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Simple Summary: Within the rapidly evolving landscape of Machine Learning in the medical field,
this paper focuses on the forefront advancements in neuro-oncological radiology. More specifically, it
aims to provide the reader with an in-depth exploration of the latest advancements in employing
Deep Learning methodologies for the classification of brain tumor radiological images. This review
meticulously scrutinizes papers published from 2018 to 2023, unveiling ongoing topics of research
while underscoring the main remaining challenges and potential avenues for future research identified
by those studies. Beyond the review itself, the paper also underscores the importance of placing the
image data modelling provided by Deep Learning techniques within the framework of analytical
pipeline research. This means that data quality control and pre-processing should be correctly coupled
with modelling itself, in a way that emphasizes the importance of responsible data utilization, as well
as the critical need for transparency in data disclosure to ensure trustworthiness and reproducibility
of findings.

Abstract: Machine Learning is entering a phase of maturity, but its medical applications still lag
behind in terms of practical use. The field of oncological radiology (and neuro-oncology in particular)
is at the forefront of these developments, now boosted by the success of Deep-Learning methods for
the analysis of medical images. This paper reviews in detail some of the most recent advances in the
use of Deep Learning in this field, from the broader topic of the development of Machine-Learning-
based analytical pipelines to specific instantiations of the use of Deep Learning in neuro-oncology;
the latter including its use in the groundbreaking field of ultra-low field magnetic resonance imaging.

Keywords: machine learning; neuro-oncology; radiology; deep learning; data analysis pipeline;
ultra-low field magnetic resonance imaging

1. Introduction

Although Machine Learning (ML) is entering a phase of maturity, its applications in
the medical domain at the point of care are still few and tentative at best. This paradoxical
contradiction has been explained according to several different factors. One of them is the
lack of experimental reproducibility, a requirement in which ML models in health have been
reported to fare badly in comparison to other application areas [1]. One main reason to
explain this is the mismatch between a data-centered (and often data-hungry) approach
and the scarcity of publicly available and properly curated medical databases, combined
with a nascent but insufficient data culture at the clinical level [2]. Another factor has to do
with regulatory issues of ML (and Artificial Intelligence in general) in terms of both lack of
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maturity and geographical heterogeneity [3]. Further elements hampering ML-based tools
adoption include data leakage, dataset shift, required model recalibrations, analytical pipeline
maintenance failures, or changing medical practice patterns, to name a few [4].

The field of oncological radiology (and neuro-oncology in particular) is arguably at
the forefront of the practical use of ML in medicine [5], now boosted by the success of Deep-
Learning (DL) methods for the analysis of medical images [6,7]. Unfortunately, though,
imaging does not escape the challenges and limitations summarized in the previous para-
graph. Central to them, what has been called the “long-tail effect” [8]: pathologies for which
only small and scattered datasets exist due to the scarcity of clinical data management
strategies (technically complex and expensive) at levels beyond the local (regional, national,
international). Associated with this, we must account for the difficulty of achieving stan-
dardized labeling (annotation) of imaging databases. An example of how to deal effectively
with these problems is Federated Learning, which was used in [9] to gather data from
71 sites from 6 continents, analyzed using ML to address a problem of tumor boundary
detection for glioblastoma brain tumors. Please note that the resulting database includes
6314 cases, which is impressive for this medical domain but still modest from an ML
perspective. The success of ML in oncological radiology, as summarily stated in [10], will
depend on its ability to create value in the delivery of medical care in terms of “increased
diagnostic certainty, decreased time on task for radiologists, faster availability of results,
and reduced costs of care with better outcomes for patients”.

This paper surveys some of the most recent advances in the use of ML for the analysis
of magnetic resonance imaging (MRI) data in neuro-oncology without trying to make
an all-encompassing review out of it. Instead, we focus on the most rapidly developing
area, which involves the use of methods from the DL family. The variety of approaches
sprouting from this family of methods has shaken the standards of data pre-processing or
feature engineering before modeling as such. For this reason, we proceed to address the
review hierarchically, starting in Section 3 with the broader topic of the development of
ML-based analytical pipelines, which addresses the data analysis process beyond specific
models and in which we will provide examples from two promising feature engineering
approaches, namely source extraction in the form of independent component analysis (ICA)
and nonnegative matrix factorization (NMF), and radiomics. The review of DL methods
for image data analysis as such is delivered in Section 4. As an addition to this section,
we will discuss the potential uses of DL in the groundbreaking field of ultra-low field
(ULF) MRI [11]. Before all this, the following section will provide some contextual basic
definitions of neuro-oncology concepts and a description of the main challenges and open
issues concerning the use of ML in this domain.

2. Open Problems in AI Applied to MRI Analysis

The open problems for the use of ML-based analytical processes in the field of MRI
in neuro-oncology can be seen from different perspectives. The first one is the analytical
problem itself, according to which the main division is into categorization and segmentation
problems. The latter is commented on later in this section.

Categorization can, in turn, be split into diagnosis and prognosis. In diagnosis, the
correlation between neuroimaging classifications and histopathological diagnoses was
assessed in [12] based on the 2000 version of the WHO classification of brain tumors
and in [13] based on the 2007 version. In both studies, the main finding was that the
sensitivity was variable among classes, whereas specificity was in the range of 0.85–1.
The most difficult categories to diagnose were the glioma subtypes. The study based on
the 2000 classification [12] reported a sensitivity of 0.14 for low-grade astrocytoma and
0.15 for low-grade oligodendroglioma. In the study based on the 2007 classification [13],
increased sensitivity for low-grade astrocytoma (0.56) was found, but sensitivity was still
low for other low-grade gliomas (LGG) such as oligodendroglioma (0.26), or for anaplastic
gliomas (astrocytoma, 0.17 or ependymoma, 0.00), and other classes in the long-tail such
as meningiomas of grade II and III in aggregate (0.17), or subependymomas and choroid
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plexus papilloma (0.33 for both). The recently released 2021 WHO classification [14], which
incorporates the genetic alterations, opens the door to the reevaluation of these baseline
results to accurately estimate the added value of any clinical decision support system
(CDSS) based on ML or radiogenomics, over the limits of radiological interpretation of
imaging findings. It is reasonable to foresee that the problematic tumor categories will
remain so, or even more challenging, given the enhanced stratification of the glial category
(e.g., different mutations of IDH1/2, ATRX, TP53, BRAF, H3F3A, CDKN2A/B, TERT and
MGMT promoters, EGFR amplification, GFAP, 1p/19q codeletion, etc.).

On the other hand, regarding follow-up, there is no standard of care for recurrent high-
grade gliomas, and the currently accepted criteria to assess response are those established
by the Response Assessment in Neuro-Oncology Working Group (RANO) [15], which
deals with the pseudoprogression phenomenon, defined as the appearance of contrast-
enhancing lesions during the first 12 weeks after the end of the concomitant treatment
or when the lesion developed within the first 3–6 months after radiation therapy, if it
is in the radiation field (inside the 80% isodose line), and especially if it presents as a
pattern of enhancement related to radiation-induced necrosis enhancement [16]. Also,
with pseudoresponse in those patients treated with antiangiogenics in countries where
these are approved [17,18]. Antiangiogenic agents, like bevacizumab, are designed to block
the VEGF effect. The mechanism of action may be related to decreased blood supply
to the tumor and normalization of tumor vessels, which display increased permeability.
These agents are associated with high radiologic responses if we evaluate only the contrast
enhancement. The recently published RANO 2.0 criteria [19] refine the former RANO,
distinguishing between high-grade and low-grade gliomas. RANO 2.0 also takes into
account the IDH status to decide whether the surrounding non-enhancing region should
be taken into account or not. In this sense, ML-based pipelines should ideally be designed
to allow the evaluation of their added value with respect to medical guidelines for clinical
decision-making.

Another viewpoint to approach the open problems in the field has to do with the fact
that ML-based analysis is strongly dependent on data pre-processing and the post-processing
of results.

A fundamental prerequisite for the successful application of DL models in brain tumor
classification is the pre-processing of the MRI data. The key pre-processing steps for the
harmonization of MRI data are as follows.

• Resampling: MRI scans can exhibit variations in resolution and voxel sizes depending
on the acquisition system. Resampling standardizes the resolution across the MRI
images to ensure uniform dimensions.

• Co-registration: entails the alignment of MRI scans with a standardized anatomical
template with the purpose of situating different scans within the same anatomical
coordinate system.

• Skull-stripping: The main objective of the skull-stripping step is to efficiently isolate
the cerebral region of interest from non-cerebral tissues, which enables DL models to
focus exclusively on those brain tissues.

• Bias Field Correction: aims to rectify intensity inhomogeneities that are pervasive in
MRI scans to guarantee uniformity in intensity values. The technique of choice for bias
field correction is N4ITK (N4 Bias Field Correction) [20], which is an improved variant
of the N3 (non-parametric nonuniform normalization) retrospective bias correction
algorithm [21].

• Normalization: a technique adopted to rescale intensity values of MRI scans to a
numeric range, rendering them consistent across the dataset. This process mitigates
scale-related disparities. Two prominent approaches commonly applied to MRI data as
input for DL models are min-max normalization and z-score normalization. Min-max
achieves its goal by rescaling intensity values within MRI scans, spanning their range
between 0 and 1. In contrast, z-score, often referred to as standardization, transforms
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the distribution of intensity values by centering it around a zero mean and standard
deviation of value 1.

• Tumor identification: A critical and optional pre-processing step before the classifica-
tion task involves identifying the tumor region of interest (ROI) through segmentation
or by defining a bounding box that encompasses the tumor. Popular DL architectures,
such as UNet [22], Faster-RCNN [23], and Mask-RCNN [24] are often employed to
perform such segmentation or detection tasks.

The post-processing of results must often address the fact that the DL family of
methods is, by their nature, an extreme case of black-box approach, a characteristic that
may strongly hamper their medical applicability [25]. This limitation can be addressed
using explainability and interpretability strategies; for further details on these, the reader is
referred to [25].

3. Ml-Based Analytical Pipelines and Their Use in Neuro-Oncology

Ultimately, the whole point of using ML methods for data-based problems in the area
of neuro-oncology is to provide radiologists with evidence-based medical tools at the point
of care that can assist them in decision-making processes, especially with ambiguous or
borderline cases. This is why it makes sense to embed these methods in Clinical Decision
Support Systems (CDSS). A thorough and systematic review of intelligent systems-based
CDSS for brain tumor analysis based on magnetic resonance data (spectra or images) is
presented in this same Special Issue of Cancers [26]. It reports their increasing use over
the last decade, addressing problems that include general ones such as tumor detection,
type classification, and grading, but also more specific ones such as physicians’ alerting of
treatment change plans.

At the core of ML-based CDSS, we need not just ML methods, models, and techniques
but, more formally, ML pipelines. An ML pipeline goes beyond the use of a collection of
methods to encompass all stages of the data mining process, including data pre-processing
(data cleaning, data transformations potentially including feature selection and extraction,
but also other aspects of data curation such as data extraction and standardization, missing
data imputation and data clinical validation [27]) and models’ post-processing, potentially
including evaluation, implementation and the definition of interpretability and explain-
ability processes [25]. Pipelines can also accommodate specific needs, such as those related
to the analysis of “big data”, with their corresponding challenges of standardization and
scalability. As described in [28], in a clinical oncology setting, this may require a research
infrastructure for federated ML based on the findable, accessible, interoperable, and reusable
(FAIR) principles. Alternatively, we can aspire to automate the ML pipeline definition
using Automated ML (AutoML) principles, as in [29], where Su and co-workers used a
Tree-based Pipeline Optimization Tool (TPOT) in the process of selecting radiomics features
predictive of mutations associated with midline gliomas.

An example of an ML pipeline for the specific problem of differentiation of glioblas-
tomas from single brain metastases based on MR spectroscopy (MRS) data can be found
in [30]. In this same issue of Cancers, Pitarch and co-workers [31] describe an ML pipeline
for glioma grading from MRI data with a focus on the trustworthiness of the predictions
generated by the ML models. This entails robustly quantifying the uncertainty of the
models regarding their predictions, as well as implementing procedures to avoid data
leakage, thus avoiding the risk of unreliable conclusions. All of these can be seen as part
of a quest to avoid the pitfalls of implementation of ML-based CDSS that result in the
problems of limited reproducibility of analytical results in clinical practice that have been
reported in recent studies [1].

As previously explained, the first stages of an ML pipeline, prior to the data modeling
itself, involve data pre-processing, and this task may, in turn, involve many sub-problems.
As an example of the potential diversity and complexity of this landscape, we comment here
on a few recently selected contributions to the problem of feature engineering and extraction
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following just two particular and completely different approaches: statistical image feature
engineering using radiomics and source extraction using ICA- and NMF-based methods.

Radiomics is an image transformation approach that aims to extract either hard-coded
statistical or textural features based on expert domain knowledge or feature representations
learned from data, often using DL methods. The former may include first-order statistics,
size and shape-based features, image intensity histogram descriptors, image textural infor-
mation, etc. The use of this method for the pre-processing of brain tumor images prior to
the use of ML has been recently and exhaustively reviewed in [32]. From that review, it is
clear that the predominant problem under analysis is diagnosis, with only a limited number
of studies addressing prognosis, survival, and progression. The types of brain tumors
under investigation are dominated by the most frequent classes. In particular, glioblastoma,
either on its own or combined with metastasis as a super-class of aggressive tumors, is
the subject of many studies, with some others also including other frequent super-classes
such as low-grade glioma or meningioma, while minority tumor types and grades are
only considered in a limited number of studies. Importantly, and related to our previous
comments concerning scarce data availability, most of the studies reported in [32] work
with very small sample sizes, often not reaching the barrier of 100 cases. The challenge
posed by data scarcity is compounded by the fact that most of the studies extract Radiomic
features in the hundreds if not the thousands. This means that the ratio of cases-to-features
is extremely low, making the use of conventional ML classifiers very difficult. To alleviate
this problem, most of the reviewed papers resort to different strategies for qualitative and
quantitative feature selection. Image modalities under analysis are dominated by T1, T2,
and FLAIR, with few exceptions (PET, or Diffusion- and Perfusion-Weighted Imaging).
Most studies are shown to resort to the Area Under the ROC Curve (AUC) as a performance
metric, which is a safe choice, as it is far more robust than plain accuracy for small and
class-imbalanced datasets.

The use of radiomics as a data transformation strategy in pre-processing is facilitated
by the existence of off-the-shelf software such as the open-source PyRadiomics package [33].

Source extraction methods have a very different analytical rationale for data dimen-
sionality reduction as a pre-processing step. They do not achieve it through plain feature
transformation, as in radiomics. Instead, they aim to find the underlying and unobserved
sources of observed radiological data. In doing so, they achieve dimensionality reduction
as a byproduct of a process that may provide insight into the generation of the images
themselves.

The ICA technique [34] has a long history in medical applications, most notoriously
for the analysis of electroencephalographic signals. Source extraction is natural in this
context as a tool for spatially locating sources of the EEG from electric potentials measured
in the skull surface. In ICA, we assume that the observed data can be expressed as a linear
combination of sources that are estimated to be statistically independent or as independent
as possible. This technique has mostly been applied to brain tumor segmentation, but some
alternative recent studies have extended its possibilities to dynamic settings, such as that
in [35], where dynamic contrast-enhanced MRI is analyzed using temporal ICA (tICA), and
in [36], where probabilistic ICA is used for the analysis of dynamic susceptibility contrast
(DSC) perfusion MRI.

The NMF technique [37], on the other hand, was originally devised for the extraction
of sources from images and assumes data non-negativity but does not assume statistical
independence. Data are still approximated by linear combinations of factors. Although
NMF and variants of this family of methods have extensively been used for the pre-
processing and analysis of MRS and MRS imaging (MRSI) signal [38,39], they have only
scarcely been used for the pre-processing of MRI. Some outstanding exceptions include the
work in [40] with hierarchical NMF for multi-parametric MRI and the recent proposal of a
whole new architecture based on NMF called Factorizer [41], constructed by replacing the
self-attention layer of a Vision Transformer (ViT, [42]) block with NMF-based modules.
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The technical details of ICA and NMF and their manifold variants are beyond the
scope of this review and can be found elsewhere in the literature.

4. Deep Learning in Neuro-Oncology Data Analysis: A Review

In this section, we review existing recent literature to gather evidence about the
advantages, challenges, and potential future directions in the use of DL techniques for
supervised problems in neuro-oncology. Furthermore, we aim to provide insights into
the current state-of-the-art methodologies, address their limitations, and identify areas
for further research. Ultimately, our objective is to facilitate the development of robust,
responsible, and applicable DL solutions that can effectively contribute to the field of
neuro-oncology.

4.1. Overview of the Main DL Methods of Interest

Recent advances in the DL field have brought about new possibilities in medical
imaging analysis and diagnosis. One of its arguably most successful models is Convolu-
tional Neural Networks (CNNs), a widely used type of DL algorithm, well known for its
ability to capture spatial correlations within image pixel data hierarchically. They have
shown promise in medical imaging tasks [43–45], enabling improved tumor detection,
classification, and prognosis assessment. The input data of a CNN is represented as a
tensor with dimensions in the format of (channels, depth, height, width). Notably, the “depth”
dimension is specific to 3D images and not applicable to 2D data, and “height” and “width”
correspond to the image’s spatial dimensions. In practical terms, the number of channels for
color images is translated into three, representing Red, Green, and Blue (RGB) components,
while gray-scale images consist of a single channel. The most characteristic operation in a
CNN is called convolution, which gives the name to the convolutional layers. These layers
capture spatial correlations by applying a set of filters or kernels across all areas of the input
image data and compute the weighted sum, resulting in the generation of a feature map as
an output. This feature map contains essential characteristics extracted by the actual layer
and serves as the input for subsequent layers of processing. Another useful layer used in
CNNs is the pooling layer. The pooling operation consists of downsampling the feature
maps obtained from the convolution operation. The idea is to reduce the dimensionality
without losing significant information. There are mainly two kinds of pooling: max-pooling
and average-pooling. The outputs of convolutional layers are often passed through activa-
tion functions to introduce non-linearity. The most popular activation functions are ReLU,
which inactivates negative values in the output through the formula f (x) = max(0, x);
Sigmoid, which maps output values between 0 and 1 using the equation f (x) = 1

1+e−x ; and
SoftMax, which is the extension of Sigmoid for multi-class problems.

CNNs often consist of multiple layers that work together to learn hierarchical high-
level image features. These layers progressively extract more abstract and complex in-
formation from the input image data. In the final step, the last feature map is passed
through a fully connected layer, resulting in a one-dimensional vector. To obtain the class
probabilities, Sigmoid or SoftMax are applied to this vector.

several networks have made significant contributions to the world of DL. AlexNet [46],
GoogLeNet [47], InceptionNet, VGGNet [48], ResNet [49], DenseNet [50], and Efficient-
Net [51] are among the most widely used CNNs to extract patterns from medical imaging.

DL models are considered data-hungry since they require substantial amounts of
data for effective training. In the realm of medical data analysis, a primary challenge, as
previously mentioned, is the inherent data scarcity and class imbalance. Common solutions
to address this challenge include the application of data-augmentation (DA) methods and
transfer-learning (TL) techniques.

Data Augmentation techniques are a crucial strategy to mitigate the challenge of
limited annotated data in medical image analysis. These methods encompass a range of
transformations applied to existing images, effectively expanding the dataset in terms of
both size and diversity. Former approaches involve a wide range of geometric modifications



Cancers 2024, 16, 300 7 of 55

such as rotation, scaling, flipping, cropping, zooming, or color changes. Beyond traditional
augmentations, advanced methods like Generative Adversarial Networks (GANs) [52] are
used to generate new synthetic and realistic examples.

The idea behind TL is to leverage pre-trained models, typically trained in large and
diverse datasets, and adapt them for the specific task at hand, for which we might not have
such a representative sample. Widely used pre-trained CNNs, such as ImageNet [53] or
MS-COCO [54], have been originally developed from 2D large-scale datasets. However,
a notable challenge when dealing with medical image data is the limited availability of
large and diverse 3D datasets for universal pre-training [55]. Transferring the knowledge
acquired from the 2D to the 3D domain proves to be a non-trivial task, primarily due to the
fundamental differences in data structure and representation between these two contexts.
To tackle this challenge and address the limitation of limited data, a broadly used strategy
is to decompose 3D volumes into individual 2D slices within a determined anatomical
plane. However, the decomposition of 3D volumes into individual 2D slices introduces a
potential data leakage concern. This issue arises when 2D slices from the same individual
inadvertently end up in both the training and testing datasets in an analytical pipeline.
Such data leakage can lead to overestimations of model performance and affect the validity
of experimental results. In addition, it is important to note that this approach comes with
the trade-off of losing the 3D context present in the original data.

Recent efforts have aimed at overcoming these challenges. Banerjee et al. [56] classified
low-grade glioma (LGG)and high-grade glioma (HGG) multi-sequence brain MRIs from
TCGA and BraTS2017 data using multiple slice-based approaches. In their work, they
provided a comparison of the performance obtained with CNNs trained from scratch on
2D image patches (PatchNet), entire 2D slices (SliceNet), and multi-planar slices through
a final ensemble method that averages the classification obtained from each anatomical
view (VolumeNet). The classification obtained with these models is also compared with
pre-trained VGGNet and ResNet on ImageNet. The multi-planar method outperformed
the rest of the approaches with an accuracy of 94.74%, and the lowest accuracy (68.07%)
was obtained with pre-trained VGGNet. Unfortunately, TCGA and BraTS data share some
patient data, which could involve an overlap between training and testing samples and
hence be prone to data leakage. Ding et al. [57] combined radiomics and DL features using
2D pre-trained CNNs using single-plane images and performing a subsequent multi-planar
fusion. VGG16, in combination with radiomics and RF, achieved the highest accuracy
of 80% when combining the information obtained from the three views. Even though
the multi-planar approach processes the information gathered from the axial, coronal,
and sagittal views, it is still essentially a 2.5D approach, weak at fully capturing 3D
contexts. Zhuge et al. [58] presented a properly native 3D CNN for tumor segmentation
and subsequent binary glioma grade classification and compared it with a pre-trained
2D ResNet50 on ImageNet with previous tumor detection, employing a Mask R-CNN.
The results of the 3D approach were slightly higher than the 2D ones, reporting 97.10%
and 96.30% accuracy, respectively. In their study, Chatterjee et al. [59] explored the role of
(2+1)D, mixed 2D–3D, and native 3D convolutions based on ResNet. This study highlights
the effectiveness of mixed 2D–3D convolutions, achieving an accuracy of 96.98%, surpassing
both the (2+1)D and the pure 3D approaches. Furthermore, the use of pre-trained networks
demonstrated enhanced performance in the spatial models, yet, intriguingly, the pure 3D
model performed better when trained from scratch. A study conducted by Yang et al. [55]
introduced ACS convolutions, a novel approach that facilitates TL from models pre-trained
on large publicly accessible 2D datasets. In this method, 2D convolutions are divided
by channel into three parts and applied separately to the three anatomical views (axial,
coronal, and sagittal). The effectiveness of this approach was demonstrated using a publicly
available nodule dataset. Subsequently, Baheti et al. [60] further advanced the application
of ACS convolutions by showcasing their enhanced performance on 3D MRI brain tumor
data. Their study provides evidence of notable improvements in both segmentation and
radiogenomic classification tasks.
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4.2. Publicly Available Datasets

Access to large and high-quality datasets plays a crucial role in the development
and evaluation of robust DL classification algorithms. This section aims to provide a
comprehensive review of several publicly accessible datasets that have been widely used
in brain tumor classification tasks and DL research. These datasets encompass diverse
tumor types, imaging modalities, and annotated labels, facilitating the advancement of
computational methods for accurate tumor classification.

Table 1 provides a detailed overview of the most frequently used datasets in the literature.
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Table 1. An overview of publicly available MRI datasets for brain tumor classification benchmarking.

Dataset Categories Dim. Sample Size MRI Modalities

BraTS [61]

2020

Low-Grade Glioma (LGG)

3D 369 (LGG: 76, HGG: 293) T1, T1c, T2, FLAIR
2019 3D 335 (LGG: 76, HGG: 259) T1, T1c, T2, FLAIR
2018 3D 284 (LGG: 75, HGG: 209) T1, T1c, T2, FLAIR
2017 High-Grade Glioma (HGG) 3D 285 (LGG: 75, HGG: 210) T1, T1c, T2, FLAIR
2015 3D 274 (LGG: 54, HGG: 220) T1, T1c, T2, FLAIR
2013 3D 30 (LGG: 10, HGG: 20) T1, T1c, T2, FLAIR
2012 3D 30 (LGG: 10, HGG: 20) T1, T1c, T2, FLAIR

CPM-RadPath [62]

Astrocytoma (AS) IDH-mutant
Oligodendroglioma (OG) IDH-mutant

1p/19q codeletion
Glioblastoma (GB) IDH-wildtype

3D Training: 221 (AS: 54, OG: 34, GB: 133)
[unseen sets] Val: 35, Test: 73 T1, T1c, T2, FLAIR

Figshare [63] Meningioma (MN), Glioma (GL),
Pituitary (PT) 2D 233 (MN: 82, GL: 89, PT: 62) T1c

IXI [64] Healthy 3D 600 T1, T2, PD, DW

Kaggle-I [65] Healthy (H), Tumor (T) 2D 3000 (H: 1500, T: 1500) -

Kaggle-II [66] Healthy (H), Meningioma (MN),
Glioma (GL), Pituitary (PT) 2D 3264 (H: 500, MN: 937, GL: 926, PT:

901) -

Kaggle-III [67] Healthy (H), Tumor (T) 2D 253 (H: 98, T: 155) -

Radiopaedia [68] - - - -

REMBRANDT [69]

Oligodendroglioma (OG),
Astroctyoma (AS), Glioblastoma (GB) 3D

111 (OG: 21, AS: 47, GB: 44)
T1, T1c, T2, FLAIRGrade II (G.II), Grade III (G.III), Grade

IV (G.IV) 109 (G.II: 44, G.III:24, G.IV: 44)

TCGA-GBM [70] Glioblastoma 3D 262 T1, T1c, T2, FLAIR

TCGA-LGG [71]

Grade II (G.II), Grade III (G.III)

3D

197 (G.II: 100, G.III: 96, discrepancy: 1)

T1, T1c, T2, FLAIRAstroctyoma (AS),
Oligodendroglioma (OG),
Oligoastrocytoma (OAS)

197 (AS: 64, OG: 86, OAS: 47)

DW: Diffusion-weighted, FLAIR: Fluid Attenuated Inversion Recovery, PD: Proton Density, T1c: contrast-enhanced T1 weighted.
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The Brain Tumor Segmentation Challenge (BraTS) and The Computational Precision
Medicine: Radiology-Pathology Challenge on Brain Tumor Classification (CPM-RadPath)
datasets were created for two popular challenges held at the MICCAI (Medical Image
Computing and Computer Assisted Intervention) Conference.

The BraTS Challenge [61] was initially developed in 2012 to benchmark tumor segmen-
tation methods distinguishing glioblastoma from “lower grades”. Notably, this challenge
provides not only MRI data but also clinical labels, including a binary classification of
glioma grades. Even though their definition does not fully align with WHO’s terminology,
they include grades 2 and 3 when referring to “lower grades”.

Throughout the years, the BraTS Challenge has continually evolved, expanding to
include additional tasks and diverse datasets. In 2017, the dataset was enriched by integrat-
ing data from the TCIA repository, specifically including samples from the TCGA-LGG [71]
and TCGA-GBM [70] datasets. It is worth noting that TCGA-LGG data provides labels
to differentiate between gliomas of grades 2 and 3. Although the primary focus of the
BraTS Challenge has traditionally centered on automated brain tumor segmentation, it has
grown to become a widely adopted resource for brain tumor grade classification. Recent
challenges have included tasks such as survival prediction and genetic classification, and
the 2023 challenge even included image synthesis tasks.

CPM-RadPath [62] from 2019 was designed to evaluate brain tumor classification
algorithms in three classes, taking into account the WHO classification of 2016: A (astrocy-
tomas grades II and III, IDH-mutant), O (oligodendroglioma grades II and III, IDH-mutant,
1p/19q codeleted) and G (Glioblastoma and diffuse astrocytic glioma with molecular fea-
tures of glioblastoma, IDH-wildtype (Grade IV)), interestingly grouping the anaplasic with
the low grades in the A and O classes.

This challenge provides participants with paired radiology scans and digitized histopathol-
ogy images. It is worth noting that the data provided by these challenges are distributed
after pre-processing, involving co-registered to the same anatomical template, interpolated to a
consistent resolution of 1 mm3, and skull-stripped.

The datasets under consideration encompass a variety of MRI modalities. Specifically,
BraTS, CPM-RadPath, REMBRANDT, and TCGA comprise images from four key modal-
ities: T1, T1 post-contrast weighted (T1c), T2-weighted, and Fluid Attenuated Inversion
Recovery (FLAIR). The IXI dataset provides not only T1 and T2 but also Proton Density
(PD) and Diffusion-weighted (DW) images. Notably, images on Figshare are limited to the
T1c modality, while datasets from Kaggle and Radiopaedia lack this information.

The images in the BraTS, CPM-RadPath, IXI, REMBRANDT, and TCGA datasets are
stored in 3D structures using widely used medical image formats, specifically NIfTI or
DICOM. In contrast, datasets sourced from Kaggle consist of 2D images in PNG format.
Notably, Figshare contains 2D images in MATLAB data format. In the Figshare data reposi-
tory, images are provided alongside a 5-fold CV split at the patient level to mitigate the
risk of data leakage. The use of this split ensures that no patient is inadvertently present in
both training and testing sets, thus preventing leakage. Moreover, this dataset comprises
multiple 2D slices from the same patient in the three distinct anatomical perspectives. Con-
versely, the datasets sourced from the Kaggle repository lack patient identifier information,
making it challenging to ascertain if images are from unique patients or to trace the origin
of the data.

Figure 1 summarizes the prevalence of dataset usage in the reviewed literature, includ-
ing public and private datasets. Datasets that appear in two or fewer papers are grouped
under the “Others” category.

It is worth highlighting that over 85% of the papers reviewed in this analysis make
use of public datasets. It is essential to acknowledge that the sample sizes of the datasets,
in general, are roughly in the hundreds range. This limited sample size can pose challenges
in drawing robust and generalizable conclusions, which is a notable concern within the ML
healthcare domain. Addressing the need for larger and more diverse datasets, as previously
discussed, is an ongoing challenge in this field.
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Figure 1. Dataset usage prevalence across the reviewed literature.

4.3. Literature Review

Various online repositories of scientific research articles, including PubMed, Google
Scholar, and Scopus, were utilized to collect pertinent papers for this review section. The
selection was restricted to the years 2018–2023. More specifically, only articles published
prior to 30 June 2023 were taken into consideration. The document type was restricted
to journal or conference papers. The focal keywords were centered on classifying brain
tumors from pre-operative MRI images using DL techniques. While refining our choices,
we excluded publications with ambiguous data explanations or lacking methodology
details, as the utmost priority was placed on guaranteeing the strength and acuity of our
conclusions. An initial identification process yielded a total of 555 papers, with 146 papers
remaining after the screening procedure. Figure 2 depicts the distribution of these papers
across the years under review, shedding some light on the temporal evolution of research
in this domain.

Figure 2. Yearly inclusion of articles in this review that focus on classifying brain tumors using DL
and MRI scans.

In the subsequent analysis, we provide comprehensive insights into the data sources
and methodologies employed in the examined papers. Table A1 offers a detailed overview
of the datasets, focusing on essential aspects such as the dimensionality of the images,
sample size, MRI details, and pre-processing methods used. Table A2 delves into the
specifications of the employed DL models, highlighting the brain tumor classification
task, data partitioning, architecture, and the reported performance metrics. These tables
contribute to a comprehensive understanding of the methodologies employed in the re-
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viewed literature. Tables A1 and A2 exclusively display the information available from
the original authors in the analyzed papers. Any omissions in the table reflect the absence
of such details as provided by the original authors in the surveyed papers. Notice that
several papers are marked with an asterisk (*), which denotes that not all models have
been reported in our tables due to the extensive array of results reported by the authors.
Especially in these cases, we recommend readers refer to the original papers for a compre-
hensive overview of findings.

In this review, we focus on the differentiation of primary brain tumor types, with
particular attention to gliomas due to their aggressive nature. Among the 146 examined
papers in this section, some address multiple tasks concurrently. Specifically, 77 focused on
distinguishing primary brain tumor types, while 27 aimed to identify tumorous images from
images of healthy patients. Furthermore, the pursuit of accurate glioma grade classification
is assessed in 66 papers, with 41 of them focusing on the binary distinction between low
(grades II and III) and high-grade (glioblastoma, grade IV) gliomas. Note that the question
asked by these 41 works does not correspond to any of the canonical releases of the WHO
classification of brain tumors, as III is, in fact, high-grade. In this sense, such a grouping
would facilitate the achievement of good performance results by grouping entities that are
more prone not to show contrast enhancement, in contrast to glioblastoma, which always
will show contrast enhancement [72]. Additionally, 12 studies delve into the distinction of
glioma subtypes.

As previously highlighted, pre-processing techniques are pivotal in medical image pro-
cessing. Among the 146 papers analyzed in this review, a substantial 80% of them provide
insights into the specific pre-processing methodologies that were employed. Within this subset,
it was observed that 35% employed registration techniques involving registration to a common
anatomical template and co-registration to the same MRI modality. Furthermore, 40% employed
segmentation as a critical step to isolate the brain from the surrounding skull structures. Notably,
nearly half of the papers embraced normalization techniques to standardize the intensity of the
image data before it was fed to the models. Additionally, 30% of the papers undertook the task
of brain tumor extraction through methods such as bounding box delineation or tumor segmen-
tation. Moreover, 15% of the papers employed pre-processing integrated image enhancement
techniques to improve the contrast and visibility of crucial anatomical structures. In several
studies [73–75], researchers investigated the advantages of utilizing the tumor area as opposed
to the entire image, highlighting the significant benefits of concentrating on the tumor region
rather than the entire image.

In the realm of medical research, the size and diversity of the training data sample
stand as fundamental factors that substantially influence the performance, generalizability,
and robustness of ML models. Several studies have explored the impact of varying the size
of the training data sample on model performance [76–84]. Their findings highlight the
value of ensuring that a substantial volume of data is available for training, as it significantly
contributes to the model’s ability to make more accurate and reliable predictions.

Regarding addressing the limitation of data scarcity, approximately 60% of the ex-
amined studies employed DA techniques, and 40% incorporated TL in a 2D domain as a
viable solution. Several of these investigations [85–92] have demonstrated the advantages
of increasing both the quantity and variability of the samples through the inclusion of
augmented images. Applying traditional DA techniques, such as geometric variations
from original images, was the most widely used strategy, while only a few studies opted
for the use of DL generative models [89,93–95]. Several studies [73,92,96–99] have inte-
grated DA as an oversampling technique to address the problem of imbalanced data in
the context of brain tumor classification. Furthermore, other works have explored the
inclusion of multi-view 2D slices from axial, coronal, and sagittal planes, in addition to
employing image flipping and rotations to augment the dataset [100]. Pre-trained models
have demonstrated performance enhancements in the classification of glioma grades in
several studies [79,101,102]. However, it is noteworthy that not all investigations have
reported equivalent advantages when employing pre-trained models to discriminate be-



Cancers 2024, 16, 300 13 of 55

tween healthy and tumorous samples [103] or to differentiate tumor types [104]. These
variations in findings underscore the complexity of the observed performance disparities,
which may not be solely ascribed to the classification task itself but may also be influenced
by intrinsic dataset variations.

The ability of CNNs to automatically extract meaningful features from brain MRI
images, as opposed to the conventional need for manual feature engineering in certain
ML algorithms like RF, GrB, and SVM, has been emphasized by numerous studies. These
studies underscore the potential of CNNs in revolutionizing the landscape of MRI feature
extraction for enhanced accuracy and efficiency in brain tumor classification [105–111].
Most of the reviewed papers (approximately 60%) utilized established state-of-the-art CNN
architectures to obtain brain tumor classification. Among these, ResNet and VGGNet
backbones were the most prevalent choices, closely followed by AlexNet, GoogLeNet, and
Inception. In contrast, the remaining 40% of the papers concentrated on enhancing brain tu-
mor classification by introducing novel model architectures. The inherent black-box nature
of CNNs highlights the importance of delving into the comprehension of their predictions,
especially in a medical context. Several studies within our review [74,112–117] have ap-
plied post-processing explainability tools to validate that the network’s decision-making
process aligns with the intended diagnostic criteria, therefore enhancing the reliability of
CNN-based medical applications.

Additionally, selected studies [57,118,119] explored the synergies of ensemble learning
by combining the outputs of radiomics and DL models. Another interesting area of research
has considered the opportunity of incorporating ML classifiers as the final layer in CNNs,
effectively bypassing the traditional SoftMax layer [76,96,99,103,119–128].

The integration of information from various data sources has garnered growing interest
in the medical field. Brain tumors, due to their distinct features both at the histopathological
and radiological level, have motivated numerous studies to explore the synergy between
whole slide imaging (WSI) and MRI data [97,129–132]. These investigations consistently
highlight the richer information content in WSI as compared to MRI. However, they also re-
veal that combining data from both sources leads to improved overall performance in brain
tumor characterization. Ensemble learning methods have shown promise in not only inte-
grating information from diverse data types but also in combining predictions from multiple
DL models on MRI to improve overall performance [75,82,91,107,108,116,122,133–139]. As
brain tumor diagnosis and prognosis are significantly linked to genetic factors, several stud-
ies have undertaken efforts to explore the capabilities of DL models in extracting meaningful
MRI features for the classification of these genetic frameworks [56,83,93,100,117,140,141].

Although brain MRIs inherently capture 3D data, a notable observation is that over
80% of the studies conducted their analyses within a 2D domain, focusing on 2D MRI slices.
Nonetheless, some investigations have actively explored the significance of incorporating
3D volumetric information into the realm of brain tumor classification [56,58,59,74,97,98,
100,112,117,129–132,135,140–148]. Although 3D volumes inherently capture information
from the three anatomical planes, 2D slices are restricted to a specific view. Notably, among
the studies that adopted a 2D approach, only 44% provided details about the chosen
anatomical plane. Among this subset, more than 50% utilized axial, coronal, and sagittal
views, while over 40% exclusively employed axial views.

Similarly, close to 70% of the reviewed studies disclosed the MRI modalities utilized
for the analysis. Among these, close to 50% exclusively employed the T1c sequence, while
26% used a combination of T1c, T1, T2, and FLAIR sequences, 12% used three sequences,
and the rest chose one sequence. Various strategies were employed to integrate information
from multiple modalities. The prevalent method involved fusing them as input channels,
comparable to the treatment of channels in RGB images. In their study, Ge et al. [100]
evaluated the sensitivity of T1c, T2, and FLAIR modalities in glioma grade classification.
Their investigation highlighted the T1c sequence as the most informative among these
modalities. To further enhance the classification performance, they incorporated informa-
tion from each source using an aggregation layer within the network architecture. Subse-
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quently, similar ensemble learning approaches were adopted by Gutta et al. [106], Hussain
et al. [148], Rui et al. [149]. Notably, Guo et al. [150] directly compared the performance
of a modality-fusion approach, where the four MRI modalities were concatenated as a
four-channel input, with a decision-fusion approach, where final predictions were derived
through a linear weighted sum from the probabilities obtained through four independent
pre-trained unimodal models. This study reinforced the notion of the T1c modality’s
significance in glioma subtype classification. Moreover, it revealed that any multimodal ap-
proach consistently outperformed unimodal models, with the decision-ensemble approach
emerging as the most effective strategy.

As previously discussed, decomposing 3D volumes into individual 2D slices may
introduce the potential for data leakage. Maintaining the reliability of the analysis is
crucial for obtaining robust and trustworthy findings. It is worth noting, however, that
only a limited number of studies that use multiple 2D slices [56,76,77,79,93,100,101,106,
107,115,118,126,135,149,151–157], explicitly detailed their approach to data splitting at the
patient level, addressing this critical concern. Remarkably, an insightful comparison was
carried out in the work of Badža and Barjaktarović [158] between data-splitting strategies
at the patient and image levels. The findings elucidate that an image-wise approach yields
accuracy results as high as 96% for brain tumor type classification, while a patient-level
split demonstrates a higher degree of reliability with an accuracy of 88%. These results
underscore the critical importance of utilizing a patient-wise training approach to assess
the model’s generalization capacity. Similarly, Ghassemi et al. [85], Ismael et al. [159]
also provided evidence of superior performance when using an image-wise split, further
reinforcing the importance of thoughtful data splitting. It is also important to note that 3D
models operate on complete 3D volumes and are inherently structured at the patient level.
This approach substantially reduces the likelihood of data leakage, therefore enhancing
the reliability of the analysis and ensuring that the results faithfully represent the model’s
performance. This aspect may provide a valuable perspective when interpreting differences
in accuracy between 3D and 2D models.

The predominant approach for data partitioning in the examined papers involves the
use of hold-out validation with training and validation sets. This was followed by the
adoption of K-fold cross-validation, which enhances the robustness of model evaluation.
A less frequently employed method was the three-way split, which includes training,
validation, and testing sets. In total, only 36% of the studies assessed their final results
using an independent test set. Decuyper et al. [140], Gilanie et al. [152], Alanazi et al. [160]
took a step further by assessing the generalizability and robustness of their models using
external validation sets. Although the authors of the Figshare dataset thoughtfully included
a 5-fold CV setup alongside the data to promote comparability and reproducibility, it is still
important to remark here that a substantial majority of studies continue to prefer custom
data partitioning methods.

5. Machine Learning Applications to Ultra-Low Field Imaging

A completely different area of application of ML to neuroradiology has recently
emerged with the availability of ultra-low field magnetic resonance imaging devices for
point-of-care applications, typically with <0.1 T permanent magnets [161–163].
In the 0.055 T implementation described by Liu et al. [11], DL was used to improve the
quality of the acquisition by detecting and canceling external electromagnetic interference
(EMI) signals, eliminating the need for radio-frequency shielded rooms. They compared
the results of the DL EMI cancelation in 13 patients with brain tumors, both in the 0.055
T and in another 3 T machine, on same-day acquisitions, finding that it was possible to
identify the different tumor types. Please note that these processes are, in fact, a completely
different use of DL for data pre-processing to those reviewed in Section 3.

Another example is the Hyperfine system, which received FDA clearance in 2020 for brain
imaging and in 2021 (K212456) for DL-image reconstruction to enhance the quality of the
generated images. In particular, DL is used as part of the image reconstruction pipeline of T1,
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T2, and FLAIR images. There are two DL steps: the first one is a so-called DL gridding, where
the undersampled k-space data are transformed into images not by Fourier transformations
but with DL. The transformed images are then combined, and a final post-processing DL
step is applied to eliminate noise. However, no details about the specific algorithms are
provided. Although the main application seems to be in the neurocritical setting [164], this
system is beginning to be compared with the imaging quality at higher fields at different
stages, with a particular interest in the early post-operative monitoring after surgical resection
(e.g., [165,166]). It is to be expected that Hyperfine brain tumor applications will emerge soon,
for example, through the partnership with The Brain Tumor Foundation, to provide the
general population with free brain scans.

6. Conclusions

Neuro-oncological radiology relies on non-invasive data acquisition, which makes
it the ideal target of data-centered analytics and places it at the forefront of ML-applied
developments. In this review paper, we have focused on the most successful instantiation
of ML currently, namely DL, and its use for the analysis of imaging data. Emphasis has
been put on the fact that DL methods must be seen as only part of analytical pipelines, in
which data pre-processing plays a key role.

Promoting the responsible utilization of clinical data is of utmost importance when
striving to establish trustworthy conclusions. A fundamental step in this endeavor is the
comprehensive disclosure of both the data used and the analytical procedures undertaken.
Such transparency not only fosters greater trust in research outcomes but also amplifies the
generalizability and reproducibility of the findings. This, in turn, plays a pivotal role in
advancing AI-driven solutions in the clinical pathway. Most DL-based analytical solutions
depend, to a great extent, not only on data quality but also quantity. For this reason, we
argue that the main challenge facing the use of DL in the radiological imaging setting
is precisely the creation of sizeable curated image databases for the different problems
at hand.
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AUC Area Under the ROC Curve
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DA Data Augmentation
DL Deep Learning
FAIR Findable, Accessible, Interoperable, Reusable
GAN Generative Adversarial Network
HGG High-Grade Glioma
ICA Independent Component Analysis
LGG Low-Grade Glioma
ML Machine Learning
MRI Magnetic Resonance Imaging
MRS Magnetic Resonance Spectroscopy
MRSI Magnetic Resonance Spectroscopy Imaging
NMF Nonnegative Matrix Factorization
RF Random Forest
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TCGA The Cancer Genome Atlas
TCIA The Cancer Imaging Archive
tICA Temporal ICA
TL Transfer Learning
TPOT Tree-based Pipeline Optimization Tool
ULF Ultra-Low Field
ViT Vision Transformer
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WSI Whole Slide Imaging

Appendix A. Literature Review Summary of Deep-Learning Sources

This appendix comprises Tables A1 and A2, offering a detailed overview of the datasets
and models employed in the papers summarized in Section 4.3. Table A1 provides key details
about the datasets used, including image dimensionality, number of patients in the study and
images included for the analysis, anatomical plane, MRI modalities, pre-processing procedures,
and data-augmentation techniques. On the other hand, Table A2 summarizes analytical
aspects, such as the classification task, data-splitting methodology, network architecture,
overall performance metrics, and class-specific performance. Hyphens (-) in certain cells
indicate that the information was not provided in the original paper.

For papers marked with an asterisk (*), not all outcomes are included in the table due
to the extensive range of results reported by the authors. We encourage readers to consult
the original papers for a more comprehensive understanding of the findings.
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Table A1. Data Overview: Comprehensive overview of the datasets examined within the DL literature review centered on brain tumor classification tasks and MRI
data. Essential information regarding dimensionality, sample size, anatomical plane, MRI modalities, and pre-processing methods are summarized.

No. Reference Dim. Dataset
Sample Size

Plane MRI Modality Pre-Processing
Data Augmentation

Patients Images (Augmentation Factor)

1 Ge et al. [100]
(2018) 2D BraTS2017 285 (Table 1) - Ax, Sag, Cor T1c, T2, Flair Tumor mask

enhancement
Multi-view images (ax, sag,

cor), rotation, flipping

2 Ge et al. [73] (2018) 3D BraTS2017 285 (Table 1) 285 (Table 1) Ax, Sag, Cor T1c
None 1

(LGG: 2) FlippingTumor mask
enhancement 2

3 Pereira et al.
[74] (2018) 3D BraTS2017 285 (Table 1) 285 (Table 1) Ax, Sag, Cor T1, T1c, T2, Flair

BFC, z-score
normalization

(inside brain mask)

Sagittal flipping, rotation,
exponential intensity

transformation

4 Yang et al.
[101] (2018) 2D Private 113 (LGG: 52, HGG:

61)
867 (LGG: 368, HGG:

499) Ax T1c
Z-score

normalization,
tumor ROI

(14) HE, random rotation,
zooming, adding noise,

flipping

5
Abd-Ellah
et al. [167]

(2019)
2D Brats2017 - 1800 (H: 600, LGG:

600, HGG:600) - - - -

6 Anaraki et al. [168]
(2019) 2D

IXI 600

16,000 (H: 8000, G.II: 2000,
G.III: 2000, G.IV: 4000)

Ax T1

Normalization,
resizing

Rotation, translating,
scaling, flipping

REMBRANDT 130 - T1c
TCGA-GBM 199 - T1c
TCGA-LGG 299 - T1c

Private 60 - T1c
Figshare 233 989 Ax T1c

7
Deepak and
Ameer [76]

(2019)
2D Figshare 233 (Table 1) 3064 (Table 1) Ax, Sag, Cor T1c

Min-max
normalization,

resizing
Rotation, flipping

8
Hemanth
et al. [169]

(2019)
2D Private - 220 - T1, T2, Flair None None

9
Kutlu and
Avcı [120]

(2019)
2D Figshare 233 (Table 1) 3064 Ax, Sag, Cor T1c None None

10 Lo et al. [102]
(2019) 2D TCIA 134 (G.II: 30, G.III:

43, G.IV: 57)
134 (G.II: 30, G.III:

43, G.IV: 57) Ax T1c Normalization, CE,
tumor segmentation (56) AutoAugment [170]

11 Muneer et al.
[171] (2019) 2D Private 20

557 (G.I: 130, G.II:
169, G.III: 103, G.IV:

155)
Ax T2 Skull-stripping,

tumor segmentation Resize, reflection, rotation

12 Rajini [172] (2019) 2D

IXI 600 - - - - -
REMBRANDT 130 - - - - -
TCGA-GBM “around 200” - - - - -
TCGA-LGG 299 - - - - -

Figshare 233 - - T1c - -
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Table A1. Cont.

No. Reference Dim. Dataset
Sample Size

Plane MRI Modality Pre-Processing
Data Augmentation

Patients Images (Augmentation Factor)

13
Rahmathunneesa
and Muneer
[173] (2019)

2D Private -
760 (G.I: 198, G.II:

205, G.III: 172, G.IV:
185)

Axial T2 Skull-stripping,
resizing

Resizing, rotation, translation,
reflection

14 Sajjad et al. [174]
(2019) 2D

Radiopaedia - 121 (G.I: 36, G.II: 32,
G.III: 25, G.IV: 28) - -

BFC, Segmentation,
Z-score normalization

(30) Rotation, flipping, skewness,
shears, gaussian blur, sharpening,

edge detection, embossFigshare 233 3064 (Table 1) - T1c

15 Sultan et al. [175]
(2019) 2D Figshare 233 (Table 1) 3064 (Table 1) Ax, Sag, Cor T1c Resizing (5) Rotation, flipping,

mirroring, noiseREMBRANDT 73 (G.II: 33, G.III: 19,
G.IV: 21)

516 (G.II: 205, G.III:
129, G.IV: 182)

16 Swati et al.
[77] (2019) 2D Figshare 233 (Table 1) 3064 (Table 1) Ax, Sag, Cor T1c

Min-max
normalization,

resizing
-

17 Toğaçar et al.
[176] (2019) 2D Kaggle-III - 253 (Table 1) - - -

Rotation, flipping,
brightening, CE, shifting,

scaling

18 Amin et al. [177]
(2020) 2D

BraTS2012 1 25 (LGG: 5, HGG: 10) -

- T1, T1c, T2, Flair
Noise Removal,

tumor enhancement,
MRI modality fusion

-
BraTS2013 2 30 (Table 1) -

BraTS2013 (LB) 3 25 (LGG: 4, HGG: 21) -
BraTS2015 4 274 (Table 1) -
BraTS2018 5 284 (Table 1) -

19 Afshar et al.
[178] (2020) 2D Figshare 233 3064 - - - -

20
Badža and

Barjaktarović
[158] (2020)

2D Figshare 233 3064 (Table 1) Ax, Sag, Cor T1c Normalization,
Resizing Rotation, flipping

21 Banerjee et al. [56]
(2020) 2D

TCGA-GBM 262
Ax 1Ax, Sag, Cor 2 T1, T1c, T2, Flair - Rotation, shifts, flippingTCGA-LGG 199

BraTS2017 285 (Table 1)
1590 (LGG:750,

HGG:840)

22
Bhanothu
et al. [179]

(2020)
2D Figshare 233 2406 (MN: 694, GL:

805, PT: 907) - T1c Min-max
normalization -

23
Çinar and

Yildirim [180]
(2020)

2D Kaggle-III - 253 (Table 1) Ax, Sag, Cor - - -
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Table A1. Cont.

No. Reference Dim. Dataset
Sample Size

Plane MRI Modality Pre-Processing
Data Augmentation

Patients Images (Augmentation Factor)

24 Ge et al. [93]
(2020) 2D BraTS2017 285 (Table 1) - Ax, Sag, Cor T1, T1c, T2, Flair - GAN

25
Ghassemi
et al. [85]

(2020)
2D Figshare 233 3064 (Table 1) Ax, Sag, Cor T1c Normalization

(−1,1) Rotation, flipping

26 Ismael et al.
[159] (2020) 2D Figshare 233 (Table 1) 3064 (Table 1) - T1c Resizing, cropping

Rotation, flipping, shifting,
zooming, ZCA whitening,

shearing, brightening

27 Khan et al.
[181] (2020) 2D Kaggle-III - 253 (Table 1) - - Brain cropping Flipping, rotation, brightness

28 Ma and Jia
[129] (2020) 3D CPM-RadPath2019 329 (Table 1) 329 Ax, Sag, Cor T1, T1c, T2, Flair Z-score

normalization
Cropping, rotation, zooming,

translation, color changes

29
Mohammed
and Al-Ani
[182] (2020)

2D Radiopaedia 60 (15 per class)
1258 (H: 286, MN:
380, E: 311, Med:

281)
Ax, Sag, Cor - Resizing, denoising Rotation, scaling, reflection,

translating, cropping

30 Mzoughi et al.
[142] (2020) 3D BraTS2018 284 (LGG: 75, HGG:

209) 285 Ax, Sag, Cor T1c
Min-max

normalization, CE,
resizing

flipping

31
Naser and
Deen [183]

(2020)
2D TCGA-LGG 108 (G.II: 50, G.III:

58)
815 (G.II: 400, G.III:

415) - T1, T1c, Flair

Cropping,
normalization

(−1,1), resizing,
segmentation

Rotation, zooming,
shifting, flipping

32 Noreen et al.
[184] (2020) 2D Figshare 233 3064 (Table 1) T1c Normalization -

33 Pei et al. [143]
(2020) 3D CPM-RadPath2020 270 (Table 1) 270 Ax, Sag, Cor T1, T1c, T2, Flair

Noise reduction,
z-score

normalization,
tumor segmentation

Rotation, scaling

34 Rehman et al.
[104] (2020) 2D Figshare 233 3064 (Table 1) T1c CE Rotation, flipping

35 Saxena et al.
[185] (2020) 2D Kaggle-III - 253 (Table 1) - - Brain cropping,

resizing (20) not specified

36 Sharif et al.
[186] (2020) 2D

BraTS 2013 1 30 (Table 1)

- - T1, T1c, T2, Flair CE, tumor segmentation -BraTS2015 2 274 (Table 1)
BraTS2017 3 285 (Table 1)
BraTS2018 4 284 (Table 1)
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Table A1. Cont.

No. Reference Dim. Dataset
Sample Size

Plane MRI Modality Pre-Processing
Data Augmentation

Patients Images (Augmentation Factor)

37 Tandel et al.
[105] (2020) 2D REMBRANDT 112 (Table 1)

2132 (H: 1041, T: 1091)

Ax, Sag, Cor T2 Skull-stripping Rotation, scaling

2156 (H: 1041, LGG:
484, HGG: 631)

2156 (H: 1041, AS:
557, OG: 219, GB:

339)
1115 (AS-II: 356,

AS-III: 201, OG-II:
128, OG-III: 91, GB:

339)
2156 (H: 1041, AS-II:

356, AS-III: 201,
OG-II: 128, OG-III:

91, GB: 339)

38 Toğaçar et al.
[96] (2020) 2D Kaggle-III - 253 (Table 1) - - - Oversampling

39
Vimal Kurup

et al. [187]
(2020)

2D Figshare 233 3064 (Table 1) - T1c Resizing Rotation, cropping

40 Zhuge et al. [58]
(2020)

2D BraTS2018 284 (Table 1) 284 (Table 1) Ax, Sag, Cor T1c, T2, Flair Inhomogeneity
correction, z-score

normalization, min-max
normalization, tumor

segmentation

(23) - AutoAugment [170]TCGA-LGG 30 30

3D BraTS2018 284 (Table 1) 284 (Table 1) Ax, Sag, Cor T1c, T2, Flair Rotation, scaling, flippingTCGA-LGG 30 30

41 Alaraimi et al.
[78] (2021) 2D Figshare 233 3064 (Table 1) - - HE, z-score

normalization
Rotation, cropping, flipping,

scaling, translation

42 Ayadi et al.
[86] (2021) 2D

Figshare 1 233 (Table 1) 3064 (Table 1) Ax, Sag, Cor T1c -

(17) - Rotation, flipping,
gaussian blur, sharpenRadiopaedia 2 -

121 (MN G.I: 36, GL
G.II: 32, GL G.III: 25,

GB: 28)
- - -

REMBRANDT 3
112 (AS-II: 30, AS-III:
17, OG-II: 14, OG-III:

7, GB: 44)
- - - -

43
Bashir-Gonbadi

and Khotanlou [188]
(2021)

2D

IXI 582 (healthy) -

- - Skull-stripping,
resizing

Flipping, mirroring,
shifting, scaling,

rotation

BraTS2017 285 -
Figshare - 3064
Private - 230

44 Chakrabarty et al.
[144] (2021) 3D

BraTS 2018 43 LGG 43

Ax, Sag, Cor T1c

Co-registration,
resampling,

skull-stripping,
z-score normalization,

resizing

-

BraTS2019 335 (Table 1) 335
LGG-1p19q 145 159

Private
1234 (MET: 710, MN:
143, AN: 158, PA: 82,

H: 141)
1234
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No. Reference Dim. Dataset
Sample Size

Plane MRI Modality Pre-Processing
Data Augmentation

Patients Images (Augmentation Factor)

45 Decuyper et al.
[140] (2021) 3D

TCGA 285 (LGG: 121, HGG: 164) 285

Ax, Sag, Cor T1, T1c, T2, Flair Tumor segmentation
Rotation, Flipping,
Intensity scaling,
Elastic transform

TCGA-1p19q 141 141
BraTS2019 202 202

GUH dataset 110 110

46
Díaz-Pernas
et al. [151]

(2021)
2D Figshare 233 3064 (Table 1) Ax, Sag, Cor T1c Z-score

normalization (2) Elastic transforms

47 Gab Allah et al.
[94] (2021) 2D Figshare 233 3064 (Table 1) Ax, Sag, Cor T1c Normalization (−1,1)

(12) PGGAN 1

(9) Rotation, mirroring,
flipping 2

48 Gilanie et al.
[152] (2021) 2D Private

180 (AS-1: 50, AS-II:
40, AS-III: 40, AS-IV:

50)

30,240 (AS-1: 8400,
AS-II: 6720, AS-III:
6720, AS-IV: 8400)

T1 & Flair: Ax, T2: Ax, Sag T1, T2, Flair BFC, normalization,
tumor Segmentation Rotation

49 Gu et al. [189]
(2021) 2D REMBRANDT 1 130 110,020 - - - -

Figshare 2 - 3064 (Table 1) - T1c - -

50 Guan et al.
[153] (2021) 2D Figshare 233 (Table 1) 3064 (Table 1) Ax, Sag, Cor T1c

CE, tumor ROI,
min-max

normalization
(3) Rotation, flipping

51 Gull et al. [154]
(2021) 2D

BraTS2018 1 - 1425 (LGG: 375,
HGG: 1050) - T1, T1c, T2, Flair

Grayscaling,
median filtering,
skull-stripping

-BraTS2019 2 - 1675 (LGG: 380,
HGG: 1295) - T1, T1c, T2, Flair

BraTS2020 3 -
2470 (LGG: 645,

HGG: 1435,
unknown: 390)

- T1, T1c, T2, Flair

52 Gutta et al.
[106] (2021) 2D Private 237 (G.I: 17, G.II: 59,

G.III: 46, G.IV: 115)
660 (G.I: 27, G.II: 144,
G.III: 184, G.IV: 305) - T1, T1c, T2, Flair

Resampling,
co-registration,
skull-stripping,

tumor segmentation

-

53 Hao et al. [79]
(2021) 2D BraTS2019 335 (Table 1) 6700 (20 random

slices per patient) Ax, Sag, Cor T1c, T1, T2 - -

54 Irmak [190]
(2021) 2D

RIDER 19 (G.IV)

(total) 2990 (H: 1350,
T: 1640) 3950

(H: 850, MN: 700,
GL: 950, PT: 700,

MT: 750) 4570
(G.II: 1676, G.III: 1218,

G.IV: 1676)

-

T1c, Flair

- -
REMBRANDT 130 T1c, Flair

TCGA-LGG 199 T1c, Flair
Figshare 233 T1c
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Plane MRI Modality Pre-Processing
Data Augmentation

Patients Images (Augmentation Factor)

55 Kader et al. [191]
(2021) 2D

BraTS2012 - 1000 - - Noise removal,
tumor segmentation,

resizing
-BraTS2013 - 1000 - -

BraTS2014 - 800 - -
BraTS2015 - 700 - -

56 Kader et al.
[192] (2021) 2D Private - 17,600 - T1, T2, Flair - Yes, not specified

57 Kakarla et al.
[193] (2021) 2D Figshare 233 3064 (Table 1) - T1c Resizing, min-max

normalization, CE -

58 Kang et al. [133]
(2021) 2D

Kaggle-III 1 - 253 (Table 1) - -
Brain cropping, resizing Rotation, flippingKaggle-II 2 - 3264 (Table 1) - -

Kaggle-I 3 - 3000 (Table 1) - -

59 Khan et al.
[87] (2021) 2D BraTS2015 274 169,880 Ax, Sag, Cor T1, T1c, T2, Flair

Z-score
normalization,

tumor segmentation

(20) Rotation, zooming,
geometric transforms,

sharpening, noise
addition, CE

60 Kumar et al.
[88] (2021) 2D Figshare 233 3064 (Table 1) T1c - Rotation

61 Masood et al.
[194] (2021) 2D Figshare 233 3064 (Table 1) - T1c BFC, CE, tumor ROI -Kaggle-III - 253 (Table 1) - -

62 Noreen et al.
[134] (2021) 2D Figshare 233 3064 (Table 1) - - Min-max

normalization -

63 Özcan et al.
[155] (2021) 2D Private 104 (G.II: 50, G.IV:

54) 518 Ax, Sag, Cor Flair
Multiple-cropping,

z-score
normalization

(20) Rotation, zooming,
shearing, flipping, elastic

gaussian transforms

64 Pei et al. [97]
(2021) 3D CPM-RadPath2020 256 (Table 1) 256 (Table 1) Ax, Sag, Cor T1, T1c, T2, Flair BFC, z-score

normalization (oversampling)

65 Sadad et al.
[195] (2021) 2D Figshare 233 (Table 1) 3064 (Table 1) Ax, Sag, Cor - CE, tumor detection Rotation, flipping

66
Tandel et al.
[107] (2021) 2D REMBRANDT 130 (H: 18, T: 112)

2156 (H: 1041, T:
1091)

Ax, Sag, Cor T2 - Rotation, scaling

557 (AS-II: 356,
AS-III: 201)

219 (OG-II: 218,
OG-III: 91)

1115 (LGG: 484,
HGG: 631)

67 Toğaçar et al.
[80] (2021) 2D Figshare 233 3064 (Table 1) - T1c - Rotation, scrolling,

brightening
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No. Reference Dim. Dataset
Sample Size

Plane MRI Modality Pre-Processing
Data Augmentation

Patients Images (Augmentation Factor)

68
Yamashiro
et al. [145]

(2021)
3D BraTS2018 284 (Table 1) 285 (Table 1) Ax, Sag, Cor T1c Tumor segmentation Flipping, scaling, shifting

69 Yin et al. [130]
(2021) 3D CPM-RadPath2020 256 (Table 1) 256 (Table 1) Ax, Sag, Cor T1, T1c, T2, Flair

Tumor segmentation,
resizing, z-score
normalization

Brightness, CE, saturation,
hue, flipping, rotation

70 Aamir et al.
[156] (2022) 2D Figshare 233 (Table 1) 3064 (Table 1) Ax, Sag, Cor T1c

CE, min-max
normalization,

tumor ROI
(2) Rotation, flipping

71 Ahmad et al.
[89] (2022) 2D Figshare 233 3064 (Table 1) - T1c Resizing,

normalization
CDA: Rotation, scaling

GDA: VAE, GAN

72 Alanazi et al.
[160] (2022) 2D

Kaggle-I - 3000 (H: 1500, T:
1500) - -

Noise removal,
cropping, z-score

normalization, resizing
-

Kaggle-II 1 - 3264 (Table 1)
Figshare 2 233 3064 (Table 1)

73 Almalki et al.
[121] (2022) 2D Kaggle-II 1 - 2870 (H: 395, MN:

822, GL: 826, PT: 827) - - Brain cropping,
denoising, resizing

-

Figshare 2 233 3064 (Table 1) - - -

74 Amou et al.
[81] (2022) 2D Figshare 233 3064 (Table 1) Ax, Sag, Cor T1c

Min-max
normalization,

resizing
None

75 Aurna et al. [82]
(2022) 2D

Figshare 233 3064 (Table 1) - -

Resizing
Rotation, flipping,
zooming, shifting,

scaling

Kaggle-II - 3264 (Table 1) - -

Kaggle [196] -
4292 (H: 681, MN:
1318, GL: 1038, PT:

1255)
- -

76 Chatterjee et al.
[59] (2022) 2D-3D

BraTS2019 332 (LGG: 73,
HGG: 259) 332 2D: Ax,

3D: Ax, Sag, Cor T1c
Skull-stripping,

normalization (0.5,99.5),
resampling

Affine, flipping
IXI 259 259

77 Chitnis et al.
[197] (2022) 2D Kaggle-II - 3264 (Table 1) - - Resizing Autoaugment

78 Coupet et al.
[135] (2022) 2D-3D

BraTS2018 284 (Table 1)
50,812 Ax T1, T1c, T2, Flair

Histogram &
min-max normalization

Rotation, deformations,
shearing, zooming,

flippingBraTS2020 369 (Table 1)

79 Dang et al.
[98] (2022) 3D BraTS2019 335 (Table 1) 335 (Table 1) Ax, Sag, Cor T1, T1c, T2, Flair

Segmentation,
gamma correction,

window setting
optimization

(oversampling) Rotation
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80 Danilov et al.
[146] (2022)

3D
Private

707 (G.I: 189,
G.II: 133, G.III: 127,

G.IV: 258)

707 Ax, Sag, Cor T1c
Z-score

normalization,
resampling

-

2D 17,730 Ax, Sag, Cor T1c ImageNet
standardization

Rotation, scaling,
mirroring

81 Ding et al. [57]
(2022) 2D-3D Private 101 (LGG: 58, HGG:

43) 3 slices as channels Ax, Sag, Cor T1c Tumor ROI,
normalization,

resizing

-

TCIA + Private 50 (LGG: 25, HGG:
25)

82 Ekong et al.
[198] (2022) 2D

BraTS2015 -
(total) 4000

(H: 1000, MN: 10,000,
GL: 1000, PT: 1000)

- - Resizing, normalization,
denoising, BFC,

registration, tumor
segmentation

Shifting, Rotation,
Brightening, Image

enlargement, Flipping
IXI - - - T1, T2

Figshare - - T1c

83 Gao et al.
[112] (2022) 3D Private 39,210 39,210 Ax, Sag, Cor T1, T2, T1c

Z-score
normalization,

resampling
-

84 Gaur et al.
[199] (2022) 2D Kaggle-II - 2870 - - Resizing Gaussian Noise

85 Guo et al.
[150] (2022) 3D CPM-RadPath2020 221 (Table 1) 221 Ax, Sag, Cor T1, T1c, T2, Flair

BFC, skull-stripping,
co-registration,

tumor segmentation

Rotation, resizing, scaling,
gaussian noise, CE

86 Gupta et al.
[95] (2022) 2D Kaggle-II - 3264 (Table 1) - - CE CycleGAN

87
Gurunathan

and Krishnan
[200] (2022)

2D BraTS - 260 (LGG: 156, HGG:
104) Ax, Sag, Cor T1, T2 Resizing, tumor

segmentation
Rotation, shifts, reflection,
flipping, scaling, shearing

88 Haq et al. [90]
(2022) 2D Figshare 233 (Table 1) 3064 (Table 1) - T1c Resizing (2) Zooming

89 Hsu et al. [131]
(2022) 3D

BraTS2020 369 (Table 1) 369
Ax, Sag, Cor T1, T1c, T2, Flair

Sampling patches,
z-score normalization,
tumor segmentation

Rotation, flipping,
affine translationCPM-RadPath2020 270 (Table 1) 270

90
Isunuri and

Kakarla [201]
(2022)

2D Figshare - 3064 (Table 1) - T1c Resizing,
Normalization -
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Data Augmentation

Patients Images (Augmentation Factor)

91 Jeong et al.
[113] (2022) 2D BraTS2017 285 (Table 1) 1445 (largest slice ±

8) Ax, Sag, Cor T1, T1c, T2, Flair Resizing, z-score
normalization Rotation, flipping

92 Kazemi et al.
[108] (2022) 2D Figshare 1 233 1500 (MN: 1000, GL:

800, PT: 600) - T1c Resizing -
TCIA 2 20 8798 - T1c

93 Khazaee et al.
[202] (2022) 2D BraTS2019 - 26,904 (LGG: 13,671,

HGG: 13,233) - T1c, T2, Flair - Rotation, flipping

94 Kibriya et al.
[122] (2022) 2D Figshare 233 (Table 1) 3064 (Table 1) - -

Min-max
normalization,

resizing

(5) Rotation, flipping,
mirroring, adding noise

95 Koli et al. [203]
(2022)

2D Kaggle-III - 253 (Table 1) - - - RotationFigshare - 3064 (Table 1) - -

96
Lakshmi and

Rao [204]
(2022)

2D Figshare - 3064 - T1c - -

97 Maqsood et al.
[114] (2022)

2D Figshare 233 3064 (Table 1) - T1c CE, tumor
segmentation, z-score

normalization
-- BraTS2018 284 (Table 1) - - -

98 Murthy et al.
[205] (2022)

2D Kaggle-III - 253 (Table 1) - - Median filtering, CE,
tumor segmentation -

99 Nayak et al.
[206] (2022) 2D Figshare - 3260 (196 H, 3064

Table 1) Ax, Sag, Cor T1c

Noise removal,
gaussian blurring,

min-max
normalization

(21) Rotation, Shifting,
Zooming

100
Rajinikanth
et al. [124]

(2022)
2D TCIA - 2000 (GL = 1000, GB

= 1000) Ax - - -

101 Rasool et al.
[125] (2022) 2D Figshare 233 3064 (Table 1) Ax, Sag, Cor T1c - Yes, not specified

102 Raza et al.
[207] (2022) 2D Figshare 233 (Table 1) 3064 (Table 1) Ax, Sag, Cor T1c Resizing -

103 Rizwan et al.
[208] (2022) 2D Figshare 230 (MN: 81, GL: 90,

PT: 59)
3061 (MN: 707, GL:

1425, PT: 929) Ax, Sag, Cor T1c Noise, cropping, resizing (5) Salt-noise, grayscaling

REMBRANDT 70 (G.II: 32, G.III: 18,
G.IV: 20)

513 (G.II: 204, G.III:
128, G.IV: 181) - T1c

104 Samee et al.
[209] (2022) 2D Figshare 236 (MN: 83, GL: 90,

PT: 63)
3075 (MN: 708, GL:

1427, PT: 940) Ax, Sag, Cor T1c Grayscaling (16) Rotation, zooming,
brightening
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Plane MRI Modality Pre-Processing
Data Augmentation

Patients Images (Augmentation Factor)

105 Samee et al.
[147] (2022) 3D BraTS2015 65 (LGG: 14, HGG:

51)
1056 (LGG: 176,

HGG: 880) - T1, T1c, T2, Flair
Resizing, denoising,

CE, tumor
segmentation

-

106
Sangeetha
et al. [210]

(2022)
3D Private 45 45 Ax, Sag, Cor T2 Min-max

normalization (14) Rotation, translation

107 Saravanan et al.
[109] (2022) 2D BRATS 274 1200 - - Resizing -REMBRANDT 135 - - -

108 Sekhar et al.
[126] (2022) 2D Figshare 233 (Table 1) 3064 (Table 1) Ax, Sag, Cor T1c

Min-max
normalization,

resizing
Yes but not specified

109 Senan et al.
[99] (2022) 2D Kaggle-II - 3060 (H: 396, MN:

937, GL: 826, PT: 901) Ax, Sag, Cor -
Denoising, min-max

normalization,
resizing, CE

(H: 11, MN: 5, GL:6, PT: 5)
Rotation, cutting, zooming,

patching, padding,
brightening

110 Srinivas et al.
[211] (2022) 2D Kaggle - 256 (Benign: 158,

Malignant: 98) - -

Brain cropping,
z-score

normalization,
resizing

Scaling, cropping, resizing,
flipping, rotation, geometric

transforms

111 Tandel et al.
[75] (2022) 2D Rembrandt 112 (LGG = 44, HGG

= 68) - Ax T1, T2, Flair
None1 ,

Skull-stripping2 ,
tumor ROI3

Scaling, rotation

112
Tripathi and

Bag [83]
(2022)

2D TCIA 322 (LGG:159, HGG:
163)

7392 (LGG: 5088,
HGG: 2304) - T2 Skull-stripping,

segmentation
Rotation, flipping, scaling,

cropping, translation

113 Tripathi and Bag
[141] (2022) 3D

BraTS2019 202
(total) 617 (LGG: 331,

HGG: 286) Ax, Sag, Cor T1c, T2, Flair

Co-registration,
skul-stripping,

resampling,
tumor segmentation

Flipping, shifting,
rotation, cropping

TCGA-GBM 158
TCGA-LGG 119

LGG-1p19qdeletion [212] 138

114
Tummala
et al. [136]

(2022)
2D Figshare 233 3064 (Table 1) Ax, Sag, Cor T1c - -

115
Vankdothu
et al. [213]

(2022)
2D Kaggle-II - 3264 - -

Grayscaling,
rotation, denoising,

tumor ROI
-

116 Wang et al.
[132] (2022) 3D CPM-RadPath2020 270 270 Ax, Sag, Cor T1, T1c, T2, Flair Resizing, brain

cropping
Rotation, flipping, scaling,

jittering
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117 Xiong et al.
[115] (2022) 2D Private 211 (AS: 54, OG: 67,

GB: 90) 633 Ax, Sag, Cor ADC, T1c, Flair

Resampling,
skull-stripping,

z-score
normalization,

min-max
normalization

-

118 Xu et al. [118]
(2022) 2D BraTS2020 369 (Table 1) 369 Ax T1c, T1, T2

BFC, skull-stripping,
registration, z-score
normalization 1

tumor ROI 2

-

119 Yazdan et al.
[214] (2022) 2D Kaggle-II - 3264 (Table 1) - T1, T2, Flair Denoising None

120 Zahoor et al.
[103] (2022) 2D Kaggle 1 - 1994 (H) - - Resizing Rotation, sharing,

scaling, reflectionFigshare 2 3064 Ax, Sag, Cor -

121 AlTahhan et al.
[127] (2023) 2D

Figshare - 2880 (H: 396,
MN: 825, GL: 829,

PT: 830)

-
T1c - -Kaggle-II - -

Kaggle-I - -

122
Al-Zoghby
et al. [137]

(2023)
2D Figshare 233 3064 (Table 1) Ax, Sag, Cor T1c Resizing -

123 Anagun [215]
(2023) 2D Figshare - 3064 (Table 1) Ax, Sag, Cor T1c Brain cropping, HE,

denoising
(9) Flipping, rotation,

shifting, zooming

124 Anand et al.
[91] (2023) 2D TCGA-LGG 110 3929 - Flair - Flipping

125 Apostolopoulos
et al. [216] (2023) 2D Kaggle [217] - 26,249 (H: 2000, MN: 7866,

GL: 8208, PT: 8175) - - - -Kaggle [218]

126 Asif et al.
[138] (2023) 2D Figshare 233 (Table 1) 3064 (Table 1) - - Resizing, denoising -

127
Athisayamani

et al. [110]
(2023)

2D Figshare - - - -
Denoising,

skull-stripping,
brain segmentation

Rotation, flipping

128 Bairagi et al.
[111] (2023) 2D

BraTS2013
-

65

- T1, T2, Flair Resizing

(40) Resizing, cropping,
rotation, reflection,
shear, translation

BraTS2015 327
OPEN-I NLM 229

129 Deepa et al.
[84] (2023) 2D BraTS2018 1 - - - - Min-max normalization,

tumor segmentation
Flipping, translation,
rotation, brightening,

CE, gaussian noise
Figshare 2 - 3064 (Table 1) T1c
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130
El-Wahab
et al. [219]

(2023)
2D Figshare 233 3064 (Table 1) Ax, Sag, Cor T1c - -

131 Hossain et al.
[116] (2023) 2D Kaggle-II - 3264 - - - (4) Rescaling, shearing,

zooming, flipping

132 Hussain et al.
[148] (2023) 3D BraTS2020 369 (Table 1) 369 (Table 1) Ax, Sag, Cor T1, T1c, T2, Flair,

Segmentation
Denosing, tumor

segmentation -

133 Kibriya et al.
[119] (2023) 2D Kaggle-III 1 - 253 (Table 1) - - - -

Kaggle-I 2 - 3000 (Table 1) - - - -

134
Krishnapriya
and Karuna
[92] (2023)

2D Kaggle-III - 253 (Table 1) - - Brain cropping (Oversampling) Rotation,
shifting, rescaling,

mirroring

135 Kumar et al.
[128] (2023) 2D ACRIN-DSC-MR-

BRAIN - 1731 - T1
Resizing,

grayscaling, CE,
tumor segmentation

-

136 Mahmud et al.
[220] (2023) 2D

Kaggle-II - 3264 (Table 1)
- - Normalization,

smoothing
Mirroring, rotation,
shifting, zoomingCPTAC-GB 189 -

ACRIN-FMISO-
BRAIN 45 -

137
Muezzinoglu

et al. [221]
(2023)

2D Kaggle-II - 3264 (Table 1) - - Resizing, patch
division -

138
Özkaraca
et al. [222]

(2023)
2D

Kaggle [223]
(combines Figshare,
Kaggle-I, Kaggle-II)

-
total: 7021 (H: 2002,
MN: 1627, GL: 1623,

PT: 1769)
- - - -

139
Özkaya and

Şağıroğlu
[224] (2023)

2D BraTS2020 369 (undersampling
slices HGG) Ax T1c, T2, Flair

Tumor segmentation,
min-max

normalization
-

140 Rasheed et al.
[225] (2023) 2D Figshare 233 3064 (Table 1) Ax, Sag, Cor T1c Resizing,

normalization None

141 Rui et al.
[149] (2023) 2D Private 42 (G.II: 18, G.III: 10,

G.IV: 14)
1176 (G.II: 504, G.III:

280, G.IV: 392) Ax T1c, T2, Flair Brain cropping,
normalization -

142
Shirehjini
et al. [123]

(2023)
2D Private 58 (G.I: 8, G.II: 16,

G.III: 10, G.IV: 22)

1061 (T1c: 229, T1:
251, T2: 299, Flair:

282)
Ax, Sag, Cor T1, T1c, T2, Flair Resizing, min-max

normalization -
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Table A1. Cont.

No. Reference Dim. Dataset
Sample Size

Plane MRI Modality Pre-Processing
Data Augmentation

Patients Images (Augmentation Factor)

143
Srinivasan
et al. [226]

(2023)
2D REMBRANDT - 3100 - - Denoising, tumor

segmentation -

144 Tandel et al.
[139] (2023) 2D REMBRANDT 112 (LGG: 44, HGG:

68) - Ax, Sag, Cor T1, T2, Flair Resizing Rotation, scaling

145 van der Voort
et al. [117] (2023) 3D

Erasmus MC [227] 816

(total) 1412 (G.II: 277,
G.III:173, G.IV: 962) Ax, Sag, Cor T1, T1c, T2, Flair

Registration, resampling,
BFC, skull-stripping,

brain cropping,
z-score normalization

(2) Cropping, rotation,
brightening, CE

Haaglanden Medical
Center 279

BraTS 168
REMBRANDT 109
CPTAC-GBM 51

Ivy GAP 39
Amsterdam UMC 20

Brain-tumor-
progression 20

University Medical
Center Utrecht 6

TCGA-LGG 107
TCGA-GBM 133

146 Wu et al.
[157] (2023) 2D BraTS2019 326 (LGG:76, HGG:

250) slices with tumor - T1, T1c, T2, Flair
Z-score

normalization,
center-cropping

Rotation, translation,
clipping

AS: Astrocytoma, Ax: Axial, BFC: Bias Field Correction, CE: Contrast Enhancement, Cor: Coronal, DA: Data Augmentation, E: Ependymoma, Flair: Fluid Attenuated Inversion Recovery,
GL: Glioma, GAN: Generative Adversarial Network, GB: Glioblastoma, GDA: Generative Data Augmentation, H: Healthy, HE: Histogram Equalization, HGG: High-Grade Glioma,
LGG: Low-Grade Glioma, Med: Medulloblastoma, MN: Meningioma, MT: Metastasis, OG: Oligodendroglioma, PT: Pituitary, ROI: Region of Interest, Sag: Sagittal, T: Tumor, T1c: T1
post-contrast weighted, VAE: Variational Auto-Encoder. Numerical superscripts link datasets with models in Table A2 when different data sources yield individual results.
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Table A2. Model Overview: Comprehensive summary of the DL architectures employed across the reviewed papers. The table outlines key information, including
the brain tumor classification task, data partitioning, architecture, and the reported performance metrics.

No. Reference Classification Task
Data Split

Architecture Acc% AUC% F1% Class Performance %
Method Ratio Level

1 Ge et al. [100] (2018) LGG vs. HGG Three-way 60:20:20 Patient

[T1c] CNN 83.73 - - LGG = 82.54, HGG = 84.92
[T2] CNN 69.74 - - LGG = 59.52, HGG = 80.15

[Flair] CNN 75.40 - - LGG = 76.19, HGG = 74.60
[Modality-ensemble] CNN 90.87 - - LGG = 90.48, HGG = 91.27

2 Ge et al. [73] (2018) LGG vs. HGG Three-way 60:20:20 Patient
Custom CNN

1 [whole image] 84.21 - - -
2 [tumor ROI] 89.47 - - LGG = 90.48, HGG = 86.67

3 Pereira et al. [74] (2018) LGG vs. HGG Three-way 60:20:20 Patient

Custom CNN
ROI: brain, Std.: image 89.50 88.57 86.45 LGG = 80.00, HGG = 92.90
ROI: brain, Std.: brain 89.50 89.13 86.43 LGG = 80.00, HGG = 92.86

ROI: tumor, Std.: image 87.70 88.41 85.08 LGG = 86.67, HGG = 88.10
ROI: tumor, Std.: brain 92.98 98.41 90.96 LGG = 86.67, HGG = 95.24

4 Yang et al. [101] (2018) LGG vs. HGG 5-fold CV, Test 80:20 Patient

TL GoogLeNet 94.50 96.80 - -
TL AlexNet 92.70 96.60 - -
GoogLeNet 90.90 93.90 - -

AlexNet 85.50 89.40 - -

5 Abd-Ellah et al. [167]
(2019) H vs. LGG vs. HGG Three-way 65:10:25 - Parallel CNNs 97.44 - - (R) 97.00, (S) 98.00

6 Anaraki et al. [168]
(2019)

H vs. G.II vs G.III vs.
G.IV Hold-out 80:20 - Custom CNN + GA

93.10 - - H = 99.80, G.II = 88.40, G.III =
86.80, G.IV = 97.40

G.II vs. G.III vs. G.IV 90.90 - - -

MN vs. GL vs. PT 94.20 - - MN = 87.80, GL = 98.30, PT =
96.5

7 Deepak and Ameer [76]
(2019) MN vs. GL vs. PT 5-fold CV Patient

TL GoogLeNet
- KNN 98.00 - - -

- SVM 97.80 - 97.00 MN = 96.00, GL = 97.90, PT =
98.90

- SoftMax 92.30 - - -

8 Hemanth et al. [169]
(2019) MT vs. MN vs. GL vs. AS - - - Custom CNN 96.40 - - MT = 94.00, MN = 93.00, GL =

93.00, AS = 89.00

9 Kutlu and Avcı [120]
(2019) Benign vs. Malignant 5-fold CV 70:30 -

TL AlexNet-DWT
- LSTM 98.66 99.00 - B = 99.33, M = 98.66
- SVM 92.09 - - B = 96.04, M = 92.08
- KNN 85.91 - - B = 92.95, M = 85.91

10 Lo et al. [102] (2019) G.II vs. G.III vs. G.IV 10-fold CV - TL AlexNet 97.90 99.91 - G.II = 96.90, G.III = 96.80, G.IV =
99.10

AlexNet 61.42 82.22 - -

11 Muneer et al. [171]
(2019) G.I vs. G.II vs. G.III vs. G.IV Hold-out 70:30 - TL VGG19 94.64 - 93.71 -

Wndchrm 92.86 - 92.32 -
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Table A2. Cont.

No. Reference Classification Task
Data Split

Architecture Acc% AUC% F1% Class Performance %
Method Ratio Level

12 Rajini [172] (2019)
H vs. G.II vs G.III vs.

G.IV Hold-out 80:20 - Custom CNN 96.77 95.65 93.54 H = 99.80, G.II = 89.20, G.III =
85.27, G.IV = 98.00

MN vs. GL vs. PT 98.16 97.93 97.21 MN = 93.69, GL = 99.15, PT =
99.13

13 Rahmathunneesa and
Muneer [173] (2019) G.I vs. G.II vs. G.III vs. G.IV Hold-out 70:30

- TL AlexNet 92.98 - 96.06 G.I = 96.67, G.II = 93.44, G.III =
92.31, G.IV = 89.09

TL GoogLeNet 85.96 - 91.71 G.I = 86.67, G.II = 98.36, G.III =
63.46, G.IV = 92.73

TL InceptionV3 86.84 - 91.62 G.I = 76.67, G.II = 93.44, G.III =
90.38, G.IV = 87.27

TL ResNet50 96.05 - 97.76 G.I = 93.33, G.II = 91.80, G.III =
100.00, G.IV = 100.00

14 Sajjad et al. [174] (2019) Three-way 50:25:25 -

TL VGG-19

G.I vs. G.II vs. G.III vs. G.IV w/o DA 87.38 - - G.I = 90.03, G.II = 89.91, G.III =
84.11, G.IV = 85.50

w/ DA 90.67 - - G.I = 95.54, G.II = 92.66, G.III =
87.77, G.IV = 86.71

MN vs. GL vs. PT w/o DA - - - MN = 90.22, GL = 93.12, PT =
89.08

w/ DA 94.58 - - MN = 94.05, GL = 96.14, PT =
93.21

15 Sultan et al. [175] (2019) MN vs. GL vs. PT Hold-out 68:32 - Custom CNN 96.13 - - MN = 95.50, GL = 94.40, PT =
93.40

G.II vs. G.III vs. G.IV 98.70 - - G.II = 100, G.III = 95.00, G.IV =
100.00

16 Swati et al. [77] (2019) MN vs. GL vs. PT 5-fold CV Patient
Block-wise TL VGG19 94.82 - 91.73 GL = 95.97, MN = 89.98, PT =

96.81
Block-wise TL VGG16 94.65 - 91.50 (R) 93.51, (S) 94.56

TL AlexNet 89.95 - 86.83 (R) 89.10, (S) 89.84

17 Toğaçar et al. [176] (2019) H vs. T Hold-out 70:30 -

Custom CNN 96.05 98.00 94.12 H = 96.00, T = 96.08
GoogLeNet 89.66 - 90.32 H = 84.85, T = 96.00

AlexNet 87.93 - 88.52 H = 84.38, T = 92.31
VGG16 84.48 - 85.25 H = 81.25, T = 88.46

18 Amin et al. [177] (2020) H vs. T Hold-out 50:50 - Custom CNN

1 97.00 - - H = 97.00, T = 97.00
2 98.00 - - H = 99.00, T = 95.00

3 100.00 - - H = 100.00, T = 100.00
4 96.00 - - H = 98.00, T = 92.00
5 97.00 - - H = 99.00, T = 93.00

19 Afshar et al. [178] (2020) MN vs. GL vs. PT Hold-out 80:20 Custom CNN 92.45 98.00 - MN = 75.35, GL = 96.85, PT =
98.90
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Table A2. Cont.

No. Reference Classification Task
Data Split

Architecture Acc% AUC% F1% Class Performance %
Method Ratio Level

20 Badža and Barjaktarović [158]
(2020) MN vs. GL vs. PT 10-fold CV 60:20:20

Custom CNN

Patient w/o DA 84.45 - 81.86 MN = 62.70, GL = 90.20, PT =
91.30

Patient w/ DA 88.48 - 86.97 MN = 71.60, GL = 92.80, PT =
95.00

Image w/o DA 95.40 - 94.93 MN = 89.80, GL = 96.20, PT =
98.40

Image w/ DA 96.56 - 96.11 MN = 90.20, GL = 98.00, PT =
99.20

21 Banerjee et al. [56] (2020) LGG vs. HGG Hold-out Patient

2 VolumeNet 94.74 - - LGG = 94.29, HGG = 96.00
1 SliceNet 85.96 - - LGG = 80.00, HGG = 88.10

1 PatchNet 82.45 - - LGG = 74.67, HGG = 85.24
1 TL ResNet 72.30 - - LGG = 72.06, HGG = 71.43

1 TL VGGNet 68.07 - - LGG = 69.33, HGG = 67.62

22 Bhanothu et al. [179]
(2020) MN vs. GL vs. PT Hold-out 80:20 - F-RCNN + VGG16 - - - (P) GL = 75.18, MN = 68.18, PT =

97.28

23 Çinar and Yildirim [180]
(2020) H vs. T - - -

Custom CNN 97.01 - 96.90 H = 94.70, T = 100.00
ResNet50 92.54 - 93.33 H = 89.74, T = 96.40

DenseNet201 91.04 - 92.30 H = 85.71, T = 100.00
AlexNet 89.55 - 90.05 H = 87.17, T = 92.85

InceptionV3 88.07 - 81.81 H = 81.81, T = 100.00
GoogLeNet 71.64 - 66.03 H = 66.03, T = 92.85

24 Ge et al. [93] (2020) LGG vs. HGG Hold-out 60:20:20 Patient

Modality-ensemble
Semi-supervised CNN

w/o DA 89.53 - - LGG = 78.26, HGG = 93.65
w/ DA 90.70 - - LGG = 84.35, HGG = 93.01

25 Ghassemi et al. [85] (2020) MN vs. GL vs. PT 5-fold CV

Custom CNN

Patient w/o pre-training 91.70 - 90.54 MN = 79.86, GL = 94.96, PT =
95.67

Patient w/ GAN pre-training 93.01 - 92.10 MN = 84.82, GL = 94.92, PT =
96.92

Image w/ GAN pre-training 95.60 - 95.10 MN = 89.98, GL = 96.83, PT =
97.93

26 Ismael et al. [159] (2020) MN vs. GL vs. PT Hold-out 80:20 Patient ResNet50 97.82 - 97.00 MN = 93.00, GL = 99.00, PT =
99.00

Image 99.34 - 99.00 MN = 98.00, GL = 99.00, PT =
100.00

27 Khan et al. [181] (2020) H vs. T Three-way 70:20:10 -

Custom CNN 100.00 100.00 100.00 H = 100.00, T = 100.00
VGG16 96.00 96.00 97.00 H = 92.85, T = 100.00

ResNet50 89.00 89.00 90.00 H = 85.71, T = 92.86
InceptionV3 75.00 75.00 74.00 H = 76.92, T = 73.33
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Table A2. Cont.

No. Reference Classification Task
Data Split

Architecture Acc% AUC% F1% Class Performance %
Method Ratio Level

28 Ma and Jia [129] (2020) AS vs. OG vs. GB Three-way 70:10:20 Patient
[WSI] 2D ResNet50 83.33 - 91.40 -

[MRI] 3D DenseNet121 71.10 - 82.90 -
[WSI-MRI] Ensemble 2D-3D 88.90 - 94.30 -

29 Mohammed and Al-Ani
[182] (2020) H vs. EP vs. MN vs. MB Three-way 70:10:20 - Custom CNN 96.00 - - -

30 Mzoughi et al. [142]
(2020) LGG vs. HGG - - Patient Custom CNN 96.49 - - -

31 Naser and Deen [183]
(2020) G.II vs. G.III 5-fold CV - TL VGG16 95.00 97.00 - G.II = 98.00, G.III = 93.00

32 Noreen et al. [184] (2020) MN vs. GL vs. PT Hold-out 80:20 - InceptionV3 99.34 99.00 - MN = 99.00, GL = 100.00, PT =
100.00

DenseNet201 99.51 100.00 - MN = 99.00, GL = 100.00, PT =
99.00

33 Pei et al. [143]
(2020) AS vs. OG vs. GB Three-way 67:11:22 Patient Custom CNN 63.90 - - -

34 Rehman et al. [104] (2020) MN vs. GL vs. PT Three-way 70:15:15 -

AlexNet 97.39 - - -
GoogLeNet 98.04 - - -

VGG16 98.69 - - -
TL AlexNet 95.77 - - -

TL GoogLeNet 95.44 - - -
TL VGG16 89.79 - - -

35 Saxena et al. [185] (2020) H vs. T Three-way 70:20:10 -
TL ResNet50 95.00 95.00 95.20 -
TL VGG16 90.00 90.00 90.90 -

TL InceptionV3 55.00 55.00 68.90 -

36 Sharif et al. [186] (2020) * LGG vs. HGG 10-fold CV, Test

70:30

- Ensemble TL InceptionV3-DRLBP

1 98.30 - - -
2 97.80 - - -
3 96.90 - - -
4 92.50 - - -

37 Tandel et al. [105] (2020) *

H vs. T
2-fold CV,
5-fold CV,
10-fold CV

- TL AlexNet

100.00 - 100.00 100.00
H vs. LGG vs. HGG 95.97 - 94.80 94.85

H vs. AS vs. OG vs. GB 96.65 - 94.78 94.17
AS-II vs. AS-III vs. OG-2

vs. OG-3 vs. GB 87.14 - 86.89 84.40

H vs. AS-II vs. AS-III vs.
OG-2 vs. OG-3 vs. GB 93.74 - 91.97 91.51
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Table A2. Cont.

No. Reference Classification Task
Data Split

Architecture Acc% AUC% F1% Class Performance %
Method Ratio Level

38 Toğaçar et al. [96] (2020) * H vs. T Hold-out 70:30 -

Ensemble TL
AlexNet-VGG16-RFE-SVM 96.77 - 96.77 (R) 97.83, (S) 95.74

TL AlexNet 90.32 - 89.89 (R) 95.24, (S) 86.27
TL VGG16 87.10 - 87.23 (R) 87.23, (S) 86.96

49 Vimal Kurup et al. [187]
(2020) MN vs. GL vs. PT Hold-out 80:20 - Custom CNN 92.60 96.33 93.33 GL = 96.00, MN = 94.00, PT =

94.00

40 Zhuge et al. [58] (2020) LGG vs. HGG 5-fold CV, Test 60:20:20 Patient

TL 2D ResNet50
w/o DA 89.10 - - (R) 86.40, (S) 91.70
w/ DA 96.30 - - (R) 93.50, (S) 97.20

3D ConvNet 97.10 - - (R) 94.70, (S) 96.80

41 Alaraimi et al. [78] (2021) MN vs. GL vs. PT Hold-out 80:20 -
TL VGG16 100.00 98.60 - -

TL GoogLeNet 98.50 98.10 - -
TL AlexNet 94.40 97.60 -

42 Ayadi et al. [86] (2021) 5-fold CV 70:30 -

Custom CNN[w/o DA]

1 MN vs. GL vs. PT 94.74 - 94.19 MN = 89.68, GL = 94.46, PT =
99.03

2 G.I vs. G.II vs. G.III vs.
G.IV 90.35 - 90.38 G.I = 88.23, G.II = 93.33, G.III =

84.00, G.IV = 96.00
3 H vs. T 100.00 - 100.00 H = 100.00, T = 100.00

3 H vs. LGG vs. HGG 95.00 - 91.35 H = 100.00, LGG = 100.00, HGG
= 70.00

3 H vs. AS vs. OG vs. GB 94.41 - 92.89 H = 99.00, AS = 96.36, OG =
92.00, GB = 80.00

3 AS-II vs. AS-III vs.
OG-II vs. OG-III vs. GB 86.08 - 86.85

AS-II = 85.71, AS-III = 90.00,
OG-II = 86.66, OG-III = 80.00, GB

= 85.71
3 H vs. AS-II vs. AS-III vs.
OG-II vs. OG-III vs. GB 92.09 - 89.84

H = 100.00, AS-II = 85.71, AS-III
= 90.00, OG-II =86.66, OG-III =

80.00, GB = 82.85

Custom CNN[w/ DA]

2 G.I vs. G.II vs. G.III vs.
G.IV 93.71 - 93.88 G.I = 90.79, G.II = 95.66, G.III =

90.84, G.IV = 98.22
3 H vs. T 100.00 - 100.00 H = 100.00, T = 100.00

3 H vs. LGG vs. HGG 97.22 - 95.45 H = 100.00, LGG = 98.40, HGG =
86.00

3 H vs. AS vs. OG vs. GB 97.02 - 95.75 H = 99.80, AS = 97.09, OG =
90.40, GB = 93.71

3 AS-II vs. AS-III vs.
OG-II vs. OG-III vs. GB 88.86 - 87.52

AS-II = 88.50, AS-III = 94.00,
OG-II = 96.00, OG-III = 62.00, GB

= 90.85
3 H vs. AS-II vs. AS-III vs.
OG-II vs. OG-III vs. GB 95.72 - 91.76

H = 100.00, AS-II = 93.14, AS-III
= 88.00, OG-II = 98.66, OG-III =

76.00, GB = 94.85
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Table A2. Cont.

No. Reference Classification Task
Data Split

Architecture Acc% AUC% F1% Class Performance %
Method Ratio Level

43
Bashir-Gonbadi and

Khotanlou [188]
(2021)

MN vs. GL vs. PT

Three-way - - Auto-encoder CNN

98.50 - 98.6 MN = 97.90, GL = 99.00, PT =
98.60

H vs. LGG vs. HGG 99.10 - 99.2 H = 98.10, LGG = 99.00, HGG =
97.70

H vs. AS vs. MN vs. PT
vs. LGG vs. HGG 99.30 - 99

H = 100.00, AS = 100.00, MN =
100.00, PT = 100.00, LGG = 96.60,

HGG = 97.80

44 Chakrabarty et al. [144]
(2021)

LGG vs. HGG vs. MT vs.
PT vs. AN vs.

H vs. MN

5-fold CV,
Test 80:20 Patient Custom CNN 91.95 96.93 93.86

LGG = 81.50, HGG = 87.00, MT
= 98.60, PA = 100.00, AN =

100.00, H = 89.70, MN = 93.30

45 Decuyper et al. [140]
(2021) LGG vs. HGG Three-way 73:11:16 Patient Custom CNN 90.00 93.98 - LGG = 89.80, HGG = 90.16

46 Díaz-Pernas et al. [151]
(2021) MN vs. GL vs. PT 5-fold CV Patient Custom CNN 97.30 - - GL = 99.00, MN = 93.00, PT =

98.00

47 Gab Allah et al. [94]
(2021) * MN vs. GL vs. PT Three-way 70:15:15 -

1 VGG19 98.54 - - GL = 100, MN = 90.20,
PT = 96.92

2 VGG19 96.59 - - -

48 Gilanie et al. [152] (2021) AS-1 vs. AS-II vs. AS-III
vs. AS-IV Hold-out 50:25:25 Patient Custom CNN 95.56 - - (Acc) G.I = 99.06, G.II = 94.01,

G.III = 95.31, G.IV = 97.85

49 Gu et al. [189] (2021)
1 AS vs. OG vs. GB 5-fold CV 70:30 - Custom CNN 97.64 - 94.18 AS = 96.86, OG = 91.27, GB =

93.09
2 MN vs. GL vs. PT 96.34 - 94.69 MN = 88.75, GL = 94.87, PT =

98.37

50 Guan et al. [153] (2021) MN vs. GL vs. PT 5-fold CV 70:30 Patient EfficientNet 98.04 - 97.79 MN = 96.89, GL = 97.82, PT =
99.24

51 Gull et al. [154] (2021) H vs. T 10-fold CV, Test 70:10:20 Patient GoogLeNet
1 96.49 - 97.27 H = 94.17, T = 97.80
2 97.31 - 97.92 H = 95.83, T = 98.14
398.79 - 99.12 H = 97.37, T = 99.42

52 Gutta et al. [106] (2021) G.I vs. G.II vs. G.III vs. G.IV Three-way 70:15:15 Patient

Modality-ensemble CNN 87.00 - - G.I = 100.00, G.II = 82.35, G.III =
76.92, G.IV = 92.50

GrB 64.00 - - G.I = 0.00, G.II = 23.53, G.III =
42.31, G.IV = 90.74

RF 58.00 - - G.I = 0.00, G.II = 35.23, G.III =
7.69, G.IV = 92.50

SVM 56.00 - - G.I = 33.00, G.II = 70.00, G.III =
34.62, G.IV = 72.00

53 Hao et al. [79] (2021)* LGG vs. HGG Three-way 60:20:20 Patient AlexNet - 71.93 - -
TL AlexNet - 79.91 - -
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No. Reference Classification Task
Data Split

Architecture Acc% AUC% F1% Class Performance %
Method Ratio Level

54 Irmak [190] (2021)

H vs. T

5-fold CV, Test 60:20:20 - Custom CNN

99.33 99.95 - H = 100, T = 98.80
H vs. MN vs. GL vs. PT

vs. MT 92.66 99.81 - H = 92.10, MN = 94.20, GL =
94.40, PT = 88.00, MT = 90.00

G.II vs. G.III vs. G.IV 98.14 99.94 - G.II = 97.91, G.III = 100, G.IV =
97.01

55 Kader et al. [191] (2021) H vs. T - - - DWAE model 99.30 - 96.55 H = 96.90, T = 95.60

56 Kader et al. [192] (2021) * H vs. T 5-fold CV -

Custom CNN 99.25 - 95.23 (R) 95.89, (S) 93.75
GoogLeNet 89.66 - 90.32 (R) 84.85, (S) 96.00

AlexNet 87.66 - 88.52 (R) 84.38, (S) 92.31
VGG16 84.48 - 85.25 (R) 81.25, (S) 8.48

57 Kakarla et al. [193] (2021) MN vs. GL vs. PT 5-fold CV,
Test 80:20 - Custom CNN 97.42 - - -

58 Kang et al. [133] (2021) * Hold-out 80:20 -

Ensemble TL CNNs

H vs. T DenseNet169-InceptionV3-
ResNeXt50-AdaBoost

1 92.16 - - -

H vs. T DenseNet121-ResNeXt-MnasNet 2 98.83 - - -

H vs. MN vs. GL vs. PT DenseNet169-ShuffleNet-
MnasNet

391.58 - - -

59 Khan et al. [87] (2021) LGG vs. HGG - - - VGG19 (w/o DA) 90.03 - - LGG = 91.05, HGG = 84.03
VGG19 (w/ DA) 94.06 - - LGG = 96.05, HGG = 89.09

60 Kumar et al. [88] (2021) MN vs. GL vs. PT 5-fold CV - TL ResNet50 (w/o DA) 97.48 - 97.20 97.20
TL ResNet50 (w/ DA) 97.08 - 97.20 97.20

61 Masood et al. [194] (2021) MN vs. GL vs. PT Hold-out 70:30 - DenseNet-41-based Mask-RCNN 98.34 - - (Acc) MN = 97.81,
GL = 98.62, PT = 98.60

H vs. T 97.90 - - (Acc) H = 98.06, T = 97.74

62 Noreen et al. [134] (2021) * MN vs. GL vs. PT 10-fold CV -

TL InceptionV3 93.31 - 92.67 MN = 84.00, GL = 95.00, PT =
98.00

Ensemble
InceptionV3-KNN-SVM-RF 94.34 - - -

TL XceptionV3 91.63 - 90.00 MN = 78.00, GL = 94.00, PT =
100.00

Ensemble
Xception-KNN-SVM-RF 93.79 - - -

63 Özcan et al. [155] (2021) G.II vs. G.IV 5-fold CV, Test 80:20 Patient

Custom CNN 97.10 98.90 97.00 G.II = 98.00, G.IV = 96.30
AlexNet 92.30 97.00 92.22 G.II = 94.00, G.IV = 90.70

GoogLeNet 93.30 98.70 93.30 G.II = 98.00, G.IV = 88.90
SqueezeNet 89.40 97.50 89.30 G.II = 92.00, G.IV = 87.00

64 Pei et al. [97] (2021) AS vs. OG vs. GB Hold-out 85:15 Patient
[WSI] 2D CNN 77.00 - 88.60 -
[MRI] 3D CNN 69.80 - 77.10 -

[WSI-MRI] Ensemble 2D-3D
CNNs 80.00 - 88.60 -

65 Sadad et al. [195] (2021) * MN vs. GL vs. PT Hold-out 80:20 - Custom CNN 99.60 99.00 - -
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66 Tandel et al. [107] (2021) *

H vs. T

5-fold CV Patient
Ensemble TL AlexNet,

VGG16, ResNet18,
GoogleNet, ResNet50

96.51 96.60 - (R) 96.76, (S) 96.43
AS-II vs. AS-III 97.70 97.04 - (R) 94.63, (S) 99.44
OG-2 vs. OG-3 100.00 100.00 - (R) 100.00, (S) 100.00
LGG vs. HGG 98.43 98.45 - (R) 98.33, (S) 98.57

67 Toğaçar et al. [80] (2021) MN vs. GL vs. PT Hold-out 80:20 - Custom CNN - - 96.22 MN = 94.81, GL = 98.48, PT =
95.38

68 Yamashiro et al. [145]
(2021) LGG vs. HGG Hold-out 85:15 Patient Custom CNN 91.30 92.7 - LGG = 69.20, HGG = 100.00

69 Yin et al. [130] (2021) AS vs. OG vs. GB Hold-out 86:14 Patient
[WSI] 2D DenseNet 88.90 - 94.30 -
[MRI] 3D DenseNet 82.00 - 85.70 -

[WSI-MRI] Ensemble 2D-3D 94.40 - 97.10 -

70 Aamir et al. [156] (2022) MN vs. GL vs. PT 5-fold CV Patient Custom CNN 98.95 - 97.98 MN = 97.31, GL = 99.51, PT =
99.34

71 Ahmad et al. [89] (2022) MN vs. GL vs. PT Three-way 60:20:20 -

ResNet50 (w/o DA) 72.63 - 71.07 MN = 73.94, GL = 76.92, PT =
65.05

ResNet50 (w/ CDA) 77.52 - 76.06 MN = 76.76, GL = 82.87, PT =
69.89

ResNet50 (w/ GDA) 92.30 - 91.77 MN = 92.25, GL = 96.15, PT =
86.56

ResNet50 (w/ CDA+GDA) 96.25 - 96.97 MN = 96.47, GL = 96.50, PT =
95.70

72 Alanazi et al. [160] (2022) H vs. T Three-way 80:20, 2 Test - TL (on Kaggle-I) Custom CNN 95.75 - - -

MN vs. GL vs. PT 96.90 - 99.00 MN = 92.00, GL = 98.70, PT =
98.20

73 Almalki et al. [121] (2022) * H vs. MN vs. GL vs. PT Hold-out 80:20, 2 Test - Custom CNN-SVM 98.00 - - H = 94.70, MN = 97.30, GL =
98.80, PT = 99.40

MN vs. GL vs. PT 97.16 - - MN = 99.20, GL = 94.71, PT =
99.40

74 Amou et al. [81] (2022) MN vs. GL vs. PT Hold-out 90:10 -

Custom CNN 98.70 - 98.60 MN = 97.00, GL = 99.00, PT =
99.00

VGG16 97.08 - 96.60 MN = 97.00, GL = 96.00, PT =
99.00

VGG19 96.43 - 95.56 MN = 93.00, GL = 97.00, PT =
99.00

DenseNet201 94.81 - 93.60 MN = 85.00, GL = 97.00, PT =
100.00

InceptionV3 92.86 - 92.00 MN = 82.00, GL = 97.00, PT =
96.00

ResNet50 89.29 - 89.00 MN = 57.00, GL = 77.00, PT =
98.00
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75 Aurna et al. [82] (2022) H vs. MN vs. GL vs. PT LOOCV (on
dataset) - 2-stage Ensemble

EfficientNetB0-ResNet50-
Custom CNN

98.96 98.90 99.00 H = 100.00, MN = 99.00, GL =
98.00, PT = 99.00

76 Chatterjee et al. [59] (2022) H vs. LGG vs. HGG 3-fold CV, Test 70:30 Patient

(2+1)D ResNet - - 90.35 H = 99.04, LGG = 91.43, HGG =
82.29

TL (2+1)D ResNet - - 92.37 H = 99.88, LGG = 91.08, HGG =
87.05

2D-3D Mixed ResNet - - 86.07 H = 97.69, LGG = 88.60, HGG =
75.05

TL 2D-3D Mixed ResNet 96.98 - 93.45 H = 99.51, LGG = 93.19, HGG =
88.37

3D ResNet18 - - 90.95 H = 99.44, LGG = 92.06, HGG =
82.89

TL 3D ResNet18 - - 89.25 H = 99.97, LGG = 85.52, HGG =
83.53

77 Chitnis et al. [197] (2022) * H vs. MN vs. GL vs. PT Hold-out 88:12 -

Custom CNN 90.60 95.60 91.48 (R) 91.50, (S) 97.99
DenseNet101 86.80 92.84 87.84 (R) 86.14, (S) 96.07
VGGNet16 88.33 94.31 89.60 (R) 88.15, (S) 98.61
ResNet50 85.79 94.34 86.96 (R) 85.17, (S) 95.77

78 Coupet et al. [135] (2022) * H vs. T Three-way 70:15:15 Patient Modality-ensemble TL CNNs 86.38 - - -
TL 3DUNet 82.96 - - H = 69.81, T = 96.44

79 Dang et al. [98] (2022) LGG vs. HGG Three-way 60:20:20 - VGG 97.44 - - -

80 Danilov et al. [146] (2022)

LGG vs. HGG

Three-way 80:10:10 -
(3D) DenseNet 67.00 76.00 - (R) 58.00, (S) 78.00

G.I vs. G.II vs. G.III vs.
G.IV 83.00 95.00 80.25 G.I = 100.00, G.II = 63.00, G.III =

100.00, G.IV = 85.00
LGG vs. HGG (2D) TL ResNet200e 61.00 73.00 - (R) 44.00, (S) 81.00

G.I vs. G.II vs. G.III vs.
G.IV 50.00 72.00 35.00 G.I = 56.00, G.II = 45.00, G.III =

32.00, G.IV = 47.00

81 Ding et al. [57] (2022) * LGG vs. HGG Hold-out Patient
Radiomics 74.00 82.20 - (R) 80.00, (S) 68.00

VGG16 60.00 71.20 - (R) 68.00, (S) 52.00
Ensemble Radiomics-VGG16-RF 80.00 89.80 - (R) 84.00, (S) 76.00

82 Ekong et al. [198] (2022) H vs. MN vs. GL vs. PT Three-way 80:10:10 -

Bayesian CNN 94.32 - 94.00 H = 97.50, MN = 92.50, GL =
85.50, PT = 100.00

MobileNet 93.42 - 94.00 94.00
AlexNet 92.75 - 93.00 93.00
VGG16 89.51 - 91.00 91.00

ResNet50 86.58 - 86.00 87.00

83 Gao et al. [112] (2022) * 18 types of tumors * Three-way 72:24:4 Patient DenseNet 81.20 92.00 - (R) 87.60, (S) 84.90

84 Gaur et al. [199] (2022) MN vs. GL vs. PT Three-way 80:10:10 - Custom CNN 85.37 - - -

85 Guo et al. [150] (2022) AS vs. OG vs. GB 3-fold CV -
Radiomics 83.70 87.00 83.40 (R) 70.40, (S) 89.90

Modality-fusion DenseNet201 84.60 88.30 84.60 (R) 73.10, (S) 93.00
Modality-ensemble

DenseNet201 87.80 90.2 87.80 (R) 77.20, (S) 93.00
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86 Gupta et al. [95] (2022) H vs. T Hold-out 88:12 - InceptionResNetV2-RF 96.66 - 97.00 H = 100.00, T = 93.00

MN vs. GL vs. PT 96.88 - 96.00 MN = 100.00, GL = 100.00, PT =
85.00

87 Gurunathan and
Krishnan [200] (2022) LGG vs. HGG Hold-out 75:25 -

Custom CNN 99.40 - 98.10 (R) 97.20, (S) 98.60
AlexNet 98.14 - - -
VGG19 97.97 - - -

GoogLeNet 95.69 - -

88 Haq et al. [90] (2022) * MN vs. GL vs. PT Hold-out 70:30 -

[w/o DA]
TL ResNet50 99.10 98.78 99.50 (R) 89.60, (S) 100.00
TL VGG-16 98.78 98.06 97.49 (R) 84.64, (S) 99.80

TL InceptionV3 97.78 97.00 97.39 (R) 92.23, (S) 96.88
[w/ DA]

TL ResNet50 99.89 99.56 99.43 (R) 96.13, (S) 99.08
TL VGG-16 98.98 97.98 98.79 (R) 97.87, (S) 100.00

TL InceptionV3 98.50 98.76 98.00 (R) 98.56, (S) 100.00

89 Hsu et al. [131] (2022) AS vs. OG vs. GB Three-way 67:11:22 Patient
[WSI] 2D ResNet50 77.70 - 88.60 -
[MRI] 3D ResUNet 69.80 - 77.10 -

[WSI-MRI] ResNet50-ResUNet 80.00 - 88.60 -

90 Isunuri and Kakarla [201]
(2022) MN vs. GL vs. PT 5-fold CV - Custom CNN 97.52 - 97.26 97.19

91 Jeong et al. [113] (2022) LGG vs. HGG 5-fold CV - Custom CNN 90.91 96.34 - (R) 92.69, (S) 84.90

92 Kazemi et al. [108] (2022) *

1 MN vs. GL vs. PT

Hold-out 75:25 -

SVM-KNN 80.14 80.93 - -
AlexNet 91.88 92.67 - -
VGGNet 89.96 90.29 - -

AlexNet-VGGNet 98.06 99.14 - MN = 98.10, GL = 98.88, PT =
98.50

2 G.II vs. G.III vs. G.IV

SVM-KNN 82.44 84.63 - -
AlexNet 92.59 92.9 - -
VGGNet 90.05 90.51 - -

AlexNet-VGGNet 98.99 99.23 - MN = 98.02, GL = 95.90, PT =
98.95

93 Khazaee et al. [202] (2022) LGG vs. HGG Hold-out 80:20 - TL EfficientNetB0 98.87 - - (R) 98.86, (S) 98.79

94 Kibriya et al. [122] (2022) MN vs. GL vs. PT - - - Ensemble AlexNet-GoogLeNet-
ResNet18-SVM 99.70 100.00 - MN = 99.80, GL = 98.96, PT =

100.00

95 Koli et al. [203] (2022) H vs. T Three-way 70:15:15 - TL ResNet50 90.00 - 90.00 -

MN vs. GL vs. PT 96.00 - 95.00 MN = 90.00, GL = 98.00, PT =
97.00

96 Lakshmi and Rao [204]
(2022) H vs. MN vs. GL vs. PT Hold-out 80:20 - InceptionV3 89.00 - - -
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97 Maqsood et al. [114] (2022) MN vs. GL vs. PT 5-fold CV - TL MobileNetV2-SVM 98.92 98.93 97.87 MN = 99.03, GL = 98.82, PT =
98.79

LGG vs. HGG 97.47 - 96.71 (R) 97.22, (S) 97.94

98 Murthy et al. [205] (2022) * H vs. T - - - Custom CNN 95.26 - 97.52 (R) 97.12, (S) 50.00

99 Nayak et al. [206] (2022) MN vs. GL vs. PT Hold-out 80:20 -

TL EfficientNet 98.78 - 98.75 H = 98.00, MN = 100.00, GL =
97.00, PT = 100.00

TL ResNet50 96.33 - 96.50 H = 98.00, MN = 98.00, GL =
90.00, PT = 100.00

TL MobileNet 96.94 - 97.00 H = 98.00, MN = 95.00, GL =
94.00, PT = 100.00

TL MobileNetV2 94.80 - 95.00 H = 96.00, MN = 99.00, GL =
95.00, PT = 90.00

100 Rajinikanth et al. [124]
(2022) LGG vs. HGG 5-fold CV 90:10 -

TL VGG16-SoftMax 96.50 - 96.55 (R) 97.03, (S) 95.96
TL VGG16-DT 96.00 - 96.00 (R) 96.97, (S) 95.05

TL VGG16-KNN 96.50 - 96.52 (R) 97.00, (S) 96.00
TL VGG16-SVM 97.00 - 97.00 (R) 97.00, (S) 97.00

101 Rasool et al. [125] (2022) H vs. MN vs. GL vs. PT Hold-out 80:20 - TL GoogLeNet 93.10 - - H = 95.20, MN = 85.10,
GL = 97.00, PT = 100.00

GoogLeNet-SVM 98.10 - - H = 98.70, MN = 97.30, GL =
97.80, PT = 98.90

102 Raza et al. [207] (2022) MN vs. GL vs. PT Hold-out 70:30 -

Custom TL GoogLeNet 99.67 - 99.66 (R) 100.00
TL AlexNet 97.80 - 97.66 (R) 97.66

TL GoogLeNet 98.26 - 98.33 (R) 98.66
TL ShuufleNet 98.37 - 98.33 (R) 98.66
TL ResNet50 98.60 - 98.33 (R)98.66

TL MobileNetV2 99.00 - 99.00 (R) 99.00
TL SqueezeNet 97.91 - 97.66 (R) 98.00
TL Darknet53 99.13 - 99.00 (R) 99.33
TL ResNet101 98.91 - 98.66 (R) 99.00

TL ExceptionNet 98.69 - 98.00 (R) 98.33

103 Rizwan et al. [208] (2022) MN vs. GL vs. PT Train, Val+Test 65:35 - Custom CNN 99.80 - - (Acc) MN = 98.92, GL = 96.72,
PT = 97.81

G.II vs. G.III vs. G.IV 97.14 - - (Acc) G.II = 99.00, G.III = 96.00,
G.IV = 99.00
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104 Samee et al. [209] (2022) MN vs. GL vs. PT Hold-out 70:30 -

TL hybrid GoogLeNet-AlexNet 99.10 99.00 - MN = 99.00, GL = 99.00, PT =
99.00

TL AlexNet 96.00 97.00 - MN = 96.00, GL = 96.00, PT =
96.00

TL VGG16 95.00 95.00 - MN = 95.00, GL = 95.00, PT =
95.00

TL MobileNetV2 95.00 95.00 - MN = 95.00, GL = 95.00, PT =
95.00

TL ResNet 94.00 94.00 - MN = 94.00, GL = 94.00, PT =
94.00

TL SqueezeNet 92.00 92.00 - MN = 92.00, GL = 92.00, PT =
92.00

105 Samee et al. [147] (2022) LGG vs. HGG 10-fold CV,
Test 70:15:15 Patient Custom CNN 88.60 - - LGG = 80.00, HGG = 88.60

106 Sangeetha et al. [210]
(2022) H vs. T LOOCV Patient TL (in Rembrandt) CNN 94.00 - - (R) 85.00, (S) 73.00

107 Saravanan et al. [109] (2022)

1 LGG vs. HGG vs. PIT

10-fold CV -

SVM-RBF 85.80 - 85.10 (R) 81.90
GoogLeNet 94.60 - 90.90 (R) 91.50

CDbLNL 97.21 - 95.72 (R) 95.62

2 OLI vs. EP vs. CAM
SVM-RBF 84.80 - 84.10 (R) 80.90

GoogLeNet 91.60 - 90.10 (R) 91.50
CDbLNL 97.21 - 94.34 (R) 93.86

108 Sekhar et al. [126] (2022) MN vs. GL vs. PT 5-fold CV Patient
TL GoogLeNet-SoftMax 94.90 - 94.30 MN = 96.92, GL = 91.13, PT =

97.77

TL GoogLeNet-SVM 97.60 - 97.35 MN = 97.96, GL = 94.59, PT =
100.00

TL GoogLeNet-KNN 98.30 - 97.24 MN = 94.57, GL = 98.02, PT =
99.10

109 Senan et al. [99] (2022) H vs. MN vs. GL vs. PT Hold-out 80:20 -

AlexNet-SoftMax 93.30 - -

H = 91.10, MN = 89.80,
GL = 93.30, PT = 97.80 H =

91.10, MN = 89.80, GL = 93.30,
PT = 97.80

AlexNet-SVM 95.10 - - H = 94.90, MN = 93.60,
GL = 93.90, PT = 97.80

ResNet18-SoftMax 93.80 - - H = 87.30, MN = 93.60,
GL = 93.30, PT = 97.20

ResNet18-SVM 91.20 - - H = 92.40, MN = 86.10,
GL = 91.50, PT = 95.60

110 Srinivas et al. [211] (2022) Benign vs. Malignant Three-way - -
TL VGG16 86.05 - - B = 89.47, M = 87.09

TL InceptionV3 64.00 - - B = 5.55, M = 100.00
TL ResNet50 74.00 - - B = 89.47, M = 64.52
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111 Tandel et al. [75] (2022) * LGG vs. HGG 5-fold CV -

TL Ensemble AlexNet, VGGNet,
ResNet18, GoogLeNet,

ResNet50
[Whole image] 98.43 98.45 - (R) 98.33, (S) 98.57

[Skull-stripped brain] 98.63 98.63 - (R) 98.63. (S) 98.57
[Tumor ROI] 99.06 99.07 - (R) 99.04, (S) 99.10

112 Tripathi and Bag [83] (2022) * LGG vs. HGG

Hold-out 70:30 -

DST Fusion TL ResNets

95.64 - 92.41 (R) 92.12, (S) 95.97
80:20 - 95.78 - 91.91 (R) 95.12, (S) 95.10
90:10 - 96.19 - 94.13 (R) 96.95, (S) 95.77

Average - 95.87 - 92.82 -

113 Tripathi and Bag [141]
(2022) LGG vs. HGG 10-fold CV Patient Attention-based CNN 95.86 - 94.84 (R) 94.82, (S) 96.81

114 Tummala et al. [136]
(2022) MN vs. GL vs. PT Three-way 70:10:20 - Ensemble ViT 98.70 - - (R) 97.78, (S) 99.42

115 Vankdothu et al. [213] (2022) H vs. MN vs. GL vs. PIT Hold-out 88:12
- CNN 89.39 - - (R) 98.30

RNN 90.02 - - (R) 98.00
CNN-LSTM 92.00 - - (R) 98.50

116 Wang et al. [132] (2022) AS vs. OG vs. GB Three-way 70:10:20 Patient

[WSI] Ensemble EfficientNet-B2,
EfficientNet-B3, SE-ResNext10 82.20 - 88.60

[MRI] 3D CNN 73.30 - 82.90
[WSI-MRI] 2D-3D Ensemble 75.00 - 75.30 -

117 Xiong et al. [115] (2022) * AS vs. OG vs. GB Three-way 70:15:15 Patient [MRI] TL ResNet34 67.50 - - AST = 85.70, OLI = 40.00, GBM =
68.80

[MRI-tabular] TL ResNet34 70.00 - - AST = 85.70, OLI = 30.00, GBM =
81.30

118 Xu et al. [118] (2022) * LGG vs. HGG Three-way 60:20:20 Patient

1 TL ResNet18 83.33 - - (R) 90.8
1 TL ResNet18+radiomics 88.10 - - (R) 90.1

2 TL ResNet18 87.40 - - (R) 93.1
2 TL ResNet18+radiomics 94.10 - - (R) 97.1

119 Yazdan et al. [214] (2022) * H vs. MN vs. GL vs. PT k-fold CV -

TL AlexNet 87.89 - 88.03 (R) 87.86, (S) 85.42
TL ResNet 91.98 - 91.59 (R) 91.44, (S) 89.79

Multi-scale CNN 1 89.27 - 89.41 (R) 89.15, (S) 86.91
Multi-scale CNN 2 94.19 - 94.06 (R) 93.74, (S) 92.62
Multi-scale CNN 3 89.67 - 89.49 (R) 89.24, (S) 88.35

120 Zahoor et al. [103] (2022) *
1 H vs. T Hold-out 60:40 -

ResNet18-Softmax 97.43 - 97.56 (R) 98.12
TL ResNet18-Softmax 98.91 - 98.69 (R) 99.66

TL ResNet18-SVM 99.16 - 98.94 (R) 97.99
Custom CNN-SVM 99.56 99.90 99.45 (R) 98.99

2 MN vs. GL vs. PT 80:20 Custom CNN-SVM 99.20 - 99.09 MN = 98.60, GL = 99.30, PT =
99.50
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121 AlTahhan et al. [127] (2023) H vs. MN vs. GL vs. PT Three-way 70:30:- -

TL GoogLeNet-SoftMax 88.00 - 88.46 H = 87.50, MN = 88.00, GL =
88.50, PT = 88.00

TL AlexNet-SoftMax 85.00 - 86.27 H = 84.00, MN = 84.60, GL =
88.00, PT = 83.30

TL AlexNet-SVM 95.00 - 93.62 H = 92.60, MN = 92.30, GL =
100.00, PT = 96.00

TL AlexNet-KNN 97.00 - 97.96 H = 96.20, MN = 96.00, GL =
100.00, PT = 96.00

122 Al-Zoghby et al. [137]
(2023) MN vs. GL vs. PT Hold-out 80:20 - Ensemble TL VGG-16 & Custom

CNN 99.00 99.00 99.00 MN = 98.00, GL = 100.00, PT =
99.00

123 Anagun [215] (2023) MN vs. GL vs. PT Three-way 80:10:10 -

TL EfficientNetv2 99.85 99.92 98.07 98.05
TL ResNet18 99.62 99.75 96.64 96.71

TL ResNet200d 99.83 99.84 97.72 97.66
TL InceptionV4 99.69 99.73 97.19 97.37

124 Anand et al. [91] (2023) H vs. T Three-way 76:14:10 -

TL EfficientNetB0 - - 54.50 H = 44.00, T = 30.00
TL InceptionV3 - - 91.50 H = 90.00, T = 94.00

TL ResNet50 - - 85.00 H = 82.00, T = 81.00
TL VGG19 95.00 - 96.00 H = 98.00, T = 96.00

Custom CNN w/o DA 96.00 - 96.50 H = 95.00, T = 98.00
Custom CNN w/ DA 97.00 - 97.00 H = 98.00, T = 96.00

Ensemble TL VGG19 & Custom
CNN 98.00 - 98.50 H = 98.50, T = 99.00

125 Apostolopoulos et al. [216]
(2023) * H vs. MN vs. GL vs. PT H10-fold CV -

Attention VGG19 93.53 95.3 90.55 H = 99.60, MN = 90.62, GL =
96.76, PT = 91.61

VGG19 91.08 - - -
ResNet152 86.00 - - -

MobileNetV2 86.89 - - -
InceptionV3 87.13 - - -

126 Asif et al. [138] (2023) MN vs. GL vs. PT Hold-out 80:20 -

TL Xception 91.83 - 90.65 MN = 82.98, GL = 92.63, PT =
97.31

TL VGG16 93.54 - 93.01 MN = 84.40, GL = 96.49, PT =
97.31

TL DenseNet201 97.22 98.00 96.81 MN = 92.91, GL = 98.60, PT =
98.39

TL ResNet152V2 95.58 98.00 95.12 MN = 92.91, GL = 94.74, PT =
98.92

TL InceptionResNetV2 95.75 96.00 94.96 MN = 89.36, GL = 97.54, PT =
97.85

Ensemble TL DenseNet201,
ResNet152V2,

InceptionResNetV2
98.69 99.00 98.39 MN = 96.45, GL = 99.29, PT =

99.46
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Table A2. Cont.

No. Reference Classification Task
Data Split

Architecture Acc% AUC% F1% Class Performance %
Method Ratio Level

127 Athisayamani et al. [110]
(2023) MN vs. GL vs. PT - - -

TL ResNet152 98.85 98.00 - MN = 97.00, GL = 98.00, PT =
99.00

CNN 97.00 - - (R) 94.00
SVM 94.00 - - (R) 94.00

128 Bairagi et al. [111] (2023) * H vs. T 10-fold CV, Test 80:20 -

SVM 89.53 - - -
TL AlexNet 98.67 - - -
TL VGG16 90.67 - - -

TL GoogLeNet 91.49 - - -

129 Deepa et al. [84] (2023) * H vs. T Hold-out 90:10 - Custom CJHBA Based DRN
1 92.10 - - (R) 93.13, (S) 92.84
2 91.84 - (R) 91.55, (S) 91.86

130 El-Wahab et al. [219] (2023) MN vs. GL vs. PT 5-fold CV, Test 80:20 -

TL VGG16 92.07 - - -
TL VGG19 93.05 - - -

TL InceptionV3 80.35 - - -
TL ResNet50 74.48 - - -

TL MobileNet 89.16 - - -
BTCfCNN 93.08 - 92.21 (R) 92.01, (S) 96.34

TL BTCfCNN 98.63 - 98.46 (R) 98.49, (S) 99.31
(bt folds) TL BTC-fCNN 98.86 - 98.77 (R) 98.83, (S) 99.41

131 Hossain et al. [116] (2023) H vs. MN vs. GL vs. PT three-way 80:10:10 -

TL InceptionV3 95.72 - 69.00 H = 100.00, MN = 98.00, GL =
31.00, PT = 70.00

TL VGG16 95.11 - 69.00 H = 100.00, MN = 99.00, GL =
22.00, PT = 80.00

TL Xception 94.50 - 69.00 H = 98.00, MN = 91.00, GL =
39.00, PT = 77.00

TL ResNet50 93.88 - 72.00 H = 100.00, MN = 97.00, GL =
28.00, PT = 72.00

TL VGG19 94.19 - 64.00 H = 100.00, MN = 97.00, GL =
22.00, PT = 64.00

TL InceptionResNetV2 93.58 - 70.00 H = 98.00, MN = 99.00, GL =
33.00, PT = 68.00

Ensemble TL VGG16,
InceptionV3, Xception 96.94 - 76.00 H = 100, MN = 93.00, GL = 49.00,

PT = 73.00

132 Hussain et al. [148] (2023) LGG vs. HGG Hold-out - Patient

3D CNN
- T1 94.00 - 95.77 -
- T1c 94.00 - 95.77 -
- T2 94.38 - 95.65 -

- Flair 93.23 - 95.77 -
- Segmentation 94.38 - 95.77 -

Ensemble 94.20 - 95.75 -
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133 Kibriya et al. [119] (2023) H vs. T Hold-out 70:30 -

1 Radiomics-SVM 72.00 - - -
1 Radiomics-KNN 84.00 - - -

1 VGG16-SVM 92.10 - - -
1 VGG16-KNN 88.10 - - -

1 Radiomics+VGG16-SVM 93.30 99.00 93.50 93.00
1 Radiomics+VGG16-KNN 96.00 99.00 94.50 95.50

2 Radiomics-SVM 96.10 - - -
2 Radiomics-KNN 96.00 - - -

2 VGG16-SVM 98.00 - - -
2 VGG16-KNN 97.80 - - -

2 Radiomics+VGG16-SVM 99.00 100.00 99.00 99.00
2 Radiomics+VGG16-KNN 98.70 100.00 99.00 99.00

134 Krishnapriya and Karuna [92]
(2023) H vs. T Hold-out 70:30 -

[w/o DA]
TL VGG16 90.50 - - -
TL VGG19 90.70 - - -

TL ResNet 50 88.02 - - -
TL InceptionV3 66.26 - - -

[w/ DA]
TL VGG 16 99.00 - 99.08 98.18
TL VGG19 99.48 - 99.17 98.76

TL ResNet50 97.92 - 82.24 87.27
TL InceptionV3 81.25 - 58.16 63.25

135 Kumar et al. [128] (2023) * Benign vs. Malignant Hold-out 90:10 -
ResNet50-Softmax 86.57 - - -

ResNet50-SVM 91.24 - - -
TL ResNet50 96.80 - 97.34 Benign = 95.21,

Malignant = 97.56

136 Mahmud et al. [220] (2023) H vs. M vs GL vs. PT Three-way 80:10:10 -

Custom CNN 93.30 98.43 - 91.13
ResNet50 81.10 94.2 - 81.04
VGG16 71.60 89.6 - 70.03

InceptionV3 80.00 89.14 - 79.81

137 Muezzinoglu et al. [221]
(2023) H vs. MN vs. GL vs. PT 10-fold CV - PatchResNet 98.10 98.01 H = 98.40, MN = 98.51, GL =

95.68, PT = 100.00

138 Özkaraca et al. [222]
(2023) H vs. MN vs. GL vs. PT 10-fold CV, Test 80:20 -

CNN - - 92.00 H = 98.00, MN = 84.00, GL =
90.00, PT = 97.00

VGG16 - - 85.75 H = 96.00, MN = 67.00, GL =
89.00, PT = 94.00

DenseNet - - 84.75 H = 99.00, MN = 83.00, GL =
99.00, PT = 58.00

Custom CNN - - 96.5 H = 98.00, MN = 91.00, GL =
97.00, R PT = 99.00

139 Özkaya and Şağıroğlu [224]
(2023) LGG vs. HGG 10-fold CV -

TL MobileNetV2 99.85 99.92 99.85 -
TL DenseNet201 99.66 99.77 99.67 -

TL Xception 99.63 99.70 99.64 -
TL InceptionV3 99.63 99.74 99.64 -

TL EfficientNetV2S 99.24 99.41 99.25 -
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140 Rasheed et al. [225] (2023) MN vs. GL vs. PT Hold-out 80:20 -

Custom CNN 98.04 98.00 98.00 MN = 95.00, GL = 99.00, PT =
100.00

VGG16 90.70 93.00 90.00 MN = 79.00, GL = 92.00, PT =
99.00

VGG19 92.82 94.00 93.00 MN = 85.00, GL = 94.00, PT =
98.00

ResNet50 94.77 96.00 95.00 MN = 89.00, GL = 95.00, PT =
99.00

MobileNet 93.47 95.00 93.00 MN = 90.00, GL = 92.00, PT =
99.00

InceptionV3 85.97 88.00 85.00 MN = 66.00, GL = 89.00, PT =
98.00

141 Rui et al. [149] (2023) * LGG vs. HGG 5-fold CV, Test - Patient

Inception CNN
[Flair] 69.00 - 60.00 (R) 75.00, (S) 60.00
[T1c] 74.00 - 70.00 (R) 75.00, (S) 73.00

Modality-ensemble 80.00 - 78.00 (R) 76.00, (S) 87.00

142 Shirehjini et al. [123] (2023) * G.I vs. G.II vs. G.III vs. G.IV Three-way 70:15:15 -
TL VGG16-Softmax 96.93 - 96.64 (R) 99.29

TL VGG16-LR 98.15 - 98.12 (R) 97.94

TL-SVM 99.38 99.93 99.09 G.I: 96.00, G.II = 100.00, G.III =
100.00, G.IV = 100.00

143 Srinivasan et al. [226] (2023) H vs. MN vs. GL vs. PT Hold-out 80:20 -
Custom CNN 98.17 - - (R) 98.79, (S)91.34

UNet 92.61 - - (R) 97.56 (S) 81.51
ResNet 96.23 - - (R) 97.90, (S) 90.23

144 Tandel et al. [139] (2023) * LGG vs. HGG 5-fold CV -
Ensemble TL AlexNet,

VGG16, ResNet18, GoogLeNet,
ResNet50

[T1] 94.75 94.92 - (R) 94.29, (S) 95.56
[T2] 97.98 97.99 - (R) 97.60, (S) 98.37

[Flair] 98.88 98.88 - (R) 98.95, (S) 98.80

145 van der Voort et al. [117]
(2023)

G.II vs. G.III vs. G.IV Three-way 75:15:15 Patient UNet 71.00 81.00 - G.II = 75.00, G.III = 17.00, G.IV =
95.00

LGG vs. HGG 84.00 91.00 - (R) 72.00, (S) 93.00

146 Wu et al. [157] (2023) LGG vs. HGG Three-way 54:13:33 Patient

Attention-based custom CNN 95.19 98.40 93.34 (R) 94.01, (S) 99.53
VGG19 - 95.80 - -

ResNet50 - 94.10 - -
DenseNet201 - 95.70 - -
InceptionV4 - 97.00 - -

AS: Astrocytoma, Acc: Accuracy, AUC: Area Under the Receiver Operating Characteristic Curve, CDA: Classic Data Augmentation, CDbLNL: Convolutional Neural Network Database
Learning with Neighboring Network Limitation, CJHBA: Chronological Jaya Honey Badger Algorithm, CNN: Convolutional Neural Network, CV: Cross-Validation, DA: Data Augmentation,
DRLBP: Dominant Rotated Local Binary Patterns, DRN: Deep Residual Network, DT: Decision Tree, DCGAN: Deep Convolutional Generative Adversarial Network, DWAE: Deep Wavelet
Auto-Encoder, DWT: Discrete Wavelet Transform, ELM: Extreme Learning, Machine, EP: Ependymoma, GA: Genetic Algorithm, GAN: Generative Adversarial Network, GB: Glioblastoma, GDA:
Generative Data Augmentation, GL: Glioma, GL: Glioma, HGG: High-grade Glioma, KNN: K-Nearest Neighbors, LGG: Low-grade Glioma, LOOCV: Leave-One-Out Cross-Validation, LR:
Logistic Regression, LSTM: Long Short-Term Memory, MB: Medulloblastoma, MN: Meningioma, MT: Metastasis, OG: Oligodendroglioma, PT: Pituitary, (P): Precision, (R): Recall, RF: Random
Forest, RFE: Recursive Feature Elimination, ROI: Region of Interest, (S): Specificity, Std: Standardization, SVM: Support Vector Machine, TL: Transfer Learning, WSI: Whole Slide Image. Papers
highlighted with an asterisk (*) indicate that not all outcomes are reported. For comprehensive details, readers are referred to the original paper. Numerical superscripts link models with datasets in
Table A1 when different data sources yield individual results.



Cancers 2024, 16, 300 47 of 55

References
1. Sohn, E. The reproducibility issues that haunt health-care AI. Nature 2023, 613, 402–403.
2. McDermott, M.; Wang, S.; Marinsek, N.; Ranganath, R.; Foschini, L.; Ghassemi, M. Reproducibility in machine learning for health

research: Still a ways to go. Sci. Transl. Med. 2021, 13, eabb1655.
3. Muehlematter, U.; Daniore, P.; Vokinger, K. Approval of artificial intelligence and machine learning-based medical devices

in the USA and Europe (2015–20): A comparative analysis. Lancet Digit. Health 2021, 3, e195–e203.
4. Nakagawa, K.; Moukheiber, L.; Celi, L.; Patel, M.; Mahmood, F.; Gondim, D.; Hogarth, M.; Levenson, R. AI in Pathology:

What could possibly go wrong? Semin. Diagn. Pathol. 2023, 40, 100–108.
5. Di Nunno, V.; Fordellone, M.; Minniti, G.; Asioli, S.; Conti, A.; Mazzatenta, D.; Balestrini, D.; Chiodini, P.; Agati, R.; Tonon, C.;

et al. Machine learning in neuro-oncology: Toward novel development fields. J. Neuro-Oncol. 2022, 159, 333–346.
6. Bacciu, D.; Lisboa, P.; Vellido, A. Deep Learning in Biology and Medicine; World Scientific: London, UK, 2022.
7. Bernal, J.; Kushibar, K.; Clèrigues, A.; Oliver, A.; Lladó, X. Deep learning for medical imaging. In Deep Learning in Biology and

Medicine; World Scientific: London, UK, 2022; pp. 11–54.
8. Xue, H.; Hu, G.; Hong, N.; Dunnick, N.; Jin, Z. How to keep artificial intelligence evolving in the medical imaging world?

Challenges and opportunities. Sci. Bull. 2023, 68, 648–652.
9. Pati, S.; Baid, U.; Edwards, B.; Sheller, M.; Wang, S.-H.; Reina, G.A.; Foley, P.; Gruzdev, A.; Karkada, D.; Davatzikos, C.; et al.

Federated learning enables big data for rare cancer boundary detection. Nat. Commun. 2022, 13, 7346.
10. Thrall, J.; Li, X.; Quanzheng, L.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial Intelligence and Machine Learning in Radiology:

opportunities, challenges, pitfalls, and criteria for success. J. Am. Coll. Radiol. 2018, 15, 504–508.
11. Liu, Y.; Leong, A.; Zhao, Y.; Xiao, L.; Mak, H.; Tsang, A.; Lau, G.; Leung, G.; Wu, E. A low-cost and shielding-free ultra-low-field

brain MRI scanner. Nat. Commun. 2021, 12, 7238.
12. Julià-Sapé, M.; Acosta, D.; Majós, C.; Moreno-Torres, A.; Wesseling, P.; Acebes, J.; Griffiths, J.R.; Arús, C. Comparison between

neuroimaging classifications and histopathological diagnoses using an international multicenter brain tumor magnetic resonance
imaging database. J. Neurosurg. 2006, 105, 6–14.

13. Arita, K.; Miwa, M.; Bohara, M.; Moinuddin, F.; Kamimura, K.; Yoshimoto, K. Precision of preoperative diagnosis in patients with brain
tumor—A prospective study based on “top three list” of differential diagnosis for 1061 patients. Surg. Neurol. Int. 2020, 11, 55.

14. Osborn, A.; Louis, D.; Poussaint, T.; Linscott, L.; Salzman, K.L. The 2021 World Health Organization classification of tumors
of the central nervous system: What neuroradiologists need to know. Am. J. Neuroradiol. 2022, 43, 928–937.

15. Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; DeGroot, J.; Wick, W.; Gilbert, M.R.;
Lassman, A.B.; et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology
working group. J. Clin. Oncol. 2010, 28, 1963–1972. https://doi.org/10.1200/JCO.2009.26.3541.

16. Kumar, A.; Leeds, N.; Fuller, G.; Van Tassel, P.; Maor, M.; Sawaya, R.; Levin, V. Malignant gliomas: MR imaging spectrum
of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000, 217, 377–384.

17. Segura, P.P.; Quintela, N.V.; García, M.M.; del Barco Berrón, S.; Sarrió, R.G.; Gómez, J.G.; Castaño, A.G.; Martín, L.M.N.; Rubio,
O.G.; Losada, E.P. SEOM-GEINO clinical guidelines for high-grade gliomas of adulthood (2022). Clin. Transl. Oncol. 2023,
25, 2634–2646. https://doi.org/10.1007/S12094-023-03245-Y.

18. Da Cruz, L.C.H.; Rodriguez, I.; Domingues, R.; Gasparetto, E.; Sorensen, A. Pseudoprogression and Pseudoresponse: Imaging
Challenges in the Assessment of Posttreatment Glioma. AJNR Am. J. Neuroradiol. 2011, 32, 1978–1985. https://doi.org/10.3174/
AJNR.A2397.

19. Wen, P.Y.; van den Bent, M.; Youssef, G.; Cloughesy, T.F.; Ellingson, B.M.; Weller, M.; Galanis, E.; Barboriak, D.P.; de Groot, J.;
Gilbert, M.R.; et al. RANO 2.0: Update to the response assessment in neuro-oncology criteria for high- and low-grade gliomas
in adults. J. Clin. Oncol. 2023, 41, 5187–5199. https://doi.org/10.1200/JCO.23.01059.

20. Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 bias correction.
IEEE Trans. Med. Imaging 2010, 29, 1310–1320. https://doi.org/10.1109/TMI.2010.2046908.

21. Sled, J.G.; Zijdenbos, A.P.; Evans, A.C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data.
IEEE Trans. Med. Imaging 1998, 17, 87–97.

22. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for biomedical image segmentation. In Proceedings
of the Medical Image Computing and Computer-Assisted Intervention—MICCAI, Munich, Germany, 5–9 October 2015; Springer
International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

23. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In
Proceedings of the Advances in Neural Information Processing Systems; Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R.,
Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2015; Volume 28.

24. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.

25. Lisboa, P.; Saralajew, S.; Vellido, A.; Fernández-Domenech, R.; Villmann, T. The Coming of Age of Interpretable and Explainable
Machine Learning Models. Neurocomputing 2023, 535, 25–39.

26. Mukherjee, T.; Pournik, O.; Lim Choi Keung, S.; Arvanitis, T. Clinical decision support systems for brain tumour diagnosis and
prognosis: A systematic review. Cancers 2023, 15, 3523. https://doi.org/10.3390/cancers15133523.

https://doi.org/10.1200/JCO.2009.26.3541
https://doi.org/10.1007/S12094-023-03245-Y
https://doi.org/10.3174/AJNR.A2397
https://doi.org/10.3174/AJNR.A2397
https://doi.org/10.1200/JCO.23.01059
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.3390/cancers15133523


Cancers 2024, 16, 300 48 of 55

27. Bertsimas, D.; Wiberg, H. Machine Learning in Oncology: Methods, applications, and challenges. JCO Clin. Cancer Inform. 2020,
4, 885–894.

28. Jha, A.; Mithun, S.; Sherkhane, U.B.; Jaiswar, V.; Shi, Z.; Kalendralis, P.; Kulkarni, C.; Dinesh, M.S.; Rajamenakshi, R.; Sunder, G.;
et al. Implementation of big imaging data pipeline adhering to FAIR principles for Federated Machine Learning in Oncology.
IEEE Trans. Radiat. Plasma Med. Sci. 2022, 6, 207–213.

29. Su, X.; Chen, N.; Sun, H.; Liu, Y.; Yang, X.; Wang, W.; Zhang, S.; Tan, Q.; Su, J.; Gong, Q.; et al. Automated Machine Learning
based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Neuro-Oncol. 2020, 22, 393–401.

30. Mocioiu, V.; Pedrosa de Barros, N.; Ortega-Martorell, S.; Slotboom, J.; Knecht, U.; Arús, C.; Vellido, A.; Julià-Sapé, M. A Machine
Learning pipeline for supporting differentiation of glioblastomas from single brain metastases. In Proceedings of the ESANN
2016, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) Bruges
(Belgium), Bruges, Belgium, 5–7 October 2016; pp. 247–252.

31. Pitarch, C.; Ribas, V.; Vellido, A. AI-Based Glioma Grading for a Trustworthy Diagnosis: An Analytical Pipeline for Improved
Reliability. Cancers 2023, 15, 3369. https://doi.org/10.3390/cancers15133369.

32. Tabassum, M.; Suman, A.; Suero Molina, E.; Pan, E.; Di Ieva, A.; Liu, S. Radiomics and Machine Learning in Brain Tumors and
Their Habitat: A Systematic Review. Cancers 2023, 15, 3845.

33. Griethuysen, J.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.; Fillon-Robin, J.; Pieper, S.; Aerts,
H. Clinical Decision Support Systems for Brain Tumour Diagnosis and Prognosis: A Systematic Review. Cancer Res. 2017,
77, e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339.

34. Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430.
https://doi.org/10.1016/S0893-6080(00)00026-5.

35. Lee, J.; Zhao, Q.; Kent, M.; Platt, S. Tumor Segmentation using temporal Independent Component Analysis for DCE-MRI. BioRxiv
2022, https://doi.org/10.1101/2022.12.16.520830.

36. Chakhoyan, A.; Raymond, C.; Chen, J.; Goldman, J.; Yao, J.; Kaprealian, T.; Pouratian, N.; Ellingson, B. Probabilistic independent
component analysis of dynamic susceptibility contrast perfusion MRI in metastatic brain tumors. Cancer Imaging 2019, 19, 14.

37. Lee, D.; Seung, H. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791.
38. Ortega-Martorell, S.; Lisboa, P.; Vellido, A.; Julià-Sapé, M.; Arús, C. Non-negative matrix factorisation methods for the spectral

decomposition of MRS data from human brain tumours. BMC Bioinform. 2012, 13, 38.
39. Ungan, G.; Arús, C.; Vellido, A.; Julià-Sapé, M. A Comparison of Non-Negative Matrix Underapproximation Methods for

the Decomposition of Magnetic Resonance Spectroscopy Data from Human Brain Tumors. NMR Biomed. 2023, 36, e5020.
40. Sauwen, N.; Acou, M.; Van Cauter, S.; Sima, D.M.; Veraart, J.; Maes, F.; Himmelreich, U.; Achten, E.; Van Huffel, S. Comparison

of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. Neuroimage Clin. 2016,
12, 753–764. https://doi.org/10.1016/j.nicl.2016.09.021.

41. Ashtari, P.; Sima, D.; De Lathauwer, L.; Sappey-Marinier, D.; Maes, F.; Van Huffel, S. Factorizer: A scalable interpretable approach
to context modeling for medical image segmentation. Med. Image Anal. 2023, 84, 102706.

42. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

43. Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2019,
29, 102–127. https://doi.org/10.1016/J.ZEMEDI.2018.11.002.

44. Cai, L.; Gao, J.; Zhao, D. A review of the application of deep learning in medical image classification and segmentation. Ann.
Transl. Med. 2020, 8, 713–713. https://doi.org/10.21037/ATM.2020.02.44.

45. Chen, X.; Wang, X.; Zhang, K.; Fung, K.M.; Thai, T.C.; Moore, K.; Mannel, R.S.; Liu, H.; Zheng, B.; Qiu, Y. Recent advances and
clinical applications of deep learning in medical image analysis. Med. Image Anal. 2022, 79, 102444. https://doi.org/10.1016/J.
MEDIA.2022.102444.

46. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings
of the Advances in Neural Information Processing Systems; Pereira, F., Burges, C., Bottou, L., Weinberger, K., Eds.; Curran Associates,
Inc.: Red Hook, NY, USA, 2012; Volume 25.

47. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Nashville,
TN, USA, 20–25 June 2014; pp. 1–9. https://doi.org/10.1109/CVPR.2015.7298594.

48. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May
2014.

49. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 770–778.
https://doi.org/10.1109/CVPR.2016.90.

50. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

51. Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International
Conference on Machine Learning, Long Beach, CA, USA 9–15 June 2019; Volume 97, pp. 6105–6114.

https://doi.org/10.3390/cancers15133369
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.1101/2022.12.16.520830
https://doi.org/10.1016/j.nicl.2016.09.021
https://doi.org/10.1016/J.ZEMEDI.2018.11.002
https://doi.org/10.21037/ATM.2020.02.44
https://doi.org/10.1016/J.MEDIA.2022.102444
https://doi.org/10.1016/J.MEDIA.2022.102444
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90


Cancers 2024, 16, 300 49 of 55

52. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. arXiv 2014, arXiv:1406.2661.

53. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings
of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

54. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects
in context. In Proceedings of the Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham,
Switzerland, 2014; pp. 740–755.

55. Yang, J.; Huang, X.; He, Y.; Xu, J.; Yang, C.; Xu, G.; Ni, B. Reinventing 2D Convolutions for 3D Images. IEEE J. Biomed. Health
Inform. 2021, 25, 3009–3018. https://doi.org/10.1109/JBHI.2021.3049452.

56. Banerjee, S.; Mitra, S.; Masulli, F.; Rovetta, S. Glioma classification using deep radiomics. SN Comput. Sci. 2020, 1, 209.
https://doi.org/10.1007/s42979-020-00214-y.

57. Ding, J.; Zhao, R.; Qiu, Q.; Chen, J.; Duan, J.; Cao, X.; Yin, Y. Developing and validating a deep learning and radiomic model
for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: A robust,
multi-institutional study. Quant. Imaging Med. Surg. 2022, 12, 1517. https://doi.org/10.21037%2fqims-21-722.

58. Zhuge, Y.; Ning, H.; Mathen, P.; Cheng, J.Y.; Krauze, A.V.; Camphausen, K.; Miller, R.W. Automated glioma grading on conven-
tional MRI images using deep convolutional neural networks. Med. Phys. 2020, 47, 3044–3053. https://doi.org/10.1002/mp.14168.

59. Chatterjee, S.; Nizamani, F.A.; Nürnberger, A.; Speck, O. Classification of brain tumours in MR images using deep spatiospatial
models. Sci. Rep. 2022, 12, 1505. https://doi.org/10.1038/s41598-022-05572-6.

60. Baheti, B.; Pati, S.; Menze, B.; Bakas, S. Leveraging 2D Deep Learning ImageNet-trained Models for Native 3D Medical Image
Analysis. LNCS 2023, 13769, 68–79. https://doi.org/10.1007/978-3-031-33842-7_6.

61. Brain Tumor Segmentation (BraTS) Challenge. Available online: http://www.braintumorsegmentation.org/ (accessed on 10 June
2023).

62. Computational Precision Medicine: Radiology-Pathology Challenge on Brain Tumor Classification 2019 (CPM-RadPath). Available
online: https://www.med.upenn.edu/cbica/cpm-rad-path-2019/ (accessed on 30 August 2023).

63. Figshare Brain Tumor Dataset. Available online: https://figshare.com/articles/dataset/brain_tumor_dataset/1512427 (accessed
on 1 June 2023).

64. IXI Dataset. Available online: https://brain-development.org/ixi-dataset/ (accessed on 10 June 2023).
65. Hamada, A. Br35H Brain Tumor Detection 2020 Dataset. Available online: https://www.kaggle.com/datasets/ahmedhamada0

/brain-tumor-detection (accessed on 1 June 2023).
66. Bhuvaji, S.; Kadam, A.; Bhumkar, P.; Dedge, S. Brain Tumor Classification (MRI). Available online: https://www.kaggle.com/

datasets/sartajbhuvaji/brain-tumor-classification-mri (accessed on 1 June 2023).
67. Chakrabarty, N. Brain MRI Images Dataset for Brain Tumor Detection, Kaggle, 2019. Available online: https://www.kaggle.com/

datasets/navoneel/brain-mri-images-for-brain-tumor-detection (accessed on 1 June 2023).
68. Radiopaedia. Available online: https://radiopaedia.org/cases/system/central-nervous-system (accessed on 1 June 2023).
69. Scarpace, L.; Flanders, A.E.; Jain, R.; Mikkelsen, T.; Andrews, D.W. Data From REMBRANDT [Data set]. The Cancer Imaging

Archive. 2019. Available online: https://doi.org/10.7937/k9/tcia.2015.588ozuzb (accessed on 20 April 2023).
70. Scarpace, L.; Mikkelsen, T.; Cha, S.; Rao, S.; Tekchandani, S.; Gutman, D.; Saltz, J.H.; Erickson, B.J.; Pedano, N.; Flanders, A.E.;

et al. The Cancer Genome Atlas Glioblastoma Multiforme Collection (TCGA-GBM) (Version 4) [Data set]. The Cancer Imaging
Archive. 2016. Available online: https://doi.org/10.7937/k9/tcia.2016.rnyfuye9 (accessed on 4 March 2023).

71. Pedano, N.; Flanders, A.E.; Scarpace, L.; Mikkelsen, T.; Eschbacher, J.M.; Hermes, B.; Sisneros, V.; Barnholtz-Sloan, J.; Ostrom, Q.
The Cancer Genome Atlas Low Grade Glioma Collection (TCGA-LGG) (Version 3) [Data set]. The Cancer Imaging Archive. 2016.
Available online: https://doi.org/10.7937/k9/tcia.2016.l4ltd3tk (accessed on 5 March 2023).

72. Upadhyay, N.; Waldman, A.D. Conventional MRI evaluation of gliomas. Br. J. Radiol. 2011, 84, S107. https://doi.org/10.1259/
BJR/65711810.

73. Ge, C.; Qu, Q.; Gu, I.Y.H.; Store Jakola, A. 3D Multi-scale convolutional networks for glioma grading using MR images.
In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018;
pp. 141–145. https://doi.org/10.1109/ICIP.2018.8451682.

74. Pereira, S.; Meier, R.; Alves, V.; Reyes, M.; Silva, C.A. Automatic brain tumor grading from MRI data using convolutional neural
networks and quality assessment. Lect. Notes Comput. Sci. 2018, 11038 LNCS, 106–114. https://doi.org/10.1007/978-3-030-02628-8_12.

75. Tandel, G.S.; Tiwari, A.; Kakde, O. Performance enhancement of MRI-based brain tumor classification using suitable segmentation
method and deep learning-based ensemble algorithm. Biomed. Signal Process. Control. 2022, 78, 104018.

76. Deepak, S.; Ameer, P.M. Brain tumor classification using deep CNN features via transfer learning. Comput. Biol. Med. 2019,
111, 103345. https://doi.org/10.1016/j.compbiomed.2019.103345.

77. Swati, Z.N.K.; Zhao, Q.; Kabir, M.; Ali, F.; Ali, Z.; Ahmed, S.; Lu, J. Brain tumor classification for MR images using transfer
learning and fine-tuning. Comput. Med. Imaging Graph. 2019, 75, 34–46. https://doi.org/10.1016/j.compmedimag.2019.05.001.

78. Alaraimi, S.; Okedu, K.E.; Tianfield, H.; Holden, R.; Uthmani, O. Transfer learning networks with skip connections for classification
of brain tumors. Int. J. Imaging Syst. Technol. 2021, 31, 1564–1582. https://doi.org/10.1002/ima.22546.

79. Hao, R.; Namdar, K.; Liu, L.; Khalvati, F. A Transfer Learning—Based Active Learning Framework for Brain Tumor Classification.
Front. Artif. Intell. 2021, 4, 61. https://doi.org/10.3389/frai.2021.635766.

https://doi.org/10.1109/JBHI.2021.3049452
https://doi.org/10.1007/s42979-020-00214-y
https://doi.org/10.21037%2fqims-21-722
https://doi.org/10.1002/mp.14168
https://doi.org/10.1038/s41598-022-05572-6
https://doi.org/10.1007/978-3-031-33842-7_6
http://www.braintumorsegmentation.org/
https://www.med.upenn.edu/cbica/cpm-rad-path-2019/
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://brain-development.org/ixi-dataset/
https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection
https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://radiopaedia.org/cases/system/central-nervous-system
https://doi.org/10.7937/k9/tcia.2015.588ozuzb
https://doi.org/10.7937/k9/tcia.2016.rnyfuye9
https://doi.org/10.7937/k9/tcia.2016.l4ltd3tk
https://doi.org/10.1259/BJR/65711810
https://doi.org/10.1259/BJR/65711810
https://doi.org/10.1109/ICIP.2018.8451682
https://doi.org/10.1007/978-3-030-02628-8_12
https://doi.org/10.1016/j.compbiomed.2019.103345
https://doi.org/10.1016/j.compmedimag.2019.05.001
https://doi.org/10.1002/ima.22546
https://doi.org/10.3389/frai.2021.635766


Cancers 2024, 16, 300 50 of 55
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Rosen, M.S.; et al. A portable scanner for magnetic resonance imaging of the brain. Nat. Biomed. Eng. 2020, 5, 229–239.
https://doi.org/10.1038/s41551-020-00641-5.

163. Man, C.; Lau, V.; Su, S.; Zhao, Y.; Xiao, L.; Ding, Y.; Leung, G.K.; Leong, A.T.; Wu, E.X. Deep learning enabled fast 3D brain MRI
at 0.055 tesla. Sci. Adv. 2023, 9, eadi9327. https://doi.org/10.1126/SCIADV.ADI9327.

164. Swoop Portable MR System. Availabe online: https://hyperfine.io.assets/pdfs/Swoop (accessed on 6 November 2023).
165. Altaf, A.; Baqai, M.W.S.; Urooj, F.; Alam, M.S.; Aziz, H.F.; Mubarak, F.; Knopp, E.A.; Siddiqui, K.M.; Enam, S.A. Utilization

of an ultra-low-field, portable magnetic resonance imaging for brain tumor assessment in lower middle-income countries.
Surg. Neurol. Int. 2023, 14, 260. https://doi.org/10.25259/SNI_123_2023.

166. Altaf, A.; Baqai, M.W.S.; Urooj, F.; Alam, M.S.; Aziz, H.F.; Mubarak, F.; Knopp, E.; Siddiqui, K.; Enam, S.A. Intraoperative use
of ultra-low-field, portable magnetic resonance imaging—First report. Surg. Neurol. Int. 2023, 14, 212. https://doi.org/10.25259
/SNI_124_2023.

167. Abd-Ellah, M.K.; Awad, A.I.; Hamed, H.F.; Khalaf, A.A. Parallel deep CNN structure for glioma detection and classification
via brain MRI Images. In Proceedings of the 2019 31st International Conference on Microelectronics (ICM), Cairo, Egypt, 15–18
December 2019; pp. 304–307.

168. Anaraki, A.K.; Ayati, M.; Kazemi, F. Magnetic resonance imaging-based brain tumor grades classification and grading via
convolutional neural networks and genetic algorithms. Biocybern. Biomed. Eng. 2019, 39, 63–74. https://doi.org/10.1016/j.bbe.20
18.10.004.

169. Hemanth, D.J.; Anitha, J.; Naaji, A.; Geman, O.; Popescu, D.E.; Son, L.H. A Modified Deep Convolutional Neural Network
for Abnormal Brain Image Classification. IEEE Access 2019, 7, 4275–4283. https://doi.org/10.1109/ACCESS.2018.2885639.

170. Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning Augmentation Policies from Data. arXiv 2018,
https://doi.org/10.48550/arXiv.1805.09501

171. Muneer, K.V.A.; Rajendran, V.R.; Joseph, K.P. Glioma Tumor Grade Identification Using Artificial Intelligent Techniques. J. Med.
Syst. 2019, 43, 1–12. https://doi.org/10.1007/s10916-019-1228-2.

172. Rajini, N.H. Brain Tumor Image Classification and Grading Using Convolutional Neural Network and Particle Swarm Optimiza-
tion Algorithm. Int. J. Eng. Adv. Technol. (IJEAT) 2019, 8, 2249–8958.

173. Rahmathunneesa, A.P.; Muneer, K.V.A. Performance analysis of pre-trained deep learning networks for brain tumor categorization.
In Proceedings of the 2019 9th International Conference on Advances in Computing and Communication (ICACC), Changsha,
China, 18–20 October 2019; pp. 253–257. https://doi.org/10.1109/ICACC48162.2019.8986151.

174. Sajjad, M.; Khan, S.; Muhammad, K.; Wu, W.; Ullah, A.; Baik, S.W. Multi-grade brain tumor classification using deep CNN with
extensive data augmentation. J. Comput. Sci. 2019, 30, 174–182. https://doi.org/10.1016/j.jocs.2018.12.003.

175. Sultan, H.H.; Salem, N.M.; Al-Atabany, W. Multi-Classification of Brain Tumor Images Using Deep Neural Network. IEEE Access
2019, 7, 69215–69225. https://doi.org/10.1109/access.2019.2919122.
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