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ABSTRACT: Herein we address the question of whether a supramolecular finite metal−organic structure such as a cage or metal−
organic polyhedron (MOP) can be synthesized via controlled cleavage of a three-dimensional (3D) metal−organic structure. To
demonstrate this, we report the synthesis of a Cu(II)-based cuboctahedral MOP through orthogonal olefinic bond cleavage of the
cavities of a 3D, Cu(II)-based, metal−organic framework (MOF). Additionally, we demonstrate that controlling the ozonolysis
conditions used for the cleavage enables Clip-off Chemistry synthesis of two cuboctahedral MOPs that differ by their external
functionalization: one in which all 24 external groups represent a mixture of aldehydes, carboxylic acids, acetals and esters, and one
in which all are aldehydes.

Bond formation and bond breaking are fundamental
chemical processes. Although bond formation has tradi-

tionally driven most chemical syntheses and technologies,1−6

control of bond breaking at the molecular scale begun to
garner interest due to its growing importance in emerging
technologies and chemical strategies.7−13 For example,
controlling bond cleavage in organic polymers has become
essential for improving their recyclability and for developing
new closed-loop recycling processes.14−17 Similarly, controlling
bioorthogonal cleavage reactions has become crucial for
liberating and activating prodrugs,18 reactivating proteins,19

and releasing bioconjugates.20 In this context, we recently
introduced the concept of Clip-off Chemistry, whereby we
design and synthesize novel molecules and materials with well-
defined structures through orthogonal bond cleavage within
molecular structures.21−23

Among the various types of molecular structures, reticular
materials stand out as particularly appealing precursors for
Clip-off Chemistry.24,25 Reticular materials can be viewed as
the linkage of repetitive units or fragments that form when
basic inorganic and/or organic building blocks are con-
nected.26−32 These units or fragments, which can include
clusters, cages, macrocycles, chains and layers, among others,
can exhibit new properties and functions on their own.
Therefore, they hold promise as a new source of molecules or
materials if isolated from the reticular precursor. We devised
Clip-off Chemistry to isolate these units or fragments via
cleavage of the bonds (e.g. olefinic bonds by ozonolysis)33 that
link them within reticular materials.

Herein, we report the first example of Clip-off Chemistry
being applied to three-dimensional (3D) metal−organic
frameworks (MOFs) to synthesize 0D metal−organic cages
or polyhedra (MOPs).29,34−42 This work entails the
quantitative orthogonal bond cleavage within a 3D structure,
followed by isolation and characterization of the unconnected,
“released” MOPs (Figure 1).

To demonstrate the feasibility of this synthesis, we initially
selected the 3D MOF PCN-61 as our reticular precursor.43

Within this rht-Cu-MOF, cuboctahedral Cu24bdc24 cavities
(where bdc= 1,3-benzenedicarboxylate)44 spontaneously form
during the assembly of Cu(II) ions and the hexacarboxylate
linker 5,5′,5″-benzene-1,3,5-triyltris(1-ethylnyl-2-isophthalate)
(btei); a linker composed of three bdc moieties connected by a
central phenyl ring at its 1, 3, and 5 positions via alkyne bonds.
Each bdc moiety of btei contributes to the formation of a
distinct cuboctahedral cavity, resulting in the 3D interconnec-
tion of different cavities in PCN-61 through the central alkyne-
benzene unit of this linker, which acts as a trigonal (3-c)
symmetric node. Based on this structure, we reasoned that
cleavage of the three alkyne bonds of btei through ozonolysis
would release the cavities in the form of cuboctahedral Cu(II)-
based MOPs (Figure 1). However, despite subjecting PCN-61
to various ozonolysis conditions, we were unable to
quantitatively cleave those alkyne bonds, which precluded us
from synthesizing the isolated MOPs (Figure S1). Moreover,
ozonolysis of alkynes requires the presence of water in the
media,45 which, as we observed, also promotes partial
hydrolysis of the labile Cu-COO bonds.46

To enhance bond cleavage within this 3D structure using
ozone, we chose to substitute all alkyne bonds in PCN-61 with
alkene bonds. This modification ensured that the cuboctahe-
dral Cu24bdc24 cavities in the new structure would now be
linked through alkene bonds, a type of bond that requires less
aggressive conditions than alkynes to be ozonized and that we
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recently demonstrated could be quantitatively cleaved in
reticular materials using ozone (Figure 1).21−24 Additionally,
controlling the workup steps after ozonolysis at low temper-
ature can lead to the homolytic cleavage of alkene bonds.47

Consequently, this control could facilitate the Clip-off
synthesis of Cu24bdc24 cages or MOPs featuring only one
type of functional group on the outer surface: for example, we
envisioned that using reductive workup conditions would
afford 24 aldehyde groups (Figure S2).

To this end, we initially synthesized the new hexacarboxylate
linker 1,3,5-tris[5-(E)-vinylisophthalic acid]benzene (referred
to as H6L1; Figure 1 and Figures S3−S5). Subsequently,
crystals of the isoreticular rht-Cu-MOF (hereafter denoted as
BCN-231) were obtained by reacting the new linker with
Cu(NO3)2·2.5H2O in N,N-dimethylformamide (DMF) at 70
°C for 48 h (Figure 2a, left). Single-crystal X-ray diffraction
(SCXRD) confirmed the formation of the expected Cu-MOF
exhibiting an underlying rht-topology. Within it, the assembled
cuboctahedral cavities, reminiscent of cuboctahedral Cu24bdc24
MOPs, were periodically spaced through alkene-benzene units
(Figure 1). Powder X-ray diffraction (PXRD) and N2 sorption
measurements validated the phase purity of BCN-231 and
revealed a remarkably high Brunauer−Emmett−Teller surface
area (SBET) of 3139 m2 g−1 (Figures S6−S11).

Having prepared BCN-231, we next proceeded with
cleavage of its olefinic bonds. To this end, it was dispersed
in methanol, and the resultant solution was treated with ozone
at a constant flux (30 g Nm−3) at room temperature. The
disconnection and formation of MOP species became evident
to the naked eye, as the solid suspension transitioned into a
transparent blue solution within 10 min (Figure 2a). The

ozonolysis reaction was monitored using ultraviolet−visible
spectroscopy (UV−vis) and matrix-assisted laser desorption/
ionization-time-of-flight mass spectrometry (MALDI-ToF-
MS), with periodic analysis of the supernatant at t = 1, 5,
and 10 min (Figures S12 and S13). UV−vis analysis of the
solution revealed the presence of a broad band centered at 700
nm, characteristic of Cu(II) paddlewheel clusters, indicating
that these clusters were not disassembled during the reaction.48

Moreover, the MALDI-ToF-MS spectrum contained a broad
peak ranging from approximately 5440 to 6856 m/z, consistent
with the formation of a cuboctahedral Cu(II)-based MOP
within the first minute of the reaction. Then, after ozonolysis, a
blue solid was rapidly precipitated from the supernatant by the
addition of ether and characterized by proton nuclear magnetic
resonance (1H NMR). 1H NMR spectrum revealed the
complete disappearance of alkene signals from BCN-231 (δ
= 7.66, 7.63, 7.49, and 7.46 ppm, Figure S14). It also revealed
the emergence of new signals, which we attributed to a mixture
of different ozonolysis products, including 5-formylisophthalic
acid, 5-(dimethoxymethyl)isophthalic acid, benzene-1,3,5-
tricarboxylic acid, and 5-(methoxycarbonyl)isophthalic acid,
resulting from the uncontrolled oxidative cleavage of L1 in
methanol (Figures S2 and S14). Altogether, these results
confirmed the selective cleavage of the alkene bonds, the
release of the MOP from the framework, and the stability of
the “released” MOP in solution.

Next, we attempted to crystallize the product by slowly
evaporating off the solvent from the above ozonolysis product
under ambient conditions, which afforded blue crystals (yield =
79%) suitable for SCXRD (Figure 2a, right). The SCXRD data
confirmed formation of a multivariate cuboctahedral Cu24bdc24

Figure 1. (a) Schematic of the synthesis and isolation of a cuboctahedral metal−organic polyhedron (MOP) via orthogonal bond cleavage of a 3D
rht MOF. (b) Schematic of how the 3D rht BCN-231 can be orthogonally cleaved on its alkene bonds to synthesize cuboctahedral MOPs with
different external functionalities. (c) Cleavage, by ozonolysis, of the three olefinic bonds of L1 needed to release the MOPs from the 3D framework.
When the ozonolysis is performed using reductive workup (DMS = dimethyl sulfide, as reducing agent), all the olefinic bonds of the framework are
selectively cleaved into aldehyde groups.
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MOP (hereafter denoted as BCN-241-MTV), comprising 12
Cu−Cu paddlewheel clusters connected through 24 5-
substituted bdc linkers (Figure 2b). The external surface of
each cage was decorated with a mixture of the aforementioned
functional groups (aldehydes, acetals, carboxylic acids and
esters) at the 5-position of the linker. According to SCXRD
data, potentially disordered groups at the 5-position were
approximated as follows: 10 aldehydes, 4 acetals, 2 carboxylic
acids, and 8 esters. To further investigate the composition of
the external surface of these cages, we analyzed the crystals of
BCN-241-MTV by NMR. To this end, the crystals were
digested in DMSO-d6/DCl, and the products from three
independent reactions were studied by 1H NMR (Figure 2c,
Figure S14). The average values for the external functional
group distribution for BCN-241-MTV were: 9.6 ± 1.8
aldehydes, 4.1 ± 1.7 acetals, 1.4 ± 1.2 carboxylic acids, and
9.0 ± 2.8 esters (Table S3), a ratio similar to that observed in
the single-crystal structure. MALDI-ToF-MS analysis of BCN-
241-MTV revealed a broad peak ranging from 6860.3 to
7374.3 m/z (Figure 2d, Figure S15), which includes the mass
of the single MOP cage with the average functional group
composition and six DMF solvent molecules (expected: 7052.6
m/z). Interestingly, nitrogen-sorption measurements on BCN-
241-MTV demonstrated its microporosity, revealing a N2
uptake of 133 cm3 g−1 at P/P0 = 0.95 and a SBET of up to
425 m2 g−1. (Figure 3d, Figures S16−S20).

Having demonstrated our ability to orthogonally cleave
bonds in BCN-231 and subsequently isolate the unconnected

cuboctahedral MOPs, we next endeavored to control the
synthesis of the cuboctahedral MOPs whose 24 external
functional groups were exclusively aldehydes (hereafter
denoted as BCN-241-CHO), using reductive conditions. For
this, we dispersed BCN-231 in methanol and exposed the
resulting dispersion to a constant ozone flux (30 g Nm−3) for
10 min at −78 °C. This yielded a blue solution, into which was
added dimethyl sulfide (DMS) as reducing agent. UV−vis
analysis of the solution confirmed no degradation of the
paddlewheel clusters upon DMS addition (Figure S21).
Afterward, diethyl ether was added, and after 12 h, the
resultant solution afforded blue crystals (yield = 62%).

SCXRD analysis of these crystals revealed the successful
synthesis of the cuboctahedron-shaped Cu(II)-based cage
functionalized with 24 aldehyde groups (Figure 3a). The
exclusive presence of aldehyde groups on the surface of the
MOP synthesized via Clip-off Chemistry was further confirmed
by 1H NMR of the acid-digested (DMSO-d6/DCl) MOP
product. In addition to the expected disappearance of olefinic
protons of BCN-231 at δ = 7.66, 7.63, 7.49, and 7.46 ppm,
characteristic signals for 5-formylisophthalic acid (δ = 10.16,
8.68, and 8.62 ppm) were clearly identifiable (Figure 3b and
Figure S22). Formation of BCN-241-CHO was also
corroborated by MALDI-ToF-MS, where a sharp peak at
6200.7 m/z was observed, consistent with the expected
molecular weight of [Cu24(CHO-bdc)24+H+]+ · 2 MeOH
(m/z= 6200.6) (Figure 3c, Figure S23). Furthermore, the
phase purity of the sample was confirmed by the close match

Figure 2. (a) Photographs of the synthesis of BCN-241-MTV via Clip-off Chemistry. From left to right: starting with a crystalline sample of BCN-
231; introduction of these crystals into methanol; bubbling ozone into the methanolic dispersion, causing the cleavage of L1; “dissolution” of BCN-
231 and release of the cuboctahedral MOPs; and finally, crystallization of cuboctahedral MOPs (Video S1). (b) SCXRD structure of BCN-241-
MTV. Hydrogen atoms have been omitted for clarity. Cu(II): blue, O: red, C: gray. (c) 1H NMR spectra (DMSO-d6/DCl) of digested BCN-241-
MTV (top) and BCN-231 (bottom). Note the lack of alkene bond (violet) from initial BCN-231, and the displacement of bdc signals owing to the
formation of BCN-241-MTV functionalized with aldehyde (coming from 5-formylisophthalic acid, blue), acetal (coming from 5-
(dimethoxymethyl)isophthalic acid, red), carboxylic acid (coming from benzene-1,3,5-tricarboxylic acid, purple), and ester groups (coming
from 5-(methoxycarbonyl)isophthalic acid, orange). (d) MALDI-ToF-MS spectrum of BCN-241-MTV.
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between the experimental and simulated PXRD patterns for
BCN-241-CHO (Figure S24). Finally, N2-sorption measure-
ments also showed this MOP to be porous, with a N2 uptake of
105.4 cm3 g−1 at P/Po = 0.95 and a SBET of 368 m2 g−1 (Figure
3d, Figures S25−S29).

In summary, we have reported the first-ever controlled
synthesis and isolation of a metal−organic finite structure, such
as a cage or MOP, through selective cleavage of olefinic bonds
within a 3D MOF. By employing orthogonal olefinic bond
cleavage, and optimizing the required ozonolysis, we
successfully synthesized, via Clip-off Chemistry, two distinctly
functionalized cuboctahedral cages. These findings underscore
the versatility and potential applications of Clip-off Chemistry
in synthesizing novel finite complex supramolecular architec-
tures (e.g., cages, catenanes, etc.) that can be derived from the
structures found within the vast array of reported 2 and 3D
MOFs.
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Autoǹoma de Barcelona, 08193 Barcelona, Spain;
orcid.org/0000-0001-5850-6723; Email: jorge.albalad@

icn2.cat
Inhar Imaz − Catalan Institute of Nanoscience and
Nanotechnology (ICN2), CSIC and Barcelona Institute of
Science and Technology, 08193 Barcelona, Spain;
Departament de Química, Facultat de Cieǹcies, Universitat
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