
This is the **accepted version** of the journal article:

Rodríguez-Trelles, Francisco; Tarrio Fernandez, Rosa Maria. «Acceleration of *Drosophila subobscura* evolutionary response to global warming in Europe». *Nature Climate Change*, Vol. 14 (October 2024), p. 1101-1106. DOI 10.1038/s41558-024-02128-6

This version is available at <https://ddd.uab.cat/record/306422>

under the terms of the IN COPYRIGHT license

1 **Title**

2 Acceleration of *Drosophila subobscura* evolutionary response to global warming in Europe

7 **Author list**

8 Francisco Rodríguez-Trelles, Rosa Tarrío

12 **Affiliations**

13 Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de
14 Barcelona, 08193 Bellaterra (Barcelona), Spain.

15 Corresponding author's email: franciscojose.rodrigueztrellles@uab.cat

17 **Abstract**
18

19 The increasing risk of irreversible ecological transformation under global warming has boosted
20 the need to understand the capacity of organisms to adapt to this change. Here, using a resurvey
21 method of populations of the European fly *Drosophila subobscura*, we show that a known
22 evolutionary response to global warming has accelerated in the last 20 years, in step with
23 regional warming. This genetic response has come entirely by resorting pre-existing variation –
24 and not from novel inversions – for tolerance to high temperature. Temperate populations are
25 predicted to converge to the typical Mediterranean chromosomal composition by the mid-2050s,
26 at which point this classic example of steep genetic cline will have vanished. Our results suggest
27 species with broad geographic ranges, large population sizes, and high genetic diversity may
28 have the evolutionary potential to cope with climate change.
29

30 **Main text**

31 **Main**

32 The biological impacts of human-caused global warming are worsening as predicted^{1,2,3}. Early
33 studies concentrated on detecting ecological and evolutionary signals of warming impacts^{4,5}.
34 Subsequently, studies have followed the progression of these changes. Evolutionary adaptation is
35 a significant form of resilience to global warming, as it may be the only way for a population to
36 survive when nongenetic compensatory responses are exceeded by environmental change^{6,7,8}.
37 Given the geographic and chronological progression of the global temperature increase, it is
38 crucial to understand if the observed changes are sufficient to enable populations to adapt^{9,10,11,12}.

39 Early evolutionary impacts of global warming were detected in the widespread temperate fly
40 *Drosophila subobscura*^{13,14}. This species has a rich chromosomal inversion polymorphism
41 distributed over its five major chromosomes (denoted by the letters A, J, U, E and O). Inversions
42 are large-scale structural mutations (spanning tens, hundreds, or more genes) that involve
43 breakage and reversal of a chromosomal segment, resulting in new variants of gene
44 arrangements^{15,16,17,18}. Inversions limit recombination and may result in linked sets of co-adapted
45 alleles to local environmental conditions. In *D. subobscura*, structurally segregating regions
46 collectively account for ~ 83% of the species' genome, meaning that the fraction of genetic loci
47 unaffected by rearrangements is comparatively small^{19,20}.

48 Past comprehensive summaries of the species' abundant inversion polymorphism revealed that
49 the gene arrangements from more equatorial Palearctic populations are gradually replaced by the
50 so-called Standard gene arrangements in the five chromosomes as populations approach high
51 latitudes¹⁹. Similar clinal patterns became independently established in North and South America
52 following the species' recent spread in both continents²¹. In accordance with the clinal patterns,
53 Standard gene arrangements undergo regular seasonal cycles increasing during winter and
54 decreasing during summer repeatedly over the years^{22,23}. Taken together, these findings
55 suggested an adaptive relationship between inversion frequencies and climate^{13,24}.

56 Based on this, Balanya *et al.*¹⁴ compared within-site shifts in inversion frequencies over a broad
57 latitudinal scale from pre-global warming to the late 1990s. They found that the frequencies of
58 low-latitude (putatively warm-adapted) inversions increased with the magnitude of global
59 warming between sample periods. Here we update those early findings by resurveying European
60 populations twenty years later using the same methods as Balanya *et al.*¹⁴. Our findings
61 corroborate that anthropogenic global warming is continuing to shift the genetic composition of
62 this species, and show that novel patterns are emerging.

63 **Follow-up survey of the early evolutionary warning**

64 Earlier data on genetic response of *D. subobscura* to contemporary global warming in Europe
65 were drawn from ref.¹⁴. They consisted of historical survey ("HS") and resurvey ("R1") records
66 from 12 main continental sites distributed across seven countries, comprising Austria (Vienna
67 [VN]), Belgium (Louvain-la-Neuve [LN]), France (Lagrasse [LG], Montpellier [MP] and Villars
68 [VL]), Germany (Tübingen [TB]), the Netherlands (Groningen [GN]), Spain (Málaga [ML],
69 Punta Umbría [PU], Riba-roja de Túria [RT] and Queralbs [QR]), and Switzerland (Leuk [LK])
70 (Fig. 1). The sample spans a 16.5° latitude range that is split into two climatic regions:
71 Mediterranean to the south (ML, PU, RT, QR, LG, and MP) and temperate to the north (VL, LK,
72 VN, TB, LN, and GN). The HS record was collected around the end of the 1960s (1968 ± 7.3
73 years), prior to recent warming, whereas the R1 record was collected at the end of 1990s (1999 ±

74 1.4 years). Almost two decades later (2017 ± 1.5 years), we conducted a new resurvey (“R2”) at
75 the same sites around the same dates of the year and updated inversion frequencies (Methods;
76 Supplementary Table 1²⁷). The aggregated records span half a century (49.2 ± 7.3 years), with
77 the average elapsed time between R1 and R2 (18.4 ± 2.2 years) being one decade shorter than
78 that between HS and R1 (30.8 ± 7.2 years).

79 All five chromosomes of the species were examined in each of the 12 samples following
80 standard procedures (e.g., ref.¹⁴) (Methods). A total of 6,670 chromosomes were scored for gene
81 arrangements (the sample sizes [N] for each site and chromosome of the species' five
82 chromosome set are provided in Supplementary Table 1²⁷). No newly discovered, previously
83 unreported inversions were detected. Altogether, we used 45 different gene arrangements
84 (Methods).

85 Shifts in overall average ambient temperature and population genetic composition were assessed
86 using the same temperature (T_{PC1}) and genome-wide chromosome (Ch_{PC1}) indices as in ref.¹⁴.
87 The two metrics are first principal components of centered unscaled Principal Component
88 Analyses on temperature and genetic data, respectively (Methods). Higher scores between
89 sample periods indicate, in the case of T_{PC1} , increased warming of environmental temperatures,
90 and in the case of Ch_{PC1} , increased frequency of warm-latitude chromosome arrangements.

91 Faster warming, faster genetic change

92 T_{PC1} scores are inversely correlated with latitude in all three surveys (Table 1). The relationship
93 is best described by two-segment piecewise linear regression models with a breakpoint at
94 approximately 46.3° , and the piecewise model fit the data better than either unsegmented linear
95 models or second-order polynomial models (Fig. 2A; Supplementary Tables 2 and 3). This
96 breakpoint should not be taken as an absolute value but rather as a transition zone between
97 Mediterranean and temperate western Europe (Supplementary Table 4). Although warming has
98 continued since R1 (Fig. 3; Wilcoxon tests; Supplementary Table 5), warming has been faster at
99 the temperate sites (Fig. 3; Mann-Whitney U tests; Supplementary Table 5).

100 Ch_{PC1} scores are inversely correlated with latitude and directly with T_{PC1} in all three surveys
101 (Table 1, Fig. 2, B and C). The decline of Ch_{PC1} with latitude and its rise with T_{PC1} are equally
102 well described by two-segment linear functions with a similar breakpoint to that found for T_{PC1}
103 or by second-order polynomial functions (compared to unsegmented linear baselines) (Fig. 2, B
104 and C; Supplementary Table 2, 3 and 6). The smoothness of the genetic change when compared
105 to the temperature change across the Mediterranean-temperate transition is probably a reflection
106 of the mixing of flies across sites. No significant spatial autocorrelation is found in the residuals
107 after fitting the T_{PC1} (second-order polynomial) model (Moran's I = -0.18, -0.15, and -0.12; for
108 HS, R1 and R2, respectively; expected Moran's I = ~ -0.09 and Monte Carlo $P > 0.3$ in all
109 cases). Thus, inversion frequencies shift latitudinally as if driven by the local climate. Likewise,
110 if the observed temporal patterns of magnitudes of climate change had a genetic impact, then
111 Ch_{PC1} should also reflect this relationship. In fact, Ch_{PC1} not only has continued increasing since
112 R1 (Wilcoxon tests; Supplementary Table 5), but has done so at an accelerated rate at the
113 temperate sites, in step with T_{PC1} (Fig. 3; Mann-Whitney U tests; Supplementary Table 5). Both
114 the discontinuity in the latitudinal thermal gradient and the acceleration in the rate of
115 evolutionary response correlative to climate warming are not described in the previous study.

116 The observed geographic heterogeneity in the timing of the genetic shift suggests that it is due in
117 part to local adaptation rather than just to genetic drift or a northern migration of individuals
118 from equatorial locations. Genetic drift is not likely a factor, considering the large-scale of the

phenomenon (multiple populations shifting in the same direction across a wide geographic range). On the other hand, if migration was responsible, frequencies of some sporadic inversions that are relatively common in North Africa (e.g., A_{2+6} and $E_{1+2+9+4}$) should have also increased in southern Europe; but this was not observed. Local adaptation is further supported by the fact that the individual contributions of each of the species' five chromosomes to the acceleration of the shift at the temperate sites have not been homogeneous (Fig. 3), despite the fact that they started from similar levels of latitudinal differentiation in R1 [ref.¹⁴; Supplementary Table 1²⁷]. The observed inter-chromosomal variation in evolutionary rate rather suggests that chromosomes differ in their effects on the thermal phenotype.

Association with extreme heat

The T_{PC1} patterns observed in the present study align with reported geographic and temporal trends in the frequency and magnitude of heatwaves in Europe^{29,30}. Specifically, the rate of incidence and duration of major European heatwaves increased continent-wide from the first sample interval (HS-R1) to the second (R1-R2), but those shifts were approximately twice as high in central Europe (14 events, aggregating 223 days in length) as in southern Europe (8.0 events, 104 days) or in Southwest Europe (6.0 events, 90 days)³⁰. The results of this latest study³⁰ allowed us to obtain a raw estimate of the degree of heat wave exposure, hereon referred to as HWe , individually for each sample site (Methods; Fig. 4). The decadal rates of HWe increased from HS-R1 to R1-R2 at all sites ($P = < 1 \times 10^{-3}$, one-tailed exact Wilcoxon signed rank test, $n = 12$), but the rate of increase was faster at the temperate than at the Mediterranean sites ($P = 0.002$, two-tailed exact independent samples Mann-Whitney U test, $n = 6$). A significant positive association between the decadal rates of Ch_{PC1} and HWe emerged from HS-R1 (two-tailed Spearman's $\rho = 0.387$, $P = 0.213$, $n = 12$) to R1-R2 (two-tailed Spearman's $\rho = 0.664$, $P = 0.018$, $n = 12$), as would be expected if inversion frequencies were impacted by the rise in major heat waves. In line with our findings, a heatwave caused a surge in the frequency of more thermotolerant genotypes in *D. subobscura* in another study²³. Therefore, the acceleration in the *D. subobscura* rate of evolutionary response observed in the present study is likely driven not only by the gradual increase in average temperatures, but also more frequent and longer duration heatwaves^{31,32,33,34}.

The build-up of the association between Ch_{PC1} and HWe in the R1-R2 interval could be due to a differential effect of the increase in high- and low-temperature extremes. To investigate this, we developed two analogous indices to T_{PC1} based on the monthly maxima and minima of daily temperatures, respectively referred to as TX_{PC1} and TN_{PC1} (Methods). The index better accounting for the chromosome data shifted from extreme minimum in the HS survey ($AICc-Wt = 0.96$) to extreme maximum in the R2 survey ($AICc-Wt = 1.00$) (Supplementary Table 8; Supplementary Figure 1). This suggests that a likely factor in the emergence of the association of Ch_{PC1} with HWe during the R1-R2 interval was heat wave-imposed selection against the upper thermal tolerance of cold-climate arrangements. This conclusion would agree with laboratory experiments showing that carriers of cold-climate gene arrangements were less heat-stress tolerant than carriers of warm-climate gene arrangements³⁵. Note that these experiments were conducted on adults, while inversion-differential effects may be particularly significant for preadult life stages, such as eggs, larvae and pupae, thought to be more vulnerable to heat stress³⁶.

Discussion

163 We demonstrated that evolutionary responses to global warming of European *D. subobscura*
164 have not only been rapid, but has accelerated in step with the rise in temperature. These
165 continental responses in Europe seem to be due to local shifts in frequencies of existing (prior to
166 the onset of warming) chromosomal arrangements rather than to the evolution of novel
167 arrangements (or influx from migration from North Africa)^{37,38}. Specifically, no novel
168 chromosome inversions have been found (ref.¹⁴; Supplementary Table 1²⁷) despite five decades
169 of climate warming.

170 Whether the standing chromosomal variation of *D. subobscura* will withstand future warming
171 remains to be determined^{3,28,34}. However, if we project current trends, temperate populations are
172 predicted to converge to typical Mediterranean *ChPC1* values around the mid-2050s (Fig. 5). At
173 that point the steep genetic cline of this species – a classic in evolutionary genetics – will have
174 vanished. Continued depletion of the pool of inversion variation should make the persistence of
175 *D. subobscura* populations increasingly dependent on the much slower process of emergence of
176 new adaptive mutations^{39,40}. Along this path, the ability of the species to genetically track climate
177 change may be enhanced if population connectivity and gene flow is maintained. On the other
178 hand, it could be offset by a range of factors, such as linked deleterious variation⁴¹, trade-offs
179 with other fitness traits⁴², mismatched species interactions⁴³, and effects of other stresses⁴⁴. The
180 already observed decline in the frequency of cold-climate inversions should induce a rapidly co-
181 evolved reduction in cold tolerance^{45,46,47,48}. If it persists, this reduction might progressively
182 hamper population's ability to survive sudden reversals of warming trends.

183 Understanding the precise mechanisms whereby inversions confer adaptation to climate change
184 requires knowledge of the number, identity and relative significance of the genetic loci involved,
185 as well as the specific behavioral, life-history and physiological traits affected by them⁴⁹.
186 Progress has been hampered by the challenges inherent to analyzing inversions⁵⁰, particularly in
187 a species like *D. subobscura* that combines overlapping and non-overlapping inversions of
188 variable ages, sizes and positions along every chromosome^{19,20}. So far 11 climate-associated
189 inversions have been analyzed at DNA sequence level (*A2, U1, U2, E1, E2, E9, E12, O3, O4,*
190 *O7, and O8*). In all but one case (*O7*) the breakpoints are located away from any known gene for
191 climate adaptation⁵¹. Thus, rather than direct chromosomal breakage, the primary mechanism by
192 which inversions contribute to this species' adaptation to climate change seems to be indirect (via
193 their recombination suppression effect holding together favorable combinations of alleles at
194 climate-adaptive genes), but more research is needed. The prevalence of climate-associated
195 inversions in the genome of *D. subobscura* indicates that the specie's response to global
196 warming is likely a complex multi-trait phenotype.

197 Continued resurveying of genetic trait frequencies is a powerful means to assess whether
198 evolution will be important under climate change¹². The results presented herein suggest that the
199 species most able of evolutionary adaptation to anthropogenic climate warming are those with
200 wide-ranges, large population sizes and amounts of genetic diversity. For other species, the
201 ability to adapt through evolution to the changing climate is probably lower^{44,52}. It should be
202 noted, however, that just as important as having a high level of genetic diversity is its availability
203 wherever it may be adaptive. As the case of *D. subobscura* might illustrate, certain inversions
204 from North Africa, which could be advantageous in the newly warmer environments of Europe,
205 nevertheless have not spread there. This is probably because, alongside with warm-adaptive
206 alleles, they locked up others with antagonistic effects outside the local environment in which the
207 inversion evolved. The acceleration of the evolutionary impact of human-caused global warming
208 reported here and elsewhere^{3,53,54,55,56} increases the urgency for effective mitigation actions.

210 **Acknowledgments**
211

212 We express our special gratitude to Raymond B. Huey, Camille Parmesan, and Mark C. Urban
213 for their critical reading and insightful comments on the manuscript. We gratefully acknowledge
214 the financial support from the Ministerio de Ciencia e Innovación (PID2020-116789, RB-C43,
215 and CGL2017-89160P), Spanish Ministerio de Economía y Competitividad (CGL2013-42432-
216 P), and Generalitat de Catalunya (2021-SGR-00731, and 2017SGR 1379).

217
218 **Author Contributions**
219

220 F.R.-T. conceived the study, led the data analysis and the writing of the manuscript with input
221 from RT. The two authors contributed to the survey plan, collection and processing of the
222 samples, and to interpreting the results.

223
224
225
226 **Competing Interests**
227

228 The authors declare that they have no competing interests.
229

231
232
233
234
235
236

Tables

Table 1. Two-tailed Spearman's r correlation coefficients for the association between chromosome (Ch_{PC1}) and climate (T_{PC1}) indices and latitude for HS, R1 and R2 samples.
Confidence intervals (95%) are given in parentheses; all values significant at $P < 0.001$; $n = 12$.

	HS	R1	R2
T_{PC1} vs Latitude	-0.944 (-0.988, -0.757)	-0.972 (-0.994, -0.870)	-0.958 (-0.991, -0.812)
Ch_{PC1} vs Latitude	-0.937 (-0.987, -0.730)	-0.937 (-0.987, -0.730)	-0.853 (-0.966, -0.466)
Ch_{PC1} vs T_{PC1}	0.930 (0.705, 0.985)	0.972 (0.841, 0.993)	0.902 (0.610, 0.978)

237

238 **Figure Legends**
239

240 **Fig. 1. The 12 European sample sites and their distribution relative to the Mediterranean-**
241 **temperate climate transition zone.** Black dots indicate the locations of sample sites. The map
242 was built using the *Simplemapr* tool under a Creative Commons license CC0 1.0.²⁵ using the
243 Mercator projection and the shapefile for the Mediterranean climate region supplied in ref.²⁶.
244

245 **Fig. 2. Five decades of *D. subobscura* evolutionary response to global warming in Europe.**
246 (a) The PCA-based temperature index T_{PC1} exhibits a two-segment linear piecewise relationship
247 with latitude. The break marks a transition between Mediterranean and temperate western
248 Europe. T_{PC1} increased from HS to R1, and from R1 to R2, but the increase accelerated at the
249 temperate sites over the sample interval R1-R2. (b) The PCA-based chromosome index Ch_{PC1}
250 exhibits a continuous second-order polynomial relationship with latitude, mimicking the patterns
251 of T_{PC1} . (c) Second-order polynomial relationship between Ch_{PC1} and T_{PC1} .
252

253 **Fig. 3. Decadal rates of equatorialward shift in temperature and inversion frequencies in**
254 **Europe.** T_{PC1} , Ch_{PC1} , and chromosomewise (*i.e.*, for each of the A, J, U, E, and O chromosomes;
255 Methods) indices show greater positive shift rates at temperate sites over the R1-R2 interval,
256 except for the O chromosome. Boxplots show 25–75th percentiles (boxes), medians (center
257 lines), and the minimum–maximum values or, when there are values that are less–more than 1.5
258 times the interquartile range, the smallest–largest value (whiskers). The numbers below variable
259 names are corresponding exact one-tailed Wilcoxon signed rank test p-values for the null
260 hypothesis of no positive difference between the R1-R2 and HS-R1 sample intervals ($n = 6$).
261 Chromosomewise p-values < 0.1 per region are considered significant after Benjamini-Hochberg
262 correction for multiple comparisons (false discovery rate set to ≤ 0.1).
263

264 **Fig. 4. Change in site decadal rate of heat wave exposure (HWe) between the two sample**
265 **intervals.** The rate increased from the HS-R1 period to the R1-R2 period at all sites ($P = < 1 \times$
266 10^{-3} , one-tailed exact Wilcoxon signed rank test, $n = 12$), but the rate increase was faster at the
267 temperate sites ($P = 0.002$, two-tailed exact independent samples Mann-Whitney U test, $n = 6$).
268

269 **Fig. 5. Predicted date when temperate sites will converge on the typical Mediterranean**
270 **chromosomal composition.** The intersection date between the linear ($y = 3.53e^{-3}x + 6.55$) and
271 second-order polynomial ($y = 1.84e^{-4}x^2 + 7.24e^{-1}x + 7.11e^{-2}$) equations is year 2055.03.
272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

References

1. Urban, M. C. Climate change. Accelerating extinction risk from climate change. *Science* **348**, 571–573 (2015).
2. Scheffers, B. R., De Meester, L., Bridge, T. C., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., Butchart, S. H., Pearce-Kelly, P., Kovacs, K. M., Dudgeon, D., Pacifici, M., Rondinini, C., Foden, W. B., Martin, T. G., Mora, C., Bickford, D. & Watson, J. E. The broad footprint of climate change from genes to biomes to people. *Science* **354**, aaf7671 (2016).
3. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 184 pp.
4. Hughes, L. Biological consequences of global warming: is the signal already apparent?. *Trends. Ecol. Evo.* **15**, 56–61 (2000).
5. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. *Nature* **421**, 37–42 (2003).
6. Parmesan, C. Ecological and evolutionary responses to recent climate change. *Annu. Rev. Ecol. Evol. Syst.* **37**, 637–669 (2006).
7. Meester, L. D., Stoks, R. & Brans, K. I. Genetic adaptation as a biological buffer against climate change: Potential and limitations. *Integr. Zool.* **13**, 372–391 (2018).
8. Waldvogel, M., Feldmeyer, B., Rolshausen, G., Exposito-Alonso, M., Rellstab, C., Kofler, R., Mock, T., Schmid, K., Schmitt, I., Bataillon, T., Savolainen, O., Bergland, A., Flatt, T., Guillaume, F. & Pfenniger, M. Evolutionary genomics can improve prediction of species' responses to climate change. *Evol. Lett.* **14**, 4–18 (2020).
9. Martin, R. A., da Silva, C. R. B., Moore, M. P. & Diamond, S. E. When will a changing climate outpace adaptive evolution? *WIREs Clim. Change.* **14**, e852 (2023).
10. Mimura, M., Yahara, T., Faith, D. P., Vázquez-Domínguez, E., Colautti, R. I., Araki, H., Javadi, F., Núñez-Farfán, J., Mori, A. S., Zhou, S., Hollingsworth, P. M., Neaves, L. E., Fukano, Y., Smith, G. F., Sato, Y. I., Tachida, H. & Hendry, A. P. Understanding and monitoring the consequences of human impacts on intraspecific variation. *Evol. Appl.* **10**, 121–139 (2016).
11. Steinbauer, M. J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., Rixen, C., Winkler, M., Bardy-Durchalter, M., Barni, E., Bjorkman, A. D., Breiner, F. T., Burg, S., Czortek, P., Dawes, M. A., Delimat, A., Dullinger, S., Erschbamer, B., Felde, V. A., Fernández-Arberas, O., Fossheim, K. F., Gómez-García, D., Georges, D., Grindrud, E. T., Haider, S., Haugum, S. V., Henriksen, H., Herreros, M. J., Jaroszewicz, B., Jaroszynska, F., Kanka, R., Kapfer, J., Klanderud, K., Kühn, I., Lamprecht, A., Matteodo, M., di Cella, U. M., Normand, S., Odland, A., Olsen, S. L., Palacio, S., Petey, M., Piscová, V., Sedlakova, B., Steinbauer, K., Stöckli, V., Svenning, J.-C., Teppa, G., Theurillat, J.-P., Vittoz, P., Woodin, S. J., Zimmermann, N. E. & Wipf, S. Accelerated increase in plant species richness on mountain summits is linked to warming. *Nature* **556**, 231–234 (2018).
12. Nadeau, C. P. & Urban, M. C. Eco-evolution on the edge during climate change, *Ecography* **42**, 1280–1297 (2019)

316 13. Rodríguez-Trelles, F. & Rodríguez, M. Á. Rapid micro-evolution and loss of chromosomal
317 diversity in *Drosophila* in response to climate warming. *Evol. Ecol.* **12**, 829–838 (1998).

318 14. Balanyà, J., Oller, J. M., Huey, R. B., Gilchrist, G. W. & L. Serra, L. Global genetic change
319 tracks global climate warming in *Drosophila subobscura*. *Science* **313**, 1773–1775 (2006).

320 15. Kirkpatrick, M. How and why chromosome inversions evolve. *PLoS Biol.* **8**, e1000501
321 (2010).

322 16. Tigano, A. & Friesen, V. L. Genomics of local adaptation with gene flow. *Mol. Ecol.* **25**,
323 2144–2164 (2016).

324 17. Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal
325 inversions. *Trends Ecol. Evol.* **33**, 427–440 (2018).

326 18. Faria, R., Johannesson, K., Butlin, R. K. & Westram, A. M. Evolving inversions. *Trends
327 Ecol. Evol.* **34**, 239–248 (2019).

328 19. Krimbas, C. B. *Drosophila subobscura: Biology, Genetics and Inversion Polymorphism*
329 (Verlag Dr. Kovac, Hamburg, Germany, 1993).

330 20. Karageorgiou, C., Gámez-Visairas, V., Tarrio, R. & Rodríguez-Trelles, F. Long-read based
331 assembly and synteny analysis of a reference *Drosophila subobscura* genome reveals
332 signatures of structural evolution driven by inversions recombination-suppression effects.
333 *BMC Genomics* **20**, 223 (2019).

334 21. Prevosti, A., Ribo, G., Serra, L., Aguade, M., Balaña, J., Monclús, M. & Mestres, F.
335 Colonization of America by *Drosophila subobscura*: Experiment in natural populations that
336 supports the adaptive role of chromosomal-inversion polymorphism *Proc. Natl. Acad. Sci.
337 U.S.A.* **85**, 5597–5600 (1988).

338 22. Rodríguez-Trelles, F., Alvarez, G. & Zapata, C. Time-series analysis of seasonal changes
339 of the O inversion polymorphism of *Drosophila subobscura*. *Genetics* **142**, 179–187 (1996).

340 23. Rodríguez-Trelles, F., Tarrio, R. & Santos, M. Genome-wide evolutionary response to a
341 heat wave in *Drosophila*. *Biol. Lett.* **9**, 20130228 (2013).

342 24. Balanyà, J., Solé, E., Oller, J. M., Sperlich, D. & Serra, L. Long-term changes in the
343 chromosomal inversion polymorphism of *Drosophila subobscura*: II. European
344 populations. *J. Zool. Syst. Evol. Res.* **42**, 191–201 (2004).

345 25. Shorthouse, D. P. SimpleMappr, an online tool to produce publication-quality point maps.
346 (2010) (Retrieved from <https://www.simplemappr.net> accessed January 31, 2024).

347 26. Pausas, J. G. & Millán, M. M. Greening and browning in a climate change hotspot: the
348 Mediterranean Basin. *BioScience*, **69**, 143–151 (2019).

349 27. Rodríguez-Trelles, F. & Tarrio, R. Data and code for ‘Acceleration of *Drosophila
350 subobscura* evolutionary response to global warming in Europe’. figshare
351 <https://doi.org/10.6084/m9.figshare.24619629> (2024).

352 28. Russo, S., Sillmann, J. & Fischer, E. M. Top ten European heatwaves since 1950 and their
353 occurrence in the coming decades. *Environ. Res. Lett.* **10**, 124003 (2015).

354 29. Zhang, R., Sun, C., Zhu, J., Zhang, R. & Li, W. Increased European heat waves in recent
355 decades in response to shrinking Arctic sea ice and Eurasian snow cover. *NPJ Clim. Atmos.
356 Sci.* **3**, 7 (2020).

357 30. Lhotka, O. & Kyselý, J. The 2021 European heat wave in the context of past major heat
358 waves. *Earth Space Sci.* **9**, e2022EA002567 (2022).

359 31. Grant, P. R., Grant, B. R., Huey, R. B., Johnson, M. T. J., Knoll, A. H. & Schmitt, J.
360 Evolution caused by extreme events. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **372**, 20160146
361 (2017).

362 32. Ma, C. S., Ma, G. & Pincebourde, S. Survive a warming climate: Insect responses to
363 extreme high temperatures. *Annu. Rev. Entomol.* **66**, 163–184 (2021).

364 33. Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Extreme escalation of
365 heat failure rates in ectotherms with global warming. *Nature* **611**, 93–98 (2022).

366 34. Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in
367 the 21st century. *Science* **305**, 994–997 (2004).

368 35. Rego, C., Balanyà, J., Fragata, I., Matos, M., Rezende, E. L. & Santos, M. Clinal patterns
369 of chromosomal inversion polymorphisms in *Drosophila subobscura* are partly associated
370 with thermal preferences and heat stress resistance. *Evolution* **64**, 385–97 (2010).

371 36. Kingsolver, J. G., Woods, H. A., Buckley, L. B., Potter, K. A., MacLean, H. J. & Higgins,
372 J. K. Complex life cycles and the responses of insects to climate change. *Integr Comp Biol.*
373 **51**, 719–32 (2011).

374 37. Barrett, R. D. & Schlüter, D. Adaptation from standing genetic variation. *Trends Ecol. Evol.*
375 **23**, 38–44 (2008).

376 38. Bitter, M. C., Kapsenberg, L., Gattuso, J. P. & Pfister, C. A. Standing genetic variation fuels
377 rapid adaptation to ocean acidification. *Nat. Commun.* **10**, 5821 (2019).

378 39. Matuszewski, S., Hermisson, J. & Kopp, M. Catch me if you can: Adaptation from standing
379 genetic variation to a moving phenotypic optimum. *Genetics* **200**, 1255–1274 (2015).

380 40. Radchuk, V., Reed, T., Teplitsky, C., van de Pol, M., Charmantier, A., Hassall, C., Adamík,
381 P., Adriaensen, F., Ahola, M. P., Arcese, P., Miguel Avilés, J., Balbontin, J., Berg, K. S.,
382 Borras, A., Burthe, S., Clobert, J., Dehnhard, N., de Lope, F., Dhondt, A. A., Dingemanse,
383 N. J., Doi, H., Eeva, T., Fickel, J., Filella, I., Fossøy, F., Goodenough, A. E., Hall, S. J. G.,
384 Hansson, B., Harris, M., Hasselquist, D., Hickler, T., Joshi, J., Kharouba, H., Martínez, J.
385 G., Mihoub, J. B., Mills, J. A., Molina-Morales, M., Moksnes, A., Ozgul, A., Parejo, D.,
386 Pilard, P., Poisbleau, M., Rousset, F., Rödel, M. O., Scott, D., Senar, J. C., Stefanescu, C.,
387 Stokke, B. G., Kusano, T., Tarka, M., Tarwater, C. E., Thonicke, K., Thorley, J., Wilting,
388 A., Tryjanowski, P., Merilä, J., Sheldon, B. C., Pape Møller, A., Matthysen, E., Janzen, F.,
389 Dobson, F. S., Visser, M. E., Beissinger, S. R., Courtiol, A. & Kramer-Schadt, S. Adaptive
390 responses of animals to climate change are most likely insufficient. *Nat Commun.* **10**, 3109
391 (2019).

392 41. Harvey, J. A., Thakur, M. P. & Ellers, J. The tarnished silver lining of extreme climatic
393 events. *Trends Ecol. Evol.* **36**, 384–385 (2021).

394 42. Parmesan, C. & Singer, M. C. Mosaics of climatic stress across species' ranges: tradeoffs
395 cause adaptive evolution to limits of climatic tolerance. *Philos. Trans. R. Soc. Lond. B Biol.
396 Sci.* **377**, 20210003 (2022).

397 43. Abarca, M. & Spahn, R. Direct and indirect effects of altered temperature regimes and
398 phenological mismatches on insect populations. *Curr. Opin. Insect. Sci.* **47**, 67–74 (2021).

399 44. Harvey, J. A., Tougeron, K., Gols, R., Heinen, R., Abarca, M., Abram, P. K., Basset, Y.,
400 Berg, M., Boggs, C., Brodeur, J., Cardoso, P., de Boer, J. G., De Snoo, G. R., Deacon, C.,
401 Dell, J. E., Desneux, N., Dillon, M. E., Duffy, G. A., Dyer, L., Ellers, J., Espíndola, A.,
402 Fordyce, J., Forister, M. L., Fukushima, C., Gage, M. J. G., García-Robledo, C., Gely, C.,
403 Gobbi, M., Hallmann, C., Hance, T., Harte, J., Hochkirch, A., Hof, C., Hoffmann, A. A.,
404 Kingsolver, J. G., Lamarre, G. P. A., Laurance, W. F., Lavandero, B., Leather, S. R.,
405 Lehmann, P., Le Lann, C., López-Uribe, M. M., Ma, C.-S., Ma, G., Moiroux, J., Monticelli,
406 L., Nice, C., Ode, P. J., Pincebourde, S., Ripple, W. J., Rowe, M., Samways, M. J., Sentis,
407 A., Shah, A. A., Stork, N., Terblanche, J. S., Thakur, M. P., Thomas, M. B., Tylianakis, J.
408 M., Van Baaren, J., Van de Pol, M., Van der Putten, W. H., Van Dyck, H., Verberk, W. C.
409 E. P., Wagner, D. L., Weisser, W. W., Wetzel, W. C., Woods, H. A., Wyckhuys, K. A. G.
410 & Chown, S. L. Scientists' warning on climate change and insects. *Ecol. Monogr.* **93**, e1553
411 (2023).

412 45. Des Roches, S., Post, D. M., Turley, N. E., Bailey, J. K., Hendry, A. P., Kinnison, M. T.,
413 Schweitzer, J. A. & Palkovacs, E. P. The ecological importance of intraspecific variation.
414 *Nat. Ecol. Evol.* **2**, 57–64 (2018).

415 46. Diamond, S. E. & Martin, R. A. Evolution is a double-edged sword, not a silver bullet, to
416 confront global change. *Ann. N.Y. Acad. Sci.* **1469**, 38–51 (2020).

417 47. Roesti, M., Gilbert, K. J. & Samuk, K. Chromosomal inversions can limit adaptation to new
418 environments. *Mol. Ecol.* **31**, 4435–4439 (2022).

419 48. Gossner, M. M., Menzel, F. & Simons, N. K. Less overall, but more of the same: drivers of
420 insect population trends lead to community homogenization. *Biol. Lett.* **19**, 20230007
421 (2023).

422 49. Nunez, J. C. B., Lenhart, B. A., Bangerter, A., Murray, C. S., Mazzeo, G. R., Yu, Y.,
423 Nystrom, T. L., Tern, C., Erickson, P. A. & Bergland, A. O. A cosmopolitan inversion
424 facilitates seasonal adaptation in overwintering *Drosophila*. *Genetics* **226**, iyad207 (2024).

425 50. Berdan, E. L., Barton, N. H., Butlin, R., Charlesworth, B., Faria, R., Fragata, I., Gilbert, K.,
426 Jay, P., Kapun, M., Lotterhos, K. E., Mérot, C., Durmaz Mitchell, E., Pascual, M.,
427 Peichel, C. L., Rafajlović, M., Westram, A. M., Schaeffer, S. W., Johannesson, K. & Flatt,
428 T. How chromosomal inversions reorient the evolutionary process. *J. Evol. Biol.* **36**, 1761–
429 1782 (2023).

430 51. Karageorgiou, C., Tarrío, R. & Rodríguez-Trelles, F. The cyclically seasonal *Drosophila*
431 *subobscura* inversion O₇ originated from fragile genomic sites and relocated immunity and
432 metabolic genes. *Front. Genet.* **11**, 565836 (2020).

433 52. González-Tokman, D., Córdoba-Aguilar, A., Dátilo, W., Lira-Noriega, A., Sánchez-
434 Guillén, R. A. & Villalobos, F. Insect responses to heat: physiological mechanisms,
435 evolution and ecological implications in a warming world. *Biol. Rev.* **95**, 802–821 (2020).

436 53. Smith, S., Edmonds, J., Hartin, C., Mundra, A. & Calvin, K. Near-term acceleration in the
437 rate of temperature change. *Nature Clim. Change.* **5**, 333–336 (2015).

438 54. Li, C., Fang, Y., Caldeira, K., Zhang, X., Diffenbaugh, N. S. & Michalak, A. M. Widespread
439 persistent changes to temperature extremes occurred earlier than predicted. *Sci. Rep.* **8**, 1007
440 (2018).

441 55. Diffenbaugh, N. S. & Barnes, E. A. Data-driven predictions of the time remaining until
442 critical global warming thresholds are reached. *Proc. Natl. Acad. Sci. U.S.A.* **120**,
443 e2207183120 (2023).

444 56. Willcock, S., Cooper, G. S., Addy, J. & Dearing, J. A. Earlier collapse of Anthropocene
445 ecosystems driven by multiple faster and noisier drivers. *Nat. Sustain.* **6**, 1331–1342 (2023).

446 57. Rodríguez-Trelles, F. & Rodríguez, M. Á. Comment on “Global genetic change tracks
447 global climate warming in *Drosophila subobscura*. *Science* **315**, 1497 (2007).

448 58. Solé, E. “Anàlisi dels cambis cromosòmics a llarg termini en poblacions naturals de
449 *Drosophila subobscura* i la seva relació amb el possible canvi climàtic global.” PhD Thesis,
450 University of Barcelona <https://www.tesisenred.net/handle/10803/1849#page=1> (2002).

451 59. Crawley, M. J. *The R Book* (John Wiley & Sons Ltd., 2013).

452 60. Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes,
453 and implications for organismal vulnerabilities. *Glob. Change Biol.* **22**, 3829–3842 (2016).

454 61. R Development Core Team. R: a language and environment for statistical computing
455 (2020).

456 62. Mazerolle, M. J. AICmodavg: Model selection and multimodel inference based on
457 (Q)AIC(c). R package version 2.3-1 (2020).

458 63. Bivand, R. “R packages for analyzing spatial data: A comparative case study with areal
459 data.” *Geogr. Anal.* **54**, 488–518 (2022).

460

461 **Methods**

462 **Sampling approach**

463 All methods were as in ref.¹⁴. Flies were collected between 2015 and 2019 at the same 12
464 continental European locations (Groningen [the Netherlands], Louvain-la-Neuve [Belgium],
465 Tübingen [Germany], Vienna [Austria], Leuk [Switzerland], Lagrasse, Montpellier, and Villars
466 [France], and Málaga, Punta Umbría, Riba-roja de Túria, and Queralbs [Spain]) (Fig. 1) and
467 nearly the same dates of the year previously used in ref.¹⁴. To avoid bias arising from neglect of
468 the regular seasonal cycles of inversions in the sampling approach⁵⁷, the average absolute
469 difference in number of days between the sampling dates of R2 and R1 was kept as small as
470 possible (15.2 ± 14.7 days), given the occasional occurrence of unfavorable sampling weather
471 conditions. Additionally, a sign test of the direction of the differences was non-significant ($p =$
472 0.774 , $n = 12$). Geographical coordinates and date information were obtained from refs.^{14,58}
473 (Supplementary Table 1²⁷).

474 **Polytene chromosome preparation and inversion scoring**

475 For each sample, chromosome arrangement frequencies were scored following standard methods
476 (e.g., ref.¹⁴). First, wild-caught males or F1 males from wild-caught females were individually
477 crossed with virgin females of the *ch-cu* strain, which is structurally homozygous for the Ast,
478 J_{ST}, U_{ST}, Est, and O₃₊₄ chromosome arrangements. The polytene chromosomes of one F1 female
479 third-instar larva from each cross were then analyzed to determine the configuration of one
480 haploid chromosome set from the wild (Supplementary Table 1²⁷).

481 The chromosomal polymorphisms in this current second resurvey (R2) were compared with
482 those from the same locations collected 18.4 ± 2.2 years earlier in the first resurvey (R1) and
483 49.2 ± 7.3 years earlier in the historical survey (HS)¹⁴.

484 **Mean temperature data and chromosome arrangement frequency analyses**

485 Balanyá et al. (2006)¹⁴ used standard Principal Components Analysis (PCA) to combine climatic
486 variables and chromosome arrangement frequencies into single indices (first principal
487 components, denoted as T_{PC1} and Ch_{PC1} , respectively). T_{PC1} was shown to represent the
488 latitudinal gradient in mean temperature across sites, with high-positive (negative) values
489 corresponding to a warmer (cooler) site. Analogously, Ch_{PC1} was shown to represent the
490 latitudinal gradient in chromosome arrangement composition across sites, with high-positive
491 (negative) values corresponding to a polymorphism associated with warmer (cooler) sites.

492 Following ref.¹⁴, we built a 36 rows (12 sites times three surveys) by 48 columns matrix of
493 monthly mean temperature data for the four years immediately prior to each sample from the
494 nearest weather station for each population gathered using NASA GISS
495 (http://data.giss.nasa.gov/gistemp/station_data_v4/). Likewise, we built a 36 by 45 matrix of
496 $2\sqrt{p_{ij}}$ transformed inversion frequency records, i being the i th population and j the j th
497 arrangement. We then conducted centered unscaled PCAs on these two matrices to obtain the
498 respective first principal component-based climate (T_{PC1}) and genomewide chromosome (Ch_{PC1})
499 indices. T_{PC1} and Ch_{PC1} accounted for 85.2% and 68.9% of the original variances, respectively.

500 T_{PC1} values are highly collinear with those obtained using the explicit mean temperature data (T)
501 directly (two-tailed Pearson's r T_{PC1} vs $T = 1.000$, 1.000 , and 0.999 respectively for HS, R1 and
502 R2, $p < 10^{-5}$ and $n = 12$ in the three cases). Likewise, Ch_{PC1} values are highly collinear with those
503 obtained using the genome-wide warm dose (WD), an alternative genome-wide index defined as

504 the average across the five-chromosome set of one minus the frequency of the Standard cold-
505 climate arrangement²³ (two-tailed Pearson's r Ch_{PC1} vs WD = 0.974, 0.994, and 0.969
506 respectively for HS, R1 and R2, $p < 1 \times 10^{-5}$ and $n = 12$ in the three cases).

507 The relationships between variables were characterized considering three types of models,
508 comprising simple linear, two-segment piecewise linear, and second-order polynomial models
509 (Supplementary Tables 2, 4, 6, and 7). Best-fit model selection was done using one-way
510 ANOVA for nested comparisons between linear and piecewise or second-order polynomial
511 models, and Akaike's information criterion with small sample correction for non-nested
512 comparisons between piecewise and second-order polynomial models (Supplementary Tables 2,
513 3, and 8).

514 Visual inspection of the scatterplot of T_{PC1} against latitude (Fig. 2, a and b) suggested a threshold
515 response, with distinct patterns of the response variable above and below the center of the
516 latitudinal range in both cases. We ran two-segment piecewise regression analyses⁵⁹, targeted to
517 the three centralmost latitudes (from 43.8° to 46.3°, which equates to a stretch of ~278km,
518 assuming ~111km per degree of latitude) and keeping the results from each coordinate. A
519 piecewise model with a break at 46.3° provides a significant improvement over the unsegmented
520 linear model (Supplementary Table 2) and the second-order polynomial model (Supplementary
521 Table 3) in all the three surveys. This value should not be taken as an absolute location, but as a
522 transition zone between the Mediterranean and temperate climatic regions of western Europe
523 (Fig. 1). As expected if the chromosomal inversion polymorphisms respond to the thermal
524 environment, piecewise regression also detects a break at 46.3° for Ch_{PC1} in the three surveys
525 (Supplementary Table 2). In this case, however, the transition zone extends to 45.4° and 43.8°,
526 and the variation can be similarly well described using a second-order polynomial model
527 (Supplementary Table 3). The observed greater broadness of the genetic threshold compared to
528 the temperature threshold is likely an indication of potentially maladaptive homogenizing gene
529 flow. With respect to the relationship of Ch_{PC1} with T_{PC1} , second-order polynomial models and
530 piecewise models outperform the linear baselines (Supplementary Table 2), and the two models
531 are globally similar when compared to one another (Supplementary Table 3).

532 Decadal rates of change (Fig. 3) were calculated for T_{PC1} and Ch_{PC1} , and individually for each of
533 the five A, J, U, E, and O chromosomes using one minus the frequency of the corresponding
534 Standard cold-climate arrangement²³.

535 Heat wave and extreme temperature data analyses.

536 We developed a crude index of a site exposure to heat waves (HWe) based on the results by
537 ref.³⁰. The study provides a description of all major heat waves that hit Europe since 1950. For
538 each heat wave, the event was assigned within one or more of nine predefined regions of 5°
539 latitude by 5° longitude, and a map of accumulated temperature anomaly was produced using a
540 discrete color scale. Our survey sites are distributed in three of the nine regions: south Europe
541 (ML, PU, and RT), south-western Europe (QR, LG, and MP), and central Europe (VL, LK, VN,
542 TB, LN, and GR). HWe was determined for each sample site separately as follows: first, for each
543 individual heat wave, sites outside the assignment regions were given a score of zero, while sites
544 inside the regions were given a score 0 to 6, depending on the magnitude of the anomaly. Next,
545 for each site the sum of the scores for all events was divided by the number of decades elapsed
546 separately for the HS-R1 and R1-R2 periods.

547 The relationship between the Ch_{PC1} index and extreme temperature was evaluated using the
548 monthly maximum (TXx) and monthly minimum (TNn) of daily temperatures. The two metrics

have been considered to be appropriate for examining effects of environmental thermal stress on small-sized ectotherms such as *D. subobscura*⁶⁰. We employed the same methodological approach as that used in the mean temperature analysis. Corresponding 36 by 48 matrices were built using *TXx* and *TNn* data collected using ECA&D (<https://www.ecad.eu/download/millennium/millennium.php>) and subjected to PCA analysis to derive PC1-based *TXx* (*TXx_{PC1}*) and *TNn* (*TNn_{PC1}*) indices. *TXx_{PC1}* and *TNn_{PC1}* accounted for 65.8% and 78.3% of the original variances, respectively. The values of the two indices are highly similar to those obtained using the explicit *TXx* and *TNn* data directly (two-tailed Pearson's *r* *TXx_{PC1}* vs *TXx* = 0.998, 0.998, and 0.997, and two-tailed Pearson's *r* *TNn_{PC1}* vs *TNn* = 1.000, 1.000, and 1.000, respectively for HS, R1 and R2, *p* < 10⁻⁵ and *n* = 12 in all six cases). The change of *Ch_{PC1}* with *TXx_{PC1}* and with *TNn_{PC1}* was described using second-order polynomial regression (Supplementary Table 7).

We used Microsoft Excel for data preparation. All statistical analyses were performed using R version 4.2.1 (R Core Team, 2020)⁶¹. Principal component analyses (PCA) (Fig. 2 A, B and C), Spearman's rho correlation analyses (Table 1), regression analyses including linear, piecewise and nonlinear second-order polynomial regression analyses (Fig. 2 A, B and C; Supplementary Tables 2, 4 and 6), and Wilcoxon signed rank and Mann-Whitney U tests (Supplementary Table 5) were performed using the 'prcomp', 'cor.test', 'lm' and 'wilcox.test' functions built into the base R environment⁶¹, respectively. Akaike's Information Criteria (AIC) model selection analyses (Supplementary Tables 3 and 8) were performed using the 'aictab' function in the 'AICcmodavg' package⁶². Moran's I tests of spatial autocorrelation were performed using the 'moran.i' function in the 'spedep' package⁶³. Boxplot graphs (Fig. 3) were created using the 'boxplot' and 'stripchart' functions in base R⁶¹.

574 Data availability

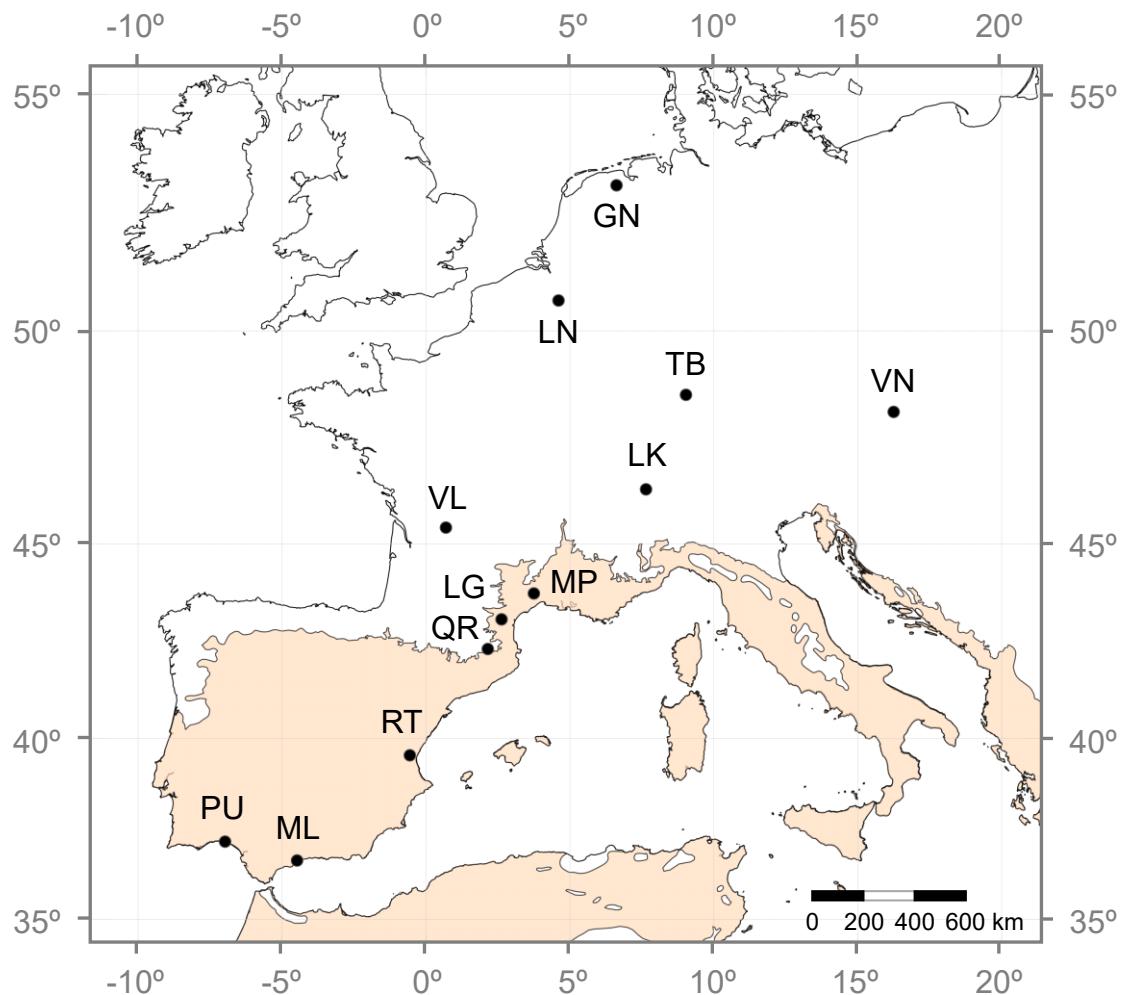
576 All data generated in this study are available in the main text and the supplementary information,
577 and can also be accessed on Figshare at <https://doi.org/10.6084/m9.figshare.24619629> (ref.²⁷)

581 Code availability

583 The R code for our statistical analyses can be accessed on Figshare at
584 <https://doi.org/10.6084/m9.figshare.24619629> (ref.²⁷)

588 Methods-only references

- 589 57. Rodríguez-Trelles, F. & Rodríguez, M. Á. Comment on "Global genetic change tracks
590 global climate warming in *Drosophila subobscura*. *Science* **315**, 1497 (2007).
- 591 58. Solé, E. "Anàlisi dels cambis cromosòmics a llarg termini en poblacions naturals de
592 *Drosophila subobscura* i la seva relació amb el possible canvi climàtic global." PhD Thesis,
593 University of Barcelona [<https://www.thesisenred.net/handle/10803/1849#page=1>] (2002).
- 594 59. Crawley, M. J. *The R Book* (John Wiley & Sons Ltd., 2013).

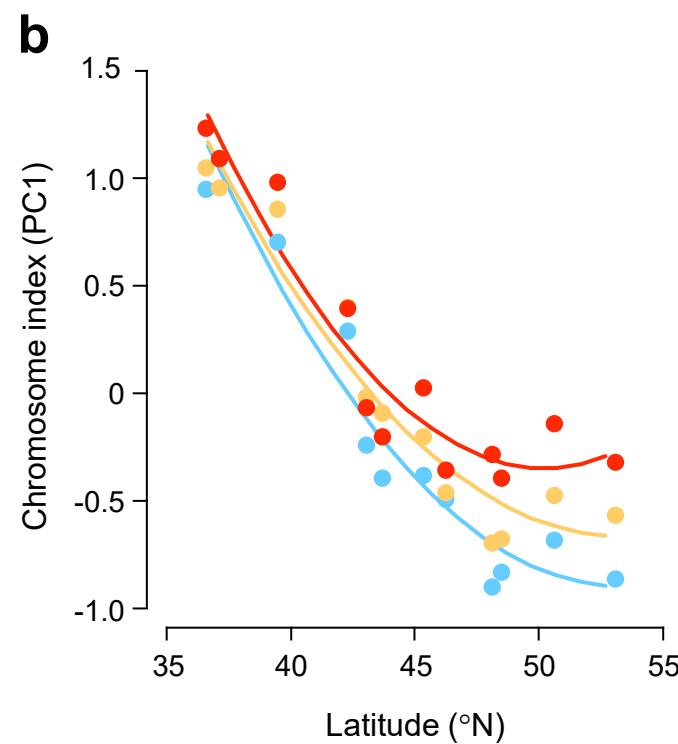
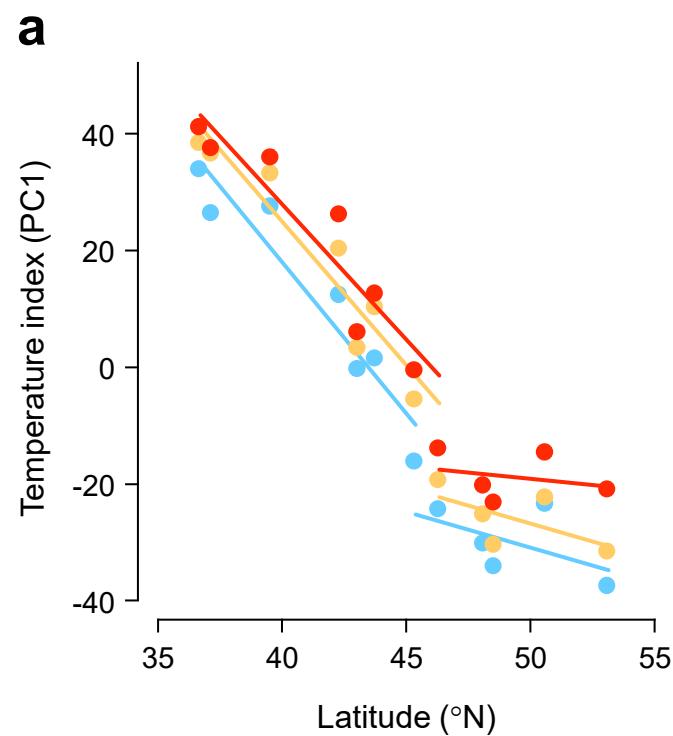

595 60. Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes,
596 and implications for organismal vulnerabilities. *Glob. Change Biol.* **22**, 3829–3842 (2016).

597 61. R Development Core Team. R: a language and environment for statistical computing
598 (2020).

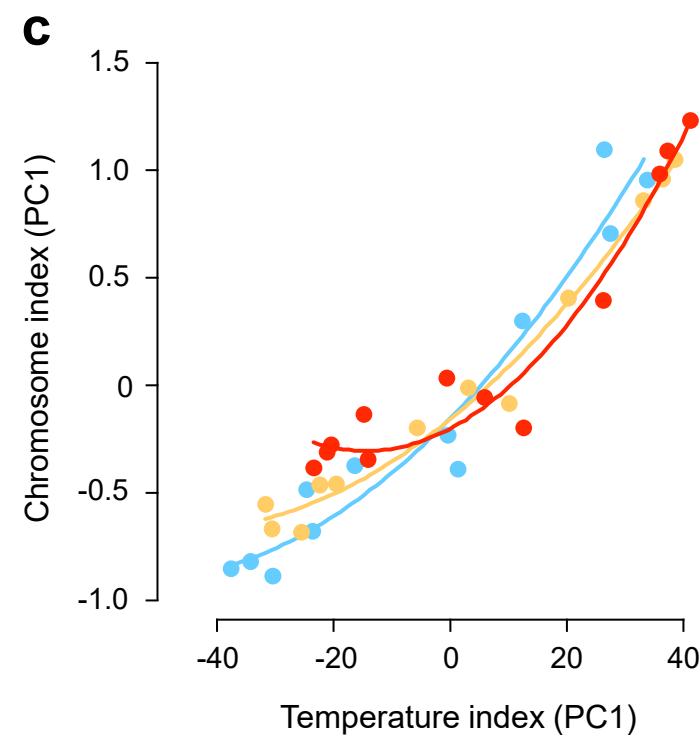
599 62. Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on
600 (Q)AIC(c). R package version 2.3-1 (2020).

601 63. Bivand, R. “R packages for analyzing spatial sata: A comparative case study with areal
602 data.” *Geogr. Anal.* **54**, 488–518 (2022).

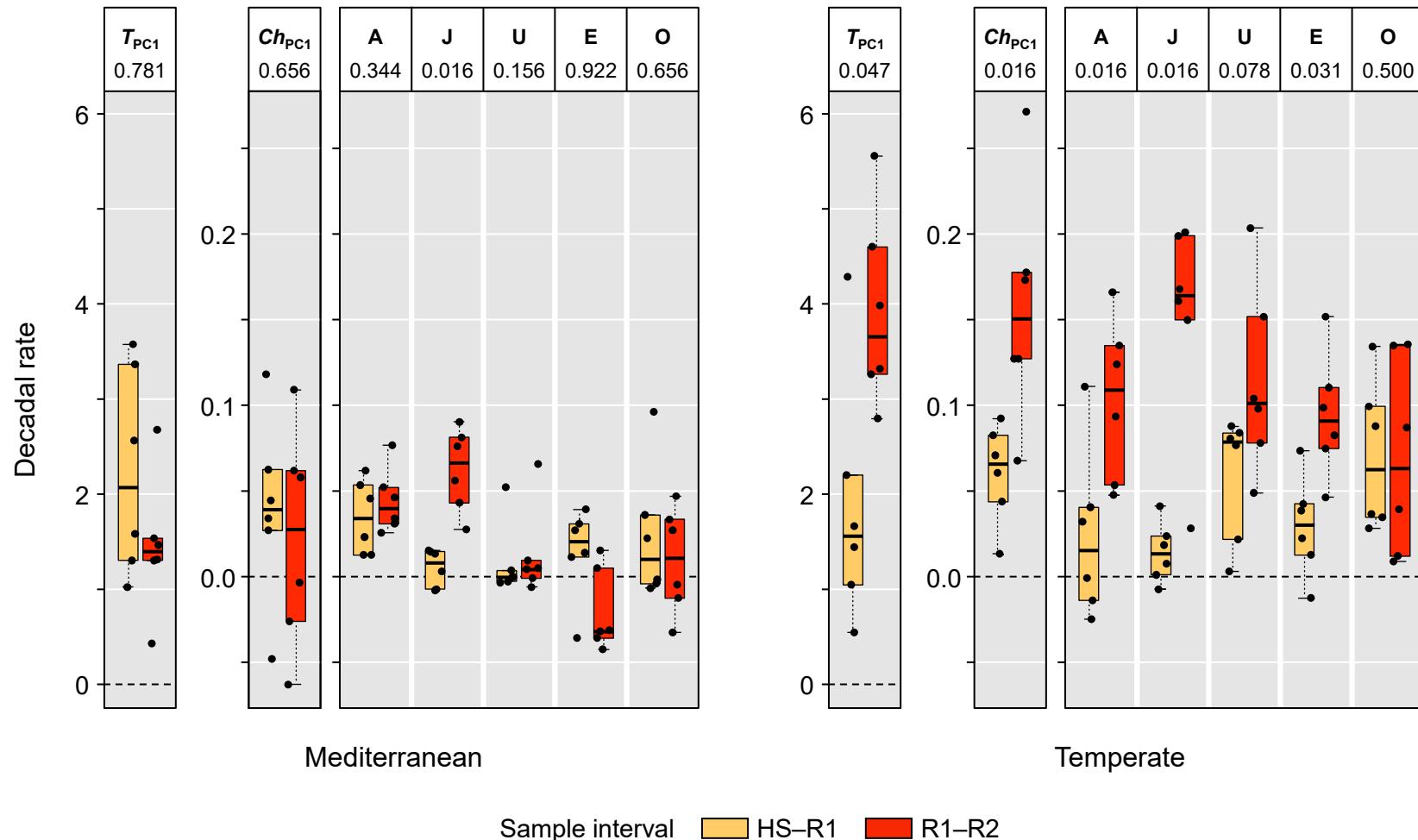
603
604

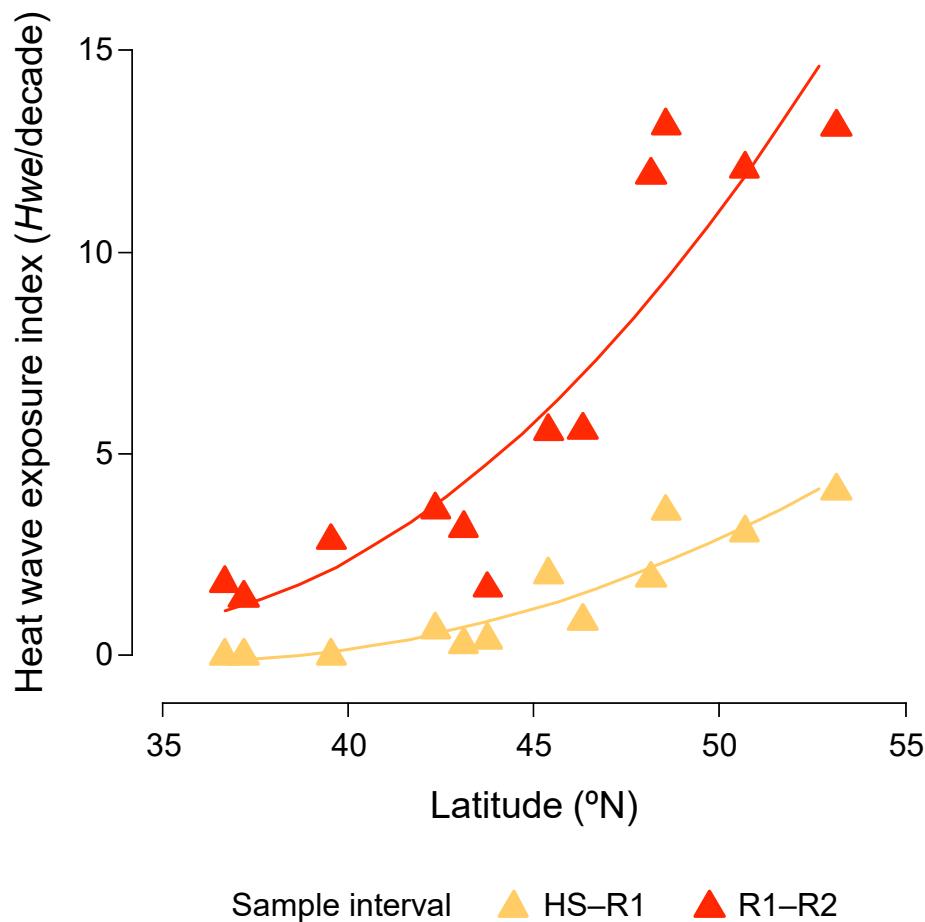



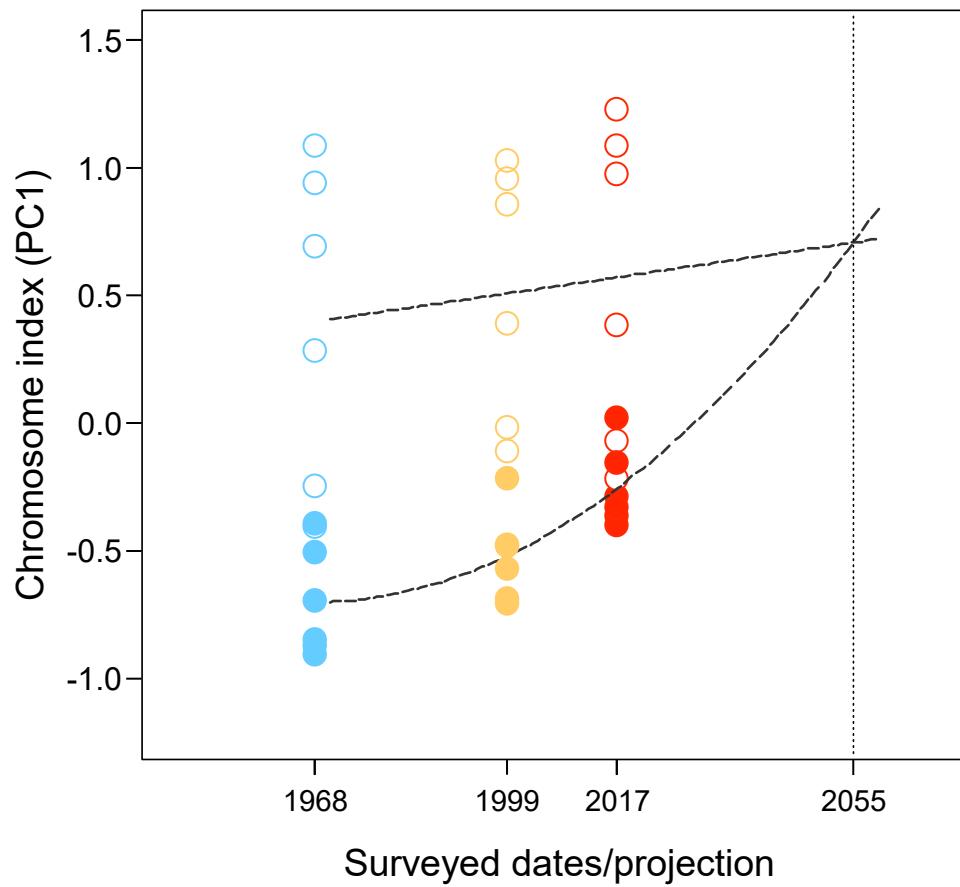
 Mediterranean


ML Málaga
 PU Punta Umbría
 RT Riba-roja de Túria
 QR Queralbs
 LG Lagrasse
 MP Montpellier

 Temperate


VL Villars
 LK Leuk
 VN Vienna
 TB Tübingen
 LN Louvain-la-Neuve
 GN Groningen



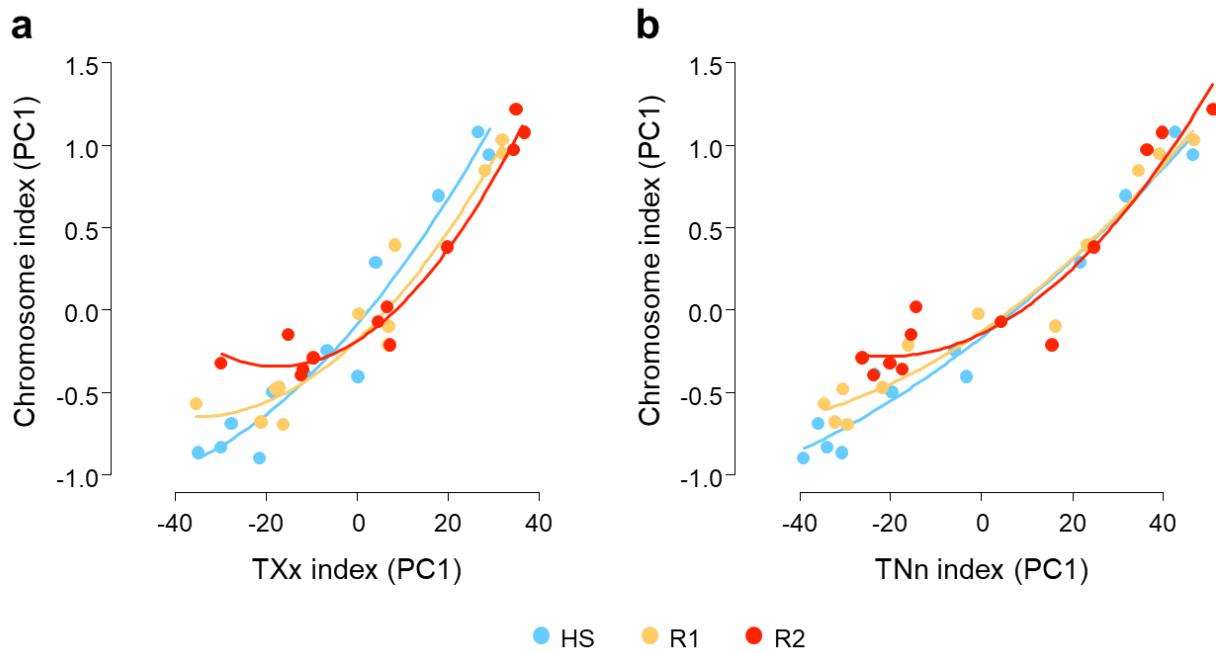

● HS ● R1 ● R2

Mediterranean

Temperate

○ HS ○ R1 ○ R2

● HS ● R1 ● R2


Table of Contents

Supplementary Figures

Supplementary Figure 1	2
------------------------	---

Supplementary Tables

Supplementary Table 1	3
Supplementary Table 2	4
Supplementary Table 3	5
Supplementary Table 4	6
Supplementary Table 5	7
Supplementary Table 6	8
Supplementary Table 7	9
Supplementary Table 8	10

Supplementary Figure 1 | Second-order polynomial relationship between the chromosome index (Ch_{PC1}) and the (a) extreme maximum temperature (TXx_{PC1}) and (b) extreme minimum temperature (TNn_{PC1}) indices (Supplementary Table 8).

Supplementary Table 1 | Geographical coordinates, collection dates, chromosome arrangement frequencies, and sample sizes (N) for the updated historical records of chromosomal inversion polymorphisms at 12 European *D. subobscura* locations (ref.²⁷; also accessible from figshare at <https://doi.org/10.6084/m9.figshare.24619629>)

	Málaga	Punta Umbría	Riba-roja de Túria	Queralbs	Lagrasse	Montpellier	Villars	Leuk	Vienna	Tübingen	Louvain-la-Neuve	Groningen
Coordinates WGS84	36.66635, -4.47747	37.18557, -6.97836	39.55035, -0.55921	42.34604, 2.14905	43.10536, 2.62638	43.76044, 3.74990	45.39132, 0.69424	46.32103, 7.64518	48.15108, 16.24883	48.54652, 9.03370	50.67341, 4.60543	53.14481, 6.62071
Collection date	April 2, 2015	May 11, 2019	March 22, 2019	June 22, 2019	October 21, 2016	October 19, 2016	September 8, 2019	August 27, 2016	August 20, 2016	August 24, 2016	August 26-27, 2018	August 22-24, 2018
A_{ST}	0.110	0.184	0.182	0.299	0.473	0.514	0.558	0.368	0.352	0.517	0.457	0.505
A_1	0.000	0.000	0.050	0.037	0.241	0.308	0.239	0.402	0.486	0.325	0.219	0.330
A_2	0.890	0.806	0.769	0.664	0.286	0.178	0.204	0.230	0.162	0.158	0.324	0.165
A_{2+6}	0.000	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
N	127	103	121	107	112	107	113	87	105	120	105	103
J_{ST}	0.094	0.126	0.132	0.112	0.357	0.299	0.186	0.368	0.228	0.317	0.234	0.272
J_1	0.906	0.874	0.868	0.888	0.643	0.701	0.814	0.632	0.772	0.683	0.766	0.728
N	127	103	121	107	112	107	113	106	114	120	107	103
U_{ST}	0.000	0.010	0.008	0.037	0.045	0.140	0.080	0.208	0.219	0.225	0.131	0.262
U_1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.028	0.035	0.025	0.000	0.000
U_2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.000
U_{1+2}	0.472	0.466	0.463	0.757	0.848	0.766	0.726	0.717	0.649	0.675	0.748	0.650
U_{1+2+6}	0.000	0.000	0.000	0.000	0.009	0.009	0.000	0.009	0.009	0.008	0.000	0.000
U_{1+2+8}	0.528	0.524	0.529	0.206	0.098	0.084	0.195	0.038	0.088	0.067	0.112	0.087
N	127	103	121	107	112	107	113	106	114	120	107	103
E_{ST}	0.197	0.262	0.256	0.542	0.589	0.682	0.487	0.651	0.544	0.717	0.598	0.641
E_8	0.000	0.039	0.025	0.037	0.027	0.037	0.009	0.057	0.132	0.050	0.019	0.019
E_{1+2}	0.197	0.272	0.174	0.196	0.250	0.159	0.327	0.179	0.070	0.158	0.308	0.252
E_{1+2+9}	0.205	0.078	0.124	0.093	0.098	0.093	0.027	0.094	0.228	0.067	0.019	0.029
$E_{1+2+9+3}$	0.024	0.068	0.041	0.019	0.009	0.009	0.035	0.000	0.000	0.000	0.000	0.010
$E_{1+2+9+12}$	0.378	0.282	0.380	0.112	0.027	0.019	0.115	0.019	0.026	0.008	0.056	0.049
N	127	103	121	107	112	107	113	106	114	120	107	103
O_{ST}	0.024	0.010	0.050	0.318	0.339	0.421	0.319	0.377	0.421	0.467	0.374	0.485
O_5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.000	0.000	0.000	0.000
O_6	0.000	0.000	0.000	0.000	0.000	0.009	0.000	0.009	0.009	0.000	0.009	0.000
O_7	0.008	0.000	0.008	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
O_{3+4}	0.252	0.320	0.355	0.262	0.277	0.224	0.292	0.226	0.307	0.250	0.187	0.165
O_{3+4+1}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.017	0.000	0.000
O_{3+4+2}	0.031	0.000	0.000	0.028	0.027	0.009	0.000	0.000	0.018	0.017	0.009	0.049
O_{3+4+7}	0.622	0.485	0.413	0.056	0.009	0.028	0.009	0.000	0.000	0.000	0.000	0.000
O_{3+4+8}	0.047	0.126	0.124	0.290	0.339	0.252	0.363	0.340	0.132	0.233	0.411	0.301
O_{3+4+18}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.000	0.000	0.000
O_{3+4+22}	0.016	0.039	0.050	0.037	0.009	0.028	0.009	0.028	0.070	0.017	0.000	0.000
$O_{3+4+16+2}$	0.000	0.019	0.000	0.000	0.000	0.028	0.009	0.009	0.009	0.000	0.009	0.000
N	127	103	121	107	112	107	113	106	114	120	107	103

Supplementary Table 2 | One-way ANOVA F tests for the fit of second-order polynomial models and two-segment linear piecewise regression models to the relationships of T_{PC1} and Ch_{PC1} with latitude and of Ch_{PC1} with T_{PC1} , in comparison to simple linear models. In the case of the relationship of T_{PC1} vs latitude, only the piecewise model outperforms the linear model, consistently indicating a break at 46.3° in all three surveys. In the cases of Ch_{PC1} vs latitude and Ch_{PC1} vs T_{PC1} , both models showed an overall significantly better performance than the linear model, and the piecewise model indicates an extended boundary across the three breaks.

T_{PC1} vs Latitude		Second-order polynomial model			Two-segment piecewise linear model with break at latitude:									
					43.8°			45.4°			46.3°			
		Survey	Adj. r^2	$F_{[9,1]}$	P	Adj. r^2	$F_{[8,2]}$	P	Adj. r^2	$F_{[8,2]}$	P	Adj. r^2	$F_{[8,2]}$	P
	HS		0.906	1.860	0.206	0.909	1.600	0.261	0.950	6.126	0.024	0.945	5.156	0.036
	R1		0.907	1.355	0.274	0.900	0.746	0.504	0.941	3.973	0.063	0.959	7.429	0.015
	R2		0.882	1.882	0.203	0.874	1.080	0.385	0.918	3.801	0.069	0.944	7.511	0.015
Ch_{PC1} vs Latitude		Second-order polynomial model			Two-segment piecewise linear model with break at latitude:									
					43.8°			45.4°			46.3°			
		Survey	Adj. r^2	$F_{[9,1]}$	P	Adj. r^2	$F_{[8,2]}$	P	Adj. r^2	$F_{[8,2]}$	P	Adj. r^2	$F_{[8,2]}$	P
	HS		0.937	12.625	0.006	0.943	8.025	0.012	0.934	6.320	0.023	0.938	6.959	0.018
	R1		0.924	10.797	0.009	0.923	5.758	0.028	0.932	6.991	0.018	0.955	12.822	0.003
	R2		0.900	17.337	0.002	0.923	12.539	0.003	0.913	10.737	0.005	0.906	9.575	0.008
Ch_{PC1} vs T_{PC1}		Second-order polynomial model			Two-segment piecewise linear model with break at T_{PC1} :									
					-16.48			-0.61			1.28			
		Survey	Adj. r^2	$F_{[9,1]}$	P	Adj. r^2	$F_{[8,2]}$	P	Adj. r^2	$F_{[8,2]}$	P	Adj. r^2	$F_{[8,2]}$	P
	HS		0.935	4.483	0.063	0.913	1.063	0.390	0.945	4.461	0.050	0.947	4.366	0.052
						-5.81			2.99			10.01		
	R1		0.981	17.319	0.002	0.968	3.739	0.071	0.977	6.536	0.021	0.989	18.682	0.001
						-0.77			5.79			12.38		
	R2		0.942	18.912	0.002	0.888	3.188	0.096	0.949	11.807	0.004	0.982	41.721	0.000

Supplementary Table 3 | Akaike Information Criterion with small-sample correction (AICc) and Akaike weights (AICc-Wt) for the relative fit of second-order polynomial and two-segment piecewise regression models to the relationships of T_{PC1} and Ch_{PC1} with latitude, and of Ch_{PC1} with T_{PC1} . In the case of the relationship T_{PC1} vs latitude, the piecewise model with a break at 46.3° produces lower AICc scores than the second-order polynomial model in all three surveys. In the cases of Ch_{PC1} vs latitude and Ch_{PC1} vs T_{PC1} , neither a specific piecewise model nor the second-order polynomial model consistently outperforms the other across all three surveys.

T_{PC1} vs Latitude		Second-order polynomial model		Two-segment piecewise linear model with break at latitude:					
				43.8°		45.4°		46.3°	
		Survey	AICc	AICc-Wt	AICc	AICc-Wt	AICc	AICc-Wt	AICc
	HS	93.94	0.15	98.43	0.02	91.32	0.54	92.54	0.29
	R1	94.58	0.08	100.49	0.00	94.26	0.09	89.94	0.82
	R2	95.63	0.10	101.32	0.01	96.18	0.08	91.51	0.81
Ch_{PC1} vs Latitude		Second-order polynomial model		Two-segment piecewise linear model with break at latitude:					
				43.8°		45.4°		46.3°	
		Survey	AICc	AICc-Wt	AICc	AICc-Wt	AICc	AICc-Wt	AICc
	HS	3.28	0.75	6.86	0.13	8.71	0.05	7.99	0.07
	R1	2.95	0.30	7.98	0.02	6.56	0.05	1.45	0.63
	R2	4.16	0.62	6.29	0.21	7.68	0.11	8.66	0.06
Ch_{PC1} vs T_{PC1}		Second-order polynomial model		Two-segment piecewise linear model with break at T_{PC1} :					
				-16.48		-0.61		1.28	
		Survey	AICc	AICc-Wt	AICc	AICc-Wt	AICc	AICc-Wt	AICc
	HS	3.71	0.60	12.02	0.01	5.86	0.20	6.00	0.19
				-5.81		2.99		10.01	
	R1	-13.78	0.30	-2.53	0.00	-6.23	0.01	-15.44	0.69
				-0.77		5.79		12.37	
	R2	-2.05	0.01	10.78	0.00	1.33	0.00	-11.42	0.99

Supplementary Table 4 | Summary of two-segment piecewise regression models for the relationship between T_{PCI} and latitude with breakpoint at 46.3° . ANOVA $F_{[3,8]}$ tests of overall model fit were significant at $P < 0.0001$ in all cases. Letters ‘ a ’ and ‘ b ’ denote slope and intercept, and subindices ‘1’ and ‘2’ denote $< 46.3^\circ$ and $\geq 46.3^\circ$ latitude segments, respectively. All P values from Student's t-tests are two-tailed.

T_{PCI} vs Latitude					
Survey		Coef.	SE	t	P
HS	a_1	-5.147	0.736	-6.990	0.0001
	b_1	223.743	30.383	7.364	0.0001
	a_2	-1.217	1.164	-1.045	0.3264
	b_2	29.809	57.524	0.518	0.6183
	dif. (a_1-a_2)	-3.930	1.377	-2.853	0.0214
	dif. (b_1-b_2)	193.934	65.055	2.981	0.0176
R1	a_1	-4.916	0.661	-7.440	0.0001
	b_1	221.558	27.267	8.126	0.0000
	a_2	-1.223	1.045	-1.171	0.2753
	b_2	34.310	51.263	0.665	0.5250
	dif. (a_1-a_2)	-3.693	1.236	-2.988	0.0174
	dif. (b_1-b_2)	187.248	58.381	3.207	0.0125
R2	a_1	-4.616	0.705	-6.545	0.0002
	b_1	212.407	29.101	7.299	0.0001
	a_2	-0.429	1.115	-0.385	0.7103
	b_2	2.282	55.096	0.041	0.9680
	dif. (a_1-a_2)	-4.187	1.319	-3.174	0.0131
	dif. (b_1-b_2)	210.125	62.310	3.372	0.0098

Supplementary Table 5 | One-tailed exact Wilcoxon signed rank tests for positive paired differences in T_{PC1} and Ch_{PC1} between surveys ($n = 12$), and two-tailed exact independent samples Mann-Whitney U tests for differences in magnitude of HS to R1 shift and R1 to R2 shift between Mediterranean and temperate samples ($n = 6$).

Test	Comparison	T_{PC1}	Ch_{PC1}
Wilcoxon	HS vs R1	0.000	0.002
	R1 vs R2	0.000	0.005
Mann-Whitney U	Mediterranean vs temperate (R1 minus HS)	0.589	0.699
	Mediterranean vs temperate (R2 minus R1)	0.015	0.015

Supplementary Table 6 | Summary of second-order polynomial models for the relationships between Ch_{PC1} and latitude and Ch_{PC1} and T_{PC1} . ANOVA $F_{[2,9]}$ tests of overall model fit were significant at $P < 0.0001$ in all cases. Letters ‘*a*’ and ‘*b*’ indicate first- and second-order coefficients, respectively, and “*c*” denotes intercept. All P values from Student's t-tests are two-tailed.

Ch_{PC1} vs Latitude					
Survey		Coef.	SE	<i>t</i>	<i>P</i>
HS	<i>a</i>	-0.787	0.185	-4.253	0.0021
	<i>b</i>	0.007	0.002	3.553	0.0062
	<i>c</i>	20.084	4.083	4.916	0.0008
R1	<i>a</i>	-0.715	0.182	-3.920	0.0035
	<i>b</i>	0.007	0.002	3.286	0.0095
	<i>c</i>	18.343	4.026	4.556	0.0014
R2	<i>a</i>	-0.900	0.192	-4.690	0.0011
	<i>b</i>	0.009	0.002	4.164	0.0024
	<i>c</i>	22.256	4.237	5.248	0.0005
Ch_{PC1} vs T_{PC1}					
HS	<i>a</i>	0.028	0.002	-1.744	0.0000
	<i>b</i>	0.000	0.000	12.562	0.0634
	<i>c</i>	-0.161	0.093	2.117	0.1151
R1	<i>a</i>	0.002	0.001	20.960	0.0053
	<i>b</i>	0.000	0.000	4.162	0.0000
	<i>c</i>	-0.017	0.045	-3.657	0.0025
R2	<i>a</i>	0.014	0.003	5.588	0.0003
	<i>b</i>	0.000	0.000	4.349	0.0019
	<i>c</i>	-0.210	0.071	-2.954	0.0161

Supplementary Table 7 | Summary of second-order polynomial models for the relationships between Ch_{PC1} and the extreme temperature indices TXx_{PC1} and TNx_{PC1} . ANOVA $F_{[2,9]}$ tests of overall model fit were significant at $P < 0.0001$ in all cases. Letters ‘*a*’ and ‘*b*’ indicate first- and second-order coefficients, respectively, and “*c*” denotes intercept. All *P* values from Student's t-tests are two-tailed.

Ch_{PC1} vs TXx_{PC1}					
Survey		<i>Coef.</i>	<i>SE</i>	<i>t</i>	<i>P</i>
HS	<i>a</i>	0.032	0.003	13.051	0.0000
	<i>b</i>	0.000	0.000	1.984	0.0785
	<i>c</i>	-0.084	0.082	-1.033	0.3284
R1	<i>a</i>	0.026	0.002	11.214	0.0000
	<i>b</i>	0.000	0.000	3.072	0.0133
	<i>c</i>	-0.185	0.073	-2.513	0.0332
R2	<i>a</i>	0.018	0.002	9.178	0.0000
	<i>b</i>	0.001	0.000	6.102	0.0001
	<i>c</i>	-0.019	0.048	-3.882	0.0037
Ch_{PC1} vs TNx_{PC1}					
HS	<i>a</i>	0.021	0.001	15.931	0.0000
	<i>b</i>	0.000	0.000	1.679	0.1274
	<i>c</i>	-0.016	0.073	-2.257	0.0504
R1	<i>a</i>	0.019	0.002	11.464	0.0000
	<i>b</i>	0.000	0.000	1.849	0.0975
	<i>c</i>	-0.013	0.086	-1.489	0.1707
R2	<i>a</i>	0.013	0.003	4.240	0.0022
	<i>b</i>	0.000	0.000	2.743	0.0227
	<i>c</i>	-0.143	0.095	-1.510	0.1654

Supplementary Table 8 | One-way ANOVA F tests for the fit of second-order polynomial models to the relationship between chromosome (Ch_{PC1}) and extreme temperature indices (TXx_{PC1} and TNn_{PC1}) in comparison to simple linear models (Supplementary Figure 1), and Akaike Information Criterion with small-sample correction (AICc) and Akaike weights (AICc-Wt) for the relative fit of the TXx_{PC1} and TNn_{PC1} second-order polynomial models to the Ch_{PC1} data. The temperature index that better describes the chromosome data shifted from extreme minimum in the HS survey (AICc-Wt = 0.96) to extreme maximum in the R2 survey (AICc-Wt = 1.00). Adj. r^2 are adjusted r^2 values for second-order polynomial models; n= 12).

Survey	Ch_{PC1} vs TXx_{PC1}					Ch_{PC1} vs TNn_{PC1}				
	Adj. r^2	$F_{[9,1]}$	P	AICc	AICc-Wt	Adj. r^2	$F_{[9,1]}$	P	AICc	AICc-Wt
HS	0.939	3.936	0.079	2.81	0.04	0.964	2.821	0.127	-3.59	0.96
R1	0.931	9.439	0.013	2.03	0.27	0.941	3.418	0.098	-0.13	0.73
R2	0.963	37.230	0.000	-7.51	1.00	0.896	7.524	0.023	5.00	0.00