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Resumen 

En el presente artículo desarrollamos un estudio histórico-epistemológico a fin de caracterizar los significados 

parciales de la noción de volumen, y sus ideas epistémicas fundamentales, en tanto objeto complejo de las 

matemáticas. Para ello, se sigue un análisis de contenido de corte cualitativo y se utilizan herramientas del Enfoque 

Ontosemiótico del Conocimiento y la Instrucción Matemáticos como marco teórico-metodológico. Los resultados 

sugieren cuatro significados parciales de volumen que, en su conjunto, dan cuenta del significado global de tal 

objeto matemático: 1) volumen como espacio que ocupa un cuerpo en relación con otros objetos, susceptible de 

ser medido; 2) volumen como relación entre dimensiones y formas; 3) volumen en relación con los indivisibles; y 

4) volumen como una función. El análisis histórico, y la caracterización de los significados parciales del volumen, 

han puesto de relieve la presencia de ideas epistémicas fundamentales que trascienden las diferentes 

configuraciones epistémicas, pudiendo favorecer la representatividad y la conexión de los significados de 

volumen.  
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Abstract 

In this article, we undertake a historical-epistemological study to characterize the partial meanings of the concept 

of volume and its fundamental epistemic ideas, considering it as a complex object within mathematics. For this 

purpose, we follow a qualitative content analysis and use some tools of the Ontosemiotic Approach to 

Mathematical Knowledge and Instruction as a theoretical-methodological framework. The results suggest four 

partial meanings of volume that, as a whole, account for the global meaning of such a mathematical object: 1) 

volume as the space occupied by a body in relation to other objects, susceptible of being measured; 2) volume as 

a relationship between dimensions and shapes; 3) volume in relation to indivisibles; and 4) volume as a function. 
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The historical analysis and characterization of partial meanings of volume have brought to light the presence of 

fundamental epistemic ideas that transcend epistemic configurations, potentially enhancing the representativeness 

and interconnectedness of volume meanings. 

 

Keywords: Volume. Fundamental idea. Fundamental epistemic idea. Partial meanings. 

 

 

1 Introducción 

 

La literatura muestra que la comprensión de la noción de volumen, y de sus procesos de 

medición, resulta problemática para los estudiantes, pues en muchos casos éstos aplican 

fórmulas sin comprender su origen y funcionamiento (BATTISTA; CLEMENTS, 1996; 

CLEMENTS; BATTISTA, 1992). Esto se acentúa aún más en el proceso de transición primaria-

secundaria, donde procedimientos más abstractos para el cálculo del volumen son introducidos 

(FREUDENTHAL, 1983; TAN-SISMAN; AKSU, 2016). Igualmente, y en concordancia con 

Sáiz (2003), las dificultades de los alumnos pueden estar relacionadas con los distintos 

significados atribuidos a la noción de volumen donde, en cada caso, los elementos susceptibles 

de ser medidos cambian, es decir, las reglas de uso, comparación y cálculo del volumen son 

diferentes (SÁIZ, 2002). Esto permite inferir la existencia de distintos significados parciales 

del volumen (PINO-FAN; GODINO; FONT, 2011), los que no se encuentran descritos en la 

literatura especializada. En este contexto, con este articulo buscamos dar respuesta a la 

pregunta: ¿cuáles son los significados parciales de la noción de volumen, que conformarían su 

significado holístico de referencia? 

Tomando en cuenta las aportaciones de Pino-Fan, Godino y Font (2011), se considera 

que los distintos significados parciales de la noción de volumen dan cuenta del significado 

global de tal objeto y de su complejidad (RONDERO; FONT 2015). Así, el objetivo de este 

artículo es caracterizar los significados parciales de la noción de volumen, así como sus ideas 

epistémicas fundamentales, evidenciando su riqueza matemática en términos de los objetos 

matemáticos que lo conforman. Para llevar a cabo dicha caracterización utilizamos la noción 

de idea fundamental (BRUNER, 1960), así como algunas herramientas introducidas por el 

Enfoque Ontosemiótico del conocimiento y la instrucción matemáticos (EOS), las cuales 

explicamos en la siguiente sección.  

 

2. Marco teórico 

 

2.1 La noción de Idea(s) fundamental(es)  
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La idea fundamental se introduce en los trabajos de Bruner (1960, 1970), con el fin de 

distinguir aquello que es relevante para insertar los contenidos científicos, y en sintonía con el 

desarrollo intelectual de los estudiantes en la escuela. Aunque estas ideas han sido identificadas 

para la estocástica (HEITELE, 1975), y posteriormente la estadística (p.e., BURRIL; 

BIEHLER, 2011), no existen estudios que vinculen la noción idea(s) fundamental(es) con la 

caracterización de volumen que abordamos en este estudio. Así, el presente artículo pretende 

aportar a la literatura científica mediante la identificación de las ideas fundamentales que son 

necesarias para la comprensión de la noción de volumen y los procesos de medición asociados.  

Bruner (1970) señala que la enseñanza debe estar en concordancia con la cultura, de 

modo que las ideas fundamentales deben tener un valor explicativo. Por ello, en la identificación 

de relaciones entre la cultura matemática y no matemática las ideas fundamentales de los 

conceptos matemáticos juegan un papel clave (HEYMANN, 2003). Bruner (1970) otorga 

importancia a que los alumnos puedan aprender la estructura fundamental de un contenido (en 

lugar de hechos individuales), para poder, posteriormente, clasificar, evaluar y deducir hechos 

individuales. En relación con la teoría curricular del autor, las ideas centrales pueden resumirse 

en: (1) las estructuras fundamentales del contenido a enseñar están contenidas en un número 

limitado de conceptos básicos -o ideas fundamentales; (2) la estructura del currículo en espiral 

permite el tratamiento de las ideas fundamentales y los conceptos en diferentes niveles 

cognitivos, epistemológicos y lingüísticos. Así, las ideas fundamentales son una continuidad 

que aborda la comprensión desde lo intuitivo a una forma analítica más elaborada. Los alumnos 

deben encontrar las ideas fundamentales una y otra vez, cada vez de una forma que se 

corresponda con el aumento de sus capacidades cognitivas, con la profundidad adecuada y con 

niveles más complejos de representación (HEYMANN, 2003). 

En el enfoque curricular de Bruner las ideas fundamentales se convierten en puntos de 

cristalización para identificar aquello que tiene importancia en un tema concreto (HEYMAN, 

2003). En este sentido, del trabajo de Bruner se desprende que las ideas fundamentales pueden 

ser entendidas como ideas inherentes a una disciplina concreta y, como representación del 

mundo no matemático (HEYMAN, 2003). Por ejemplo, la noción de volumen tiene presencia 

en todos los niveles educativos, aumentando en términos de generalidad y formalización, pero 

conservando ideas fundamentales que permiten caracterizar su complejidad.  

En el caso de la Educación Infantil, por ejemplo, el estudio de los atributos cualitativos 

de los cuerpos sólidos, la percepción espacial y la medición informal mediante comparaciones 

directas e indirectas (BATTISTA; CLEMENTS, 1996) constituyen ideas fundamentales para el 

estudio de la noción de volumen. En la Educación Primaria, las ideas fundamentales se 
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relacionan, además, con el establecimiento de la medición formal mediante fórmulas básicas de 

cuerpos sólidos. Las ideas anteriores se recuperan en la Educación Secundaria para la deducción 

de fórmulas algebraicas de cuerpos sólidos e identidades notables; y en la Educación 

Universitaria con el estudio formal del cálculo. A partir de lo anterior, se desprende que la 

noción de volumen se hace explícita mediante ciertos objetos matemáticos que, con diferentes 

niveles de complejidad, se van recuperando a lo largo del currículo educativo. Así, este artículo 

pretende identificar aquellos objetos matemáticos subyacentes al volumen, con el fin de 

caracterizar sus distintos significados parciales que se van desarrollando de forma progresiva 

(en términos de formalidad y generalidad) a lo largo del currículo. A continuación, se describen 

algunas   herramientas del Enfoque Ontosemiótico del conocimiento e instrucción matemáticos 

(GODINO; BATANERO; FONT, 2007; 2019), que permiten la caracterización antes señalada.  

 

2.2 Enfoque Ontosemiótico (EOS) del Conocimiento y la instrucción Matemáticos  

 

El EOS adopta una visión pragmática de la comprensión de los objetos matemáticos, 

por lo que la comprensión del volumen queda definida por la capacidad que se tiene para 

resolver de manera competente una determinada tarea matemática, reconociendo los distintos 

objetos que intervienen y emergen en dicha resolución (FONT; GODINO; GALLARDO, 

2013). Desde el EOS, el significado de volumen queda definido por el sistema de prácticas 

realizadas por una persona, o compartidas en el seno de una institución, ante determinadas 

situaciones problemas (GODINO; BATANERO; FONT, 2007, 2019). Así, cuando se considera 

el significado del objeto volumen en términos de prácticas, es posible distinguir entre sentido y 

significado. El sentido corresponde al significado parcial del objeto, indicando que el 

significado de volumen como objeto complejo se puede parcelar en distintos tipos de prácticas 

más específicas (GODINO; BATANERO; FONT, 2007), y que pueden ser utilizadas en un 

determinado contexto. Por su parte, el significado global u holístico (PINO-FAN; GODINO; 

FONT, 2011) se reconstruye mediante la exploración sistemática de los contextos de uso tal 

objeto y los sistemas de prácticas que intervienen (GODINO; BATANERO; FONT, 2019). Así, 

el significado global de volumen queda definido por los significados parciales que emergen de 

las prácticas específicas que se realizan sobre dicho objeto en diferentes contextos. De este 

modo, tal objeto queda formado por partes o componentes que posibilitan una mirada global 

desde su complejidad (RONDERO; FONT 2015). 

Godino et al., (2007) proponen una tipología explícita de objetos y procesos 

matemáticos, lo que condiciona la descripción y el análisis de la práctica matemática. Se 
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distinguen seis tipos de objetos matemáticos primarios: (1) elementos lingüísticos (términos, 

expresiones, notaciones, gráficos) en sus diversos registros; (2) situaciones-problemas 

(aplicaciones intra o extra-matemáticas); (3) conceptos/definiciones (qué se entiende por un 

determinado objeto); (4) proposiciones/propiedades (enunciados sobre 

conceptos/definiciones); (5) procedimientos (algoritmos, operaciones, técnicas de cálculo); y 

(6) argumentos (enunciados usados para validar o explicar las proposiciones y procedimientos 

deductivos o de otro tipo). La emergencia de los objetos matemáticos primarios, por medio de 

sistemas de prácticas, subraya la complejidad de tales objetos matemáticos y la necesidad de 

articular las componentes en los que dicha complejidad se enmarca. La configuración 

epistémica es una herramienta que da cuenta de tal complejidad (BORJI; ERFANI; FONT, 

2019; BREDA; SECKEL; FONT, 2018; CAVIEDES; DE GAMBOA; BADILLO, 2021), y está 

referida al sistema de prácticas que promueve una institución o el currículo, desde un contexto 

intra matemático del objeto de referencia, en este caso volumen. En este sentido, una buena 

representatividad del objeto volumen quedaría definida, en un sentido pragmático, por la 

articulación/conexión de los distintos significados parciales.  

  

3 Método 

 

El presente estudio se sitúa en un paradigma interpretativo y sigue un enfoque de tipo 

cualitativo (COHEN; MANION; MORRISON, 2013). Se realiza una codificación deductiva 

guiada por la herramienta de la configuración epistémica (GODINO; BATANERO; FONT, 

2007) y sus respectivos objetos primarios. Así, mediante un análisis de contenido 

(KRIPPENDORFF, 2004) se revisan documentos en los que se discute sobre la riqueza 

matemática del objeto volumen. Dichos documentos corresponden a unidades de análisis que 

se dividen en subunidades manejables, buscando los objetos primarios intervinientes en los 

sistemas de prácticas de los cuales emerge, se desarrolla y formaliza el volumen.  

 

3.1 Análisis  

 

En concordancia con lo señalado por Sáiz (2002), la noción de volumen puede ser 

rastreada desde dos fuentes, las que en ocasiones se pueden entrelazar: la historia del cálculo y 

la historia del desarrollo de la geometría. Tomando esto como referencia, se distinguen tres 

etapas de análisis. La primera es la revisión documental en libros de historia de las matemáticas, 

actas de congresos, y artículos científicos, para identificar la evolución del conocimiento de 
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volumen. En esta fase, nos inspiramos en las fases de Siddaway, Wood y Hedges (2019) 

realizando cadenas de búsqueda en Google Scholar a partir de palabras en inglés (también 

español) como volumen, historia, matemáticas/geometría, enseñanza, aprendizaje. La fase de 

cribado consistió en la lectura del título de cada documento a fin de descartar registros 

duplicados. Las fases de idoneidad y de inclusión supusieron la lectura del resumen de los 

artículos/congresos seleccionados, así como de los índices en el caso de los libros. En algunos 

casos fue necesario leer artículos completos, pues el resumen no era lo suficientemente claro. 

En la segunda etapa, identificación de objetos matemáticos primarios presentes en la evolución 

del conocimiento sobre el objeto volumen, el análisis tuvo dos momentos y generó unidades 

empíricas (sobre la enseñanza y aprendizaje de la noción de volumen) y unidades teóricas (sobre 

la naturaleza y evolución de la noción de la noción de volumen).  Las unidades de contenido 

empírico se crearon para informar sobre la etapa educativa, participantes y resultados para cada 

estudio documentado. Lo mismo ocurre con las unidades de contenido teórico, que se crearon 

para informar sobre fundamentos histórico/teóricos respecto al objeto volumen. Para las 

unidades identificadas se rastrean los objetos matemáticos primarios (EOS) que configuran el 

objeto volumen. En la tercera etapa, identificación de los significados parciales de volumen 

mediante el uso de configuraciones epistémicas, los objetos matemáticos primarios rastreados 

se agrupan en función de las situaciones problemas que posibilitan su emergencia. Cada 

agrupación se constituyó como una configuración epistémica que caracteriza a un significado 

parcial de volumen, a saber: (1) volumen como espacio que ocupa un cuerpo en relación con 

otros objetos, susceptible de ser medido; (2) volumen como relación entre dimensiones y 

formas; (3) volumen en relación con los indivisibles; y (4) volumen como una función. 

Finalmente, se identificaron los objetos matemáticos primarios transversales a las cuatro 

configuraciones. Estos objetos debían cumplir con la característica de estar presentes en el 

tratamiento del volumen de manera intuitiva e igualmente de forma analítica más elaborada 

(BRUNER, 1970). A tales objetos les hemos denominado ideas epistémicas fundamentales, las 

que describimos en el apartado de resultados. A continuación, presentamos los objetos 

rastreados para cada significado parcial.  

 

3.1.1 Volumen como espacio que ocupa un cuerpo en relación con otros objetos, 

susceptible de ser medido  

 

La problematización del volumen de los cuerpos sólidos data de las antiguas 

civilizaciones, existiendo consenso en que los conocimientos geométricos de los babilónicos y 
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egipcios nacen de situaciones problemas reales, como calcular el volumen de sólidos o 

pirámides para su construcción. La geometría de los babilónicos da cuenta de la relación íntima 

con la medición práctica de algunos problemas relativos a sólidos, como los prismas rectos y 

cilindros. En este sentido, los babilónicos centraron su atención en el uso de la estructura y 

reglas matemáticas, aunque sin interés por justificarlas o probarlas (GILLINGS, 1982). La 

construcción de pirámides llevó a los egipcios a mantenerse fieles a una matemática relacionada 

con el conjunto de procedimientos aritméticos, de esta manera recurrían al uso de fórmulas para 

determinar la medición de volúmenes de sólidos. Los primeros indicios sobre el cálculo del 

volumen de sólidos se ven en el papiro de Moscú (1890 a.C), donde los egipcios muestran 

evidencias del uso de la fórmula del volumen para resolver una situación problema asociada a 

la pirámide truncada (GILLINGS, 1982) - obtener la medida del volumen de una pirámide 

cuadrangular truncada con arista de base inferior igual a 4, arista de base superior igual a 2, y 

altura igual a 6 -. Gillings (1982) señala que en el papiro se explica el procedimiento numérico 

de la siguiente manera: (i) se eleva 4 al cuadrado; (ii) se duplica este 4; (iii) se eleva 2 al 

cuadrado; (iv) se suman estos resultados y resulta 28; (v) se obtiene un tercio de 6 resulta 2; (vi) 

2 se multiplica por la suma anteriormente obtenida; (vii) el resultado final es 56. Los cálculos 

anteriores corresponden a la aplicación de la fórmula que se usa hasta la fecha: 𝑣 =

ℎ

3
(𝑎2 + 𝑎𝑏 + 𝑏2), en un lenguaje simbólico explícito por representaciones de tipo 

numérico/algebraico. Aunque no está claro si los egipcios conocían dicha fórmula, es posible 

que hayan conocido la fórmula 𝑣 =
1

3
(𝑎2ℎ) para calcular el volumen de una pirámide 

cuadrangular y, a partir de ella la del volumen de la pirámide truncada. Gillings (1982, p. 191) 

considera que los egipcios podrían haber sido capaces de argumentar que en una pirámide recta 

construida de arcilla o madera, cuya altura perpendicular es exactamente la mitad del lado de 

la base cuadrada…el volumen de la pirámide resulta ser 𝑣 =
1

3
(𝑎2ℎ). Esto indica que los 

egipcios mostraron cierto dominio del lenguaje simbólico en sus distintas representaciones 

(numérica y posiblemente algebraica), e interés por las propiedades geométricas de las 

pirámides. Por ejemplo, podían ejecutar procedimientos para calcular el volumen de la pirámide 

(dada la longitud de un lado de la base y la altura), evidenciando relaciones entre dos medidas 

lineales, la altura y la longitud, con un volumen (TABAK, 2011).  

Los papiros egipcios, además, muestran evidencias de procedimientos para el cálculo 

del volumen de un cilindro (GILLINGS, 1982), con una fórmula que permitía obtener el 

resultado directamente en unidades de volumen de granos y, con la fórmula del área de la base 

por la altura, transformando las unidades de medida a unidades de capacidad. Este cambio entre 
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procedimientos de cálculo de volúmenes, desde aquellos que involucran un conteo eficiente de 

unidades de la misma naturaleza de aquello que se pretende medir, y otros que involucran 

comparaciones entre unidades de igual o distinta naturaleza a la que se está midiendo (p.e., 

longitudes y áreas), da cuenta de un cambio de significado en la medición de volúmenes y 

permite inferir la existencia de dos conceptos/definiciones que se entrelazan en el desarrollo del 

objeto volumen: el volumen interno (capacidad) y volumen externo. 

Al igual que los egipcios, los mesopotámicos se interesaron en la geometría de la 

medida, como un medio para alcanzar un fin (TABAK, 2011). Por ejemplo, podían calcular el 

volumen de un objeto que tuviera la forma de una muralla, para responder la situación problema 

de averiguar el número de ladrillos que había que fabricar, y el número de horas/hombres 

necesarios para construir la muralla. Aunque esta civilización se interesó más por calcular 

costos y no formas geométricas, los procedimientos para la obtención del volumen dan cuenta 

de una aproximación hacia la iteración y conteo de unidades de medida y el concepto/definición 

de estructuración espacial, aspectos que hoy en día resultan claves en el contexto escolar. Esto 

porque permiten a los estudiantes (primaria-secundaria) transitar desde llenar un espacio con 

unidades concretas, a visualizar y utilizar la estructura de unidades cúbicas como una unidad 

de medida para el volumen (BATTISTA; CLEMENTS, 1996; BATTISTA, 2007).  

En concordancia con Vergnaud (1983), lo anterior hace referencia al entrelazamiento 

histórico entre el volumen como una magnitud unidimensional y como una magnitud de tipo 

tridimensional. En el primer caso, el volumen se presenta como una magnitud susceptible de 

ser medida, aproximada y comparada directamente (p.e., llenado de recipientes, conteo de 

cubos) y que hace explicitas propiedades/proposiciones de las magnitudes unidimensionales, 

como ser sumable o calculada por apreciaciones cualitativas (p.e., unión y complementación). 

En el segundo caso,  el volumen es calculado a través de magnitudes de otra naturaleza (p.e., la 

longitud). 

 

3.1.2 Volumen como relación entre dimensiones y formas 

 

Los griegos desarrollaron un enfoque de la geometría más abstracto y menos 

computacional, pues investigaban las propiedades de clases de objetos geométricos a fin de 

resolver situaciones problemas de tipo deductivo y lógico (TABAK, 2011). Al abordar 

problemas tridimensionales, los griegos limitaban su atención a formas geométricas 

relativamente sencillas como cilindros, esferas y conos. Una de las grandes situaciones 

problemas de esta época surge en Atenas alrededor del año 430 a.C: encontrar las dimensiones 



 

ISSN 1980-4415 

DOI: http://dx.doi.org/10.1590/1980-4415v38a230149 

 

Bolema, Rio Claro (SP), v. 38, e230149, 2024                                                                                                       9          

de un nuevo cubo cuyo volumen sea el doble del original usando sólo una regla y un compás. 

Para dicha situación, Archytas de Tarento (428-347 a.C) encuentra una solución manipulando 

tres superficies curvas, sin embargo, la solución se demuestra de manera formal en el siglo XIX 

con el uso de nuevos métodos algebraicos.  

Alrededor del 300 a.C, Euclides demuestra las fórmulas para el volumen de los prismas 

y pirámides mediante el lema (método) de exhausión (Libro XII de Los Elementos), antes 

presentado por Eudoxo (409-356 a.C). En dicho método se miden volúmenes utilizando un 

lenguaje gráfico en su representación geométrica, y procedimientos de descomposición de los 

cuerpos en volúmenes conocidos. La proposición 7 del libro XII señala: “un prisma de base 

triangular se descompone en tres pirámides triangulares iguales entre sí, con base triangular”, 

lo que le permite argumentar que el volumen de una pirámide es la tercera parte del prisma de 

igual altura y con la misma base, y demostrar, mediante el método de exhausión, la proposición 

10 del mismo libro: “un cono es la tercera parte de un cilindro de la misma base y la misma 

altura”. Así, se argumenta que los conos y los cilindros de igual altura son entre sí como sus 

bases, que los conos y cilindros semejantes guardan entre sí una razón triplicada de la que 

guardan los diámetros de sus bases y, que los conos y cilindros que tienen bases iguales son 

entre sí como sus alturas. En la proposición 18 se señala que “las esferas son entre sí como las 

razones triplicadas de sus diámetros”, haciendo explícito el concepto/definición de 

proporcionalidad que existe entre la esfera y su diámetro, aunque no se indica una fórmula para 

el volumen. A diferencia de lo que Euclides realiza para la pirámide, donde se aplica la 

exhausión a la descomposición de la misma en otros cuerpos, para el cilindro la exhausión 

prueba que es posible aproximar el cilindro y el cono mediante prismas y pirámides, 

respectivamente, por dentro y por fuera (volumen interno y externo). 

Utilizando también el método de exhausión, Arquímedes (250 a.C.) profundiza en el 

volumen de cuerpos desconocidos. Para esto, introduce nuevos conceptos/definiciones como el 

peso y el centro de gravedad. En su denominado “Método”, Arquímedes calcula volúmenes 

más complicados, como el de la esfera, argumentando que este es cuatro veces el del cono que 

tiene como base un gran círculo de la esfera y altura igual al radio. Arquímedes calcula un 

volumen desconocido en términos del volumen de otros cuerpos conocidos, donde son 

utilizadas las propiedades de transitividad, aditividad y conservación (transformaciones de 

desplazamiento) por comparación directa de los cuerpos. A modo de ejemplo, en el caso del 

cálculo del volumen de un cuerpo A, se utilizan otros dos cuerpos B y C, tales que se conocen 

sus volúmenes, además, de B se conoce también su centro de gravedad (SÁIZ, 2002). En suma, 

Arquímedes y Eudoxo establecieron diversos resultados sobre el área y el volumen mediante 
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argumentos sofisticados, por ejemplo, en sus cálculos de cocientes de áreas o volúmenes de dos 

figuras, Arquímedes hizo uso de infinitesimales de un modo similar al del cálculo integral en 

su primera etapa, como la cuadratura de la parábola (TOSHIKAZU, 2019).  

Una situación-problema particular de esta época es la que el rey de Siracusa pide a 

Arquímedes: comprobar si su nueva corona estaba realmente hecha de oro puro. Al respecto, 

Arquímedes introduce la corona en una tina con agua advirtiendo un desplazamiento de cierta 

cantidad de agua. Así, surge la proposición de “todo cuerpo sumergido dentro de un fluido 

experimenta una fuerza ascendente llamada empuje, equivalente al peso del fluido desalojado 

por el cuerpo”, donde se hace explícito un significado de volumen por desplazamiento de 

líquido (capacidad), introduciendo los conceptos/definiciones de densidad y masa, más ligados 

a la física. Para efectos de este estudio, vinculamos este significado al volumen interno que se 

puede calcular, pues en matemáticas no se ha elaborado un modelo para la capacidad como tal, 

por lo que hay que recurrir a su relación con el volumen para manejarla matemáticamente 

(OLMO; MORENO; GIL, 1989). 

 

3.1.3 Volumen en relación con los indivisibles 

 

Con el fin de resolver situaciones-problemas relacionadas con el almacenamiento y 

comercio de vinos (la forma de los barriles que con menor superficie puedan tener mayor 

volumen), Kepler utiliza un cierto ‘principio de continuidad’. Así, el concepto/definición 

infinitesimal comienza a relacionarse con el cálculo del volumen y surgen propiedades que 

aluden a la idea de incrementar una magnitud como variable independiente (GONZÁLEZ, 

2008; ANDERSEN, 1984); situación que representa el punto de partida para el uso de 

magnitudes infinitamente pequeñas, los infinitesimales (PINO-FAN; GODINO; FONT, 2011). 

En este sentido, Toshikazu (2019) señalan que Kepler calculó los volúmenes de los sólidos de 

revolución cuando el cálculo integral se encontraba aún en una fase incipiente, pero fue Pappus 

quien llegó a encontrar una fórmula general para calcular estos sólidos (TABAK, 2011). 

Al cabo de un tiempo, Bonaventura Cavalieri (1598-1647) propuso el principio de 

Cavalieri, para hallar áreas y volúmenes de figuras generales, considerado como un término 

medio entre la cuadratura griega y el cálculo integral. Cavalieri considera que una región plana 

se compone de un número infinito de líneas paralelas, cada una de las cuales se considera un 

rectángulo infinitesimal. Así, el principio indica que es posible medir mediante procedimientos 

de comparación de lo que él llama los indivisibles, concepto/definición importante en este 

significado, y que se define como los sólidos que se forman al cortar el cuerpo con planos 
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paralelos a su base. De esta manera, el volumen queda definido mediante la incorporación 

sucesiva de una cantidad infinita de planos paralelos a las bases del objeto tridimensional 

(ARAYA et al., 2021). La idea de Cavalieri era la de considerar todos los planos paralelos a la 

base que cortan al cuerpo, en consecuencia, se forman sólidos infinitamente delgados. El 

principio de Cavalieri, para volúmenes, puede enunciarse como “si en dos cuerpos de igual 

altura las áreas de las secciones producidas por planos paralelos a la base son iguales, entonces 

los cuerpos tienen el mismo volumen”. Los procedimientos que justifican volúmenes mediante 

este principio comienzan comparando unos cuerpos con otros y, en concordancia con González-

López y Flores (2001), consideran las siguientes proposiciones: (i) un ortoedro, un prisma y un 

cilindro que tengan igual base y altura tienen el mismo volumen, (ii) pirámides y conos que 

tengan igual base y altura tienen el mismo volumen. Estas proposiciones introducen un 

argumento con el concepto/definición de proporcionalidad que prueba que, si dos pirámides o 

conos de la misma altura se cortan por planos que están a la misma distancia perpendicular de 

los vértices, las secciones son como las respectivas bases. En particular, la proposición indica 

que, si las bases de las dos pirámides o los dos conos son iguales, entonces las secciones también 

son iguales (Figura 1). 

 
Figura 1 - Ejemplo de aplicación del principio de Cavalieri 

 Fuente: GONZÁLEZ-LÓPEZ; FLORES (2001, p. 105) 

 

Las proposiciones anteriores permiten afirmar que las tres pirámides triangulares en que 

se descompone un prisma triangular tienen igual volumen, lo que conduce a la razón 

(concepto/definición) 1:3 entre el volumen de la pirámide y el prisma. Por medio de un lenguaje 

gráfico en su representación geométrica, y simbólico en su representación algebraica, se 

extiende esta razón al cono y cilindro (GONZÁLEZ-LÓPEZ; FLORES, 2001). En el principio 

de Cavalieri, la geometría plana y espacial están directamente relacionadas mediante el 

significado de volumen como espacio ocupado por un cuerpo sólido, ya que los postulados de 

una sirven de base para comprender la naturaleza de la otra. Además, el procedimiento de 

descomposición en capas es la base para generalizar el cálculo de volumen a otros cuerpos 

geométricos mediante el uso de la integral. Así, en este significado parcial se encuentra implícita 

la estructura de capas que subyace a la fórmula de volumen y, por ello, a la visualización de la 
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estructura de los objetos tridimensionales mediada por la estructuración espacial, y las 

propiedades de polígonos y cuerpos geométricos (BATTISTA; CLEMENTS, 1996). 

 

3.1.4 Volumen como una función 

 

Con los trabajos de Newton (1642-1727) y Leibniz (1646-1716), se introduce el 

concepto/definición integración, donde se relacionan procedimientos y técnicas propias del 

cálculo para obtener la longitud de las curvas, el tamaño de las áreas y los volúmenes de los 

sólidos (TABAK, 2011, p. 223). La integración permite resolver situaciones problemas 

vinculadas a los sólidos de revolución (sólido que se obtiene al rotar una curva plana respecto 

a una recta fija), con uso de un lenguaje simbólico en su representación algebraica y un lenguaje 

gráfico en su representación geométrica/cartesiana. En este sentido,  González-López y Flores 

(2001), señalan que en el cálculo integral se parte del espacio euclídeo E, donde el volumen 

adquiere el significado de función real positiva, cuyo dominio son los subconjuntos compactos 

de E, que verifica una serie de propiedades (p.e., aditividad, conservación, linealidad, 

homogeneidad, monotonía). La teoría general de la medida proporciona un tipo de integral (p.e., 

integral definida para el sólido de revolución) que responde a las propiedades requeridas para 

la función volumen (GONZÁLEZ-LÓPEZ; FLORES, 2001) y donde entra en juego el teorema 

fundamental del cálculo y el límite como nuevos conceptos/definiciones. En general, una 

función puede girarse libremente, por lo que la forma del sólido que se genera depende tanto 

de la naturaleza de la función, como del eje de revolución. Un volumen del sólido de revolución 

se conforma de la suma infinita de franjas unitarias de volumen, y si se genera haciendo girar a 

una función 𝑓(𝑥) alrededor del eje 𝑥 se puede calcular por medio del procedimiento que 

involucra a la fórmula: 𝑣 = ∫ 𝑎
𝑏

𝑎
𝜋 ∙ [𝑓(𝑥)]2𝑑𝑥 donde 𝑎 y 𝑏 representan las rectas que lo limitan, 

es decir, son los extremos, dicho procedimiento se conoce como volúmenes por discos.  

De acuerdo con Sáiz (2002), la integración se lleva a cabo sobre diferentes tipos de 

conjuntos. Por ejemplo, Marsden, Tromba y Mateos (1991) presentan la siguiente 

definición: Sea D una región en el plano, y R un rectángulo que contiene a D. Dada 𝑓: 𝐷 → 𝑅 

donde 𝑓 es continua (y por lo tanto acotada), definir ∫
𝐷

𝑓(𝑥, 𝑦)𝑑𝐴, la integral de 𝑓 sobre el 

conjunto D como sigue: extender 𝑓 a una función 𝑓 ∗ definida en todo 𝑅 mediante:  

𝑓 ∗ (𝑥, 𝑦)  =   𝑓(𝑥, 𝑦),       𝑠𝑖 (𝑥, 𝑦) ∈ 𝐷     𝑦   𝑓 ∗ (𝑥, 𝑦) = 0  𝑠𝑖 (𝑥, 𝑦) ∉ 𝐷  𝑦(𝑥, 𝑦) ∈ 𝑅 
 

Así,  𝑓 ∗es integrable sobre 𝑅.  

Por lo tanto, se puede definir:  
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∫
𝐷

𝑓(𝑥, 𝑦)𝑑𝐴  =  ∫
𝑅

𝑓 ∗ (𝑥, 𝑦)𝑑𝐴.  

Cuando 𝑓 (𝑥, 𝑦) ≥ 0 en 𝐷, se puede interpretar la integral ∫
𝐷

𝑓(𝑥, 𝑦)𝑑𝐴 como el 

volumen de la región tridimensional entre la gráfica 𝑓 𝑦 𝐷 (Figura 2).  

 
Figura 2 – Ejemplo de aplicación de la integración 

Fuente: MARSDEN; TROMBA; MATEOS (1991, p. 330) 

 

En el estudio formal del cálculo también suceden procesos de cálculo bidimensionales, 

es decir, se centra la atención en dos parámetros que involucran tipos de unidades y 

conceptos/definiciones diferentes (p.e., longitud y área), los cuales permiten determinar el 

volumen como objeto complejo (Sáiz, 2002). Esto indica que, para ejecutar procedimientos de 

cálculo es necesario recuperar los significados de volumen en relación con el espacio que ocupa 

un cuerpo y el volumen como magnitud que se puede calcular, así como los 

conceptos/definiciones, propiedades y proposiciones involucrados.  

La integral de Lebesgue puede considerarse como el último eslabón de la cadena que 

representa el desarrollo histórico del objeto volumen (Sáiz, 2002), aunque el volumen se define 

como medida de un espacio de dimensión tres, quedando reducido a la medida y sin distinguirlo 

de la longitud o del área. Aquí, el volumen pierde las cualidades que como magnitud lo 

enriquecen (SÁIZ, 2002). Al respecto, Boltianskii (1978) citando a Hilbert  observa que:  

[…] desde los tiempos de Euclides el volumen de una pirámide había sido calculado 

usando un proceso complicado de límite. La esencia de la situación problema es 

justificar el uso de un proceso de límite ‘superfluo’... y demostrar que, sin el uso de 

tal procedimiento, no se puede construir una teoría de volúmenes para poliedros 

(BOLTIANSKII, 1978 p. 1).  

 

Así, Hilbert hace referencia a los procedimientos de equidescomposición que resultan 

útiles en geometría plana, pero no siempre para el volumen. De esta manera, surge la situación 

problema que Hilbert plantea en 1900: dados dos poliedros de igual volumen ¿es siempre 

posible cortar el primero en una cantidad finita de piezas poliédricas que puedan ser 

ensambladas de modo que quede armado el segundo? Este problema es resuelto por Dehn y se 

hace explícito en la proposición que indica que el cubo y la pirámide triangular de igual 
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volumen no son equicompuestos (BOLTIANSKII, 1978). Sáiz (2002) señala que este resultado 

tiene efectos en la educación secundaria, pues dicha fórmula puede formalizarse a través de un 

proceso de límite, lo que requiere volver a los conocimientos geométricos tridimensionales, su 

relación con la geometría plana, la estructuración espacial, estructura de capas, iteración de 

unidades de medida y la estructura de unidades cúbicas. 

 

4 Resultados  

 

El análisis anterior ha permitido identificar la existencia de cuatro significados parciales 

de volumen que dan cuenta de su significado global u holístico, así como de su complejidad y 

riqueza matemática asociada.  

El Cuadro 1 muestra los objetos matemáticos asociados al significado parcial de 

volumen como espacio que ocupa un cuerpo en relación con otros objetos, susceptible de ser 

medido. Este significado se construye tomando como referencia los objetos matemáticos 

primarios que emergen de la problematización del volumen de los cuerpos sólidos hecha por 

las antiguas civilizaciones (babilónicos y egipcios).  

Objetos primarios  Descriptores 

Situaciones problema 

(S) 

(S1) Calcular el volumen de las estructuras (sólidos o pirámides). 

(S2) Medir la cantidad de material necesario para erigir pirámides o el grano 

necesario para la elaboración de productos o bebidas alcohólicas. 

Elementos lingüísticos 

(E) 

(E1) Oral/escrito: cantidad  de grano o material ocupado 

(E2) Geométricos: figuras de objetos tridimensionales que se asemejan a cuerpos 

geométricos. 

(E3) Simbólicos: sistema numérico 

Conceptos / 

Definiciones (CD) 

(CD1) El volumen es la cantidad de espacio tridimensional ocupado por una 

sustancia cuando se vierte o se coloca en un recipiente. 

(CD2) El volumen es un espacio tridimensional ocupado por un objeto sólido.  

(CD3) El volumen es el número de unidades cúbicas idénticas que caben en un 

espacio determinado. 

(CD1) Base 

(CD2) Altura 

(CD3) Ancho 

(CD4) Pirámide 

(CD5) Pirámide truncada 

(CD6) Cilindro 

(CD7) Estructuración espacial 

(CD8) Estructura de capas   

(CD9) Espacio ocupado 

(CD10) Superficie ocupada 

(CD11) Capacidad 

(CD12) Proporcionalidad 

(CD13) Unidades de medida no 

estándar 

(CD14)Unidad cúbica  

(CD15) Unidad compuesta 

Propiedades/proposicio

nes 

(Pp1) Conservación 

(Pp2) Aditividad 

(Pp3) atributos de los cuerpos geométricos 

(Pr1) El volumen de una pirámide es un tercio del volumen de un prisma con la 

misma base y altura. 
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(Pr2) El volumen de la pirámide truncada es un tercio del producto de la altura por 

la suma de las áreas de las dos bases ,y el área de las caras laterales trapezoidales. 

Procedimientos (P) (P1) Verter o colocar una sustancia (p.e., líquido, granos) en un recipiente 

graduado. 

(P2) Contar del número de unidades individuales en la misma dimensión del objeto 

a medir. 

(P3) Aplicar fórmulas para el volumen de pirámides y pirámides truncadas. 

Argumentos (A) (A1) El volumen de un objeto puede obtenerse multiplicando el número de 

unidades necesarias para llenar completamente el objeto, por el volumen unitario 

de cada cubo. Así, la medida del volumen se obtiene de manera indirecta mediante 

operaciones aritméticas. 

(A2) El volumen de un objeto puede obtenerse mediante el uso de instrumentos de 

medida (unidades de medida tridimensionales). Así la medida del volumen se 

obtiene de manera indirecta aplicando reiteradamente las unidades de medida hasta 

lograr cubrir el espacio que se quiere medir. 

Cuadro 1 - Volumen como espacio que ocupa un cuerpo en relación con otros objetos,  

susceptible de ser medido 

Fuente: elaboración propia 

 

El Cuadro 2 muestra los objetos matemáticos asociados al significado parcial de 

volumen como relación entre dimensiones y formas. Este significado se construye tomando 

como referencia los objetos matemáticos primarios que emergen de la problematización de 

demostrar y relacionar (de manera cualitativa y/o cuantitativa) los atributos de los cuerpos 

sólidos en el tiempo de Euclides y Arquímedes.   

Objetos primarios Descriptores  

Situaciones problema (S) (S1) Calcular y demostrar el volumen de diferentes sólidos. 

Elementos lingüísticos (E) (E1) Oral/escrito: cantidad de veces que un cuerpo contiene/compone a otro. 

(E2) Geométricos: figuras geométricas sólidas.  

(E3) Simbólicos: sistema aritmético y algebraico para establecer relaciones de 

proporcionalidad.  

Conceptos / Definiciones 

(CD) 

(CD1) El volumen es una propiedad de las figuras sólidas, definidas como formas 

tridimensionales que tienen longitud, anchura y altura.  

(CD2) El volumen es la relación entre los tipos de figuras sólidas y sus 

propiedades. 

(CD3)  El volumen corresponde a la medida como diferencia entre una cantidad 

de sustancia (que se vierte o se coloca en un recipiente) resultante de la inmersión 

de un objeto, y la cantidad de sustancia inicial. 

(CD1) Magnitud conmesurable. 

(CD2) Estructuración espacial. 

(CD3) Peso. 

(CD4) Centro de gravedad. 

(CD5) Unidades de medida  

(CD6) Unidad cúbica 

(CD7) Unidad compuesta.  

(CD8) Densidad. 

(CD9) Masa. 

(CD10) Capacidad. 

(CD11) Descomposición de cuerpos. 

(CD12) Estructura de capas 
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Propiedades (Pp) y 

proposiciones (Pr) 

(Pp1) Conservación por transformación de desplazamiento (traslación). 

(Pp2) Transitividad. 

(Pp3) Aditividad. 

(Pp4) atributos de los cuerpos geométricos 

(Pr1) El volumen de una pirámide es exactamente un tercio del volumen de un 

prisma con la misma base y altura. 

(Pr2) El volumen de objetos de forma irregular puede obtenerse sumergiéndolos 

en agua y midiendo la cantidad de agua desplazada. 

(Pr3) El volumen de cualquier cono es igual a un tercio del volumen de un cilindro. 

(Pr4) El volumen del cilindro es tres veces el volumen del cono. 

(Pr5) El volumen de la esfera es exactamente dos tercios del volumen del cilindro. 

Procedimientos (P) (P1) Componer y (equi)componer. 

(P2) Descomponer.  

(P3) Desplazar líquidos.   

(P4) Utilizar esquemas de estructuración espacial, como encontrar una capa e iterar 

a través de la altura. 

Argumentos (A) (A1) El volumen de los poliedros regulares puede obtenerse por descomposición 

y composición de las formas que los componen. 

(A2) Las fórmulas de volumen se justifican mediante el razonamiento y la lógica, 

que permiten deducir las relaciones entre las distintas dimensiones de un objeto 

sólido.  

Cuadro 2 - Volumen como relación entre dimensiones y formas 

Fuente: elaboración propia 

 

El Cuadro 3 muestra los objetos matemáticos asociados al significado parcial de 

volumen en relación con los indivisibles. Este significado se construye tomando como 

referencia los objetos matemáticos primarios que emergen de la problematización de encontrar 

áreas y volúmenes de figuras generales a partir la partición infinitesimal. El principio de 

Cavalieri juega un papel clave en este significado parcial, considerado un término medio entre 

la cuadratura griega y el cálculo integral. 

 Objetos primarios  Descriptores  

Situaciones problema (S) 

 

(S1) Medir la cantidad de sustancia requerida para la elaboración y comercio de 

bebidas alcohólicas. 

(S2) Calcular y demostrar el volumen de sólidos desconocidos 

Elementos lingüísticos 

(E) 

 

(E1) Oral/escrito: aproximación por subdivisiones. 

(E2) Geométricos: figuras geométricas sólidas conocidas. 

(E3) Simbólicos: conjunto de los R+ para el uso de operaciones aritméticas/ 

algebraicas para justificar la aproximación al volumen por subdivisiones.   

Conceptos / Definiciones 

(CD) 

(CD1) El volumen es la medida de la cantidad de espacio ocupado por un objeto 

tridimensional, que se obtiene mediante la aproximación de la suma de volúmenes 

de formas más pequeñas y simples, y tomando el límite a medida que el número de 

subdivisiones tiende al infinito. 

(CD1) Pi (π) 

(CD2) Radio 

(CD3) Diámetro 

(CD4) Unidades de medida  

(CD5)Unidad cúbica 

(CD6) Unidad compuesta 

(CD7) Estructuración espacial 

(CD8) Estructura de capas 

(CD9) Rectángulo infinitesimal  

(CD10) indivisibles  
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Propiedades (Pp) y 

proposiciones (Pr) 

(Pp1) Conservación por transformaciones isométricas. 

(Pp2) Transitividad. 

(Pp3) Aditividad. 

(Pp4) atributos de los cuerpos geométricos 

(Pr1) El volumen de la esfera es dos tercios del volumen del cilindro circunscrito.  

(Pr2) El volumen se disocia de la forma del objeto. 

 Procedimientos (P) (P1) Aplicar método de exhausión. 

(P2) Aplicar fórmulas de poliedros y cuerpos redondos. 

 Argumentos (A) 

 

 

(A1) El volumen de un cuerpo geométrico puede obtenerse al dividir dicho cuerpo 

en formas más pequeñas y sencillas, cuyos volúmenes se conocen o pueden 

calcularse fácilmente. Sumando los volúmenes de estas subdivisiones y tomando el 

límite, a medida que el número de subdivisiones se acerca al infinito, puede 

obtenerse un valor preciso del volumen. 

Cuadro 3 - Volumen en relación con los indivisibles  

Fuente: elaboración propia 

 

El Cuadro 4 muestra los objetos matemáticos asociados al significado parcial de 

volumen como una función. Este significado se construye tomando como referencia los objetos 

matemáticos primarios que emergen de la problematización de determinar el volumen de 

solidos de revolución a partir de la integral definida, introducido con los trabajos de Newton y 

Leibniz. 

Objetos primarios  Descriptores  

Situaciones problema (S) (S1) Calcular  matemáticamente el volumen de sólidos que se obtienen al girar una 

figura plana sobre un determinado eje.  

Elementos lingüísticos 

(E) 

 

(E1) Oral/escrito: función positiva, aditiva, invariante. 

(E2) Gráfico: figuras del plano cartesiano, eje de las abscisas y ordenadas. 

(E2) Geométricos: figuras de polígonos y sólidos. 

(E3) Simbólicos: conjunto de los R+ para el cálculo indirecto del volumen 

(aritmético y algebraico).  

Conceptos / Definiciones 

(CD) 

  

 

(CD1) El volumen de una región en 𝑅3 es igual a la integral definida del área de sus 

secciones por planos paralelos a uno dado.  

(CD2) El volumen de una región 𝑅3 es igual a la diferencia de las integrales 

definidas de sus secciones por planos paralelos a uno dado. 

(CD3) El volumen de un sólido de revolución es la integral definida del área circular 

cuyo radio es una función dada.   

(CD1) Volumen por desplazamiento 

(CD1) Límite 

(CD2) Integración  

(CD3) Integral definida  

(CD4) Unidad compuesta 

(CD5) Estructuración espacial 

 

(CD6) Estructura de capas 

(CD7) Plano euclidiano 

(CD8) Función 

(CD9) Sólidos de revolución 

(CD10) Unidades de medida  

(CD11) Unidad cúbica 

Propiedades (Pp) y 

proposiciones (Pr) 

(Pp1) Conservación 

(Pp2) Aditividad 

(Pp3) Linealidad 

(Pp4) atributos de los cuerpos 

geométricos 

(Pp5) Homogeneidad 

(Pp6) Monotonía 

(Pp7) No negatividad 
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Procedimientos (P) (P1) Aplicar técnicas de cálculo algebraico que involucran integración para la 

obtención del volumen de los sólidos de revolución. 

(P2) Calcular la integral definida sobre el área de sus secciones transversales a lo 

largo de una dirección específica (método por discos). 

Argumentos (A) (A1) La integración, es un método para hallar el área bajo una curva. En el caso del 

volumen de un objeto tridimensional, la integración se utiliza para sumar los 

volúmenes infinitesimales de las finas láminas que componen el objeto. 

Cuadro 4 - Volumen como función  

Fuente: elaboración propia 

 

Las configuraciones epistémicas elaboradas han evidenciado que ciertos objetos 

primarios son transversales a los significados parciales de volumen, permitiendo su 

articulación. A estos objetos los hemos denominamos ideas epistémicas fundamentales (Figura 

3), encontrándose entre ellas conceptos/definiciones (p.e., estructuración espacial, estructura de 

capas de capas, unidad cúbica, unidad compuesta, unidades de medida), y 

propiedades/proposiciones (p.e., atributos de los cuerpos geométricos, conservación del 

volumen, acumulación y aditividad del volumen). Se evidencia que la estructuración espacial 

y estructura de capas son conceptos/definiciones vinculados a un proceso de visualización 

presente en el significado de volumen como relación entre dimensiones y formas, por ejemplo 

en la utilización de esquemas de estructuración espacial al iterar capas a través de la altura de 

un cuerpo geométrico. En el significado de volumen en relación con los indivisibles, estos 

conceptos/definiciones, así como el proceso de visualización, se hacen explícitos al obtener 

volumen de un cuerpo geométrico dividiendo dicho cuerpo en formas más pequeñas y sencillas. 

De manera similar, en el significado de volumen como una función, la estructuración espacial 

y estructura de capas son conceptos/definiciones vinculados a la representación de un sólido 

de revolución donde, al mismo tiempo, se requiere de un proceso de visualización para 

identificar la figura en el plano que genera dicho sólido.  

Los conceptos/definiciones de unidades de medida, unidad cúbica o unidad compuesta, 

constituyen otras ideas epistémicas fundamentales, en tanto permiten conectar distintos 

significados parciales de volumen. Por ejemplo, estos conceptos/definiciones hacen parte de los 

significados de volumen como espacio que ocupa un cuerpo en relación con otros objetos, 

susceptible de ser medido; y de volumen en relación con los indivisibles. En el primer caso,  

estas ideas resultan importantes para integrar y coordinar unidades cúbicas en un procedimiento 

de iteración (BATTISTA, 1999), y comprender la composición de dichas unidades en relación 

con magnitudes unidimensionales y bidimensionales (longitud y área). En el segundo caso, las 

ideas mencionadas resultan relevantes para la obtención del volumen mediante la aproximación 

de la suma de volúmenes de formas más pequeñas y simples. 
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Figura 3 - Ideas epistémicas fundamentales de los significados parciales de volumen 

Fuente: elaboración propia 

 

Los atributos de los cuerpos geométricos corresponden a propiedades/proposiciones 

que constituyen otra idea epistémica fundamental, en tanto son transversales a todos los 

significados parciales de volumen y guardan directa relación con las propiedades del volumen, 

como la conservación y aditividad. Dicha idea se asocia con las descomposiciones, (equi) 

composiciones y giros que se realizan sobre los cuerpos y figuras geométricas respectivamente, 

y que permiten la obtención del volumen por distintos procedimientos. Por ejemplo, el proceso 

de medición que involucra el procedimiento de exhausión en el caso del volumen como relación 

entre dimensiones y formas; y, el cálculo en el caso del volumen como una función. 

 

5. Discusión y conclusiones  

 

El objetivo de este artículo fue caracterizar los significados parciales de la noción de 

volumen y sus ideas epistémicas fundamentales, evidenciando su riqueza matemática en 

términos de los objetos matemáticos que lo conforman. La evolución histórica del objeto 

volumen sugiere que el trabajo de Euclides sienta las bases para la medida volumétrica y la 

visualización de la estructura de los objetos tridimensionales, en términos de las unidades de 

medida, y para integrar la información de las tres dimensiones lineales de los objetos al razonar 

sobre fórmulas de volumen. Hoy se sabe que esto tiene especial relevancia en la introducción 
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del volumen en los niveles educativos de primaria y secundaria, y en la construcción cognitiva 

de la estructura de las matrices de cubos 3D en los alumnos (BATTISTA; CLEMENTS, 1996). 

El desarrollo del conocimiento sobre el objeto volumen permitió identificar distintos 

significados parciales los cuales se integran, transversalmente, por ideas epistémicas 

fundamentales referidas a conceptos/definiciones y propiedades/proposiciones, tal es el caso de 

los atributos geométricos tridimensionales, la estructura unitaria de una matriz y de los 

algoritmos que, a su vez, se ven vinculados con la estructura de capas y la fórmula de volumen 

(HUANG; WU, 2019). Esto se ve reflejado, por ejemplo, en los trabajos de Cavalieri con la 

introducción de los indivisibles y, posteriormente, con el desarrollo del cálculo integral.  

El recorrido histórico, y la construcción de las configuraciones epistémicas, sugiere 

que las ideas epistémicas fundamentales se presentan como objetos que podrían favorecer la 

representatividad y la conexión de los significados de volumen, tal y como se sugiere de manera 

intuitiva en Rondero y Font (2015). En este sentido, estas ideas epistémicas fundamentales 

podrían sustentar el proceso seguido para la obtención de fórmulas de cálculo indirecto de 

volúmenes (p.e., a partir de áreas y longitudes) siendo un puente entre el conocimiento de tipo 

intuitivo y otro de tipo formal que transitan en espiral (en el sentido de BRUNER, 1970).  

Los resultados presentados pueden tener implicaciones en el tratamiento que dan los 

docentes en la enseñanza del objeto volumen y su medición en un contexto de aula. En este 

sentido, los resultados sugieren que la resolución de situaciones-problema que involucran la 

medición/cálculo de volumen necesita de una coordinación entre distintos significados 

parciales de volumen, a fin de desarrollar una compresión de los elementos subyacentes 

(BATTISTA; CLEMENTS, 1996; CLEMENTS; BATTISTA, 1992). No obstante, y con miras 

a su aplicabilidad en el aula, reconocemos la importancia de expandir este estudio mediante un 

análisis curricular que integre las ideas epistémicas fundamentales delineadas en el presente 

manuscrito. 
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