorphism for any point of M .

Proposition 2.8 [2, Sect. 2.4] The distribution H on the manifold N is well defined and is
indeed a contact structure.

3 The contact manifold of null geodesics of (S2 × S
1,gc)

3.1 The space of null geodesics

Let (S2, g◦) be the two-sphere with the round metric. Consider M = S
2 × S

1 and let t be
the angle coordinate on S

1. For x ∈ S
2, we will refer to the point (x, t) ∈ M . Define, for

c, d ∈ N
+ coprime, the Lorentzian metric

gc/d = g◦ − d2

c2
dt2.

The pair (M, gc/d) is a Lorentzian manifold in which S
2 × {t} is a spacelike surface for

any t ∈ S
1, whereas {x} × S

1 is a timelike submanifold for any x ∈ S
2. The vector field

(0, ∂t ) ∈ TS
2 ⊕ TS

1 as a choice of future turns M into a spacetime.

Lemma 3.1 The space of null geodesics Nc/d of (M, gc/d) is given by

Nc/d ∼=
{(

μ(s),
c

d
s
) | μ is a unit-speed great circle in S

2
}

.

Proof In a product chart using the coordinate t for S1, the Christoffel symbol
k
i j of themetric

gc/d vanishes whenever i , j or k equals 3, and all the others are the Christoffel symbols of
g◦ in the chart of S2. Hence, the geodesic equation for a curve γ : I → M defined by
γ (s) = (

μ(s), t(s)
)
is given by ẗ = 0, that is, t(s) = a + bs for some a, b ∈ R, and the

geodesic equation for μ in S2. Let u(s) ∈ TS
2 be the vector tangent to the curve μ(s). Since

S
2 × {t} is a spacelike surface for all t ∈ S

1, we can suppose, by reparametrizing γ , that
gc/d

(
(u, 0), (u, 0)

) = g◦(u, u) = 1. Then,

gc/d(γ̇ , γ̇ ) = g◦(u, u) − b2d2

c2
〈∂t , ∂t 〉 = 1 − b2d2

c2
,

123



15 Page 6 of 22 A. Marín-Salvador, R. Rubio

so γ is a future-pointing null geodesic if and only if b = c
d , as− c

d would give a past-pointing
geodesic. By uniqueness of the geodesics in a pseudo-Riemannian manifold, all the null
geodesics of (M, gc/d) modulus reparametrization are of the form

γ (s) = (
μ(s), a + c

d
s
)
,

where μ is a unit-speed great circle in S
2. Since γ intersects S2 × {0} at least at one point,

we can suppose a = 0. ��
Remark 3.2 We use the notation Nc := Nc/1.

We start with the case c = 1. The speeds at which a geodesic travels the time direction
S
1 and the great circle in S

2 are 1 to d . For γ ∈ N1, there is a unique x ∈ S
2 such that

(x, 0) ∈ γ . Indeed, γ intersects S2 × {0} for s ∈ 2πdZ, and μ(2πdZ) is the unique point
x on S

2. So γ is completely determined by x ∈ S
2 and the tangent vector of the projection

πS2(γ ) at x , which is unitary by Lemma 3.1. In addition, any u ∈ STS
2 defines a unique

null geodesic γ ⊂ M , which is the lift of the great circle μ ⊂ S
2 defined by u, meaning that

πS2(γ ) = μ.

Proposition 3.3 Thus, we have

N1/d ∼= N1 ∼= STS
2.

Let us now consider Nc/d with c > 1. For a geodesic, the ratio between the turns around
the time direction S

1 and the turns around a great circle in S
2 is c to d . Since geodesics are

travelled at constant speed, every γ ∈ Nc/d intersects S2 × {0} at c points, namely those in
μ(2π d

c Z) = μ( 2πc Z), where the equality follows from the fact that gcd(c, d) = 1. These
points are equidistantly spread over the great circle μ := πS2(γ ), see Fig. 1. Conversely, any
u ∈ STS

2 defines a unique null geodesic, which is the lift of the great circle defined by u to
M .

In order to get a proper description of N, one ought to identify the different elements of
STS

2 defining the same null geodesic. If γ is a null geodesic of M that intersects S2 × {0}
at (x, 0) with tangent vector (u, ∂t ) ∈ STS

2 ⊕ TS
1, then γ intersects S2 × {0} at (x j , 0) :=(

μ
(
2πd j

c

)
, 0

)
for j = 0, . . . , c − 1, where μ ⊂ S

2 is the great circle defined by u, and

with velocity (u j , ∂t ) :=
(
μ̇

(
2πd j

c

)
, ∂t

)
. Note that (x j , u j ) can be obtained by a rotation

of (x, u) of 2πd j
c radians about the axis x × u,

(
x j

u j

)
=

(
cos 2πd j

c sin 2πd j
c

− sin 2πd j
c cos 2πd j

c

)(
x
u

)
.

Hence, we have shown,

Proposition 3.4 Consider the Zc-action on STS
2 generated by

(
y
v

)
�→

(
cos 2πd

c sin 2πd
c

− sin 2πd
c cos 2πd

c

)(
y
v

)
.

Then,

Nc/d ∼= STS
2/Zc,

where STS
2/Zc denotes the orbit space of STS

2 under the action of Zc.
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Fig. 1 Null geodesic in S2 × S
1

with c = 4, d = 1. The grey
surface represents S2 × {0} and
the radial coordinate is the S1

direction. The four elements of
STS

2 represent the same red null
geodesic γ

The next step is to obtain an explicit description of the spaces Nc/d that allows us to
compute their canonical contact structure. We will prove the following result.

Theorem 3.5 For any c, d ≥ 1 with gcd(c, d) = 1,

Nc/d ∼= L(2c, 1).

3.2 A quaternionic approach to STS2 and the Hopf fibration

In order to prove Theorem 3.5, we develop a quaternionic approach to STS
2 and the lens

spaces L(2c, 1). LetH denote the division algebra of quaternions andV the three-dimensional
vector space of pure imaginary quaternions. The canonical identification ofHwithR4 defined
by α + ai + bj + ck �→ (α, a, b, c) gives an identification V ∼= R

3, which provides V with
a cross product induced by that of R3: for u, v ∈ V,

u × v = uv − vu

2
.

Let ∗ : H → H be the conjugation on H, which is an antiautomorphism allowing us to
define a norm |q|2 = qq∗ for q ∈ H. The restriction of such norm on V induces, via the
polarization identity, an inner product on V defined, for u, v ∈ V, by

〈u, v〉 = −uv + vu

2
,

which coincides with the euclidean inner product in R
3. We can also identify S

3 ∼= SH :=
{q ∈ H | |q| = 1} and S

2 ∼= SV := {u ∈ V | 〈u, u〉 = −u2 = 1}. Finally, one has
STS

2 ∼= ST (SV) := {(u, v) ∈ SV × SV | 〈u, v〉 = 0}.
Lemma 3.6 For any w ∈ SV, there exists a Hopf-like fibration map

τw : SH → SV
q �→ q−1wq,

which provides SH with the structure of an S
1-bundle over SV. The fibre over p ∈ SV is

given by {ewθq | θ ∈ R}, for any q ∈ τ−1
w (p).
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15 Page 8 of 22 A. Marín-Salvador, R. Rubio

Proof Let w ∈ SV. Let us show first that τw maps onto SV. Indeed, for q ∈ SH,

q−1wq + (q−1wq)∗ = q−1wq − q−1wq = 0,

〈q−1wq, q−1wq〉 = −(q−1wq)(q−1wq) = −q−1w2q = q−1q = 1.

We show next that the map is surjective. Let p ∈ SV and assume it is not collinear with

w. Let θ = arccos〈w, p〉 ∈ (0,π) and η = p×w
|p×w| ∈ SV. Define q := eη θ

2 = cos θ
2 +η sin θ

2 .

We have q−1wq = (cos θ)w + (sin θ)(w × η), a rotation of w of angle −θ around the axis
η. Hence, q−1wq = p, as needed. If p and w are collinear, take q = 1 or q = eu π

2 , with
u ∈ SV perpendicular to w, depending on whether p = w or p = −w.

Finally, let q ∈ τ−1
w (p) be arbitrary. Then, if θ ∈ R,

τw(ewθq) = q−1e−wθwewθq = q−1wq = τw(q).

In addition, if τw(q1) = τw(q2), thenw = (q2q−1
1 )−1w(q2q−1

1 ), which implies that q2q−1
1 =

e−wθ for some θ ∈ R. ��
Proposition 3.7 The map

� : SH → ST (SV)

q �→ (q−1kq, q−1 jq)

provides a surjective local diffeomorphism in such a way that the preimage of a point in
ST (SV) consists of exactly two antipodal points in SH.

Proof Surjectivity follows using the same ideas as in the proof of Lemma 3.6. Also, for
any q ∈ SH, we have �(q) = �(−q). If q1, q2 ∈ SH are such that their images under �

coincide, then q2q−1
1 = ekθk = e jθ j for some θ j , θk ∈ [0, 2π), which can only happen if

θk = θ j = 0 or θk = θ j = π. ��
Remark 3.8 Actually, in Proposition 3.7 it is possible to replace j and k by any u, v ∈ SV
such that 〈u, v〉 = 0 and the result remains true.

Corollary 3.9 LetZ2 act on SH via the antipodal map. There exist diffeomorphisms SH/Z2 ∼=
ST (SV), and hence S

3/Z2 ∼= STS
2, which we also denote by �.

We establish now the connection to lens spaces.

Definition 3.10 Consider the 3-sphere S3 ⊂ C
2 and p ∈ Z

+. Define the Zp−action on S
3

generated by

(z0, z1) �→
(

e
2πi

p z0, e
2πi

p z1
)

.

The lens space L(p, 1) is the smooth manifold L(p, 1) := S
3/Zp .

Identifying R
4 ∼= C

2 with H via (z0, z1) �→ z0 + z1 j , the Zp action in Definition 3.10

becomes q �→ e
2πi

p q . Then, L(p, 1) ∼= SH/Zp .
Since the Z2-action on SH that defines the lens space L(2, 1) is precisely the given by the

antipodal map, we have shown,

Proposition 3.11 We have ST (SV) ∼= SH/Z2 ∼= L(2, 1), so STS
2 ∼= L(2, 1).

This quaternionic approach allows us to formalize and prove the following result, which
will give us, together with Propositions 3.3 and 3.4, the proof of Theorem 3.5.
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Proposition 3.12 Let � : SH/Z2 → ST (SV) and c ≥ 2. Then, the Z2c-action on SH that
generates the lens space L(2c, 1) descends to a Zc-action on SH/Z2 that, via �, induces
the Zc-action on ST (SV) generated by

(
u
v

)
�→

(
cos 2π

c sin 2π
c− sin 2π

c cos 2π
c

)(
u
v

)
.

Hence, � induces a diffeomorphism between ST (SV)/Zc and L(2c, 1).

Proof Let q ∈ SH. The Z2c-action on SH is generated by q �→ e
πi
c q . Then,

�(e
πi
c q) =

(
q−1e− πi

c ke
πi
c q, q−1e− πi

c je
πi
c q

)
=

(
q−1ke

2πi
c q, q−1 je

2πi
c q

)
.

Now, consider �(q) = (q−1kq, q−1 jq). The result follows from

cos
2π

c
q−1kq + sin

2π

c
q−1 jq = q−1k

(
cos

2π

c
+ i sin

2π

c

)
q = q−1ke

2πi
c q,

− sin
2π

c
q−1kq + cos

2π

c
q−1 jq = q−1 j

(
cos

2π

c
+ i sin

2π

c

)
q = q−1 je

2πi
c q.

��
Proposition 3.12 is enough to prove Theorem 3.5 for d = 1. For d > 1, we need the

following observation.

Lemma 3.13 Let c, d ∈ Z
+ coprime. The group automorphism of Zc defined by m �→ d · m

sends the Zc−action on STS
2 in Proposition 3.12 to the Zc−action given by Equation (3.4).

Hence, the two orbit spaces are diffeomorphic.

Proof of Theorem 3.5 The case d, c = 1 follows from Proposition 3.3 and Proposition 3.11.
The rest of the cases with d = 1 follow from Proposition 3.4 and Proposition 3.12. For d > 1,
we make use of Lemma 3.13. ��

3.3 The canonical contact structures

We next compute the canonical contact structures on the spaces L(2c, 1), c ≥ 1, which
were seen as spaces of null geodesics. Note that, since the construction of the canonical
structure is completely local, we can assume, without loss of generality, that d = 1. We do
this throughout.

Theorem 3.14 The canonical contact structure H on STS
2 ∼= N1/d is the canonical contact

structure χ on STS
2. In general, the canonical contact structure H on L(2c, 1) ∼= Nc/d for

c > 1 and gcd(c, d) = 1, is r∗χ , where r : STS
2 → L(2c, 1) is the projection.

We break the proof of Theorem 3.14 into two lemmas, proving first the case c = 1 and
then the cases with c > 1.

Lemma 3.15 The canonical contact structure H on STS
2 ∼= N1 is the canonical contact

structure χ on STS
2.

Proof Let γ ∈ N1 ∼= STS
2. Recall that γ is the lift of the great circle μ : R → S

2 defined
by the pair (x, u) ∈ STS

2 representing γ . We will show that Hγ = χ(x,u).
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Fig. 2 The projection onto S2 of the sky of γ (τ) is a circle tangent to 〈u〉⊥

Take (x, 0) ∈ γ and γ (τ) �= (x, 0), with 0 < τ < π. Note that all geodesics in
the sky S(x,0) intersect S2 × {0} at (x, 0), so its projection is π(S(x,0)) = {x}. Hence,
Txπ(TγS(x,0)) = {0} ⊆ 〈u〉⊥ and TγS(x,0) ⊂ χ(x,u).

Consider now γ (τ) �= (x, 0). Since c = 1, we know that γ (s) = (
μ(s), s

)
and hence

πS2
(
γ (τ)

) = μ(τ) =: y. Let v ∈ STyS
2 such that 〈μ̇(τ ), v〉 = 0. Since all geodesics in

S
2 × S

1 are travelled at the same speed, the projection of the sky of γ (τ) is parametrized by
π(Sγ (τ))(s) = y cos τ + (μ̇(τ ) cos s + v sin s) sin τ , which is a circle on (S2, g◦) of radius
τ and centre y, see Fig. 2, and π(γ ) = π(Sγ (τ))(0). Hence,

Txπ(TγSγ (τ)) =
〈

d

ds

∣∣∣
s=0

(y cos τ + (μ̇(τ ) cos s + v sin s) sin τ)

〉

= 〈v sin τ 〉 ⊂ 〈u〉⊥,

which implies TγSγ (τ) ⊂ χ(x,u). ��
Since the distributionsH and χ on STS

2 both have rank 2, the Lemma is proved.
Let r : STS

2 ∼= L(2, 1) → L(2c, 1) be the canonical projection for c > 1. We use the
notation [u] := r(u) ∈ L(2c, 1), which is the class of u ∈ STS

2 under the action of Zc. Let
[u] ∈ L(2c, 1) andU a neighbourhood of u for which r |U : U → r(U ) is a diffeomorphism.
We will show that

H[u] = (r |U )∗χu .

The following lemma concludes the proof of Theorem 3.14.

Lemma 3.16 For c > 1, the canonical contact structure H on L(2c, 1) ∼= Nc, as the space
of null geodesics, is r∗χ .

Proof Let x := π(u). We know that [u] describes the geodesic γ in S
2 × S

1 that intersects
π(U ) × {0} only at (x, 0). Take (x, 0) ∈ γ and consider its sky S(x,0). It is clear that
S(x,0) = {[v] | v ∈ STxS

2}, and thus
(
π ◦ r |−1

U

)
∗
(
T[u]S(x,0)

) =Tx
({

π(v) | v ∈ STxS
2})

=Tx ({x}) = {0} ⊂ 〈u〉⊥,

from which we deduce that (r |−1
U )∗

(
T[u]S(x,0)

) ⊂ χu and T[u]S(x,0) ⊂ (r |U )∗χu .
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Take now γ (τ) �= (x, 0) but close enough so that Sγ (τ) ⊂ U . As discussed previously,
π ◦ r |−1

U (Sγ (τ)) describes a circle φ(s) in π(U ) whose tangent vector at x is orthogonal to
u. Hence,

(π ◦ r |−1
U )∗

(
T[u]Sγ (τ)

) =Tx

(
π ◦ r |−1

U (Sγ (τ))
)

=Tx {φ(s) | s ∈ R} ⊂ 〈u〉⊥,

which implies that (r |−1
U )∗

(
T[u]Sγ (τ)

) ⊂ χu, and hence T[u]Sγ (τ) ⊂ (r |U )∗χu .

Therefore, Hγ = T[u]S(x,0) ⊕ T[u]Sγ (τ) ⊂ (r |U )∗χu and, since r |U is a submersion,
equality follows. If v ∈ STS

2 is such that r(v) = [u] = r(u) and V is a neighbourhood of v

such that r |V is a diffeomorphism, following the same argument, we have (r |V )∗χv = Hγ =
(r |U )∗χu , and r∗χ is indeed well defined. ��

3.4 Generalization to a class of compact spacetimes

We extend now the results of Sect. 3.3 to the class of spacetimes

{(Z × S
1, gZ − d2

c2
dt2)}c,d∈N+ coprime,

where (Z , gZ ) is a Zoll manifold, that is, such that all of its geodesics are closed and of
the same minimal period (which we normalize to 2π). By Hopf-Rinow theorem, every Zoll
manifold is compact, since it is clearly bounded.

Proposition 3.17 The space of null geodesicsNc/d of (Z ×S
1, gZ − d2

c2
dt2) with c, d coprime,

is diffeomorphic to the manifold ST Z/Zc, where the generator ofZc identifies tangent vectors
on the same geodesic after 1/c of a turn, with the pushforward of the canonical contact
structure on ST Z.

Proof The same argument as in the proof of Proposition 3.3 implies N1/d ∼= ST Z . For the
contact structure, we can assume d = 1. We follow the proof of Lemma 3.15, which is
geometrically more intuitive. Given a geodesic γ and (x, 0) ∈ γ ⊂ Z × S

1, all geodesics in
the skyS(x,0) intersect Z × {0} at (x, 0) and we analogously have TγS(x,0) ⊂ χ(x,u). For a
different pointγ (τ) in the geodesic (close enough toγ (0)), the skySγ (τ) is a sphere consisting
of centre y := πZ (γ (τ )) and radius the distance between x and y. Since u points from x
towards the direction of y, we have in general TxπZ (TγSγ (τ)) ⊂ 〈u〉⊥. Indeed, let w ∈ Ty Z
such that x = expy(w) and complete it to an orthogonal basis (w,w2, . . . , wn) of Ty Z . The
sphere πZ (Sγ (τ)) is the image under expy of the sphere in Ty Z of radius

√
gZ (w,w). Now,

note that Tw expy(w) ∈ 〈u〉, and Tx (πZ (Sγ (τ))) = 〈Tw expy(w2), . . . , Tw expy(wn)〉. By
Gauss’s Lemma,

〈Tw expy(w), Tw expy(wi )〉 = 〈w,wi 〉 = 0

for all 2 ≤ i ≤ n, and the claim follows.
For the case c ≥ 2 and d = 1 we have an analogue of the end of Sect. 3.1. The generator

of Zc identifies tangent vectors on the same geodesic after 1/c of a turn. The action is then
free (as only the identity element would fix a vector). Since Zc is a finite group, the action is
proper and the space ST Z/Zc is a manifold. For d > 1, we have an analogue of Proposition
3.12 and the lemma right after ensuring thatNc/d ∼= Nc. For the contact structure, the proof
of Lemma 3.16 applies by taking γ (τ) close enough to (x, 0) so that the action of the group
is trivial and replacing the circle φ(s) by the sphere described above. ��
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Note that the purpose of Sect. 3.2 is giving a concrete description of ST Z/Zc for c ≥ 2,
which we cannot have in the generality of Proposition 3.17, in the case of Z = S

2.
The main examples of Zoll manifolds are Zoll surfaces (which are always spheres with

Zoll metrics) and compact symmetric spaces of rank one [5].

4 Engel structures as a tool in retrievability

4.1 Engel geometry and prolongations

We recall here the main definitions on Engel manifolds and present the Cartan and Lorentz
prolongations of, respectively, a contact and a Lorentzian three-manifold [8, 21].

A rank-three distribution E ⊂ T Q on a four-manifold Q is said to be an even-contact
structure if it is everywhere non-integrable, that is, if [E, E] = T Q.

Definition 4.1 Let Q be a four-manifold. A rank-two distributionD ⊂ T Q on Q is an Engel
structure if E := [D,D] is an even-contact structure on Q.

An Engel structure D on a four-manifold Q defines a unique line field W ⊂ E by the
relation [W, E] ⊆ E. The line field W is known as the kernel (or characteristic line field) of
the distribution and it can be shown to lie in the two-distribution D, for which it completes
a flagW ⊂ D ⊂ E ⊂ T Q.

Example 4.2 [Cartan prolongation] Let (N , ξ) be a contact three-manifold and consider the
S
1−bundle πC : S(ξ) → N , where S(ξ)x is the quotient of ξx\{0} by the relation v ∼ λv

for all λ ∈ R
+. We regard points in S(ξ) as pairs (x, R) with x ∈ N and R an oriented line

in ξx . The canonical Engel structure on S(ξ) is

D(x,R) := (T(x,R)πC )−1(R).

Let 〈V , Y 〉 = ξ be a local frame on an embedded ball B ⊂ N . Then, B × S
1 ∼= S(ξ)|B via

(x, t) �→ (x, R := 〈X := V cos t + Y sin t〉), where 〈〉 denotes the oriented spanned line. If
we let the dot denote derivation with respect to the coordinate on the fibre, thenD = 〈∂t , X〉,
E = 〈∂t , X , Ẋ〉 = 〈∂t 〉 ⊕ ξ and, since [∂t , Ẍ ] = −Ẋ ∈ E, we have W = 〈∂t 〉.
Remark 4.3 Whenever the leaf space S(ξ)/W is a manifold, then

N ∼= S(ξ)/〈∂t 〉 = S(ξ)/W.

Also, if the projection p : S(ξ) → S(ξ)/W is a submersion, we have ξ ∼= p∗E.

Example 4.4 [Lorentz Prolongation] Let M be a Lorentzian three-manifold. The set of null
vectors on M induces an S1−bundle πL : PC → M , wherePC is fibrewise the projectiviza-
tion of the cone C . A point (x, l) ∈ PC consists of a point x ∈ M and a line l in Cx . Define
an Engel structure on PC at (x, l) by

D(x,l) := (T(x,l)πL)−1(l).

Let (V , Y , T ) be an orthonormal frame of T M , with V , Y spacelike and T timelike, on an
openball B ⊂ M . Then, B×S

1 ∼= PC |B via (x, θ) �→ (x, l := 〈X := V cos θ+Y sin θ+T 〉),
where the vector fields are on x . Letting the dot denote derivation with respect to the fibre
coordinate, [∂θ , Ẋ ] /∈ E = 〈∂θ , X , Ẋ〉, which implies thatW is always transverse to ∂θ .
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Following the ideas of Remark 4.3, we make the following observation, which will be useful
in Sect. 4.3.

Remark 4.5 The family of skies {PCx }x∈M defines a circle foliation of PC whose leaf space
is diffeomorphic to the manifold M . In addition, the bundle of null cones of M can be
recovered via the pushforward of the Engel distributionD under the projection map πL , that
is, Cx = (πL)∗

(D|PCx

)
for all x ∈ M .

From now on, we denote elements of PC and S(ξ) by the line or oriented line that they
define, dropping the base point of the three-manifold M .

4.2 The space of null geodesics as a deprolongation

We make use of the deprolongation procedure in Remark 4.3 to present the space of null
geodesics as a Cartan deprolongation of the Lorentz prolongation.

(PC,D)

(M, g) (N,H)

?Ex.4.4

Def.2.2

We first recall a technical result.

Proposition 4.6 [15] Any point of a pseudo-Riemannian three-manifold admits a local chart
in which the metric is diagonal.

Let (M, g) be a three-dimensional spacetime and consider x ∈ M . Let ϕ : (x1, x2, x3) ∈
V �→ ϕ

(
(x1, x2, x3)

) ∈ U be local coordinates around x for which g is diagonal. The matrix
representation of g in the chart (U , ϕ−1) is

g
(
ϕ(x1, x2, x3)

) =
⎛
⎝

g11(x1, x2, x3) 0 0
0 g22(x1, x2, x3) 0
0 0 g33(x1, x2, x3)

⎞
⎠ (12)

for some smooth functions g11, g22, g33 on V . Since the metric is non-degenerate at every
point, we can assume g11, g22 > 0 and g33 < 0. In addition, the coordinate vector fields
ui := ϕ∗ei give the eigendirections of the metric at every point. This discussion allows us to
define local coordinates on PC via

� : V × (0, 2π) → �
(
V × (0, 2π)

)

(x1, x2, x3, θ) �→
〈
cos θ√

g11
u1 + sin θ√

g22
u2 + 1√−g33

u3

〉
⊂ Tϕ(x1,x2,x3)M .

For the rest of this section, we denote a line in PC by the vector that spans it, identifying

PC ∼=
{
cos θ√

g11
u1 + sin θ√

g22
u2 + 1√−g33

u3

}

θ∈S1,x∈M

. Let us denote by ∂x1 , ∂x2 , ∂x3 , ∂θ the

coordinate vector fields defined by�.We compute next the kernel of the Lorentz prolongation
of any Lorentzian three-manifold.

Proposition 4.7 In the notation above, the kernel W of the Engel distribution on PC defined
by the Lorentz prolongation is spanned, on �

(
V × (0, 2π)

)
, by the vector field

Z := cos θ√
g11

∂x1 + sin θ√
g22

∂x2 + 1√−g33
∂x3 + (F cos θ + G sin θ + H)∂θ ,
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where we define
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F := 1

2g11

(
1√
g22

∂g11
∂x2

+ sin θ√−g33

∂g11
∂x3

)
,

G := − 1

2g22

(
1√
g11

∂g22
∂x1

+ cos θ√−g33

∂g22
∂x3

)
,

H := 1

2g33

(
sin θ√

g11

∂g33
∂x1

− cos θ√
g22

∂g33
∂x2

)
.

Proof Recall, from Example 4.4, that the Engel structure D on PC is given by

D�(x1,x2,x3,θ) = D cos θ√
g11

u1+ sin θ√
g22

u2+ 1√−g33
u3

= (T πL)−1
〈
cos θ√

g11
u1 + sin θ√

g22
u2 + 1√−g33

u3

〉
,

where πL : PC → M is the canonical projection. Since T πL(∂xi ) = ui and T πL(∂θ ) = 0,
the distribution D is given by

D =
〈

X := cos θ√
g11

∂x1 + sin θ√
g22

∂x2 + 1√−g33
∂x3 , ∂θ

〉
.

Define Ẋ := [∂θ , X ] = − sin θ√
g11

∂x1 + cos θ√
g22

∂x2 , so the even-contact structure E on PC is

E = 〈X , Ẋ , ∂θ 〉. We have [X , Ẋ ] = A∂x1 + B∂x2 + C∂x3 , which is

cos2 θ
[ ∂x1√

g11
,

∂x2√
g22

]
− sin2 θ

[ ∂x2√
g22

,
∂x1√
g11

]

− sin θ
[ ∂x3√−g33

,
∂x1√
g11

]
+ cos θ

[ ∂x3√−g33
,

∂x2√
g22

]
.

Since A is the ∂x1 -component, and analogously for B and C , we obtain
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A = 1

2g11
√

g11g22

∂g11
∂x2

+ sin θ

2g11
√−g11g33

∂g11
∂x3

,

B = − 1

2g22
√

g11g22

∂g22
∂x1

− cos θ

2g22
√−g22g33

∂g22
∂x3

,

C = − sin θ

2g33
√−g11g33

∂g33
∂x1

+ cos θ

2g33
√−g22g33

∂g33
∂x2

.

Since the kernel W lies in D and is not spanned by ∂θ (as [∂θ , Ẋ ] /∈ E), there exists a
smooth function μ on PC such that W = 〈X + μ∂θ 〉. We have [∂θ , X + μ∂θ ] ∈ E and
[X , X + μ∂θ ] ∈ E, whereas

[Ẋ , X + μ∂θ ] = Ẋ(μ)∂θ − (A∂x1 + B∂x2 + C∂x3) + μ
( cos θ√

g11
∂x1 + sin θ√

g22
∂x2

)
.

Since Ẋ(μ)∂θ ∈ E, it is enough to impose that the last two terms belong to E. This is the
case if and only if

−(A∂x1 + B∂x2 + C∂x3) + μ
( cos θ√

g11
∂x1 + sin θ√

g22
∂x2

)
+ C

√−g33X ∈ E.
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This vector field reads

−
((

A − C cos θ

√
−g33
g11

)
∂x1 +

(
B − C sin θ

√
−g33
g22

)
∂x2

)
+ μ

(cos θ√
g11

∂x1 + sin θ√
g22

∂x2

)
,

and for it to belong to E, it is enough to impose that it is a multiple of Ẋ . We take

μ := A
√

g11 cos θ + B
√

g22 sin θ − C
√−g33,

so that the vector field becomes (A
√

g11 sin θ − B
√

g22 cos θ)Ẋ . Hence, by defining F :=
A
√

g11, G := B
√

g22 and H := −C
√−g33, the kernel is

W = 〈X + μ∂θ 〉 = 〈Z := X + (F cos θ + G sin θ + H)∂θ 〉.
��

Theorem 4.8 Let M be a three-dimensional spacetime. Then,

N ∼= PC/W.

In addition, if N is a manifold and p : PC → PC/W ∼= N is a submersion, the canonical
contact structure on N is

H ∼= p∗E.
Proof We divide the proof of Theorem 4.8 into two parts.
Part I: N ∼= PC/W. It is enough to show thatW computed in Proposition 4.7 is pointwise
proportional to the geodesic flow Xg . Let (V , ϕ) be a local chart of M making the metric
diagonal, and let γ (t) = ϕ

(
x1(t), x2(t), x3(t)

)
be a null geodesic. Then,

(x ′
1)

2g11 + (x ′
2)

2g22 = −(x ′
3)

2g33 (13)

and the curve x ′
1u1 + x ′

2u2 + x ′
3u3 ∈ Tϕ(x1,x2,x3)M is an integral line of Xg . Under our

identification PC ∼= { cos θ√
g11

u1 + sin θ√
g22

u2 + 1√−g33
u3}θ∈S1,x∈M , this curve reads

x ′
1

x ′
3

√
g11

−g33

u1√
g11

+ x ′
2

x ′
3

√
g22

−g33

u2√
g22

+ u3√−g33
∈ Tϕ(x1,x2,x3)M = �

(
x1, x2, x3, θ

)
,

where θ is such that cos θ = x ′
1

x ′
3

√
g11

−g33
and sin θ = x ′

2
x ′
3

√
g22

−g33
. Note that this makes sense

because of Equation (13), and that x ′
3 is nonzero if γ is nonconstant. Then, the tangent vector

to this curve, which gives the expression of Xg in the coordinate chart
(
V × (0, 2π)

)
on PC ,

is

x ′
1∂x1 + x ′

2∂x2 + x ′
3∂x3 + θ ′∂θ

= x ′
3
√−g33

( cos θ√
g11

∂x1 + sin θ√
g22

∂x2 + 1√−g33
∂x3 + θ ′

x ′
3
√−g33

∂θ

)
.

Hence, our claim is equivalent to θ ′
x ′
3
√−g33

= F cos θ+G sin θ+H . Using that−θ ′ sin θ =
(

x ′
1

x ′
3

√
g11

−g33

)′
and that the xi satisfy the geodesic equation the result follows, after computing

the Christoffel symbols for the metric in Equation (12).
Part II: H ∼= p∗E. Firstly, as argued in [1, p. 246], the even-contact structure E is invariant
under the flow of any vector field generating W. Therefore, the pushforward p∗E is well
defined.
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Let γ ∈ N ∼= PC/W. Then, γ is given by a curve μ : (−ε, ε) → M which is a
null geodesic in M , and γ = p

(
μ̇(s)

)
for all s ∈ (−ε, ε). Let q0 := μ(0) and define

a coordinate system ϕ : (x1, x2, x3) �→ ϕ(x1, x2, x3) around q0 given by Proposition
4.6. Let �(x1, x2, x3, θ) be coordinates around μ̇(0) in PC as defined before Proposi-
tion 4.7. Now, for all s ∈ [0, ε) small enough, the point qs := μ(s) lies in the image
of ϕ and μ̇(s) lies in the image of �, and we can consider functions xi , θ such that
μ̇(s) = �

(
x1(s), x2(s), x3(s), θ(s)

)
. If s > 0 is small enough, the points q0 and qs are

not conjugate in M .
The sky of q0 is given by

Sq0 = {p ◦ �
(
x1(0), x2(0), x3(0), θ

) | θ ∈ (
θ(0) − π, θ(0) + π

]},
and similarly for Sqs . Therefore,

Hγ = TγSq0 ⊕ TγSqs = Tμ̇(0) p(〈∂θ 〉) ⊕ Tμ̇(s) p(〈∂θ 〉).
We ought to express the second addend as a pushforward of a line over μ̇(0). Take s > 0
small enough and let K be a neighbourhood of μ̇(s) for which the flow�Z−s : K → �Z−s(K )

at time −s of the vector field Z = X + (F cos θ + G sin θ)∂θ is a diffeomorphism. Then,
p ◦ �Z−s = p, and since �Z−s

(
μ̇(s)

) = μ̇(0), we can compute

TγSqs = Tμ̇(s) p(∂θ ) = (Tμ̇(0) p ◦ Tμ̇(s)�
Z−s)(∂θ )

and

Hγ = Tμ̇(0) p
(〈

∂θ , Tμ̇(s)�
Z−s(∂θ )

〉)
= Tμ̇(0) p

(〈
∂θ , Tμ̇(s)�

Z−s(∂θ ) − ∂θ

〉)

= Tμ̇(0) p

(〈
∂θ ,

Tμ̇(s)�
Z−s(∂θ ) − ∂θ

s

〉)
,

for all s > 0 small enough. Hence, the result is still true if we take the limit s → 0. Thus,

we obtain Hγ = Tμ̇(0) p

(〈
∂θ , lim

s→0

Tμ̇(s)�
Z−s (∂θ )−∂θ

s

〉)
= Tμ̇(0) p (〈∂θ , [∂θ , Z ]〉). We compute

[∂θ , Z ] = Ẋ + (−F sin θ + G cos θ)∂θ and therefore

Hγ = Tμ̇(0) p (〈∂θ , [∂θ , Z ]〉) = Tμ̇(0) p
(〈
∂θ , Ẋ

〉) = Tμ̇(0) p
(〈
∂θ , Ẋ , Z

〉)

= Tμ̇(0) p
(〈
∂θ , Ẋ , X + (F cos θ + G sin θ)∂θ

〉)

= Tμ̇(0) p
(〈
∂θ , Ẋ , X

〉) = Tμ̇(0) p(E).

This concludes the proof thatH ∼= p∗E and hence the theorem. ��

Example 4.9 The Lorentzian prolongation of the spacetime (S2 × S
1, g1) is diffeomorphic

to PC ∼= STS
2 × S

1. Letting t be the S
1-coordinate and θ the coordinate on the fibre of

STS
2, the Engel flag over (u, s) ∈ STS

2×S
1 is, seeing TS

2 ⊂ T (STS
2) via the Levi-Civita

connection on S2,

〈u + ∂t 〉 ⊂ 〈u + ∂t , ∂θ 〉 ⊂ 〈u〉⊥ ⊕ 〈u + ∂t , ∂θ 〉 ⊂ T(u,s)(STS
2 × S

1).

Hence, (STS
2 × S

1)/W = (STS
2 × S

1)/〈u + ∂t 〉 ∼= STS
2 ∼= N1, and letting p : STS

2 ×
S
1 → STS

2 be the natural projection, p∗E ∼= χ ∼= H.
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4.3 Retrieving the spacetime

We investigate how Theorem 4.8 allows us to characterize the three-dimensional contact
manifolds that are spaces of null geodesics of a spacetime. This provides a procedure to,
given a contact manifold (N , ξ) satisfying the necessary conditions, find a spacetime whose
space of null geodesics is precisely (N , ξ).

The main idea is to Cartan-prolong the contact manifold and make use of Remark 4.5 to
Lorentz-deprolong it.

(PC,
∼D) (S(ξ),D)

(M, g) (N , ξ)
Thm.4.8

?

?

Ex.4.4

Def.2.2

Ex.4.2 (5)

We have the following result.

Theorem 4.10 A three-dimensional contact manifold (N , ξ) is contactomorphic to the space
of null geodesics of a spacetime if and only if there exists an Engel manifold (Q,D) with
Engel flag W ⊂ D ⊂ E ⊂ T Q such that

N ∼= Q/W and ξ ∼= p∗E, (14)

for p : Q → Q/W the projection, and Q admits an oriented foliation by circles F such that

(i) for all S ∈ F and x ∈ S, we have Tx S ⊕ Wx = Dx ,
(ii) the space of leaves M := Q/F is a manifold and the projection q : Q → M is a

submersion,
(iii) for every S ∈ F, the image q∗D|S is a cone in the vector space Tq(S)M and the map

x ∈ S �→ q∗Dx is injective.

In addition, if the above conditions are satisfied, (N , ξ) is contactomorphic to the space
of null geodesics of (Q/F, g), where g is a metric on Q/F with bundle of cones q∗D.

Proof Let (N , ξ) be the space of null geodesics of a spacetime (L, h). The existence of Q
satisfying (14) follows fromTheorem4.8 taking (Q,D) as theLorentz prolongation of (L, h).
Then, we can take F := {PCx }x∈L , which is a foliation by circles and is oriented because
L is a spacetime. By definition of the Lorentz prolongation, TF ⊂ D, and by Example 4.4,
the kernelW is transverse to TF. Hence i) is satisfied. Also, by Remark 4.5, Q/F ∼= L , and
therefore it is a manifold, and q is the projection πL : Q = PC → L , which is a submersion.
Hence, i i) follows.

Also by definition of the Lorentz prolongation, for all u ∈ Q, q∗Du = u, where on the
right hand side we regard u as a vector on a cone of L . Therefore, q∗D|PCx = Cx and i i i)
also follows. Finally, by Theorem 4.8 and (14), the last claim is also satisfied, as any other
metric on L with the same bundle of cones is conformal to g, and therefore has the same
space of null geodesics.

For the converse, let (N , ξ) be a contact manifold such that N = Q/W and ξ = p∗E for
an Engel manifold Q with flag W ⊂ D ⊂ E ⊂ T Q. Assume Q admits an oriented foliation
F satisfying i), i i), i i i) above. Let M := Q/F, which is a manifold by hypothesis, and
q : Q → M the projection map. Now, since TF ⊂ D, the pushforward q∗Dx is a line in
Tq(x)M for all u ∈ PC and by i i i), these create a cone in Tq(S)M when traveling the leaf
S ∈ F containing x . Therefore, we obtain a smooth bundle of cones on T M , and hence there
exists a metric g on M with such bundle of cones. In addition, any two metrics with the same
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bundle of null cones are conformal, and hence produce the same contact manifold of null
geodesics. Since F is oriented, we can assign a consistent orientation to each cone in the
bundle and therefore (M, g) is a spacetime.

Let now (PC,
∼D) be the Lorentz prolongation of (M, g), with flag

∼W⊂ ∼D⊂ ∼E ⊂ T (PC),
and define the projection πM : PC → M . Consider the map

� : Q → PC
x �→ q∗Dx

,

which is a diffeomorphism by the definition of g and the hypothesis that x ∈ S �→ p∗Dx is
injective for any S ∈ F. In addition,

(
πL ∗ ◦ �∗

)
(Dx ) = (πM ◦ �)∗(Dx ) = q∗Dx = �(x),

which implies �∗D ⊂ ∼D. Since � is a submersion, we find that �∗D =∼D, and so � is an

Engel-morphism. Let us define r : PC → PC/
∼W the projection. Then, by Theorem 4.8,

we find that the space of null geodesics (N,H) of (M, g) is

N ∼= PC/
∼W ∼= Q/W ∼= M

and

H ∼= r∗
∼E ∼= p∗E ∼= ξ,

where we make use of Remark 4.3. ��
Remark 4.11 We have later found out that [24, Rk. 1.7] suggests the necessity of a foliation
F like the one in Theorem 4.10.

Since the Cartan prolongation of (N , ξ) satisfies (14), we obtain:

Corollary 4.12 A three-dimensional contact manifold (N , ξ) is contactomorphic to the con-
tact manifold of null geodesics of a spacetime if the Cartan prolongation (S(ξ),D) of (N , ξ)

admits an oriented foliation F by circles such that

(i) for all S ∈ F and u ∈ S, we have Tu S ⊕ Wu = Du, where W denotes the kernel of
(S(ξ),D),

(ii) the space of leaves M := S(ξ)/F is a manifold and the projection p : S(ξ) → M is a
submersion,

(iii) for every S ∈ F, the image p∗D|S is a cone in the vector space Tp(S)M and the map
u ∈ S �→ p∗Du is injective.

In addition, if i), i i), i i i) are satisfied, (N , ξ) is contactomorphic to the space of null
geodesics of (M, g), where g is any metric on M with bundle of null cones p∗D.

We continue our discussion by exploring the relation between the Cartan prolongation
of (N , ξ) and the Engel manifold Q in Theorem 4.10, whenever it exists. The following
proposition is an adaptation of [19, Prop. 5.4].

Proposition 4.13 Let (Q,D) be an Engel manifold with flag W ⊂ D ⊂ E ⊂ T Q. Assume
Q/W is a manifold, which then can be endowed with a contact structure ξ := p∗E for
p : Q → Q/W the projection, provided it is a submersion. Then, there exists a local
diffeomorphism � : Q → S(ξ) to the Cartan prolongation which is compatible with the
Engel structure.

123



On the space of null geodesics... Page 19 of 22 15

Proof Let x ∈ X . SinceWx ⊂ Dx , the pushforward p∗Dx is a line in ξp(x). Hence, the map

� : Q → S(ξ)

x �→ p∗Dx

is well defined, and smooth. Let x ∈ Q and consider a neighbourhood U ⊂ Q of x in which
we can trivialize D|U = 〈Z , Y 〉, for Z ∈ X(U ) spanning W. Since � is a bundle map over
Q/W, it is enough to show that Ty� is surjective when restricted to Wy for every y ∈ U .
Therefore, by linearity, it is enough to show �∗ Z �= 0. By definition of �, this is equivalent
to [Z , Y ] �= 0, which holds because D is Engel.

It is only left to show that � preserves the Engel structure. Let u ∈ Dx and define
πC : S(ξ) → X/W the projection. Then,

(
πC ∗ ◦ �∗

)
(Dx ) = (πC ◦ �)∗(Dx ) = p∗D = �(x).

Since � is a submersion, the Proposition follows. ��

Corollary 4.14 If (N , ξ) is a three-dimensional contact manifold contactomorphic to the
space of null geodesics of a spacetime, the Engel manifold (Q,D) described in Theorem
4.12 comes with a canonical local diffeomorphism � : Q → S(ξ) compatible with the Engel
structures.

Diagram (5) above is thus completed to

(PC,
∼D) (S(ξ),D)

(M, g) (N , ξ).
Thm.4.8

Cor.4.14

Thm.4.10

Ex. 4.4

Space of null geodesics

Ex. 4.2

We believe that this approach can be useful in order to answer the open question of whether
the contact structure of the space of null of geodesics can be overtwisted, but describing or
just dealing with the foliation in Theorem 4.10 will require further work.

We finally look at two illustrative examples where themanifolds involved can be described
explicitly and the subtleties of the main results can be appreciated.

Example 4.15 Consider R3 with coordinates (x, y, t) and tangent vector fields ux , uy, ut .
Then, the Lorentz prolongation of (R3, dx2 + dy2 − dt2) is diffeomorphic to R

3 × S
1 via

(x, y, t, θ) �→ 〈cos θux + sin θuy + ut 〉 ⊆ T(x,y,t)R
3. Under this identification, the Engel

structure isD(x,y,t,θ) = 〈cos θ∂x +sin θ∂y +∂t , ∂θ 〉, which impliesW = 〈cos θ∂x +sin θ∂y +
∂t 〉 and E = D⊕〈− sin θ∂x +cos θ∂y〉. The foliationF by circles is given by {{k}×S

1}k∈R3 .
We also have R3 × S

1/W ∼= R
2 × S

1 with projection map

p : R
3 × S

1 → R
2 × S

1

(x, y, t, θ) �→ (x − t cos θ, y − t sin θ, θ).

Take coordinates (u, v, θ) onR2×S
1 with tangent vectorswu, wv,wθ . Then, the induced

contact structure on R2 × S
1 is

ξp(x,y,t,θ) := p∗E(x,y,t,θ) = 〈− sin θwu + cos θwv, t sin θwu − t cos θwv + wθ 〉
= 〈− sin θwu + cos θwv,wθ 〉,
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which is the canonical contact structure on R2 × S
1 ∼= STR

2. The Cartan prolongation S(ξ)

of (R2 × S
1, ξ) is diffeomorphic to R2 × S

1 × S
1 via

(u, v, θ, ω) �→ 〈 cosω(− sin θwu + cos θwv) + sinωwθ 〉 ∈ S(ξ)(u,v,θ).

Under this identification, the Engel distribution reads

∼D(u,v,θ,ω)= 〈cosω(− sin θ∂u + cos θ∂v) + sinω∂θ , ∂ω〉 ⊂ T(u,v,θ,w)S(ξ).

The local diffeomorphism � defined in Proposition 4.13 is (x, y, t, θ) �→ p∗∂θ =
〈t sin θwu − t cos θwv + wθ 〉 = 〈 t√

1+t2
sin θwu − t√

1+t2
cos θwv + 1√

1+t2
wθ 〉. Hence,

using the identification above,

� : R
3 × S

1 → R
2 × S

1 × S
1

(x, y, t, θ) �→ (x − t cos θ, y − t sin θ, θ, arccos t√
1+t2

)
,

where we take arccos t√
1+t2

∈ (0,π). Then, � is a global diffeomorphism onto its image

�(R3 × S
1) = R

2 × S
1 × (0,π). Note that the image of F under � is {�(x, y, t, θ) | θ ∈

S
1}(x,y,t)∈R3 . This is still a foliation by circles on the image of � satisfying i) and i i) above

with projection

q : R2 × S
1 × (0,π) → R

2 × S
1 × (0,π)/�(F) ∼= R

2 × (0,π)

(u, v, θ, ω) �→ (u + cos θ cosω
sinω

, v + sin θ cosω
sinω

, ω).

Again, taking (u, v, ω) as coordinates on R2 × (0,π), we can compute

q∗
∼D= q∗∂ω =

〈
∂ω − cos θ

sin2 ω
∂u − sin θ

sin2 ω
∂v

〉
=: V (ω, θ),

which indeed defines a bundle of cones with injective map θ ∈ S
1 �→ V (ω, θ) for a given

ω ∈ (0,π). Hence, i i i) is also satisfied.
The bundle of cones obtained on R

2 × (0,π) is the induced by the metric g = du2 +
dv2 − sin4 ωdω2, and therefore we obtain a spacetime isometric to (R3, dx2 + dy2 − dt2)
via (x, y, t) �→ (x, y, arccos t√

1+t2
).

Example 4.16 Let (M, g) = (S2 × S
1, g◦ − dt2). As argued in Example 4.9, PC ∼= STS

2

with flag

〈u + ∂t 〉 ⊂ 〈u + ∂t , ∂θ 〉 ⊂ 〈u〉⊥ ⊕ 〈u + ∂t , ∂θ 〉 ⊂ T(u,s)(STS
2 × S

1),

and (N,H) ∼= (STS
2, χ). Note that, since the S1-bundle STS

2 → S
2 is oriented, the vector

field ∂θ is well defined everywhere. In addition, for u ∈ STxS
2, we can define u⊥ ∈ STxS

2

orthogonal to u with respect to g◦ and so that (u, u⊥, x) is a positive basis for S2. Seeing
TS

2 ⊂ T (STS
2) via the Levi-Civita connection on (S2, g◦), we can see u⊥ ∈ Tu(STS

2),
and we obtain a well-defined vector field P on STS

2 given pointwise by Pu = u⊥. Then,
the contact structure on STS

2 is χ = 〈∂θ , P〉 and, in particular, it is trivial as a vector
bundle. Therefore the Cartan prolongation S(χ) of (STS

2, χ) is S(χ) ∼= STS
2 × S

1 via
(u, s) �→ 〈 cos s P + sin s∂θ 〉 ∈ Tu STS

2.
Now, the local diffeomorphism � : STS

2 × S
1 → STS

2 × S
1 is given by

�(u, s) = p∗Du,s = p∗∂θ ,
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which can be described as follows. The element in STS
2 of �(u, s) is simply p(u, s), which

recall can be described as taking the great circleμ ⊂ S
2 defined by u, and parallel transporting

u over μ an angle θ backwards. We get

�(u, s) = 〈 cos s∂θ − sin s p(u, s)⊥〉 ∈ Tp(u,s)STS
2,

that is, �(u, s) = (
p(u, s), s + π

2

)
. This is a global diffeomorphism � : STS

2 → STS
2

preserving the Engel structures. The foliation

F = {STxS
1 × {t}}(x,t)∈S2×S1

on PC ∼= STS
2 × S

1 gets sent under � to a foliation by circles F� which can be described
as follows. The foliation splits in a family of S1−foliations of STS

2. On STS
2 × {t}, F�

is formed by all circles on S
2 with radius t and vectors pointing towards the centre of such

circle. Hence, F� satisfies i). Now, fixing t , every circle of F� on STS
2 × {t} has a unique

centre, and every point of S2 defines one such circle. Therefore, STS
2/F�

∼= S
2 × S

1, and
the projection q : STS

2 → S
2 × S

1 is a submersion, since it is on every slice q|STS2×{t} :
STS

2 × {t} → S
2 × {t}, as this is only parallel transporting a tangent vector an angle t over

its great circle, and taking the basepoint. Therefore, i i) is also satisfied. The bundle of cones
defined on S2×{t} is that of a strictly positive constant multiple of gc, and this constant varies
smoothly with respect to t . Hence, we obtain a spacetime isometric to (S2 × S

1, gc × dt2).
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