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Abstract

Music classification is widely applied in automatic organization of music
archives, intelligent music interface, etc. Music is frequently accom-
panied by other media, such as image sequences. How to combine
various types of media for various tasks is natural for human but
extremely difficult for machines. In this work, we propose a collabora-
tive learning method to combine dancing motions and music cues for
music classification and apply it to music recommendation from danc-
ing motion. Dancing motions in the form of 3D joint positions contain
cyclic motions synchronized with music beats and a collabrative autoen-
coder is designed for fusing music cues into dancing motion feature
extraction module. The proposed method achieved 98.07% on Music-
ToDance dataset and 65.29% on AIST++ dataset. The code to run all
experiments is available at https://github.com/wenjgong/musicmotion.
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1 Introduction

Music plays a crucial part in expressing emotions and artistic communica-
tions. Music classification is widely applied in various applications, such as,
automatic organizing of music archives, and intelligent music interface [1, 2].
Automatic music classification [3, 4] can be further categorized into music
genre classification [3–5]) and music emotion classification [6–8].

Even though music is usually accompanied by other media, such as, images
or dancing motions, related works on music classification are mainly based
on audio features (rhythm) [9] and their text descriptions (lyrics, audio tags,
user comments, etc.) [10]. Other media inputs, such as dancing motions [11]
that are synchronized with music beats [12], can also contribute. Collaborative
learning from music-motion modalities are widely applied in human-computer
interaction [13], robotics [14], auto choreography [15], etc. Most of the
studies on collaborative learning from music and motion data concentrate on
dancing motion creation from music [16–19], and music indexing using motion
cues [20, 21]. In this work, we explored collaborative music classification from
dancing motions, which were seldom studied in previous works.

Commonly used music features include Mel Frequency Cepstral Coefficients
(MFCCs) [22], constant-Q chromagram [23], onset strength envelope [24], tem-
pogram [25], etc. Each feature extracts a certain type of information. e.g.,
MFCCs transforms audio waveforms from temporal signal into frequency space
and extracts features in frequency space, while tempogram extracts the start
frame and music beats. Because these features extract information from dif-
ferent spaces, it is tricky to fuse them. MFCCs represents distribution of the
energy of audio signals in different frequency ranges, and is widely used as
inputs to deep learning based methods [26–28]. But the limitation of using
one MFCCs feature is loss of tempo information [29], thus reducing task per-
formance. Studies show that dancing motions are synchronized with their
background music in tempo [30]. Dancing motions in form of 3D joint posi-
tions are unambiguous information [31], and they contain cyclic information
synchronized with music beats. Beat-like cyclic information can be extracted
from joint motions.

Based on the above studies and observations, we propose a collabora-
tive learning method for a deep motion extractor and a music encoder to
enhance music recommendation accuracy. A motion encoder and a music auto-
encoder extract motion and music features. Features of the two modalities are
aligned using a collaborative learning, so that music classification performance
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is improved. The music classification method is further used for music recom-
mendation from dancing motions, where background music is recommended
based on predicted motion/music categories.

The contributions of this work are as follows.

1. Collaborative learning is introduced in music classification. Music features
are extracted using a encoder module, which are later mapped to their
extracted motion features to learn correspondences between two types of
media information.

2. Music classification accuracy on MuiscToDance dataset is enhanced by
6.77% using the proposed multi-modal collaborative learning method with
a fully connection pair-wise network between music and motion fea-
tures (98.07%) compared with method without collaborative learning [42]
(91.3%).

2 Related Works

2.1 Correlations between Motions and Music

Dancing motions and their background music are emotionally correlated [11].
Furthermore, dancing motion cycles are synchronized with their background
music beats [12]. Collaborative learning on music-motion modalities fuses
multi-modal information effectively. One exemplar work on collaborative learn-
ing from music and motions was music beat feature extraction using motion
sequences in videos [32], which denoted music beat features using motion
trajectories and turnings in videos.

Motions in videos are ambiguous due to loss of depth information and
constrains imposed by viewpoints [33]. As a result, we use 3D dancing motions
in this work. They are unambiguous 3D joint positions, from which we are able
to extract more accurate music beat information. Studies from Shi et al. [34]
showed that music and dancing motions are closely correlated. So we explore
collaborative learning from music and 3D dancing motions to enhance music
classification (hence music recommendation) performance.

2.2 Multi-modal Collaborative Learning from Motions
and Music

Collaborative learning methods are widely applied in statistical analysis [35]
for enhanced visual detection [36] and visual-audio speech recognition [37].
Multi-modal collaborative learning not only improves performance of a task by
incorporating multi-modal data, but also helps to ease the problem of lacking
of data [38].

Multi-modal collaborative learning from music and motions are extensively
studied. Some work aims for a better music representation. For example, co-
aligned autoencoders for learning semantically enriched audio representations
(Coala) [39] correlated audio contents and text labels through auto-encoder,
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Fig. 1 Architecture of the proposed MCLEMCD model. The model is composed of two
parts: a motion encoder and a music encoder. Motion features extracted using motion
encoder are aligned with music features extracted by music auto-encoder through a col-
laborative learning module (between Zm and Za). Black lines represent respective training
routes for motions and music, and red lines represent collaborative training process of fea-
ture alignment.

denoted text labels of audio files using embedded feature from encoder, and
reduced the costs of data labelling.

Others generate dancing motions from accompanying music. Deep learn-
ing based models, including GANs [40], causal convolution [14] and temporal
networks [41] are utilized for this task. Lee et al. [40] proposed to generate
dancing motions from music. They split dancing sequences into basic danc-
ing units using auto-encoder, and composed a new dancing sequence using
GANs so that generated dancing motions matched with music style and music
beats. In test stage, style and beat information was extracted from music audio
inputs, dancing units were generated according to style, and dancing sequence
was finalized through composing dancing units according to music beats. Lee
et al. [14] proposed auto choregraphy based on music styles. In order to learn
correspondences between dancing and music sequences, they applied causal
convolution to predict next motion frame based on dancing joint positions in
current frame. And they incorporated dilated convolution to enlarge receptive
field of encoder. During test, initial joint positions of start frame were sent
into network and combined with audio encoder to generate joint positions of
next frame. Predicted results were recursively input into the model to predict
subsequent motion frames. Qi et al. [41], on the other hand, proposed a novel
Seq2Seq framework to learn correlation between music denoted with MFCCs
and dance denoted with key point coordinates detected using Openpose.

Collaborative music classification from dancing motions were seldom
explored in previous studies. So we explore its solution in this work.
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3 Multi-modal Collaborative Learning Encoder
from Motions and Music

In this work, we propose a multi-modal collaborative learning encoder method
(MCLE) to enhance music recommendation performance. MCLE simultane-
ously optimizes feature extraction from both dancing motion data and its
background music data using collaborative learning. Fig. 1 illustrates archi-
tecture of the proposed MCLEMCD method. The method is composed of two
parts: a motion encoder and a music encoder. Graph convolutional network
based motion encoder takes dancing motion sequences as inputs, extracts deep
features, and performs action classification after applying a full connection
layer. Music auto-encoder takes MFCCs features as inputs, and extracts deep
music features. Two parts are co-optimized by mapping to same embedded
feature space. By aligning two modalities, both motion and music features
are able to reconstruct MFCCs features, which are further exploited for music
classification.

3.1 Motion Encoder

Motion encoder extracts motion features using a graph convolutional net-
work based model [42]. Extracted motion features by motion encoder are
further processed through fully connected layers for motion classification.
Model parameters are optimized using motion classification. Loss for motion
classification task is defined as a cross-entropy loss lmotion:

lmotion = − 1

N

N∑
i=1

M∑
c=1

yiclog(pic), (1)

where N denotes number of samples, M stands for number of motion classes,
yic denotes whether predicted motion label is the same as ground truth label
(yic is 1 if they are the same, and 0 otherwise), and pic is probability of
predicted label yic.

In addition to key joint coordinates of human skeleton, second-order infor-
mation (such as body limb length and direction) representing limb information
is also informative and beneficial for action recognition tasks. Therefore, we
employ limb vectors to denote limb lengths and directions. In section 4, we
evaluate performance of four feature configurations: joint positions, second-
order limb feature, early fusion of two features, and later fusion of two features.
Experimental results show that late fusion of joint and limb features achieves
the best performance for MusicToDance dataset, and joint positions give the
best performance for AIST++ dataset.

After 1500 epoches, motion classification loss and prediction accuracy reach
plateau. Motion classification accuracy achieves 57.06% on test set of AIST++
dataset, and 93.96% on test set of MusicToDance dataset. Feature extraction
of motion encoder will be further optimized in the following co-optimization
step.
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Fig. 2 Architecture of music auto-encoder in the proposed MCLEMCD model. Encoder
part consists of 2D convolutions, BatchNorm operations, and ReLU activations, while
decoder part consists of 2D deconvolutions, BatchNorm operations, and ReLu activations.

3.2 Music Auto-encoder

After extracting MFCCs features from original audio waveforms, we adopt a
COALA [39] based music auto-encoder to prepare for motion-music alignment
procedure. Encoder consists of 2D convolutional layers, BatchNorm layers, and
ReLU layers. After encoder, features are reshaped as a 2D feature. Decoder, on
the other hand, applies reverse operations of encoder. It also reshapes feature
dimensions, and then carries out deconvolutions, BathNorm operations, and
ReLU activations.

Flow chart of music auto-encoder is shown in Fig. 2. Music encoder extracts
feature Za with decreased dimensions. In decoder, extracted feature Za is
transformed back to its original dimensions. Goal of auto-encoder is that recon-
structed feature is similar to original input feature. Loss of music auto-encoder
is defined as a mean squared error between input and its reconstruction:

lmusic =
1

N

N∑
i=1

(âi − ai)
2, (2)

where âi denotes reconstructed feature through music auto-encoder, and ai
denotes input feature.

We carry out ablation studies to explore music auto-encoder architecture.
We set up two additional models: one is additional Dropout layers on top
of music autoencoder to prevent model from overfitting; the other is a fully
connected network between motion encoder and music encoder. Experimental
results show that additional dropout layer reduce reconstruction accuracy, and
the accuracy fluctuates to a certain extent. While additional fully connected
layer helps improve accuracy.
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3.3 Multi-modal Co-optimization

Collaborative learning from motion and music data is carried out through a co-
optimization procedure within deep learning framework. Motion encoder and
music encoder are co-optimized with a mean squared loss between extracted
motion and music features:

lpair =
1

N

N∑
i=1

(Zim − Zia)2, (3)

where Zim denotes motion feature of the i-th sample extracted using motion
encoder, and Zia denotes music feature of the i-th sample extracted through
music encoder.

In addition to pair loss lpair, we further reconstruct music feature from
motion feature, and incorporate reconstruction loss lmo2mu in co-optimization:

lmo2mu =
1

N

N∑
i=1

(m̂i − ai)
2, (4)

where m̂i denotes reconstructed music feature from motion feature Zim, and
ai denotes input music feature.

During training, motion and music encoders are optimized separately. After
their losses reach plateaus, respectively, features of these two media are co-
optimized. The independent training and collaborative learning are illustrated
in Fig. 1. Independent motion and music training processes follow data flow
marked with black lines, while co-optimization process is illustrated as a data
flow marked with red lines. After co-optimization process, motion and music
data are mapped to embedded representations (i.e., Zm or Za) with the same
dimensions. Experimental results show that motion classification accuracy is
improved with collaborative learning module.

3.4 MCLEMCD applied to Music Recommendation

We analyse dancing motions and recommend their accompanying music using
predicted motion/music categories. The proposed MCLEMCD model improves
music recommendation performance by collaborative learning from motion
and music modalities. Through above-mentioned co-optimization procedure,
we incorporate music cues in motion features, so that motion/music classifi-
cation performance is improved. Thus, music recommendation performance is
enhanced accordingly.

4 Experiments

In this section, we carry out qualitative and quantitative evaluations of the pro-
posed MCLEMCD method. There are relatively few publicly available datasets
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Fig. 3 Dimensional Variations of Alignment Network for Music Encoder and Motion
Encoder. “B” denotes number of batches, and “channels” in GCN-TCN module of motion
encoder indicate number of convolutional channels.

consisting of 3D dancing motions and their accompanying music audio files.
In this work, we use two popular datasets for evaluation.

We experiment with two variants of the proposed model illustrated in
Fig. 1. A dropout layer is added after each ReLU activation function in music
encoder. We also experiment with a variant by adding fully connected layers
as an indirect mapping network between output of motion encoder Zm and
output of music encoder Za. This fully connected network takes deep motion
feature Zm as input, and maps feature channels from 256 to 512, 1024, 2048,
and 4096, respectively. Then another stack of fully connected layers apply
reverse operations and maps feature channels back to 256, which is feature
dimension of Za.

4.1 Parameter Settings for MusicToDance Dataset

MusicToDance Dataset [43], collected by Tsinghua University, consists of 60
motion-music pairs in total, or 907, 200 frames, including four dancing types
(i.e., waltz, tango, cha-cha, and rumba). Frame rate of motion data is 25
fps. Sampling rate of music data is 44.1K Hz. In experiments, we set sam-
pling rate to 12.8K Hz so that length of extracted music feature match with
that of extracted motion feature. Human poses are represented using 25 joint
positions, and we take 23 of them.

The dataset is unbalanced and collected videos of the dataset are of var-
ious lengths. The minimum length of collected videos is 229 frames, so we
first split videos into segments of 229 frames, and select videos from each
category so that the dataset has balanced classes and the model processes
unified input data. After segmentation, each category contains 34 segments of
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motion-music pairs. MusicToDance dataset does not contain standard train-
ing/validation/test splits. We split the dataset evenly into three subsets: 45
pairs for training, 45 for validation, and 46 for test.

Music auto-encoder is mainly composed of 2D convolutional layers, Batch-
Norm layers, and ReLU activation layers. All layers retain data dimensions
except convolutional layers. Dimension variation process is shown in Fig. 3.
We denote input dimensions of music encoder as [N×C×NMFCCs×T ], where
N represents batch size and is set as 72, C is number of channels and is set
as 1, NMFCCs stands for length of MFCCs features, and T denotes length of
music sequence. We employ Librosa [44] music processing library to extract
MFCCs feature and set feature dimension as 96, so NMFCCs is equal to 96.
Collaborative learning requires that the dancing motion feature Zm and the
music feature Za must be of the same dimensions, so the input frame length of
the music encoder is set as 25. Note that, without incorporating collaborative
learning, motion/music sequences are divided into fragments of 229 frames;
with collaborative learning, motion/music sequences are divided into segments
of 25 frames. The dataset is re-split for collaborative learning and includes 405
pairs for training, 405 for validation, and 414 for test.

For motion data, its input feature dimensions are [N × T × Nj × Nd],
where Nj denotes number of body joints and is equal to 23, Nd stands for
human motion feature in a frame, and Nd is equal to 3 for human body
joints/limbs and is equal to 6 for combined feature of human body joints and
limbs. Motion categories use one-hot encoding. For both motion and music
data, input features are normalized, and is scaled in range of [0 − 1].

The optimum epoch numbers are 3000. Motion encoder and music auto-
encoder are first trained separately for the first 1500 epochs. Co-optimization
procedure is run for the following 1500-3000 epochs. We use an Adam optimizer
and learning rate is set as 5e− 4.

4.2 Parameter Settings for AIST++ Dataset

AIST++ dance motion dataset [45] consists of 1, 408 3D human dancing
sequences, described by root joint trajectories and joint angle rotations. It
contains 10 dancing types, including old school (break, pop, lock, and waack)
and new school (middle hip-hop, LA-style hip-hop, house, krump, street jazz,
and ballet jazz). Dancing motion videos last from 7.4 seconds to 48 seconds.
Frame rate of motion data is 60 fps. Sample rate of music inputs is 48KHz.
In experiments, we set sampling rate to 30.7K Hz so that length of extracted
music feature match with that of extracted motion feature. Human poses are
represented using 17 joint positions.

The dataset provides standard training/validation/test splits, including 980
training samples, 20 validation samples, and 20 test samples. Following the
same protocol, we first divide motion and music videos into segments of 425
frames. Then, we further split music segments into a unit of 25 frames. Finally,
the dataset is divided into three splits, with 16660 pairs for training, 340 for
validation, and 340 for test.
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4.3 Experiment Design

We design four experiments with various motion feature configurations for
MusicToDance dataset. Table 1 lists detailed configurations of experiment 1-4.

Table 1 Settings of Experiment 1-4 on MusicToDance Dataset.

Experiment ID Input Dimensions Feature and Model Settings

1
414 × 3 × 25 × 23

Motion Feature (joints)

2 Motion Feature (limbs)

3 Motion Model Fusion (Exp1 & Exp2)
4 414 × 6 × 25 × 23 Motion Feature (joints & limbs)

� Experiment 1: Input dimensions of human body joint positions are [N ×
Nd × T ×Nj ], where N denotes number of samples and is equal to 414 for
test, Nd stands for number of dimensions and is equal to 3, T is number
of frames of a video segment and is equal to 25, and Nj represents number
of body joints and is equal to 23. Input music feature dimensions are [N ×
1 ×NMFCCs × T ], where NMFCCs is equal to 96 and stands for dimension
of extracted MFCCs feature. The two features are fed into motion encoder
and music auto-encoder for collaborative learning.

� Experiment 2: In this experiment, motion feature uses human body limb
positions. Other settings are the same as Experiment 1.

� Experiment 3: Predictions from Experiment 1 and Experiment 2 are fused
to form a new prediction.

� Experiment 4: Human body joints and limb positions are concatenated to
denote dancing motions. Final motion feature dimensions are [N×Nd×T ×
Nj ], where Nd is equal to 6 (human body joint feature takes 3 and human
body limb feature takes 3). Other settings are the same as Experiment 1.

We design four other experiments (Experiments 5-8) for AIST++ dataset.
In experiment 5-8, N is equal to 16660 for training set of AIST++ dataset and
340 for test set, and Nj is equal to 17. Other parameter settings are the same
as those of MusicToDance dataset. Table 2 provides specific configurations of
experiment 5-8.

Table 2 Settings of Experiment 5-8 on AIST++ Dataset.

Experiment ID Input Dimensions Feature and Model Settings

5
340 × 3 × 25 × 17

Motion Feature (joints)

6 Motion Feature (limbs)

7 Motion Model Fusion (Exp1 & Exp2)

8 340 × 6 × 25 × 17 Motion Feature (joints & limbs)
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Table 3 Performances of Experiment 1-4 on MusicToDance Dataset (CL means
collaborative learning).

With/Without CL Method
Experiment ID

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Without CL
MCLEMCD 77.54% 92.27% 93.96% 87.68%

MCLEMCD-Dropout 88.16% 93.48% 95.17% 92.27%

With CL
MCLEMCD 90.58% 96.62% 96.68% 93.72%

MCLEMCD-Dropout 89.86% 95.41% 96.38% 97.10%

MCLEMCD-FC 88.89% 97.83% 98.07% 93.48%

Table 4 Performances of Experiment 5-8 on AIST++ Dataset (CL means collaborative
learning).

With/Without CL Method
Experiment ID

Experiment 5 Experiment 6 Experiment 7 Experiment 8

Without CL
MCLEMCD 57.94% 50.88% 57.06% 48.53%

MCLEMCD-Dropout 56.76% 15.88% 49.71% 52.65%

With CL
MCLEMCD 60.29% 57.35% 63.82% 53.24%

MCLEMCD-Dropout 59.71% 17.06% 52.35% 55.29%

MCLEMCD-FC 63.53% 56.18% 65.29% 50.00%

Several different models are evaluated on each of these experiments. Evalu-
ated models include variants with and without collaborative learning to verify
their effectiveness.

4.4 Quantitative Evaluation

We calculate ratio of correctly predicted music categories over all test samples
as prediction accuracy. Table 3 and table 4 list performance of Experiment
1-4 on MusicToDance dataset and Experiment 5-8 on AIST++ dataset,
respectively. From the table, we observe that collaborative learning enhances
performances dramatically. For example, music recommendation without col-
laborative learning (CL) [42] achieves the highest prediction accuracy (93.96%)
in experiment 3, while the proposed MCLEMCD-FC method achieves 98.07%
and is 4.11% higher than method without CL. For evaluations on AIST++
dataset, the highest prediction accuracy (65.29%) is also achieved by model
with co-optimization and additional fully connected layers.

Overall performance of MusicToDance dataset is much better than that
of AIST++ datset, because AIST++ dataset consists of more categories.
Furthermore, most of the dance music in AIST++ dataset are relatively fast-
paced, and music pieces from different categories are very similar so it is
difficult to distinguish among categories.

We also display confusion matrices in Fig. 4 and Fig. 5 to further demon-
strate performance listed in table 3 and table 4. Fig. 4 plots confusion matrix
of experiment with the highest accuracy in table 3, i.e., experiment 3 using
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MCLEMCD-FC method with CL. We observe that the proposed method per-
forms well for all categories. While, some categories achieve higher accuracy
than others, e.g., “cha-cha” outperforms “rumba”. The proposed MCLEMCD
method outperforms music recommendation method without CL with a margin
of 10% on “waltz”.

Fig. 5 plots confusion matrix for experiment with the highest accuracy in
table 4, i.e., experiment 3 using MCLEMCD-FC method with CL. We observe
that predictions of “hip hop” music and “jazz” music are more accurate, while
predictions of other music genres, such as “break”, “krump” and “house”, are
less accurate.

Fig. 4 Confusion Matrix of MusicToDance Dataset.

Fig. 5 Confusion Matrix of AIST++ Dataset.
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Table 5 Quantitative Performance of MusicToDance Dataset with the Same Settings as
the Qualitative Evaluation (CL means collaborative learning).

Experiment ID
Prediction Accuracy without CL Prediction Accuracy with CL

MCLEMCD MCLEMCD-Dropout MCLEMCD MCLEMCD-Dropout MCLEMCD-FC

1 84.78% 95.65% 95.65% 93.48% 95.65%

2 95.65% 95.65% 97.82% 100.00% 97.82%

3 95.65% 95.65% 100.00% 100.00% 100.00%

4 93.48% 95.65% 97.82% 100.00% 95.65%

Table 6 Quantitative Performance of AIST++ Dataset with the Same Settings as
Qualitative Evaluation (CL means collaborative learning).

Experiment ID
Prediction Accuracy without CL Prediction Accuracy with CL

MCLEMCD MCLEMCD-Dropout MCLEMCD MCLEMCD-Dropout MCLEMCD-FC

5 70.00% 65.00% 80.00% 85.00% 80.00%

6 70.00% 55.00% 70.00% 60.00% 65.00%

7 80.00% 65.00% 85.00% 70.00% 85.00%

8 65.00% 70.00% 60.00% 70.00% 70.00%

Before qualitative evaluation, we re-evaluate quantitative performance so
that qualitative evaluations are under the same settings. Performances pro-
vided in table 3 and table 4 are evaluated per segment. Table 5 and table 6
list performances per music/dancing-motion piece. We count recommended
categories after each test segment in test music/dancing-motion piece, and
select category with the highest occurrences as recommended category for
a whole piece. As shown in table 5 and table 6, prediction accuracies per
music/dancing-motion piece with CL are more accurate than without, and pre-
diction accuracies per music/dancing-motion piece are higher than prediction
accuracies per segment in table 3 and table 4. This indicates that by fusing rec-
ommendations from each segment, overall recommendation accuracy is further
enhanced.

4.5 Qualitative Evaluation

For qualitative evaluation, we employ MCLEMCD-FC method with joint and
limb features as inputs. The method recommends three candidate music pieces
for each test dancing motion. We invite nine subjects to rate performance of
recommendations online. These subjects are from music (3 subjects), dance (3
subjects), and computer science (3 subjects) majors, corresponding to subject
ID 1-9 in qualitative evaluation table. Dancing videos accompanied by ground
truth music pieces are first displayed. Then dancing videos with recommended
background music are displayed. Subjects are asked to rate recommendation
performance based on following questions.

� Q1: Whether recommended background music is consistent with style of
dancing motions? Scoring ranges from 1 to 5, where 1 denotes that dancing
motions and music are not consistent in style at all, 5 denotes that style
of dancing motions and recommended background music completely match



14 MCLEMCD

with each other, and 2, 3 and 4 represent increasing consistencies in style
between 1 and 5.

� Q2: Whether recommended background music matches tempo of dancing
motions? Rating is also on a 5-point scale. Rating standard is the same as
that of Q1.

� Q3: Whether recommended music is more suitable for dancing motions than
ground truth music? Rating is either 1 (recommended music is more suitable
for dancing motions than ground truth music) or 0 (otherwise).

Based on ratings from all subjects, we calculate average score of each cate-
gory by each subject and get “per subject” score. Sum of “per subject” values
over a major are then averaged to obtain “per major” score for each category.
Finally, “per major” scores are added and averaged to calculate “average”
value of a category.

Qualitative evaluation results are shown in table 7 and table 8. Based on
average value of Q3 in table 7 and table 8, we observe that recommended music
is considered as being more suitable for dancing motions than ground truth
background music.

We observe from table 7 that both “rumba” and “tango” score higher in
style and tempo consistency with CL, and subjects consider that recommended
music to be more suitable for dancing motions compared with recommended
music without CL [42]. But for “cha-cha” and “waltz”, ratings are not as
high as their counterparts. We argue that this difference is because subjects
tend to be more critical during online assessment. In addition, subjects from
music and dance majors rate lower in style and tempo than subjects from
computer science majors. Overall, qualitative evaluation proves effectiveness
of the proposed method because most subjects from music and dance majors
believe that recommended music is more suitable for dancing motions than
ground truth music, even though music style and tempo do not completely
match dancing motions.

From table 8, we observe that subjects rate higher scores for “hip-hop” cat-
egory, and they believe that recommended music is more suitable for dancing
motions in both style and tempo for this category. While “house” and “break”
categories are rated the lowest scores for Q3. Ratings are consistent with con-
fusion matrix of qualitative evaluation result in Fig. 5. From the table, we also
observe that many scores are around 0.5, showing that AIST++ dataset is dif-
ficult to distinguish among music categories. This is also consistent with the
low prediction accuracy of AIST++ dataset compared with the high prediction
accuracy of MusicToDance dataset.

5 Discussions and Future Works

This work proposes a MCLEMCD method that improves prediction accuracy
of music recommendation through co-training of two modalities, i.e., danc-
ing motions and music. In addition, we evaluate the proposed model and its
variants by adding dropout layers and a fully connected mapping network.
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Table 7 Qualitative Evaluation Results of MusicToDance Dataset.

Category Subject ID
Style Quality (Q1) Tempo Quality (Q2) Quality Compared with GT (Q3)

Per Subject Per Major Average Per Subject Per Major Average Per Subject Per Major Average

Cha-cha

1 0.62

0.71

0.76

0.60

0.72

0.77

+0.67

+0.63

-0.47

2 0.78 0.76 +0.67

3 0.73 0.80 +0.56

4 0.76

0.74

0.76

0.78

+0.56

+0.56
5 0.76 0.78 +0.56

6 0.71 0.80 +0.56

7 0.73

0.83

0.64

0.81

-0.22

-0.22
8 0.96 0.96 -0.22

9 0.80 0.84 +0.671

Rumba

1 0.46

0.69

0.78

0.80

0.79

0.77

+0.67

+0.74

+0.67

2 0.80 0.87 +0.78

3 0.80 0.69 +0.78

4 0.76

0.81

0.69

0.70

+0.89

+0.82
5 0.86 0.71 +0.78

6 0.82 0.71 +0.78

7 0.73

0.85

0.73

0.83

-0.22

-0.44
8 0.98 0.96 -0.44

9 0.84 0.82 +0.67

Tango

1 0.50

0.69

0.76

0.77

0.80

0.81

+0.67

+0.67

+0.67

2 0.73 0.83 +0.67

3 0.83 0.80 +0.67

4 0.83

0.79

0.73

0.79

+0.67

+0.67
5 0.80 0.80 +0.67

6 0.73 0.83 +0.67

7 0.70

0.81

0.67

0.83

-0.161

+0.67
8 0.90 0.93 ±0.50

9 0.83 0.90 0.83

Waltz

1 0.62

0.76

0.82

0.78

0.73

0.72

+0.67

+0.56

+0.61

2 0.78 0.82 -0.33

3 0.88 0.60 +0.67

4 0.87

0.88

0.64

0.61

+0.78

+0.59
5 0.89 0.58 -0.44

6 0.87 0.60 +0.56

7 0.73

0.81

0.67

0.83

-0.001

+0.67
8 0.91 1.00 +0.67

9 0.80 0.82 +0.67
1 This is considered as an outlier (0.4 difference from average). Noisy data are not taken into consideration for calculating “per major” and

“average” values.

Experimental results show that dropout module does not significantly improve
accuracy, while adding a fully connected mapping network between music and
motion encoders can significantly improve prediction accuracy. The proposed
method is validated on MusicToDance and AIST++ datasets using quanti-
tative and qualitative evaluation metrics. Experimental results show that the
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Table 8 Qualitative Evaluation Results of AIST++ Dataset (Split into Two Parts) - Part 1

Category Subject ID
Style Quality (Q1) Tempo Quality (Q2) Quality Compared with GT (Q3)

Per Subject Per Major Average Per Subject Per Major Average Per Subject Per Major Average

BR

1 0.67

0.69

0.75

0.57

0.65

0.69

+0.67

+0.56

-0.48

2 0.80 0.77 ±0.50

3 0.60 0.60 ±0.50

4 0.57

0.67

0.60

0.60

±0.50

+0.56
5 0.73 0.60 ±0.50

6 0.73 0.60 +0.67

7 0.83

0.90

0.77

0.81

-0.17

-0.33
8 1.00 0.87 -0.33

9 0.87 0.80 ±0.50

HO

1 0.70

0.76

0.78

0.73

0.73

0.75

-0.17

-0.17

-0.43

2 0.80 0.77 -0.17

3 0.77 0.70 +0.831

4 0.70

0.70

0.70

0.70

+0.83

+0.72
5 0.70 0.70 +0.67

6 0.70 0.70 +0.67

7 0.80

0.87

0.80

0.83

±0.50

-0.39
8 0.97 0.87 -0.17

9 0.83 0.83 ±0.50

JB

1 0.63

0.63

0.63

0.63

0.69

0.70

±0.50

+0.56

-0.38

2 0.67 0.80 +0.67

3 0.60 0.63 ±0.50

4 0.60

0.60

0.63

0.63

±0.50

±0.50
5 0.60 0.63 ±0.50

6 0.60 0.63 ±0.50

7 0.53

0.65

0.57

0.79

-0.00

-0.09
8 0.63 0.93 -0.17

9 0.80 0.87 +0.671

JS

1 0.63

0.65

0.67

0.57

0.67

0.71

±0.50

+0.56

+0.68

2 0.83 0.83 ±0.50

3 0.50 0.60 +0.67

4 0.50

0.51

0.60

0.60

+0.83

+0.72
5 0.50 0.60 +0.83

6 0.53 0.60 ±0.50

7 0.70

0.86

0.77

0.86

-0.331

+0.75
8 1.00 0.87 +0.67

9 0.87 0.93 +0.83

KR

1 0.70

0.75

0.79

0.80

0.82

0.78

+0.83

+0.92

+0.68

2 0.83 0.87 ±0.501

3 0.73 0.80 +1.00

4 0.73

0.72

0.80

0.80

+1.00

+0.94
5 0.73 0.80 +0.83

6 0.70 0.80 +1.00

7 0.73

0.89

0.77

0.73

-0.33

-0.17
8 0.97 0.50 -0.00

9 0.97 0.93 +0.671

1 This is considered as an outlier (0.4 difference from average). Noisy data are not taken into consideration for calculating “per major” and
“average” values.



MCLEMCD 17

Qualitative Evaluation Results of AIST++ Dataset (Split into Two Parts) - Part 2

Category Subject ID
Style Quality (Q1) Tempo Quality (Q2) Quality Compared with GT (Q3)

Per Subject Per Major Average Per Subject Per Major Average Per Subject Per Major Average

LH

1 0.67

0.73

0.76

0.67

0.71

0.75

+0.83

+0.75

+0.70

2 0.80 0.80 -0.331

3 0.73 0.67 +0.67

4 0.67

0.68

0.67

0.67

+0.67

+0.78
5 0.67 0.67 +0.83

6 0.70 0.67 +0.83

7 0.80

0.88

0.83

0.86

±0.50

+0.56
8 1.00 0.86 ±0.50

9 0.83 0.90 +0.67

LO

1 0.80

0.79

0.80

0.73

0.73

0.77

+0.67

+0.67

+0.70

2 0.90 0.77 +0.67

3 0.67 0.70 +0.67

4 0.70

0.68

0.70

0.72

+0.67

+0.67
5 0.67 0.73 +0.67

6 0.67 0.73 +0.67

7 0.83

0.92

0.77

0.85

-0.171

+0.75
8 1.00 0.90 +0.67

9 0.93 0.87 +0.83

MH

1 0.77

0.73

0.76

0.70

0.75

0.76

+1.00

+0.92

+0.86

2 0.73 0.87 -0.331

3 0.70 0.67 +0.83

4 0.70

0.70

0.67

0.64

+0.83

+0.83
5 0.70 0.63 +0.83

6 0.70 0.63 +0.83

7 0.80

0.86

0.70

0.89

-0.171

+0.83
8 0.97 1.00 +0.83

9 0.80 0.97 +0.83

PO

1 0.67

0.73

0.74

0.80

0.79

0.78

+0.83

+0.72

+0.66

2 0.90 0.87 ±0.50

3 0.63 0.70 +0.83

4 0.63

0.63

0.70

0.70

+0.83

+0.83
5 0.63 0.70 +0.83

6 0.63 0.70 +0.83

7 0.77

0.87

0.72

0.84

-0.33

-0.44
8 1.00 0.93 ±0.50

9 0.83 0.87 ±0.50

WA

1 0.57

0.65

0.69

0.53

0.62

0.62

-0.33

+0.55

-0.42

2 0.77 0.87 ±0.50

3 0.60 0.47 +0.83

4 0.60

0.60

0.47

0.47

+0.83

+0.72
5 0.60 0.47 +0.83

6 0.60 0.47 ±0.50

7 0.70

0.81

0.67

0.78

-0.00

-0.00
8 0.87 0.77 -0.00

9 0.87 0.90 +0.671

1 This is considered as an outlier (0.4 difference from average). Noisy data are not taken into consideration for calculating “per major” and
“average” values.
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model performs well on MusicToDance dataset, while results on AIST++
are moderate. The reason may be that AIST++ dataset contains more cat-
egories, and most categories are similar in style and tempo (all belong to
popular rhythm music). As a result, the dataset is difficult to distinguish among
categories.

Our further research will be conducted in two directions. One is to continue
to explore network structure to improve its performance on AIST++ dataset.
The other is to establish a mapping between dancing motion feature and music
feature, and directly generate music from dancing motion feature.
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