
This is the **accepted version** of the journal article:

Chang, Xingqi; Chacón-Borrero, Jesús; Shang, Jian; [et al.]. «Improved Mn⁴⁺/Mn²⁺ Contribution in High-Voltage Zn-MnO₂ Batteries Enabled by an Al³⁺-Ion Electrolyte». *Advanced Energy Materials*, Vol. 14, Issue 48 (December 2024), art. 2402584. DOI 10.1002/aenm.202402584

This version is available at <https://ddd.uab.cat/record/310024>

under the terms of the IN COPYRIGHT license

Improved Mn⁴⁺/Mn²⁺ contribution in high-voltage Zn-MnO₂ batteries enabled by an Al³⁺-ion electrolyte

Xingqi Chang ^{a,b,†}, Jesús Chacón-Borrero ^{a,†}, Ke Xiao ^a, Guillem Montaña-Mora ^a, Karol V. Mejia-Centeno ^{a,b}, Xuan Lu ^a, Ao Yu ^a, Jing Yu ^{a,c}, Xiaolong Zhou ^{d,*}, Sarayut Tunmee ^e, Pinit Kidkhunthod ^e, Changcai Cui ^f, Junshan Li ^g, Yongbing Tang ^{d,*}, Paulina R. Martínez-Alanis ^a, Jordi Arbiol ^{c,h} and Andreu Cabot ^{a,h,*}

^a Catalonia Institute for Energy Research – IREC, Sant Adrià de Besòs, Barcelona 08930, Spain.

^b Facultat de Química, Universitat de Barcelona, Carrer de Martí i Franquès, Barcelona 08028, Spain.

^c Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain.

^d Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

^e Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand.

^f Institute of Manufacturing Engineering, Huaqiao University, Xiamen, China.

^g Institute for Advanced Study, Chengdu University, 610106, Chengdu, China.

^h ICREA Pg. Lluis Companys, 08010 Barcelona, Catalonia, Spain.

† X.Q. Chang and J. A. Chacón contributed equally to this work.

* Correspondence: zhouxl@siat.ac.cn, tangyb@siat.ac.cn; acabot@irec.cat.

Keywords: Al-ion, Mn⁴⁺/Mn²⁺ reaction, hybrid ions, Zn-MnO₂ battery, Zn-ion battery, MnO₂

Abstract

Rechargeable aqueous Zn-MnO₂ batteries are gaining widespread interest as a cost-effective and safe energy storage solution. However, their commercialization is hindered by the limited stability, output voltage and energy densities experimentally obtained. Herein, we propose a hybrid ion Zn-MnO₂ system with enhanced Mn⁴⁺/Mn²⁺ electrochemical contribution enabled by an Al³⁺-based electrolyte. Compared with previous Zn-MnO₂ batteries based on Zn²⁺ electrolytes, the hybrid Al³⁺/Zn²⁺ ion cell is characterized by a higher output voltage of 1.75 V, capacities up to 469 mAh·g⁻¹, and outstanding energy densities up to ~730 Wh·kg⁻¹ at 0.3 A·g⁻¹.

¹ (mass based on cathode material). Besides, the Al³⁺-enabled Zn-MnO₂ battery shows 100% capacity and energy density retention after 10,000 cycles at 2 A·g⁻¹. Even at a high mass-loading of 6.2 mg·cm⁻², a capacity of ~200 mAh·g⁻¹ is maintained for over 100 cycles. This outstanding performance is related to the contribution of different intercalation and reaction mechanisms, as proved by the combination of electrochemical analysis and *ex situ* x-ray diffraction characterization of the cells at different discharge stages. Al³⁺ ions, as Lewis strong acid, contribute to capacity in two significant ways: through a highly reversible intercalation/de-intercalation that substantially boosts capacitance at low current rates, and promoting the Mn⁴⁺/Mn²⁺ reaction aided by H⁺ that dominates the capacitance at higher current rates. Overall, this work demonstrates a practical Zn-MnO₂ battery with a high potential for low-cost stationary energy storage habilitated by multiple ion co-intercalation.

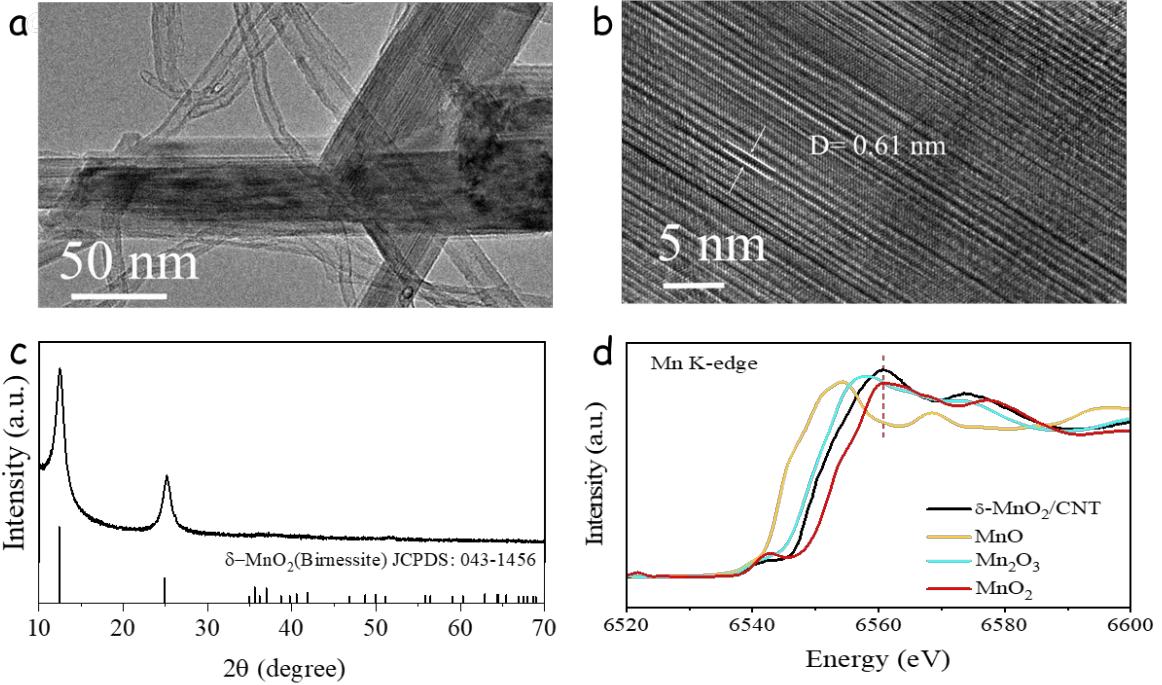
1. Introduction

The utilization of alternative monovalent (Na⁺, K⁺) or multivalent (Zn²⁺, Mg²⁺, Ca²⁺, Al³⁺) cations in energy storage devices has garnered significant interest owing to the drawbacks associated with lithium, such as its limited availability and related high-cost.^[1] Rechargeable batteries based on multivalent metal-ions are particularly attractive because of their abundance in the Earth's crust and the associated multi-electron transfer processes. On the other hand, from cost, environmental impact and safety perspectives, aqueous systems are especially appealing. In this scenario, the development of aqueous zinc-based rechargeable batteries is gaining momentum driven by the inherently high theoretical capacity of zinc metal anodes (5851 mAh·mL⁻¹ in volume and 820 mAh·g⁻¹ in mass), the small ionic radius of Zn²⁺ (0.74 Å), and the abundance, low cost, simple processing, and safety of Zn.^[2] In addition, Zn shows excellent compatibility with aqueous electrolytes, with a convenient redox potential (-0.763 V vs. standard hydrogen electrode) and excellent Zn/Zn²⁺ redox reversibility related to the inhibition of the hydrogen evolution reaction (HER) on its surface.^[3] Considering all these advantages, aqueous zinc-ion batteries are particularly appealing in large-scale storage systems, among other applications.^[4]

At the cathode side of aqueous Zn-based batteries, the use of manganese oxides offers advantages in terms of average voltage (~1.3 V vs. Zn²⁺/Zn), theoretical capacity (~308 mAh·g⁻¹, Zn_{0.5}MnO₂), cost, discharge potential, and cycle/rate performance.^[5] However, the specific energy of current Zn-MnO₂ batteries remains unsatisfactory at approximately 70-140 Wh·kg⁻¹, whereas the values obtained from commercial Li-ion batteries are around 180-230 Wh·kg⁻¹.^[6]

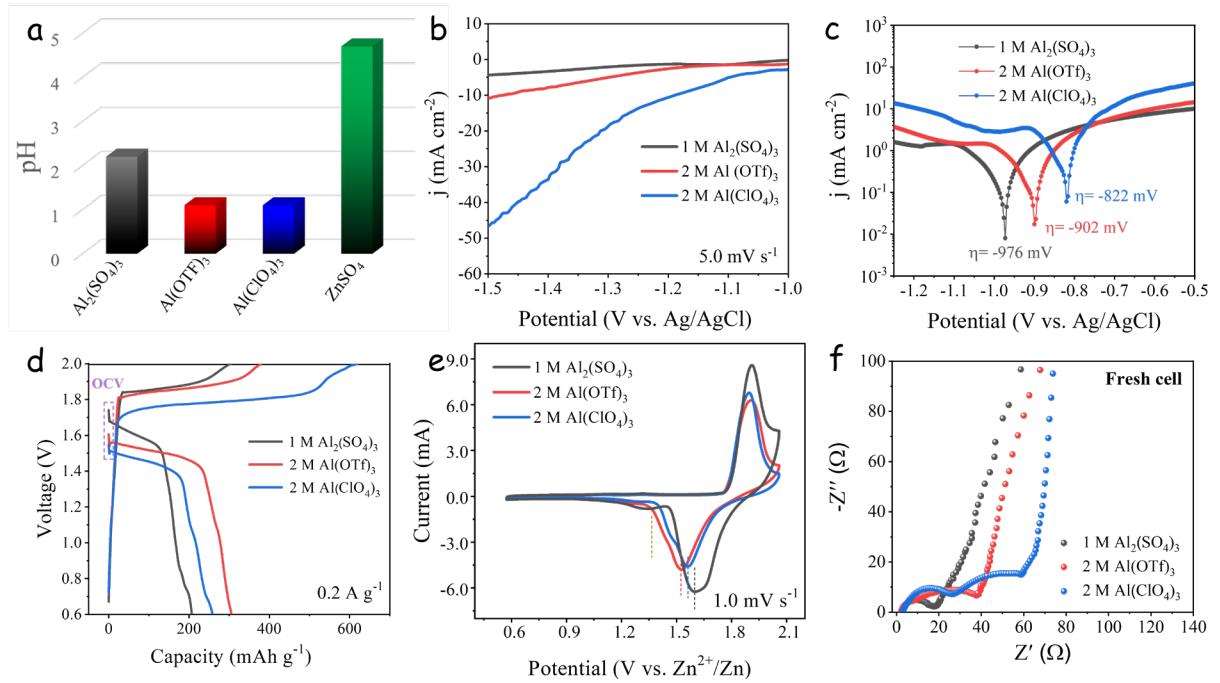
The moderate average discharge potential (ADV) of current MnO_2 cathodes vs. the Zn anode, at about 1.3~1.4 V vs. Zn^{2+}/Zn ,^[7-10] is a main factor currently limiting the energy density of Zn- MnO_2 batteries.^[11]

Zinc sulfate (ZnSO_4), chloride (ZnCl_2), perchlorate (ZnClO_4), and trifluoromethanesulfonate (Zn(OTf)_2) are the commonly used electrolytes in aqueous zinc-ion batteries. Among them, while ZnCl_2 and ZnClO_4 are strongly acidic and corrosive, the alkaline nature of Zn(OTf)_2 makes it more gentle with the anode but favors the growth of irreversibly discharged Mn(OH)_2 at the cathode. On the other hand, ZnSO_4 aqueous electrolytes have a weak acidic character that enables H^+ intercalation to contribute to the capacity. Besides, during the discharge, $\text{Zn}_4\text{SO}_4(\text{OH})_6 \cdot 5\text{H}_2\text{O}$ precipitates, protecting the cathode surface and buffering the electrolyte pH.^[12]


Within Zn- MnO_2 batteries, additional capacity contribution can be obtained through Mn^{2+} deposition and dissolution.^[13] Thus, to further enhance the energy density and electrochemical stability of Zn- MnO_2 batteries, Mn^{2+} ions can be introduced as electrolyte additive.^[14] The addition of an extra ion participating in the charge/discharge process substantially improves the rate and cycling performance of Zn- MnO_2 batteries. Mn^{2+} ions transform to MnOOH (~1.3 V vs. Zn^{2+}/Zn) during the discharge process and MnOOH transforms to MnO_2 (~1.8 V vs. Zn^{2+}/Zn) during the charge process.^[15] Thus Mn^{2+} ions enable MnOOH to reversibly transform into MnO_2 but with no discharge capacity contribution in the high voltage range. Thus, while Zn- MnO_2 batteries have room for increasing the discharge voltage plateau in weakly acidic aqueous electrolytes, to overcome the current limitations of Zn- MnO_2 batteries, new approaches should be developed.

Herein, we describe a novel hybrid ion Zn- MnO_2 battery that employs an Al^{3+} -based electrolyte. Compared with conventional Zn- MnO_2 batteries, the $\text{Al}^{3+}/\text{Zn}^{2+}$ hybrid device proposed here enables larger capacities, a higher discharge voltage plateau, improved energy densities, and extended stability. In this direction, we test different aluminum salts and concentrations to find the optimum electrolyte. Besides, the outstanding performance obtained is rationalized using *ex situ* X-ray diffraction (XRD) analyses of the cells at different discharge stages, demonstrating reversible participation of Al^{3+} in battery cycling that enables a highly reversible $\text{Mn}^{4+}/\text{Mn}^{2+}$ reaction in the MnO_2 electrode.

2. Results and Discussion

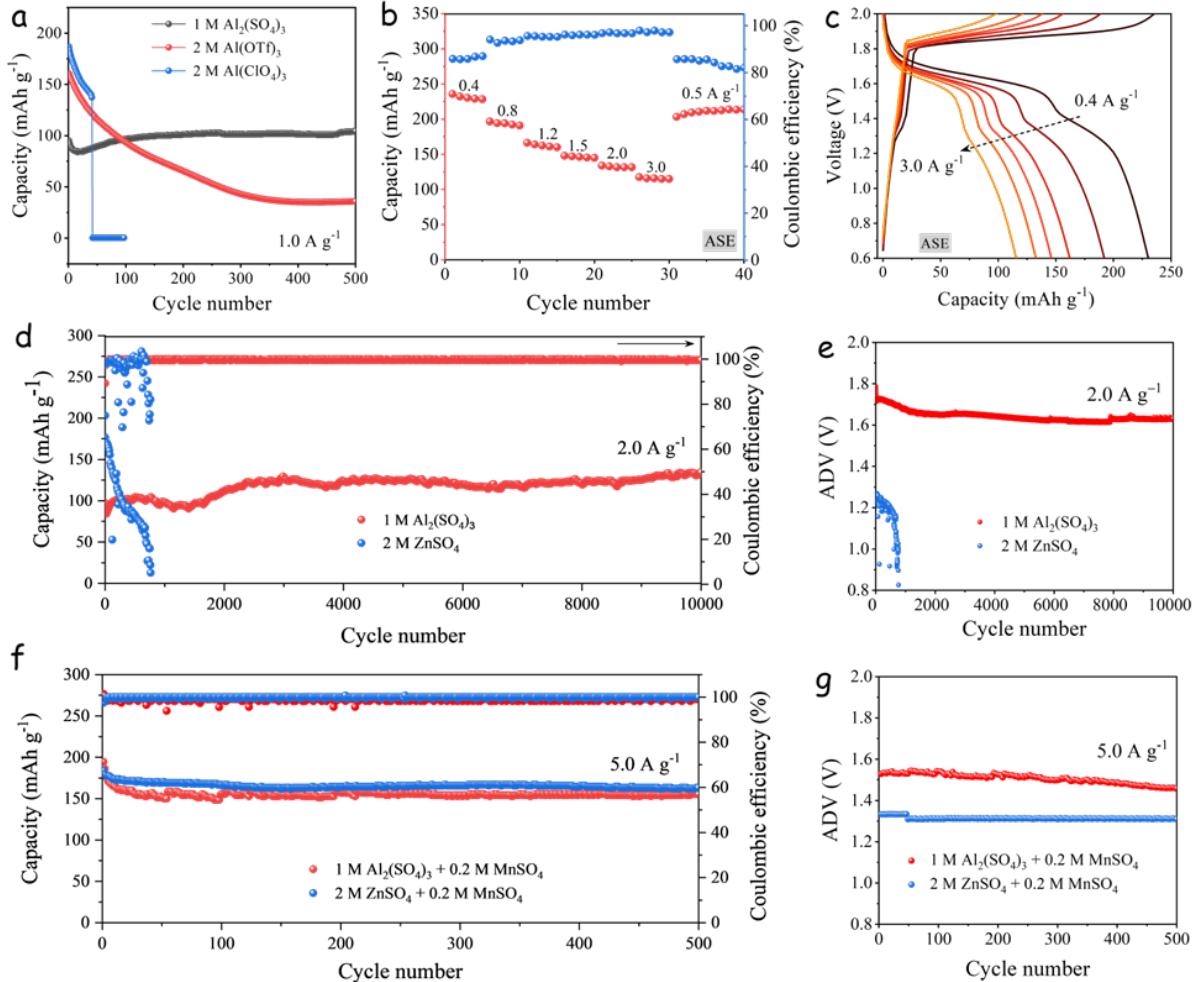

Composites of multi-walled carbon nanotubes (CNTs) and elongated and flat MnO₂ particles (MnO₂/CNT) were produced via a facile hydrothermal method (see details in the Experimental Section in the supporting information, SI). HRTEM (Figure 1a,b) and XRD (Figure 1c) characterization of the composites show the presence of the layered birnessite-MnO₂ phase (δ -MnO₂, JCPDS card N° 043-1456). The high-resolution Mn 2p XPS spectrum of δ -MnO₂/CNT displays a doublet centered at 654.2 eV and 642.5 eV that can be assigned to a Mn⁴⁺ chemical state (Figure S1).^[16] The Mn K-edge X-ray absorption near edge structure (XANES) spectra of δ -MnO₂/CNT and three reference manganese oxides are shown in Figure 1d. The peak located at 6560.7 eV of δ -MnO₂/CNT overlaps with that of the MnO₂ standard material, confirming the Mn⁴⁺ chemical state.^[17,18]

The suitability of different Al³⁺ aqueous electrolytes was initially tested using linear sweep voltammetry (LSV) at a scan rate of 5 mV·s⁻¹ in a three-electrode configuration to investigate the HER on the Zn foil used as the working electrode. A platinum mesh was used as the counter electrode and Ag/AgCl (saturated KCl) as the reference electrode. Different Al³⁺ aqueous electrolytes were tested: 1M aluminum sulfate electrolyte (ASE), 2M aluminum trifluoromethanesulfonate electrolyte (ATE), and 2M aluminum perchlorate electrolyte (APE). As shown in Figure 2a, the three Al-based electrolytes tested were much more acidic (pH values of 2.2, 1.1, and 1.1 for ASE, ATE, and APE, respectively) than the standard 2M zinc sulfate electrolyte (ZSE) conventionally used in aqueous Zn-ion batteries (pH = 4.7). Additional 2M AlCl₃ and 2M Al(Ac)₃ aqueous electrolytes were also initially considered, but they provided negligible capacity and thus were discarded (Figure S2). LSV curves (Fig. 2b and 2c) show ASE to provide the best performance in terms of the highest HER overpotential (η , -976 mV) compared with APE (-822 mV) and ATE (-902 mV).^[19-21] This is consistent with the ZnSO₄ also providing the best performance among the different Zn²⁺ salts, associated with the high electrochemical stability of SO₄²⁻ ions and their ability to adsorb at anode and cathode surfaces forming a protective layer that avoids the corrosion of the Zn anode surface.^[22,23]

Figure 1. (a) TEM and (b) HRTEM images of the δ -MnO₂/CNT composite. The lattice fringes in the HRTEM image show an interlayer distance of ~ 0.61 nm, which fits the (001) interplane distance of δ -MnO₂. (c) XRD peaks of δ -MnO₂/CNT (d) Mn K-edge XANES spectrum of δ -MnO₂/CNT and MnO₂, Mn₂O₃, and MnO standard samples.

The electrochemical performance of the Zn-MnO₂ systems with different Al-ion electrolytes was tested using coin cells assembled using a MnO₂/CNT cathode, a Zn foil anode, and the different Al³⁺ aqueous electrolytes (see details in SI). Their electrochemical performance was evaluated by galvanostatic charge/discharge cycles and cyclic voltammetry (CV). As observed in Figure 2d, in the first galvanostatic charge-discharge process, the coin cells with different Al-based electrolytes show one sloping discharge plateau at ~ 1.65 V for ASE, ~ 1.36 V for ATE, and ~ 1.51 V for APE. Their open circuit voltage (OCV) was 1.74 V for ASE, 1.63 V for ATE, and 1.58 V for APE.

Figure 2. Comparison of the performance of Zn-MnO₂ batteries with different Al-based electrolytes: (a) Electrolyte pH values, (b) LSV curves at 5 mV·s⁻¹. (c) Tafel curves. (d) First galvanostatic discharge-charge curves, (e) First CV curves at 1 mV·s⁻¹ with 0.6–2.1 V of voltage window. (f) EIS curves of fresh cells.


From an electrochemical point of view, when no current flows and the electrode potentials are in an equilibrium state, the OCV of a full cell can be determined as:

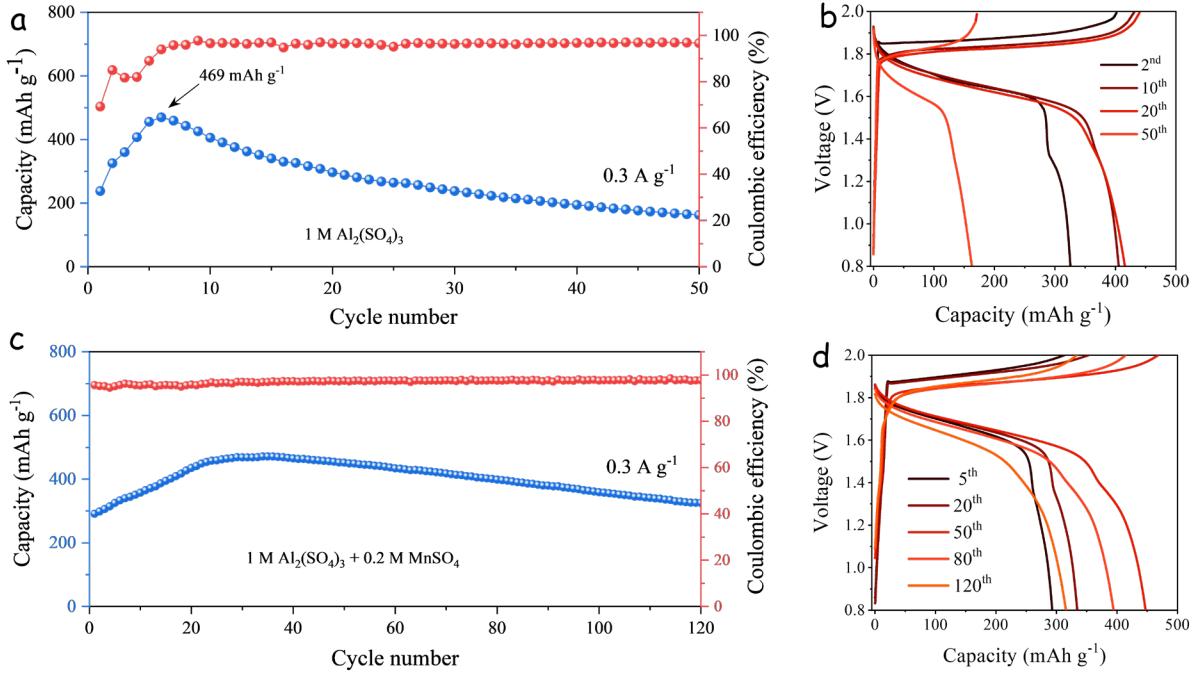
$$OCV = V_{anode}^{eq} - V_{cathode}^{eq} \quad (1)$$

CV curves at 1.0 mV s⁻¹ (Figure 2e) show the cells with the Al-ion electrolytes to display one cathodic and one anodic peak in the voltage range tested (0.6 V - 2.1 V). While the anodic peak remained invariable at 1.9 V for the different electrolytes, the cathodic peak was obtained at around ~1.60 V, ~1.56 V, and ~1.52 V for ASE, ATE, and APE, respectively. Besides, the EIS spectra obtained from the fresh cells (Figure 2f) show that the ASE provides the lowest impedance related to a higher reversibility.

As shown in Figure 3a, the ASE also enabled Zn-MnO₂ cells with higher cycling stability at 1.0 A·g⁻¹. After undergoing 500 cycles, the capacity of the ASE-based cell exceeds its initial capacity. In contrast, the capacity of ATE- and APE-based cells decayed quickly. The rate performance of the ASE-based coin cells is displayed in Figures 3b and 3c. ASE-based cells show excellent rate capability, with discharge capacities of 234, 192, 164, 147, 132, and 116 mAh·g⁻¹ at 0.4, 0.8, 1.2, 1.5, 2.0 and 3 A·g⁻¹, respectively. Besides, the discharge plateau is

maintained above 1.5 V in the current range of 0.4 to 3.0 A·g⁻¹. Benefiting from the high discharge plateau and specific capacity, outstanding energy densities of ~384 Wh·kg⁻¹ at 0.4 A·g⁻¹ and ~165 Wh·kg⁻¹ at 3.0 A·g⁻¹, based on the cathode mass, were determined.

Figure 3. Electrochemistry of Zn-MnO₂ coin cells with Al³⁺ electrolytes. (a) Comparison of the cycle performance of Zn-MnO₂ batteries at 1 A·g⁻¹ with the different Al-based electrolytes. (b) Rate performance of the ASE Zn-MnO₂ battery and (c) galvanostatic charge-discharge at different current densities. (d) Cycling performance and (e) ADV test at 2 A·g⁻¹. (f) Cycling performance and (g) ADV test with 0.2 M MnSO₄ as an additive at 2 A·g⁻¹.


Despite the relatively high capacity of conventional Zn-MnO₂ batteries based on ZSE, the fast decay makes them impractical. Moreover, the conventional Zn-MnO₂ battery has an initial energy efficiency of close to 80% that rapidly decreases (Figure S3c). In contrast, the Zn-MnO₂ battery based on ASE shows stable energy conversion efficiency above 80%. Besides, the ADV of the ASE Zn-MnO₂ cell stays above 1.6 V for 10,000 cycles denoting a highly reversible Al³⁺-related capacitance mechanism (Figure 3e). In contrast, the conventional Zn-MnO₂ battery

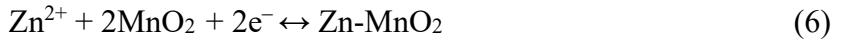
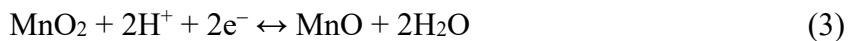
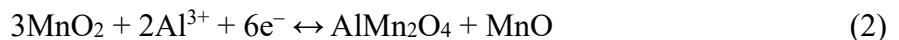
tested here shows a significantly lower and much less stable ADV (~ 1.3 V), which is consistent with previously reported values.^[15,23,24,25]

Additional cells were assembled incorporating ZnSO_4 within the ASE electrolyte but the obtained performance was inferior to that of the ASE-based batteries, as observed in Figure S4, probably due to a competing effect between the two ions. Reducing the $\text{Al}_2(\text{SO}_4)_3$ concentration to incorporate ZnSO_4 results in a stronger zinc intercalation discharge plateau and weaker discharge plateau at 1.6 V, indicating that the high discharge plateau is related to the ASE concentration.

To improve the electrochemical performance of conventional ZSE-based $\text{Zn}-\text{MnO}_2$ batteries, MnSO_4 is frequently used as an electrolyte additive to maximize the Mn^{2+} electrolysis process, promote accessibility of the electrode/electrolyte interface, and prevent excessive dissolution of MnO_2 , which results in enhanced capacity and stability.^[14, 24] As shown in Figure 3g, the cycle performance of both types of $\text{Zn}-\text{MnO}_2$ cells, the ASE- and the ZSE-based, is improved with the addition of 0.2 M MnSO_4 . Both cells display similar capacity when cycled at $5 \text{ A}\cdot\text{g}^{-1}$. However, the ASE $\text{Zn}-\text{MnO}_2$ battery maintains a higher ADV than the ZSE $\text{Zn}-\text{MnO}_2$ (Figure 3f), i.e. a higher energy density.

As shown in Figures 4a and 4c, at $0.3 \text{ A}\cdot\text{g}^{-1}$, the ASE-based cell without MnSO_4 displays a high specific capacity of $469 \text{ mAh}\cdot\text{g}^{-1}$ and an ADV of 1.75 V, corresponding to an energy density of approximately $750 \text{ Wh}\cdot\text{kg}^{-1}$, based on the mass of MnO_2 . Meanwhile, the ASE battery with 0.2 M MnSO_4 as additive exhibits lower capacity fading, a specific capacity $>440 \text{ mAh}\cdot\text{g}^{-1}$ and an ADV of 1.66 V vs. Zn^{2+}/Zn , corresponding to an energy density of $\sim 720 \text{ Wh}\cdot\text{kg}^{-1}$. These energy densities are comparable to those of high energy density Li-ion batteries, Li vs. NCM811 ($\text{LiNi}_{0.8}\text{Co}_{0.1}\text{Mn}_{0.1}\text{O}_2$), $\sim 750 \text{ Wh}\cdot\text{kg}^{-1}$ with a 2.7–4.3 V voltage window at 0.1 C (1C = $200 \text{ mAh}\cdot\text{g}^{-1}$), based on the cathode mass.^[26]

Figure 4. Cycling performance of new Zn-MnO₂ battery at 0.3 A·g⁻¹. (a) Cycling performance and (b) galvanostatic charge-discharge profiles without MnSO₄ additive. (c) Cycling performance and (d) galvanostatic charge-discharge profiles with 0.2M MnSO₄ additive.

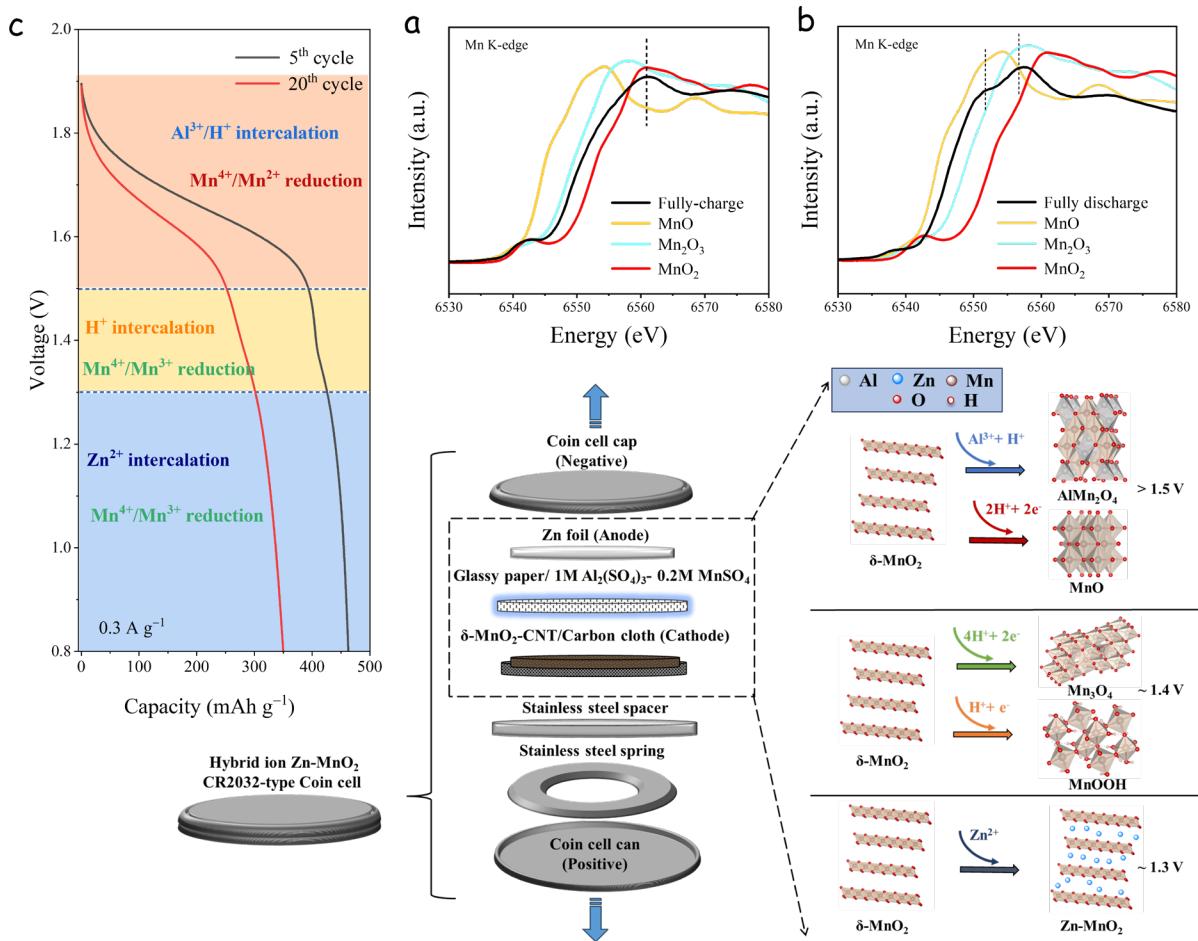



The ASE was characterized by a lower pH than the ZSE. To separate the effect of pH from that of the Al₂(SO₄)₃, we compared the performance of cells having different Al₂(SO₄)₃ concentrations but similar pH, adjusted with the addition of a small amount of H₂SO₄. Figure S5 shows the initial galvanostatic charge-discharge curves at 0.3 A·g⁻¹ of three batteries based on an ASE, containing 0.4 M Al₂(SO₄)₃ + 0.02 M H₂SO₄ (pH= 3.3); 0.4 M Al₂(SO₄)₃ (pH= 4.1); and 0.8 M Al₂(SO₄)₃ (pH= 3.1). The addition of 0.02 M H₂SO₄ to the 0.4 M Al₂(SO₄)₃ electrolyte significantly improves the capacity, from about 110 mAh g⁻¹ to about 280 mAh g⁻¹. However, adding a larger amount of Al₂(SO₄)₃ to reach a similar pH value resulted in a much larger capacity increase, above 400 mAh g⁻¹, thus demonstrating the important role played by Al³⁺ in the battery capacity.

To elucidate the mechanism resulting in the observed ADV increase in δ -MnO₂/CNT cathodes with the ASE, the structural evolution of δ -MnO₂/CNT was *ex situ* characterized during the discharge process. All electrodes were analyzed by XRD after 5 cycles at different discharge voltages (Figure 5a). Upon cycling, *ex situ* XRD patterns show new diffraction peaks assigned to AlMn₂O₄ and ZnMn₂O₄, at 1.5 V and 1.2 V (Zn²⁺/Zn, discharge process), respectively. The characteristic XRD peak at 30.5° and 30.8° are attributed to AlMn₂O₄ (*Fd*3 m of space group);

and 26.6° and 36.3° are the characteristic peaks of ZnMn₂O₄. The ZnMn₂O₄ and AlMn₂O₄ fingerprints were observed at 1.2 V and 1.5 V in the discharge process, respectively. To eliminate the effect of the carbon cloth, the active material powder was removed from the full-discharged electrode and further analyzed by XRD (Figures S6 and S7). The characteristic peaks of MnOOH (26° and 34°), Mn₃O₄ (32°, 36° and 44°) and MnO (20°, 22° and 27°) were observed.

Meanwhile, the Mn valence state was tested XANES for fully discharged and fully discharged electrodes. As shown in Figure 5b, the absorption edge peak of the fully discharged electrode split into two peaks (shown by the dotted line in the figure) and the energy of the edge absorption curves follows the order MnO < electrode < Mn₂O₃ < MnO₂, which proves that Mn²⁺ and Mn³⁺ substances present in the electrode. For the fully charged electrode (Figure 5c), the edge absorption fits the Mn⁴⁺ chemical state.^[27-31] Overall, *ex situ* XRD and XANES analyses demonstrated the presence of Mn²⁺ and Mn³⁺ within different states in the fully discharged electrode, thus pointing to a capacitance contributed by several different mechanisms.

According to previous reports,^[6, 32] in acidic electrolytes, the Mn⁴⁺/Mn²⁺ redox reaction can contribute to the capacitance with a relatively high discharge plateau, >1.5 V, while the Mn⁴⁺/Mn³⁺ associated with Zn²⁺ and H⁺ intercalation contributes with a discharge plateau at a lower potential, ~1.2-1.5 V vs. Zn²⁺/Zn.^[6, 32] Thus, taking into account previous works, our electrochemical characterization results, and the *ex situ* XRD data, we propose the multi-ion cathodic reaction mechanism of the ASE-based Zn-MnO₂ battery to be as follows (excluding the intermediate Mn³⁺ reaction):



Two Mn⁴⁺/Mn²⁺ mechanisms associated with the reaction of Al³⁺ and H⁺ with the MnO₂ to form AlMn₂O₄ and MnO, respectively (reactions (2) and (3)), contribute to the high discharge plateau >1.5 V vs. Zn²⁺/Zn (Fig. 5d).^[33] Besides, H⁺ intercalation in MnO₂ as shown in reactions (4) and (5) contributes to an intermediate voltage discharge plateau, at ~1.4 V vs. Zn²⁺/Zn. Finally, Zn²⁺ intercalation and de-intercalation in the MnO₂ crystal structure, reaction (6), contributes to the low voltage ~1.3 V vs. Zn²⁺/Zn plateau.

To further confirm this assignment, the evolution of the CV curves and charge-discharge profiles with the cycle number and the current rate were analyzed. Figure S8 displays the 50 first CV curves of a fresh coin cell cycled at a sweep rate of $0.5 \text{ mV}\cdot\text{s}^{-1}$. The discharge peak around $\sim 1.3 \text{ V}$ gradually strengthens while the peak at 1.6 V becomes weaker. This evolution is consistent with the contribution of Al^{3+} ions to the capacity to gradually decrease, while the Zn^{2+} contribution increases as the number of cycles proceeds.

Due to the Lewis strong acid and strong electrostatic repulsion of multivalent ions such as Al^{3+} , the relative contribution of H^+ increases with the current rate. At low current, e.g. $0.3 \text{ A}\cdot\text{g}^{-1}$, the Al^{3+} intercalation has a significant contribution, which accelerates the capacity degradation owing to its large size (Figure 4a).^[34-37] At high current rates, the H^+ contribution strongly dominates, Zn^{2+} and Al^{3+} ions have a marginal contribution due to their slower kinetics, and thus the stability is highly enhanced. Figure S9 shows the characteristic peak from dQ/dV corresponding to the Zn^{2+} intercalation at $0.3 \text{ A}\cdot\text{g}^{-1}$. However, the $\text{Mn}^{4+}/\text{Mn}^{2+}$ oxidation peak is only observed at $2 \text{ A}\cdot\text{g}^{-1}$, implying that the high discharge plateau is related to the H^+ contribution. On the other hand, despite its relatively large size and coulombic repulsion, the discharge platform associated with the Zn^{2+} intercalation gradually increases with the charge-discharge cycling, up to $2.0 \text{ A}\cdot\text{g}^{-1}$ (Figure S10). Besides, as the cell cycles, MnO_2 inevitably dissolves in acidic conditions, thus Mn^{2+} ions accumulate in the solution and play a similar role as the MnSO_4 additive, increasing the cell capacity, as shown in Figure 3f. ^[33,38-40]

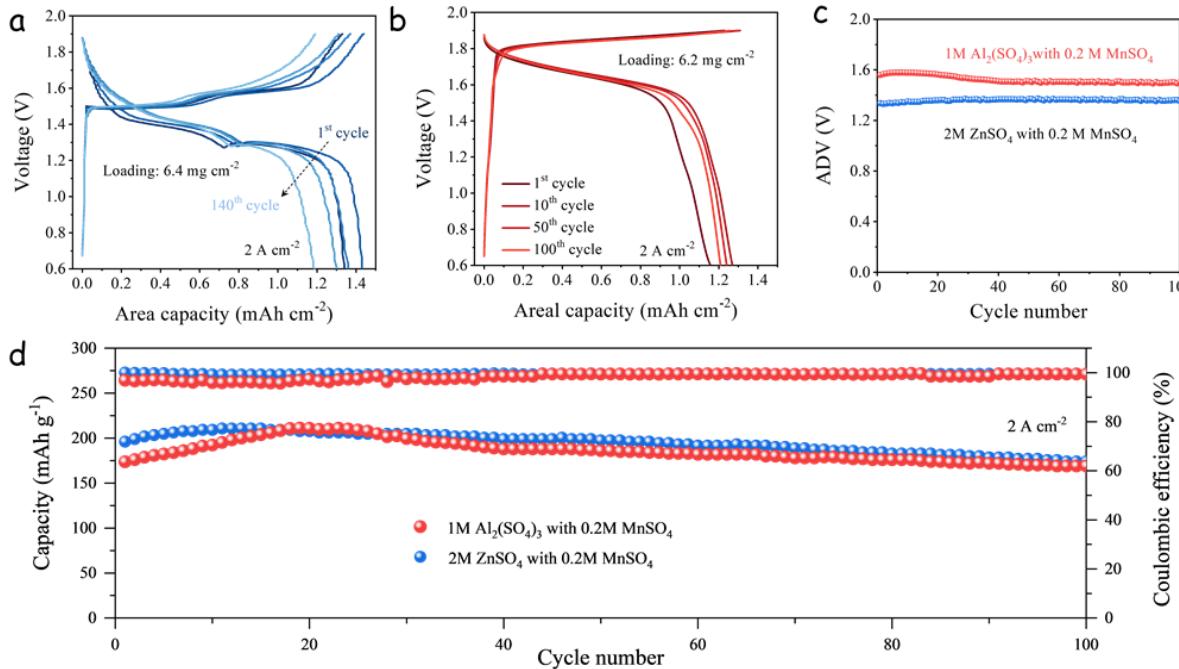

Taking into account the above experimental results, we hypothesize Al^{3+} ions play a role not only by intercalating into the MnO_2 to form AlMn_2O_4 but also by contributing to the $\text{Mn}^{4+}/\text{Mn}^{2+}$ high voltage solid state conversion (reaction (3)).^[33, 41] This contribution is associated with the release of protons during the Al^{3+} desolvation process, thus H^+ and Al^{3+} intercalation into the MnO_2 during the cell discharge takes place, which is supported by the observation of the Al_2MnO_4 formation. Besides, we observe the solvated Al^{3+} to protect the Zn anode from corrosion in strong acidic electrolytes, preventing HER, which also contributes to the cell stability.

Figure 5. Mn K-edge XANES spectrum of (a) the fully discharged electrode and (b) the fully charged electrode. (c) Schematics of multi-ions reaction mechanism in the ASE Zn-MnO₂ battery during the discharge process.

We further assembled ASE-based Zn-MnO₂ batteries with a high cathode mass loading to verify their potential for industrialization.^[42] Figures 6a and 6b depict the galvanostatic charge-discharge curves at a current density of 2 A·cm⁻² of a conventional ZSE Zn-MnO₂ battery with a mass loading of 6.4 mg·cm⁻² and an ASE Zn-MnO₂ battery with 6.2 mg·cm⁻² mass loading. In both batteries, we included 0.2 M MnSO₄ as an additive to promote the Mn⁴⁺/Mn²⁺ contribution. Even at this high cathode loading, the two cells maintain significant capacity and cyclability. The galvanostatic charge-discharge curves show different voltage plateaus in both discharge and charge processes. In the conventional ZSE Zn-MnO₂ battery, the voltage plateaus correspond well to the two-step H⁺/Zn²⁺ insertion/extraction processes. On the ASE Zn-MnO₂ battery, only one voltage plateau in the charge and discharge process at ~1.65 V is observed in the first few cycles associated with the two Mn⁴⁺/Mn²⁺ processes. As the cycle progresses, an additional small discharge plateau at around 1.40 V, corresponding to H⁺ insertion in MnO₂, is

obtained. Even at this high mass loading, the ASE battery still exhibits a higher ADV (1.55 V) than the conventional ZSE Zn-MnO₂ battery (1.35 V) related to the more significant weight within the ASE battery of the reversible Mn⁴⁺/Mn²⁺ reaction within the measured capacity (Figure 6c). While similar capacities were obtained for both batteries (Fig. 6d), owing to the higher ADV, the ASE Zn-MnO₂ battery has a significantly higher energy density than the conventional ZSE Zn-MnO₂.

Figure 6. High mass-loading cells at $2 \text{ A} \cdot \text{cm}^{-2}$. (a,b) Galvanostatic charge-discharge at different cycles of a conventional ZSE Zn-MnO₂ cell (a) and a new hybrid ASE Zn-MnO₂ cell (b). (c) ADV test. (d) Cycling performance.

3. Conclusions

An Al³⁺-enabled high-voltage and stable Zn-MnO₂ battery displaying improved voltage, capacity, and energy density was demonstrated. Compared to the previously reported Zn-MnO₂ batteries based on a ZnSO₄ electrolyte, the MnO₂ cathode within an Al-ion electrolyte exhibits a highly reversible Mn⁴⁺/Mn²⁺ reaction contributing to a high voltage discharge plateau (>1.5 vs. Zn²⁺/Zn). The Al-based Zn-MnO₂ full cell delivered an ADV of ~ 1.75 V, a specific capacity of $>450 \text{ mAh} \cdot \text{g}^{-1}$, and energy densities up to $750 \text{ Wh} \cdot \text{kg}^{-1}$ at $0.3 \text{ A} \cdot \text{g}^{-1}$, comparable to those of conventional Li-ion batteries. While in the conventional Zn-MnO₂ battery with 2M ZnSO₄ electrolyte, the performance decays very fast (less than 500 cycles with two discharge plateaus at ~ 1.4 V and 1.3 V), the new Zn-MnO₂ battery with 1 M Al₂(SO₄)₃ electrolyte shows a stable

capacity for over 10,000 cycles at $2.0 \text{ A}\cdot\text{g}^{-1}$. Even at $6.2 \text{ mg}\cdot\text{cm}^{-2}$ cathode mass-loading, a high ADV is obtained. Combining electrochemical analysis with *ex situ* XRD characterization, different mechanisms associated with Al^{3+} , H^+ , and Zn^{2+} insertion/de-insertion and reaction were proposed to contribute to the battery capacitance. The outstanding performance of the $\text{Zn}-\text{MnO}_2$ battery based on the Al^{3+} was associated with both the highly reversible Al^{3+} ions intercalation/de-intercalation that significantly contributes to capacitance at low current rates and its positive effect on the $\text{Mn}^{4+}/\text{Mn}^{2+}$ solid state reaction aided by H^+ that dominates the capacitance at higher current rates. The performance of the ASE-based $\text{Zn}-\text{MnO}_2$ battery is expected to be further improved through rational design and engineering of the electrolyte and electrode parameters, such as an optimized pH, $\text{Al}_2(\text{SO}_4)_3$ concentration, incorporation of additives, or electrode coating/doping.

Acknowledgments

J. Chacón-Borrero and X. Chang contributed equally to this work. This work was supported by the project SyDECat (PID2022-136883OB-C22), financed by the Spanish MCIN/AEI, EHAWEDRY (964524), financed by European EXCELLENT SCIENCE – Further and Emerging Technologies, the National Natural Science Foundation of China (52272054, 52125105, 52061160484, 51972329), Natural Science Foundation of Guangdong Province (2019TX05L389, 2022A1515011365, 2024A1515011670), Shenzhen Science and Technology Planning Project (GJHZ20220913142809019, JCYJ20200109115624923), the Foundation of the National Research Council of Thailand (N42A650253), and the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (B50G670108). Thanks to the China Scholarship Council (CSC) for the scholarship support. Part of the present work has been performed in the framework of Universitat Autònoma de Barcelona Materials Science PhD program.

Reference

1. Zhang Q, Dou Y, He Q, Deng S, Huang Q, Huang S, et al. Emerging Carbonyl Polymers as Sustainable Electrode Materials for Lithium-Free Metal-Ion Batteries. *Energy Environ Mater*. 2022;5(4):1037–59.
2. Li R, Li M, Chao Y, Guo J, Xu G, Li B, et al. Hexaoxacyclooctadecane induced interfacial engineering to achieve dendrite-free Zn ion batteries. *Energy Storage Mater* [Internet]. 2022;46(September 2021):605–12. Available from: <https://doi.org/10.1016/j.ensm.2021.11.015>
3. Guo Q, Li W, Li X, Zhang J, Sabaghi D, Zhang J, et al. Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries. *Nat Commun*.

2024;15(1).

4. Li G, Sun L, Zhang S, Zhang C, Jin H, Davey K, et al. Developing Cathode Materials for Aqueous Zinc Ion Batteries: Challenges and Practical Prospects. *Adv Funct Mater.* 2024;34(5).
5. Cui S, Zhang D, Gan Y. Traditional Electrochemical Zn²⁺ Intercalation/Extraction Mechanism Revisited: Unveiling Ion-Exchange Mediated Irreversible Zn²⁺ Intercalation for the δ -MnO₂ Cathode in Aqueous Zn Ion Batteries. *Adv Energy Mater.* 2024;14(7):1–11.
6. Chao D, Zhou W, Ye C, Zhang Q, Chen Y, Gu L, et al. An Electrolytic Zn–MnO₂ Battery for High-Voltage and Scalable Energy Storage. *Angew Chemie.* 2019;131(23):7905–10.
7. Liu C, Chi X, Yang C, Liu Y. High-Voltage Aqueous Zinc Batteries Achieved by Tri-functional Metallic Bipolar Electrodes. *Energy Environ Mater.* 2023;6(1):1–8.
8. Huang J, Wang Z, Hou M, Dong X, Liu Y, Wang Y, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. *Nat Commun* [Internet]. 2018;9(1):1–8. Available from: <http://dx.doi.org/10.1038/s41467-018-04949-4>
9. Zhang N, Cheng F, Liu J, Wang L, Long X, Liu X, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. *Nat Commun* [Internet]. 2017;8(1):1–9. Available from: <http://dx.doi.org/10.1038/s41467-017-00467-x>
10. Zhang N, Cheng F, Liu Y, Zhao Q, Lei K, Chen C, et al. Cation-Deficient Spinel ZnMn₂O₄ Cathode in Zn(CF₃SO₃)₂ Electrolyte for Rechargeable Aqueous Zn-Ion Battery. *J Am Chem Soc.* 2016;138(39):12894–901.
11. Song M, Tan H, Chao D, Fan HJ. Recent Advances in Zn-Ion Batteries. *Adv Funct Mater.* 2018;28(41):1–27.
12. Zhang N, Ji YR, Wang JC, Wang PF, Zhu YR, Yi TF. Understanding of the charge storage mechanism of MnO₂-based aqueous zinc-ion batteries: Reaction processes and regulation strategies. *J Energy Chem* [Internet]. 2023;82:423–63. Available from: <https://doi.org/10.1016/j.jec.2023.03.052>
13. Wang H, Wang T, Stevenson G, Chamoun M, Lindström RW. MnO₂/Mn²⁺ chemistry: Charging protocol and electrolyte regulation. *Energy Storage Mater.* 2023;63(October).
14. Cui S, Zhang D, Gan Y. The effect of Mn²⁺ additives on the capacity of aqueous Zn/ δ -MnO₂ batteries: Elucidating the Mn²⁺ concentration dependence of the irreversible transformation of δ -MnO₂. *J Power Sources.* 2023;579(May).
15. Lv H, Song Y, Qin Z, Zhang M, Yang D, Pan Q, et al. Disproportionation enabling reversible MnO₂/Mn²⁺ transformation in a mild aqueous Zn-MnO₂ hybrid battery. *Chem Eng J.* 2022;430(September 2021).
16. Wang D, Liu Z, Gao XW, Gu Q, Zhao L, Luo W Bin. Massive anionic fluorine substitution two-dimensional δ -MnO₂ nanosheets for high-performance aqueous zinc-ion battery. *J Energy Storage* [Internet]. 2023;72(PE):108740. Available from: <https://doi.org/10.1016/j.est.2023.108740>
17. Lee S, Jin W, Kim SH, Joo SH, Nam G, Oh P, et al. Oxygen Vacancy Diffusion and Condensation in Lithium-Ion Battery Cathode Materials. *Angew Chemie - Int Ed.* 2019;58(31):10478–85.
18. Gao P, Metz P, Hey T, Gong Y, Liu D, Edwards DD, et al. The critical role of point defects

- in improving the specific capacitance of $\hat{\text{I}}$ -MnO₂ nanosheets. *Nat Commun.* 2017;8.
19. Hu W, Ju J, Deng N, Liu M, Liu W, Zhang Y, et al. Recent progress in tackling Zn anode challenges for Zn ion batteries. *J Mater Chem A.* 2021;9(46):25750–72.
20. Gopalakrishnan M, Ganesan S, Nguyen MT, Yonezawa T, Praserthdam S, Pornprasertsuk R, et al. Critical roles of metal–organic frameworks in improving the Zn anode in aqueous zinc-ion batteries. *Chem Eng J* [Internet]. 2023;457(October 2022):141334. Available from: <https://doi.org/10.1016/j.cej.2023.141334>
21. Nie W, Cheng H, Sun Q, Liang S, Lu X, Lu B, et al. Design Strategies toward High-Performance Zn Metal Anode. *Small Methods.* 2023;2201572:1–28.
22. Lamprecht X, Speck F, Marzak P, Cherevko S, Bandarenka AS. Electrolyte Effects on the Stabilization of Prussian Blue Analogue Electrodes in Aqueous Sodium-Ion Batteries. *ACS Appl Mater Interfaces.* 2022 Jan 19;14(2):3515–25.
23. Xiaoyu Liu, Jin Yi, Kai Wu, Yong Jiang, Yuyu Liu, Bing Zhao, Wenrong Li JZ. Rechargeable Zn-MnO₂ batteries: advances, challenges and perspectives. *Nanotechnology* [Internet]. 2020;31 (12):1–49. Available from: <https://iopscience.iop.org/article/10.1088/2053-1583/abe778>
24. Sun W, Wang F, Hou S, Yang C, Fan X, Ma Z, et al. Zn/MnO₂ Battery Chemistry with H⁺ and Zn²⁺ Coinsertion. *J Am Chem Soc.* 2017;139(29):9775–8.
25. Aguilar I, Lemaire P, Ayouni N, Bendadesse E, Morozov A V., Sel O, et al. Identifying interfacial mechanisms limitations within aqueous Zn-MnO₂ batteries and means to cure them with additives. *Energy Storage Mater.* 2022;53(June 2022):238–53.
26. Maleki Kheimeh Sari H, Li X. Controllable Cathode–Electrolyte Interface of Li[Ni0.8Co0.1Mn0.1]O₂ for Lithium Ion Batteries: A Review. *Adv Energy Mater.* 2019;9(39):1–31.
27. Wu D, Housel LM, King ST, Mansley ZR, Sadique N, Zhu Y, et al. Simultaneous Elucidation of Solid and Solution Manganese Environments via Multiphase Operando Extended X-ray Absorption Fine Structure Spectroscopy in Aqueous Zn/MnO₂Batteries. *J Am Chem Soc.* 2022;144(51):23405–20.
28. Farges F. Ab initio and experimental pre-edge investigations of the Mn K -edge XANES in oxide-type materials. *Phys Rev B - Condens Matter Mater Phys.* 2005;71(15):1–14.
29. Jiang Y, Yuan L, Wang X, Zhang W, Liu J, Wu X, et al. Jahn–Teller Disproportionation Induced Exfoliation of Unit-Cell Scale ϵ -MnO₂. *Angew Chemie.* 2020;132(50):22848–55.
30. Yao S, Wang S, Liu R, Liu X, Fu Z, Wang D, et al. Delocalizing the d-electrons spin states of Mn site in MnO₂ for anion-intercalation energy storage. *Nano Energy* [Internet]. 2022;99(May):107391. Available from: <https://doi.org/10.1016/j.nanoen.2022.107391>
31. Yadav PL, Shelke AR, Wang HT, Chen KH, Lin WX, Li CW, et al. Mn³⁺ eg Configuration and Electron Transfer in Na-Incorporating α -MnO₂ to Improve Electrochemical Supercapacitor: An In Situ and Ex Situ X-ray Absorption Spectroscopic Investigation. *ACS Appl Energy Mater.* 2023;6(12):6443–55.
32. Qin Z, Song Y, Yang D, Zhang MY, Shi HY, Li C, et al. Enabling Reversible MnO₂/Mn²⁺Transformation by Al³⁺Addition for Aqueous Zn-MnO₂Hybrid Batteries. *ACS Appl Mater Interfaces.* 2022 Mar 2;14(8):10526–34.

33. Li H, Firby CJ, Elezzabi AY. Rechargeable Aqueous Hybrid Zn²⁺/Al³⁺ Electrochromic Batteries. Joule [Internet]. 2019;3(9):2268–78. Available from: <https://doi.org/10.1016/j.joule.2019.06.021>
34. Xing L, Zhang C, Li M, Hu P, Zhang X, Dai Y, et al. Revealing excess Al³⁺ preinsertion on altering diffusion paths of aluminum vanadate for zinc-ion batteries. Energy Storage Mater [Internet]. 2022;52(May):291–8. Available from: <https://doi.org/10.1016/j.ensm.2022.07.044>
35. Gu S, Wang H, Wu C, Bai Y, Li H, Wu F. Confirming reversible Al³⁺ storage mechanism through intercalation of Al³⁺ into V₂O₅ nanowires in a rechargeable aluminum battery. Energy Storage Mater [Internet]. 2017;6:9–17. Available from: <http://dx.doi.org/10.1016/j.ensm.2016.09.001>
36. Lv H, Yang S, Li C, Han C, Tang Y, Li X, et al. Suppressing passivation layer of Al anode in aqueous electrolytes by complexation of H₂PO₄[–] to Al³⁺ and an electrochromic Al ion battery. Energy Storage Mater [Internet]. 2021;39(April):412–8. Available from: <https://doi.org/10.1016/j.ensm.2021.04.044>
37. Wu Z, Lian Z, Yan S, Li J, Xu J, Chen S, et al. Extraordinarily Stable Aqueous Electrochromic Battery Based on Li₄Ti₅O₁₂ and Hybrid Al³⁺/Zn²⁺ Electrolyte. ACS Nano. 2022;16(8):13199–210.
38. Li N, Li G, Li C, Yang H, Qin G, Sun X, et al. Bi-Cation Electrolyte for a 1.7 V Aqueous Zn Ion Battery. ACS Appl Mater Interfaces. 2020;12(12):13790–6.
39. Li K, Gong Y, Lin JH. Benzoquinone-intercalated vanadium oxide in the electrolyte with Al³⁺ for zinc-ion storage: dual-pillar effect and reversible disorder–order conversion. Chem Eng J [Internet]. 2023;452(P4):139621. Available from: <https://doi.org/10.1016/j.cej.2022.139621>
40. Dou Q, Yao N, Pang WK, Park Y, Xiong P, Han X, et al. Unveiling solvation structure and desolvation dynamics of hybrid electrolytes for ultralong cyclability and facile kinetics of Zn-Al alloy anodes. Energy Environ Sci. 2022;15.
41. Balland V, Mateos M, Singh A, Harris KD, Laberty-Robert C, Limoges B. The Role of Al³⁺-Based Aqueous Electrolytes in the Charge Storage Mechanism of MnO_x Cathodes. Small. 2021;17(23).
42. Kuang Y, Chen C, Kirsch D, Hu L. Thick Electrode Batteries: Principles, Opportunities, and Challenges. Adv Energy Mater. 2019;9(33):1–19.