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Abstract 17 

 18 

The increasing risk of irreversible ecological transformation under global warming has boosted 19 

the need to understand the capacity of organisms to adapt to this change. Here, using a resurvey 20 

method of populations of the European fly Drosophila subobscura, we show that a known 21 

evolutionary response to global warming has accelerated in the last 20 years, in step with 22 

regional warming. This genetic response has come entirely by resorting pre-existing variation – 23 

and not from novel inversions – for tolerance to high temperature. Temperate populations are 24 

predicted to converge to the typical Mediterranean chromosomal composition by the mid-2050s, 25 

at which point this classic example of steep genetic cline will have vanished. Our results suggest 26 

species with broad geographic ranges, large population sizes, and high genetic diversity may 27 

have the evolutionary potential to cope with climate change. 28 

 29 
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Main text 30 

Main 31 

The biological impacts of human-caused global warming are worsening as predicted1,2,3. Early 32 

studies concentrated on detecting ecological and evolutionary signals of warming impacts4,5. 33 

Subsequently, studies have followed the progression of these changes. Evolutionary adaptation is 34 

a significant form of resilience to global warming, as it may be the only way for a population to 35 

survive when nongenetic compensatory responses are exceeded by environmental change6,7,8. 36 

Given the geographic and chronological progression of the global temperature increase, it is 37 

crucial to understand if the observed changes are sufficient to enable populations to adapt9,10,11,12. 38 

Early evolutionary impacts of global warming were detected in the widespread temperate fly 39 

Drosophila subobscura13,14. This species has a rich chromosomal inversion polymorphism 40 

distributed over its five major chromosomes (denoted by the letters A, J, U, E and O). Inversions 41 

are large-scale structural mutations (spanning tens, hundreds, or more genes) that involve 42 

breakage and reversal of a chromosomal segment, resulting in new variants of gene 43 

arrangements15,16,17,18. Inversions limit recombination and may result in linked sets of co-adapted 44 

alleles to local environmental conditions. In D. subobscura, structurally segregating regions 45 

collectively account for  83% of the species’ genome, meaning that the fraction of genetic loci 46 

unaffected by rearrangements is comparatively small19,20. 47 

Past comprehensive summaries of the species’ abundant inversion polymorphism revealed that 48 

the gene arrangements from more equatorial Palearctic populations are gradually replaced by the 49 

so-called Standard gene arrangements in the five chromosomes as populations approach high 50 

latitudes19. Similar clinal patterns became independently established in North and South America 51 

following the species’ recent spread in both continents21. In accordance with the clinal patterns, 52 

Standard gene arrangements undergo regular seasonal cycles increasing during winter and 53 

decreasing during summer repeatedly over the years22,23. Taken together, these findings 54 

suggested an adaptive relationship between inversion frequencies and climate13,24. 55 

Based on this, Balanyá et al.14 compared within-site shifts in inversion frequencies over a broad 56 

latitudinal scale from pre-global warming to the late 1990s. They found that the frequencies of 57 

low-latitude (putatively warm-adapted) inversions increased with the magnitude of global 58 

warming between sample periods. Here we update those early findings by resurveying European 59 

populations twenty years later using the same methods as Balanya et al.14. Our findings 60 

corroborate that anthropogenic global warming is continuing to shift the genetic composition of 61 

this species, and show that novel patterns are emerging. 62 

Follow-up survey of the early evolutionary warning 63 

Earlier data on genetic response of D. subobscura to contemporary global warming in Europe 64 

were drawn from ref.14. They consisted of historical survey (“HS”) and resurvey (“R1”) records 65 

from 12 main continental sites distributed across seven countries, comprising Austria (Vienna 66 

[VN]), Belgium (Louvain-la-Neuve [LN]), France (Lagrasse [LG], Montpellier [MP] and Villars 67 

[VL]), Germany (Tübingen [TB]), the Netherlands (Groningen [GN]), Spain (Málaga [ML], 68 

Punta Umbría [PU], Riba-roja de Túria [RT] and Queralbs [QR]), and Switzerland (Leuk [LK]) 69 

(Fig. 1). The sample spans a 16.5º latitude range that is split into two climatic regions: 70 

Mediterranean to the south (ML, PU, RT, QR, LG, and MP) and temperate to the north (VL, LK, 71 

VN, TB, LN, and GN). The HS record was collected around the end of the 1960s (1968 ± 7.3 72 

years), prior to recent warming, whereas the R1 record was collected at the end of 1990s (1999 ± 73 
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1.4 years). Almost two decades later (2017 ± 1.5 years), we conducted a new resurvey (“R2”) at 74 

the same sites around the same dates of the year and updated inversion frequencies (Methods; 75 

Supplementary Table 127). The aggregated records span half a century (49.2 ± 7.3 years), with 76 

the average elapsed time between R1 and R2 (18.4 ± 2.2 years) being one decade shorter than 77 

that between HS and R1 (30.8 ± 7.2 years). 78 

All five chromosomes of the species were examined in each of the 12 samples following 79 

standard procedures (e.g., ref.14) (Methods). A total of 6,670 chromosomes were scored for gene 80 

arrangements (the sample sizes [N] for each site and chromosome of the species' five 81 

chromosome set are provided in Supplementary Table 127). No newly discovered, previously 82 

unreported inversions were detected. Altogether, we used 45 different gene arrangements 83 

(Methods). 84 

Shifts in overall average ambient temperature and population genetic composition were assessed 85 

using the same temperature (TPC1) and genome-wide chromosome (ChPC1) indices as in ref.14. 86 

The two metrics are first principal components of centered unscaled Principal Component 87 

Analyses on temperature and genetic data, respectively (Methods). Higher scores between 88 

sample periods indicate, in the case of TPC1, increased warming of environmental temperatures, 89 

and in the case of ChPC1, increased frequency of warm-latitude chromosome arrangements. 90 

Faster warming, faster genetic change 91 

TPC1 scores are inversely correlated with latitude in all three surveys (Table 1). The relationship 92 

is best described by two-segment piecewise linear regression models with a breakpoint at 93 

approximately 46.3º, and the piecewise model fit the data better than either unsegmented linear 94 

models or second-order polynomial models (Fig. 2A; Supplementary Tables 2 and 3). This 95 

breakpoint should not be taken as an absolute value but rather as a transition zone between 96 

Mediterranean and temperate western Europe (Supplementary Table 4). Although warming has 97 

continued since R1 (Fig. 3; Wilcoxon tests; Supplementary Table 5), warming has been faster at 98 

the temperate sites (Fig. 3; Mann-Whitney U tests; Supplementary Table 5). 99 

ChPC1 scores are inversely correlated with latitude and directly with TPC1 in all three surveys 100 

(Table 1, Fig. 2, B and C). The decline of ChPC1 with latitude and its rise with TPC1 are equally 101 

well described by two-segment linear functions with a similar breakpoint to that found for TPC1 102 

or by second-order polynomial functions (compared to unsegmented linear baselines) (Fig. 2, B 103 

and C; Supplementary Table 2, 3 and 6). The smoothness of the genetic change when compared 104 

to the temperature change across the Mediterranean-temperate transition is probably a reflection 105 

of the mixing of flies across sites. No significant spatial autocorrelation is found in the residuals 106 

after fitting the TPC1 (second-order polynomial) model (Moran’s I = -0.18, -0.15, and -0.12; for 107 

HS, R1 and R2, respectively; expected Moran’s I =  -0.09 and Monte Carlo P > 0.3 in all 108 

cases). Thus, inversion frequencies shift latitudinally as if driven by the local climate. Likewise, 109 

if the observed temporal patterns of magnitudes of climate change had a genetic impact, then 110 

ChPC1 should also reflect this relationship. In fact, ChPC1 not only has continued increasing since 111 

R1 (Wilcoxon tests; Supplementary Table 5), but has done so at an accelerated rate at the 112 

temperate sites, in step with TPC1 (Fig. 3; Mann-Whitney U tests; Supplementary Table 5). Both 113 

the discontinuity in the latitudinal thermal gradient and the acceleration in the rate of 114 

evolutionary response correlative to climate warming are not described in the previous study. 115 

The observed geographic heterogeneity in the timing of the genetic shift suggests that it is due in 116 

part to local adaptation rather than just to genetic drift or a northern migration of individuals 117 

from equatorial locations. Genetic drift is not likely a factor, considering the large-scale of the 118 
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phenomenon (multiple populations shifting in the same direction across a wide geographic 119 

range). On the other hand, if migration was responsible, frequencies of some sporadic inversions 120 

that are relatively common in North Africa (e.g., A2+6 and E1+2+9+4) should have also increased in 121 

southern Europe; but this was not observed. Local adaptation is further supported by the fact that 122 

the individual contributions of each of the species’ five chromosomes to the acceleration of the 123 

shift at the temperate sites have not been homogeneous (Fig. 3), despite the fact that they started 124 

from similar levels of latitudinal differentiation in R1 [ref.14; Supplementary Table 127]. The 125 

observed inter-chromosomal variation in evolutionary rate rather suggests that chromosomes 126 

differ in their effects on the thermal phenotype. 127 

Association with extreme heat 128 

The TPC1 patterns observed in the present study align with reported geographic and temporal 129 

trends in the frequency and magnitude of heatwaves in Europe29,30. Specifically, the rate of 130 

incidence and duration of major European heatwaves increased continent-wide from the first 131 

sample interval (HS-R1) to the second (R1-R2), but those shifts were approximately twice as 132 

high in central Europe (14 events, aggregating 223 days in length) as in southern Europe (8.0 133 

events, 104 days) or in Southwest Europe (6.0 events, 90 days)30. The results of this latest study30 134 

allowed us to obtain a raw estimate of the degree of heat wave exposure, hereon referred to as 135 

HWe, individually for each sample site (Methods; Fig. 4). The decadal rates of HWe increased 136 

from HS-R1 to R1-R2 at all sites (P = < 1× 10-3, one-tailed exact Wilcoxon signed rank test, n = 137 

12), but the rate of increase was faster at the temperate than at the Mediterranean sites (P = 138 

0.002, two-tailed exact independent samples Mann-Whitney U test, n = 6). A significant positive 139 

association between the decadal rates of ChPC1 and HWe emerged from HS-R1 (two-tailed 140 

Spearman’s ρ = 0.387, P = 0.213, n = 12) to R1-R2 (two-tailed Spearman’s ρ = 0.664, P = 0.018, 141 

n = 12), as would be expected if inversion frequencies were impacted by the rise in major heat 142 

waves. In line with our findings, a heatwave caused a surge in the frequency of more 143 

thermotolerant genotypes in D. subobscura in another study23. Therefore, the acceleration in the 144 

D. subobscura rate of evolutionary response observed in the present study is likely driven not 145 

only by the gradual increase in average temperatures, but also more frequent and longer duration 146 

heatwaves31,32,33,34. 147 

The build-up of the association between ChPC1 and HWe in the R1-R2 interval could be due to a 148 

differential effect of the increase in high- and low-temperature extremes. To investigate this, we 149 

developed two analogous indices to TPC1 based on the monthly maxima and minima of daily 150 

temperatures, respectively referred to as TXxPC1 and TNnPC1 (Methods). The index better 151 

accounting for the chromosome data shifted from extreme minimum in the HS survey (AICc-Wt 152 

= 0.96) to extreme maximum in the R2 survey (AICc-Wt = 1.00) (Supplementary Table 8; 153 

Supplementary Figure 1). This suggests that a likely factor in the emergence of the association of 154 

ChPC1 with HWe during the R1-R2 interval was heat wave-imposed selection against the upper 155 

thermal tolerance of cold-climate arrangements. This conclusion would agree with laboratory 156 

experiments showing that carriers of cold-climate gene arrangements were less heat-stress 157 

tolerant than carriers of warm-climate gene arrangements35. Note that these experiments were 158 

conducted on adults, while inversion-differential effects may be particularly significant for 159 

preadult life stages, such as eggs, larvae and pupae, thought to be more vulnerable to heat 160 

stress36. 161 

Discussion 162 
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We demonstrated that evolutionary responses to global warming of European D. subobscura 163 

have not only been rapid, but has accelerated in step with the rise in temperature. These 164 

continental responses in Europe seem to be due to local shifts in frequencies of existing (prior to 165 

the onset of warming) chromosomal arrangements rather than to the evolution of novel 166 

arrangements (or influx from migration from North Africa)37,38. Specifically, no novel 167 

chromosome inversions have been found (ref.14; Supplementary Table 127) despite five decades 168 

of climate warming. 169 

Whether the standing chromosomal variation of D. subobscura will withstand future warming 170 

remains to be determined3,28,34. However, if we project current trends, temperate populations are 171 

predicted to converge to typical Mediterranean ChPC1 values around the mid-2050s (Fig. 5). At 172 

that point the steep genetic cline of this species – a classic in evolutionary genetics – will have 173 

vanished. Continued depletion of the pool of inversion variation should make the persistence of 174 

D. subobscura populations increasingly dependent on the much slower process of emergence of 175 

new adaptive mutations39,40. Along this path, the ability of the species to genetically track climate 176 

change may be enhanced if population connectivity and gene flow is maintained. On the other 177 

hand, it could be offset by a range of factors, such as linked deleterious variation41, trade-offs 178 

with other fitness traits42, mismatched species interactions43, and effects of other stresses44. The 179 

already observed decline in the frequency of cold-climate inversions should induce a rapidly co-180 

evolved reduction in cold tolerance45,46,47,48. If it persists, this reduction might progressively 181 

hamper population’s ability to survive sudden reversals of warming trends. 182 

Understanding the precise mechanisms whereby inversions confer adaptation to climate change 183 

requires knowledge of the number, identity and relative significance of the genetic loci involved, 184 

as well as the specific behavioral, life-history and physiological traits affected by them49. 185 

Progress has been hampered by the challenges inherent to analyzing inversions50, particularly in 186 

a species like D. subobscura that combines overlapping and non-overlapping inversions of 187 

variable ages, sizes and positions along every chromosome19,20. So far 11 climate-associated 188 

inversions have been analyzed at DNA sequence level (A2, U1, U2, E1, E2, E9, E12, O3, O4, 189 

O7, and O8). In all but one case (O7) the breakpoints are located away from any known gene for 190 

climate adaptation51. Thus, rather than direct chromosomal breakage, the primary mechanism by 191 

which inversions contribute to this species' adaptation to climate change seems to be indirect (via 192 

their recombination suppression effect holding together favorable combinations of alleles at 193 

climate-adaptive genes), but more research is needed. The prevalence of climate-associated 194 

inversions in the genome of D. subobscura indicates that the specie’s response to global 195 

warming is likely a complex multi-trait phenotype. 196 

Continued resurveying of genetic trait frequencies is a powerful means to assess whether 197 

evolution will be important under climate change12. The results presented herein suggest that the 198 

species most able of evolutionary adaptation to anthropogenic climate warming are those with 199 

wide-ranges, large population sizes and amounts of genetic diversity. For other species, the 200 

ability to adapt through evolution to the changing climate is probably lower44,52. It should be 201 

noted, however, that just as important as having a high level of genetic diversity is its availability 202 

wherever it may be adaptive. As the case of D. subobscura might illustrate, certain inversions 203 

from North Africa, which could be advantageous in the newly warmer environments of Europe, 204 

nevertheless have not spread there. This is probably because, alongside with warm-adaptive 205 

alleles, they locked up others with antagonistic effects outside the local environment in which the 206 

inversion evolved. The acceleration of the evolutionary impact of human-caused global warming 207 

reported here and elsewhere3,53,54,55,56 increases the urgency for effective mitigation actions. 208 
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Tables 231 

 232 

Table 1. Two-tailed Spearman’s r correlation coefficients for the association between 233 

chromosome (ChPC1) and climate (TPC1) indices and latitude for HS, R1 and R2 samples. 234 

Confidence intervals (95%) are given in parentheses; all values significant at P < 0.001; n = 12. 235 

 236 

 HS R1 R2 

TPC1 vs Latitude -0.944 

(-0.988, -0.757) 

-0.972 

(-0.994, -0.870) 

-0.958 

(-0.991, -0.812) 

ChPC1 vs Latitude -0.937 

(-0.987, -0.730) 

-0.937 

(-0.987, -0.730) 

-0.853 

(-0.966, -0.466) 

ChPC1 vs TPC1 0.930 

(0.705, 0.985) 

0.972 

(0.841, 0.993) 

0.902 

(0.610, 0.978) 

 237 
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Figure Legends 238 

 239 

Fig. 1. The 12 European sample sites and their distribution relative to the Mediterranean-240 

temperate climate transition zone. Black dots indicate the locations of sample sites. The map 241 

was built using the Simplemappr tool under a Creative Commons license CC0 1.0.25 using the 242 

Mercator projection and the shapefile for the Mediterranean climate region supplied in ref.26. 243 

 244 

Fig. 2. Five decades of D. subobscura evolutionary response to global warming in Europe. 245 

(a) The PCA-based temperature index TPC1 exhibits a two-segment linear piecewise relationship 246 

with latitude. The break marks a transition between Mediterranean and temperate western 247 

Europe. TPC1 increased from HS to R1, and from R1 to R2, but the increase accelerated at the 248 

temperate sites over the sample interval R1-R2. (b) The PCA-based chromosome index ChPC1 249 

exhibits a continuous second-order polynomial relationship with latitude, mimicking the patterns 250 

of TPC1. (c) Second-order polynomial relationship between ChPC1 and TPC1. 251 

 252 

Fig. 3. Decadal rates of equatorialward shift in temperature and inversion frequencies in 253 

Europe. TPC1, ChPC1, and chromosomewise (i.e., for each of the A, J, U, E, and O chromosomes; 254 

Methods) indices show greater positive shift rates at temperate sites over the R1-R2 interval, 255 

except for the O chromosome. Boxplots show 25–75th percentiles (boxes), medians (center 256 

lines), and the minimum-maximum values or, when there are values that are less-more than 1.5 257 

times the interquartile range, the smallest-largest value (whiskers). The numbers below variable 258 

names are corresponding exact one-tailed Wilcoxon signed rank test p-values for the null 259 

hypothesis of no positive difference between the R1-R2 and HS-R1 sample intervals (n = 6). 260 

Chromosomewise p-values < 0.1 per region are considered significant after Benjamini-Hochberg 261 

correction for multiple comparisons (false discovery rate set to ≤ 0.1). 262 

 263 

Fig. 4. Change in site decadal rate of heat wave exposure (HWe) between the two sample 264 

intervals. The rate increased from the HS-R1 period to the R1-R2 period at all sites (P = < 1× 265 

10-3, one-tailed exact Wilcoxon signed rank test, n =12), but the rate increase was faster at the 266 

temperate sites (P = 0.002, two-tailed exact independent samples Mann-Whitney U test, n = 6). 267 

 268 

Fig. 5. Predicted date when temperate sites will converge on the typical Mediterranean 269 

chromosomal composition. The intersection date between the linear (y = 3.53e-3x + 6.55) and 270 

second-order polynomial (y = 1.84e-4x2 + 7.24e-1x + 7.11e-2) equations is year 2055.03. 271 

 272 
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Methods 461 

Sampling approach 462 

All methods were as in ref.14. Flies were collected between 2015 and 2019 at the same 12 463 

continental European locations (Groningen [the Netherlands], Louvain-la-Neuve [Belgium], 464 

Tübingen [Germany], Vienna [Austria], Leuk [Switzerland], Lagrasse, Montpellier, and Villars 465 

[France], and Málaga, Punta Umbría, Riba-roja de Túria, and Queralbs [Spain]) (Fig. 1) and 466 

nearly the same dates of the year previously used in ref.14. To avoid bias arising from neglect of 467 

the regular seasonal cycles of inversions in the sampling approach57, the average absolute 468 

difference in number of days between the sampling dates of R2 and R1 was kept as small as 469 

possible (15.2 ± 14.7 days), given the occasional occurrence of unfavorable sampling weather 470 

conditions. Additionally, a sign test of the direction of the differences was non-significant (p = 471 

0.774, n = 12). Geographical coordinates and date information were obtained from refs.14,58 472 

(Supplementary Table 127). 473 

Polytene chromosome preparation and inversion scoring 474 

For each sample, chromosome arrangement frequencies were scored following standard methods 475 

(e.g., ref.14). First, wild-caught males or F1 males from wild-caught females were individually 476 

crossed with virgin females of the ch-cu strain, which is structurally homozygous for the AST, 477 

JST, UST, EST, and O3+4 chromosome arrangements. The polytene chromosomes of one F1 female 478 

third-instar larva from each cross were then analyzed to determine the configuration of one 479 

haploid chromosome set from the wild (Supplementary Table 127). 480 

The chromosomal polymorphisms in this current second resurvey (R2) were compared with 481 

those from the same locations collected 18.4 ± 2.2 years earlier in the first resurvey (R1) and 482 

49.2 ± 7.3 years earlier in the historical survey (HS)14. 483 

Mean temperature data and chromosome arrangement frequency analyses 484 

Balanyá et al. (2006)14 used standard Principal Components Analysis (PCA) to combine climatic 485 

variables and chromosome arrangement frequencies into single indices (first principal 486 

components, denoted as TPC1 and ChPC1, respectively). TPC1 was shown to represent the 487 

latitudinal gradient in mean temperature across sites, with high-positive (negative) values 488 

corresponding to a warmer (cooler) site. Analogously, ChPC1 was shown to represent the 489 

latitudinal gradient in chromosome arrangement composition across sites, with high-positive 490 

(negative) values corresponding to a polymorphism associated with warmer (cooler) sites. 491 

Following ref.14, we built a 36 rows (12 sites times three surveys) by 48 columns matrix of 492 

monthly mean temperature data for the four years immediately prior to each sample from the 493 

nearest weather station for each population gathered using NASA GISS 494 

(http://data.giss.nasa.gov/gistemp/station_data_v4/). Likewise, we built a 36 by 45 matrix of 495 

2√𝑝𝑖𝑗 transformed inversion frequency records, i being the ith population and j the jth 496 

arrangement. We then conducted centered unscaled PCAs on these two matrices to obtain the 497 

respective first principal component-based climate (TPC1) and genomewide chromosome (ChPC1) 498 

indices. TPC1 and ChPC1 accounted for 85.2% and 68.9% of the original variances, respectively. 499 

TPC1 values are highly collinear with those obtained using the explicit mean temperature data (T) 500 

directly (two-tailed Pearson’s r TPC1 vs T = 1.000, 1.000, and 0.999 respectively for HS, R1 and 501 

R2, p < 10-5 and n =12 in the three cases). Likewise, ChPC1 values are highly collinear with those 502 

obtained using the genome-wide warm dose (WD), an alternative genome-wide index defined as 503 

http://data.giss.nasa.gov/gistemp/station_data_v4/
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the average across the five-chromosome set of one minus the frequency of the Standard cold-504 

climate arrangement23 (two-tailed Pearson’s r ChPC1 vs WD = 0.974, 0.994, and 0.969 505 

respectively for HS, R1 and R2, p < 1  10-5 and n = 12 in the three cases). 506 

The relationships between variables were characterized considering three types of models, 507 

comprising simple linear, two-segment piecewise linear, and second-order polynomial models 508 

(Supplementary Tables 2, 4, 6, and 7). Best-fit model selection was done using one-way 509 

ANOVA for nested comparisons between linear and piecewise or second-order polynomial 510 

models, and Akaike’s information criterion with small sample correction for non-nested 511 

comparisons between piecewise and second-order polynomial models (Supplementary Tables 2, 512 

3, and 8). 513 

Visual inspection of the scatterplot of TPC1 against latitude (Fig. 2, a and b) suggested a threshold 514 

response, with distinct patterns of the response variable above and below the center of the 515 

latitudinal range in both cases. We ran two-segment piecewise regression analyses59, targeted to 516 

the three centralmost latitudes (from 43.8º to 46.3º, which equates to a stretch of ~278km, 517 

assuming ~111km per degree of latitude) and keeping the results from each coordinate. A 518 

piecewise model with a break at 46.3º provides a significant improvement over the unsegmented 519 

linear model (Supplementary Table 2) and the second-order polynomial model (Supplementary 520 

Table 3) in all the three surveys. This value should not be taken as an absolute location, but as a 521 

transition zone between the Mediterranean and temperate climatic regions of western Europe 522 

(Fig. 1). As expected if the chromosomal inversion polymorphisms respond to the thermal 523 

environment, piecewise regression also detects a break at 46.3º for ChPC1 in the three surveys 524 

(Supplementary Table 2). In this case, however, the transition zone extends to 45.4º and 43.8º, 525 

and the variation can be similarly well described using a second-order polynomial model 526 

(Supplementary Table 3). The observed greater broadness of the genetic threshold compared to 527 

the temperature threshold is likely an indication of potentially maladaptive homogenizing gene 528 

flow. With respect to the relationship of ChPC1 with TPC1, second-order polynomial models and 529 

piecewise models outperform the linear baselines (Supplementary Table 2), and the two models 530 

are globally similar when compared to one another (Supplementary Table 3). 531 

Decadal rates of change (Fig. 3) were calculated for TPC1 and ChPC1, and individually for each of 532 

the five A, J, U, E, and O chromosomes using one minus the frequency of the corresponding 533 

Standard cold-climate arrangement23. 534 

Heat wave and extreme temperature data analyses. 535 

We developed a crude index of a site exposure to heat waves (HWe) based on the results by 536 

ref.30. The study provides a description of all major heat waves that hit Europe since 1950. For 537 

each heat wave, the event was assigned within one or more of nine predefined regions of 5º 538 

latitude by 5º longitude, and a map of accumulated temperature anomaly was produced using a 539 

discrete color scale. Our survey sites are distributed in three of the nine regions: south Europe 540 

(ML, PU, and RT), south-western Europe (QR, LG, and MP), and central Europe (VL, LK, VN, 541 

TB, LN, and GR). HWe was determined for each sample site separately as follows: first, for each 542 

individual heat wave, sites outside the assigment regions were given a score of zero, while sites 543 

inside the regions were given a score 0 to 6, depending on the magnitude of the anomaly. Next, 544 

for each site the sum of the scores for all events was divided by the number of decades elapsed 545 

separately for the HS-R1 and R1-R2 periods. 546 

The relationship between the ChPC1 index and extreme temperature was evaluated using the 547 

monthly maximum (TXx) and monthly minimum (TNn) of daily temperatures. The two metrics 548 
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have been considered to be appropriate for examining effects of environmental thermal stress on 549 

small-sized ectotherms such as D. subobscura60. We employed the same methodological 550 

approach as that used in the mean temperature analysis. Corresponding 36 by 48 matrices were 551 

built using TXx and TNn data collected using ECA&D 552 

(https://www.ecad.eu/download/millennium/millennium.php) and subjected to PCA analysis to 553 

derive PC1-based TXx (TXxPC1) and TNn (TNnPC1) indices. TXxPC1 and TNnPC1 accounted for 554 

65.8% and 78.3% of the original variances, respectively. The values of the two indices are highly 555 

similar to those obtained using the explicit TXx and TNn data directly (two-tailed Pearson’s r 556 

TXxPC1 vs TXx = 0.998, 0.998, and 0.997, and two-tailed Pearson’s r TNnPC1 vs TNn = 1.000, 557 

1.000, and 1.000, respectively for HS, R1 and R2, p < 10-5 and n = 12 in all six cases). The 558 

change of ChPC1 with TXxPC1 and with TNnPC1 was described using second-order polynomial 559 

regression (Supplementary Table 7). 560 

We used Microsoft Excel for data preparation. All statistical analyses were performed using R 561 

version 4.2.1 (R Core Team, 2020)61. Principal component analyses (PCA) (Fig. 2 A, B and C), 562 

Spearman’s rho correlation analyses (Table 1), regression analyses including linear, piecewise 563 

and nonlinear second-order polynomial regression analyses (Fig. 2 A, B and C; Supplementary 564 

Tables 2, 4 and 6), and Wilcoxon signed rank and Mann-Withney U tests (Supplementary Table 565 

5) were performed using the ‘prcomp’, ‘cor.test’, ‘lm’ and ‘wilcox.test’ functions built into the 566 

base R environment61, respectively. Akaike's Information Criteria (AIC) model selection 567 

analyses (Supplementary Tables 3 and 8) were performed using the ‘aictab’ function in the 568 

‘AICcmodvag’ package62. Moran’s I tests of spatial autocorrelation were performed using the 569 

‘moran.i’ function in the ‘spedep’ package63. Boxplot graphs (Fig. 3) were created using the 570 

‘boxplot’ and ‘stripchart’ functions in base R61. 571 

 572 

 573 

Data availability 574 

 575 

All data generated in this study are available in the main text and the supplementary information, 576 

and can also be accessed on Figshare at https://doi.org/10.6084/m9.figshare.24619629 (ref.27) 577 
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Code availability 581 

 582 

The R code for our statistical analyses can be accessed on Figshare at 583 

https://doi.org/10.6084/m9.figshare.24619629 (ref.27) 584 
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Supplementary Figure 1 | Second-order polynomial relationship between the chromosome index (ChPC1) 

and the (a) extreme maximum temperature (TXxPC1) and (b) extreme minimum temperature (TNnPC1) 

indices (Supplementary Table 8). 

 



Málaga Punta Umbría Riba-roja de Túria Queralbs Lagrasse Montpellier Villars Leuk Vienna Tübingen Louvain-la-Neuve Groningen

Coordinates WGS84 36.66635, - 4.47747 37.18557, -6.97836 39.55035, -0.55921 42.34604, 2.14905 43.10536, 2.62638 43.76044, 3.74990 45.39132, 0.69424 46.32103, 7.64518 48.15108, 16.24883 48.54652, 9.03370 50.67341, 4.60543 53.14481, 6.62071

Collection date April 2, 2015 May 11, 2019 March 22, 2019 June 22, 2019 October 21, 2016 October 19, 2016 September 8, 2019 August 27, 2016 August 20, 2016 August 24, 2016 August 26-27, 2018 August 22-24, 2018

AST 0.110 0.184 0.182 0.299 0.473 0.514 0.558 0.368 0.352 0.517 0.457 0.505

A1 0.000 0.000 0.050 0.037 0.241 0.308 0.239 0.402 0.486 0.325 0.219 0.330

A2 0.890 0.806 0.769 0.664 0.286 0.178 0.204 0.230 0.162 0.158 0.324 0.165

A2+6 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N 127 103 121 107 112 107 113 87 105 120 105 103

JST 0.094 0.126 0.132 0.112 0.357 0.299 0.186 0.368 0.228 0.317 0.234 0.272

J1 0.906 0.874 0.868 0.888 0.643 0.701 0.814 0.632 0.772 0.683 0.766 0.728

N 127 103 121 107 112 107 113 106 114 120 107 103

UST 0.000 0.010 0.008 0.037 0.045 0.140 0.080 0.208 0.219 0.225 0.131 0.262

U1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.035 0.025 0.000 0.000

U2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000

U1+2 0.472 0.466 0.463 0.757 0.848 0.766 0.726 0.717 0.649 0.675 0.748 0.650

U1+2+6 0.000 0.000 0.000 0.000 0.009 0.009 0.000 0.009 0.009 0.008 0.000 0.000

U1+2+8 0.528 0.524 0.529 0.206 0.098 0.084 0.195 0.038 0.088 0.067 0.112 0.087

N 127 103 121 107 112 107 113 106 114 120 107 103

EST 0.197 0.262 0.256 0.542 0.589 0.682 0.487 0.651 0.544 0.717 0.598 0.641

E8 0.000 0.039 0.025 0.037 0.027 0.037 0.009 0.057 0.132 0.050 0.019 0.019

E1+2 0.197 0.272 0.174 0.196 0.250 0.159 0.327 0.179 0.070 0.158 0.308 0.252

E1+2+9 0.205 0.078 0.124 0.093 0.098 0.093 0.027 0.094 0.228 0.067 0.019 0.029

E1+2+9+3 0.024 0.068 0.041 0.019 0.009 0.009 0.035 0.000 0.000 0.000 0.000 0.010

E1+2+9+12 0.378 0.282 0.380 0.112 0.027 0.019 0.115 0.019 0.026 0.008 0.056 0.049

N 127 103 121 107 112 107 113 106 114 120 107 103

OST 0.024 0.010 0.050 0.318 0.339 0.421 0.319 0.377 0.421 0.467 0.374 0.485

O5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000

O6 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.009 0.009 0.000 0.009 0.000

O7 0.008 0.000 0.008 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

O3+4 0.252 0.320 0.355 0.262 0.277 0.224 0.292 0.226 0.307 0.250 0.187 0.165

O3+4+1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.017 0.000 0.000

O3+4+2 0.031 0.000 0.000 0.028 0.027 0.009 0.000 0.000 0.018 0.017 0.009 0.049

O3+4+7 0.622 0.485 0.413 0.056 0.009 0.028 0.009 0.000 0.000 0.000 0.000 0.000

O3+4+8 0.047 0.126 0.124 0.290 0.339 0.252 0.363 0.340 0.132 0.233 0.411 0.301

O3+4+18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000

O3+4+22 0.016 0.039 0.050 0.037 0.009 0.028 0.009 0.028 0.070 0.017 0.000 0.000

O3+4+16+2 0.000 0.019 0.000 0.000 0.000 0.028 0.009 0.009 0.009 0.000 0.009 0.000

N 127 103 121 107 112 107 113 106 114 120 107 103

3

Supplementary Table 1 | Geographical coordinates, collection dates, chromosome arrangement frequencies, and sample sizes (N) for the updated historical records of chromosomal 

inversion polymorphisms at 12 European D. subobscura  locations (ref.
27

; also accessible  from figshare at https://doi.org/10.6084/m9.figshare.24619629)
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Supplementary Table 2 | One-way ANOVA F tests for the fit of second-order polynomial models and two-segment linear piecewise regression 

models to the relationships of TPC1 and ChPc1 with latitude and of ChPC1 with TPC1, in comparison to simple linear models. In the case of the 

relationship of TPC1 vs latitude, only the piecewise model outperforms the linear model, consistently indicating a break at 46.3º in all three surveys. 

In the cases of ChPC1 vs latitude and ChPC1 vs TPC1, both models showed an overall significantly better performance than the linear model, and the 

piecewise model indicates an extended boundary across the three breaks. 

 

TPC1 

vs 

Latitude 

 Second-order polynomial 

model 

Two-segment piecewise linear model with break at latitude: 

 43.8º 45.4º 46.3º 

Survey Adj. r2 F[9,1] P Adj. r2 F[8,2] P Adj.r2 F[8,2] P Adj. r2 F[8,2] P 

HS 0.906 1.860 0.206 0.909 1.600 0.261 0.950 6.126 0.024 0.945 5.156 0.036 

R1 0.907 1.355 0.274 0.900 0.746 0.504 0.941 3.973 0.063 0.959 7.429 0.015 

R2 0.882 1.882 0.203 0.874 1.080 0.385 0.918 3.801 0.069 0.944 7.511 0.015 

ChPC1 

vs 

Latitude 

 Second-order polynomial 

model 

Two-segment piecewise linear model with break at latitude: 

 43.8º 45.4º 46.3º 

Survey Adj. r2 F[9,1] P Adj. r2 F[8,2] P Adj. r2 F[8,2] P Adj. r2 F[8,2] P 

HS 0.937 12.625 0.006 0.943 8.025 0.012 0.934 6.320 0.023 0.938 6.959 0.018 

R1 0.924 10.797 0.009 0.923 5.758 0.028 0.932 6.991 0.018 0.955 12.822 0.003 

R2 0.900 17.337 0.002 0.923 12.539 0.003 0.913 10.737 0.005 0.906 9.575 0.008 

ChPC1 

vs 

TPC1 

 Second-order polynomial 

model 

Two-segment piecewise linear model with break at TPC1: 

 -16.48 -0.61 1.28 

Survey Adj. r2 F[9,1] P Adj. r2 F[8,2] P Adj.r2 F[8,2] P Adj. r2 F[8,2] P 

HS 0.935 4.483 0.063 0.913 1.063 0.390 0.945 4.461 0.050 0.947 4.366 0.052 

    -5.81 2.99 10.01 

R1 0.981 17.319 0.002 0.968 3.739 0.071 0.977 6.536 0.021 0.989 18.682 0.001 

    -0.77 5.79 12.38 

R2 0.942 18.912 0.002 0.888 3.188 0.096 0.949 11.807 0.004 0.982 41.721 0.000 
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Supplementary Table 3 | Akaike Information Criterion with small-sample correction (AICc) and Akaike weights (AICc-Wt) for the relative fit of 

second-order polynomial and two-segment piecewise regression models to the relationships of TPC1 and ChPc1 with latitude, and of ChPC1 with TPC1. 

In the case of the relationship TPC1 vs latitude, the piecewise model with a break at 46.3º produces lower AICc scores than the second-order 

polynomial model in all three surveys. In the cases of ChPC1 vs latitude and ChPC1 vs TPC1, neither a specific piecewise model nor the second-order 

polynomial model consistently outperforms the other across all three surveys. 

 

TPC1 

vs 

Latitude 

 Second-order 

polynomial model 

Two-segment piecewise linear model with break at latitude: 

 43.8º 45.4º 46.3º 

Survey AICc AICc-Wt AICc AICc-Wt AICc AICc-Wt AICc AICc-Wt 

HS 93.94 0.15 98.43 0.02 91.32 0.54 92.54 0.29 

R1 94.58 0.08 100.49 0.00 94.26 0.09 89.94 0.82 

R2 95.63 0.10 101.32 0.01 96.18 0.08 91.51 0.81 

ChPC1 

vs 

Latitude 

 Second-order 

polynomial model 

Two-segment piecewise linear model with break at latitude: 

 43.8º 45.4º 46.3º 

Survey AICc AICc-Wt AICc AICc-Wt AICc AICc-Wt AICc AICc-Wt 

HS 3.28 0.75 6.86 0.13 8.71 0.05 7.99 0.07 

R1 2.95 0.30 7.98 0.02 6.56 0.05 1.45 0.63 

R2 4.16 0.62 6.29 0.21 7.68 0.11 8.66 0.06 

ChPC1 

vs 

TPC1 

 Second-order 

polynomial model 

Two-segment piecewise linear model with break at TPC1: 

 -16.48 -0.61 1.28 

Survey AICc AICc-Wt AICc AICc-Wt AICc AICc-Wt AICc AICc-Wt 

HS 3.71 0.60 12.02 0.01 5.86 0.20 6.00 0.19 

   -5.81 2.99 10.01 

R1 -13.78 0.30 -2.53 0.00 -6.23 0.01 -15.44 0.69 

   -0.77 5.79 12.37 

R2 -2.05 0.01 10.78 0.00 1.33 0.00 -11.42 0.99 
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Supplementary Table 4 | Summary of two-segment piecewise regression models for the relationship 

between TPC1 and latitude with breakpoint at 46.3º. ANOVA F[3,8] tests of overall model fit were 

significant at P < 0.0001 in all cases. Letters ‘a’ and ‘b’ denote slope and intercept, and subindices ‘1’ 

and ‘2’ denote < 46.3º and ≥ 46.3º latitude segments, respectively. All P values from Student's t-tests are 

two-tailed. 

 

TPC1 vs Latitude 

Survey  Coef. SE t P 

HS a1 -5.147 0.736 -6.990 0.0001 

 b1 223.743 30.383 7.364 0.0001 

 a2 -1.217 1.164 -1.045 0.3264 

 b2 29.809 57.524 0.518 0.6183 

 dif. (a1-a2) -3.930 1.377 -2.853 0.0214 

 dif. (b1-b2) 193.934 65.055 2.981 0.0176 

      

R1 a1 -4.916 0.661 -7.440 0.0001 

 b1 221.558 27.267 8.126 0.0000 

 a2 -1.223 1.045 -1.171 0.2753 

 b2 34.310 51.263 0.665 0.5250 

 dif. (a1-a2) -3.693 1.236 -2.988 0.0174 

 dif. (b1-b2) 187.248 58.381 3.207 0.0125 

      

R2 a1 -4.616 0.705 -6.545 0.0002 

 b1 212.407 29.101 7.299 0.0001 

 a2 -0.429 1.115 -0.385 0.7103 

 b2 2.282 55.096 0.041 0.9680 

 dif. (a1-a2) -4.187 1.319 -3.174 0.0131 

 dif. (b1-b2) 210.125 62.310 3.372 0.0098 
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Supplementary Table 5 | One-tailed exact Wilcoxon signed rank tests for positive paired differences in 

TPC1 and ChPC1 between surveys (n = 12), and two-tailed exact independent samples Mann-Whitney U 

tests for differences in magnitude of HS to R1 shift and R1 to R2 shift between Mediterranean and 

temperate samples (n = 6). 

 

Test Comparison TPC1 ChPC1 

Wilcoxon 

HS vs R1 0.000 0.002 

R1 vs R2 0.000 0.005 

Mann-Whitney U 

Mediterranean vs temperate 

(R1 minus HS) 
0.589 0.699 

Mediterranean vs temperate 

(R2 minus R1) 
0.015 0.015 
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Supplementary Table 6 | Summary of second-order polynomial models for the relationships between 

ChPC1 and latitude and ChPC1 and TPC1. ANOVA F[2,9] tests of overall model fit were significant at P < 

0.0001 in all cases. Letters ‘a’ and ‘b’ indicate first- and second-order coefficients, respectively, and “c” 

denotes intercept. All P values from Student's t-tests are two-tailed. 

 

ChPC1 vs Latitude 

Survey  Coef. SE t P 

HS a -0.787 0.185 -4.253 0.0021 

 b 0.007 0.002 3.553 0.0062 

 c 20.084 4.083 4.916 0.0008 

      

R1 a -0.715 0.182 -3.920 0.0035 

 b 0.007 0.002 3.286 0.0095 

 c 18.343 4.026 4.556 0.0014 

      

R2 a -0.900 0.192 -4.690 0.0011 

 b 0.009 0.002 4.164 0.0024 

 c 22.256 4.237 5.248 0.0005 

      

ChPC1 vs TPC1 

HS a 0.028 0.002 -1.744 0.0000 

 b 0.000 0.000 12.562 0.0634 

 c -0.161 0.093 2.117 0.1151 

      

R1 a 0.002 0.001 20.960 0.0053 

 b 0.000 0.000 4.162 0.0000 

 c -0.017 0.045 -3.657 0.0025 

      

R2 a 0.014 0.003 5.588 0.0003 

 b 0.000 0.000 4.349 0.0019 

 c -0.210 0.071 -2.954 0.0161 
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Supplementary Table 7 | Summary of second-order polynomial models for the relationships between 

ChPC1 and the extreme temperature indices TXxPC1 and TXxPC1. ANOVA F[2,9] tests of overall model fit 

were significant at P < 0.0001 in all cases. Letters ‘a’ and ‘b’ indicate first- and second-order coefficients, 

respectively, and “c” denotes intercept. All P values from Student's t-tests are two-tailed. 

 

ChPC1 vs TXxPC1 

Survey  Coef. SE t P 

HS a 0.032 0.003 13.051 0.0000 

 b 0.000 0.000 1.984 0.0785 

 c -0.084 0.082 -1.033 0.3284 

      

R1 a 0.026 0.002 11.214 0.0000 

 b 0.000 0.000 3.072 0.0133 

 c -0.185 0.073 -2.513 0.0332 

      

R2 a 0.018 0.002 9.178 0.0000 

 b 0.001 0.000 6.102 0.0001 

 c -0.019 0.048 -3.882 0.0037 

      

ChPC1 vs TNnPC1 

HS a 0.021 0.001 15.931 0.0000 

 b 0.000 0.000 1.679 0.1274 

 c -0.016 0.073 -2.257 0.0504 

      

R1 a 0.019 0.002 11.464 0.0000 

 b 0.000 0.000 1.849 0.0975 

 c -0.013 0.086 -1.489 0.1707 

      

R2 a 0.013 0.003 4.240 0.0022 

 b 0.000 0.000 2.743 0.0227 

 c -0.143 0.095 -1.510 0.1654 
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Supplementary Table 8 | One-way ANOVA F tests for the fit of second-order polynomial models to the relationship between chromosome 

(ChPC1) and extreme temperature indices (TXxPC1 and TNnPC1) in comparison to simple linear models (Supplementary Figure 1), and Akaike 

Information Criterion with small-sample correction (AICc) and Akaike weights (AICc-Wt) for the relative fit of the TXxPC1 and TNnPC1 second-

order polynomial models to the ChPC1 data. The temperature index that better describes the chromosome data shifted from extreme minimum in the 

HS survey (AICc-Wt = 0.96) to extreme maximum in the R2 survey (AICc-Wt = 1.00). Adj. r2 are adjusted r2 values for second-order polynomial 

models; n= 12). 

 

 ChPC1 vs TXxPC1 ChPC1 vs TNnPC1 

Survey Adj. r2 F[9,1] P AICc AICc-Wt Adj. r2 F[9,1] P AICc AICc-Wt 

HS 0.939 3.936 0.079 2.81 0.04 0.964 2.821 0.127 -3.59 0.96 

R1 0.931 9.439 0.013 2.03 0.27 0.941 3.418 0.098 -0.13 0.73 

R2 0.963 37.230 0.000 -7.51 1.00 0.896 7.524 0.023 5.00 0.00 

 


