

---

This is the **accepted version** of the journal article:

Xing, Congcong; Yang, Linlin; Spadaro, Maria Chiara; [et al.]. «Controllable Synthesis of Defective TiO<sub>2</sub> Nanorods for Efficient Hydrogen Production». *ACS applied electronic materials*, Vol. 6, Issue 8 (August 2024), p. 5833-5841. DOI 10.1021/acsaelm.4c00821

---

This version is available at <https://ddd.uab.cat/record/307877>

under the terms of the  IN COPYRIGHT license

# Controllable Synthesis of Defective $\text{TiO}_2$ Nanorods for Efficient Hydrogen Production

Congcong Xing,<sup>a,b,c\*</sup> Linlin Yang,<sup>b,d</sup> Maria Chiara Spadaro,<sup>e</sup> Yu Zhang,<sup>a,b,\*</sup> Pablo Guardia,<sup>f</sup> Jordi Arbiol,<sup>e,g</sup> Tianqi Liu,<sup>a</sup> Xiaolei Fan,<sup>a,h</sup> Marcos Fernández-García,<sup>i,\*</sup> Jordi Llorca,<sup>c,\*</sup> Andreu Cabot<sup>b,g,\*</sup>

<sup>a</sup> Institute of Wenzhou, Zhejiang University, 325006 Wenzhou, China

<sup>b</sup> Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain

<sup>c</sup> Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Spain

<sup>d</sup> Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain

<sup>e</sup> Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain

<sup>f</sup> The Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain

<sup>g</sup> ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

<sup>h</sup> Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

<sup>i</sup> Instituto de Catálisis y Petroleoquímica, CSIC. C/ Marie Curie, 2, 28049 Madrid, Spain

\* E-mails: CCX: antheaxingcc@gmail.com; YZ: yvz5897@psu.edu; MF-G: mfg@icp.csic.es; JL: jordi.llorca@upc.edu; AC: acabot@irec.cat

1  
2  
3 **ABSTRACT:** Nanorods (NRs), with their high atomic surface exposure within a crystalline  
4 architecture, facilitate effective diffusion/transport of charge, rendering them particularly suitable  
5 for applications requiring both interaction with the media and charge transfer. In this study, we  
6 present a straightforward approach to produce brookite-phase titanium dioxide ( $\text{TiO}_2$ ) NRs with  
7 tunable defects and narrow size distributions by utilizing methylamine hydrochloride and 1,2-  
8 hexadecanediol as shape-directing agents. The presence of  $\text{Ti}^{3+}$  defect was confirmed by electron  
9 paramagnetic resonance and X-ray photoelectron spectroscopy, and its effect on the photocatalytic  
10 properties of  $\text{TiO}_2$ , with and without Pt loading, show that the longest  $\text{TiO}_2$  NRs provide the highest  
11 photocatalytic and photoelectrochemical hydrogen production activity. Transient photocurrent  
12 response analysis, electrochemical impedance spectroscopy, and Mott-Schottky analysis plots  
13 indicate that an increase in temperature significantly reduces the interface barrier and lowers the  
14 transport resistance, leading to a 104% improvement in hydrogen production rates from 25 °C to  
15 60 °C for the longest  $\text{TiO}_2$  NRs. This study underscores the critical role of  $\text{TiO}_2$  nanorod  
16 dimensions (18-45 nm) in elevating hydrogen production efficiency. At 25 °C, rates surged from  
17 1.6 to 2.6  $\text{mmol}\cdot\text{g}^{-1}\text{h}^{-1}$ , and at 60 °C, soared from 3.3 to 5.3  $\text{mmol}\cdot\text{g}^{-1}\text{h}^{-1}$ , demonstrating the  
18 substantial impact of  $\text{TiO}_2$  NRs on enhancing hydrogen generation.  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31

32 **KEYWORDS:**  $\text{TiO}_2$  nanorod; Photocatalysis; Hydrogen Production; Brookite; Defect  
33  
34  
35

36 **1. INTRODUCTION**  
37

38 Hydrogen stands out as an environmentally favorable energy carrier, offering immense  
39 potential for clean energy applications. Nonetheless, realizing its promise hinges on advancing  
40 clean production methods to rival conventional fossil fuel-based processes. A promising avenue  
41 towards achieving this is harnessing solar energy for water splitting or dehydrogenating organic  
42 waste and biomass-derived materials. However, to make this approach economically viable,  
43 significant advancements in photocatalytic materials are indispensable. Optimal photocatalysts for  
44 hydrogen production necessitate precise electronic structures, characterized by appropriate band  
45 gaps and band edges.<sup>1</sup> Moreover, the configuration of surface facets, elemental composition, and  
46 overall particle morphology play pivotal roles in facilitating efficient charge transfer and  
47 minimizing electron-hole recombination, thereby dictating the overall photocatalytic efficacy.<sup>2</sup>  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

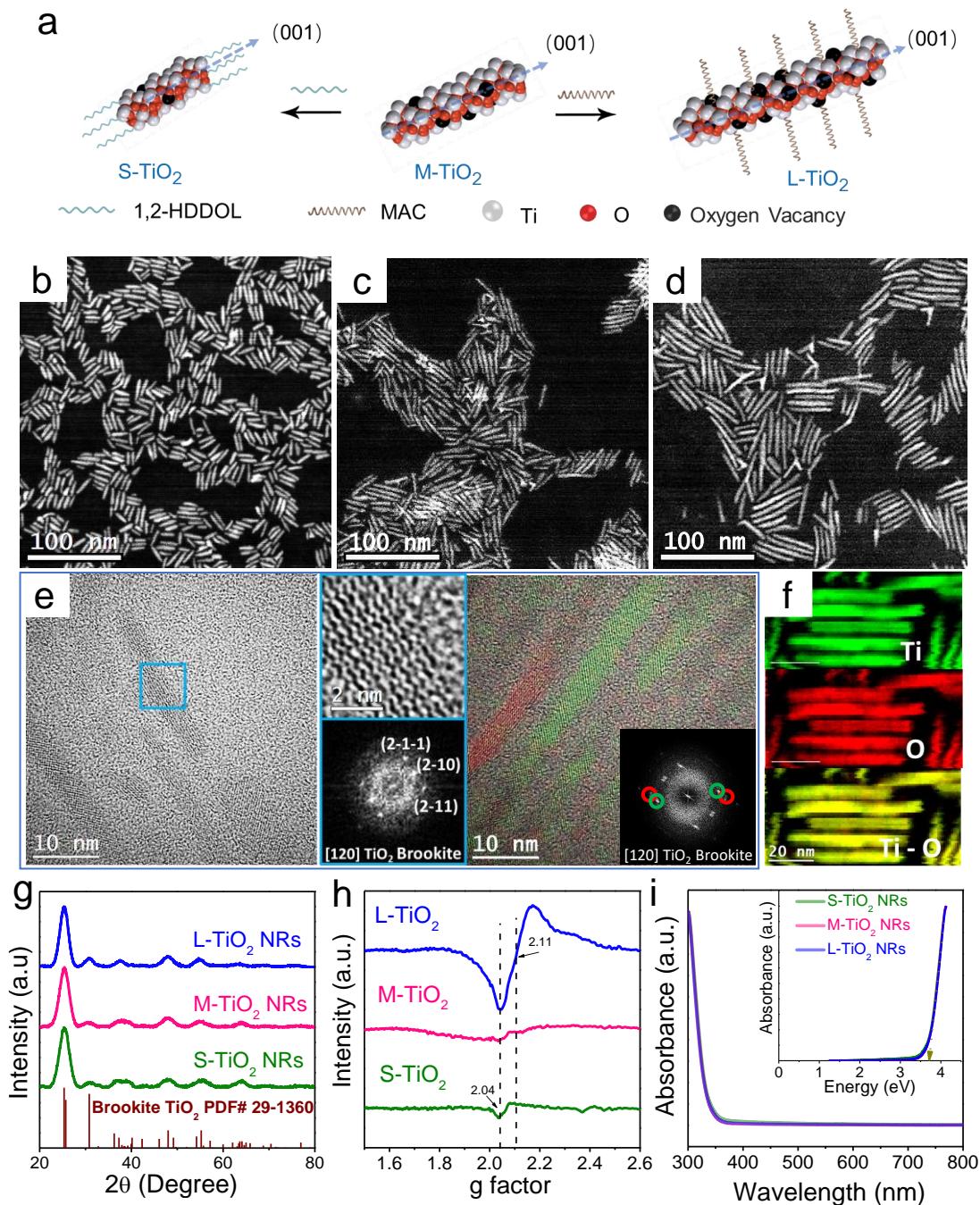
1  
2  
3 Drawing upon decades of research since the groundbreaking work of Fujishima and Honda,<sup>3</sup>  
4 it is evident that TiO<sub>2</sub> remains unparalleled in its effectiveness for cost-efficient and  
5 environmentally friendly photocatalytic water splitting. This enduring superiority stems from a  
6 constellation of exceptional attributes intrinsic to TiO<sub>2</sub>: its remarkable optoelectronic properties,  
7 abundant availability, affordability, non-toxic nature, robust chemical and thermal stability,  
8 straightforward synthesis protocols, potent oxidizing capabilities, elevated refractive index, and  
9 substantial dielectric constant.<sup>4</sup> Furthermore, TiO<sub>2</sub> emerges as a quintessential n-type wide band  
10 gap semiconductor, manifesting in three distinct crystalline phases. Its versatility extends far  
11 beyond photocatalytic water splitting, finding widespread utilization across diverse technological  
12 domains. From solar cells<sup>5,6</sup> to environmental remediation,<sup>7</sup> electrochromic smart windows,<sup>8</sup> and  
13 photocatalysis,<sup>9</sup> TiO<sub>2</sub> serves as a cornerstone material underpinning innovation and advancement.  
14  
15

16 Leveraging the modulation of polyhedral TiO<sub>2</sub> morphology to enhance the activity of  
17 catalytic facets stands as a pivotal strategy in advancing photocatalytic efficiency. Over time, a  
18 plethora of TiO<sub>2</sub> designs have emerged and undergone rigorous testing for various photocatalytic  
19 reactions, encompassing nanotubes,<sup>10-12</sup> nanosheets,<sup>13,14</sup> hollow spheres,<sup>15</sup> and hierarchically  
20 porous structures.<sup>16,17</sup> Among these, TiO<sub>2</sub> NRs emerge as a frontrunner, boasting several inherent  
21 advantages in interactions with the surrounding medium, charge transport dynamics, and  
22 mechanical resilience<sup>18,19</sup>, thereby amplifying performance across photocatalytic,  
23 photoelectrochemical, photovoltaic, and gas sensing applications, among others. The capability to  
24 finely tune the geometric parameters of TiO<sub>2</sub> NRs, including thickness dictating surface area and  
25 length influencing the mean free path of charge carriers, remains highly coveted. Diverse  
26 methodologies have been explored to fabricate TiO<sub>2</sub> NRs, ranging from chemical vapor  
27 deposition<sup>20-22</sup> and hydrothermal techniques<sup>23-26</sup> to sol-gel<sup>27-29</sup> and colloidal synthesis.<sup>30,31</sup> Among  
28 these methods, colloidal synthesis has emerged as particularly effective in achieving precise  
29 control over the geometry and dimensions of various material systems, including TiO<sub>2</sub>.  
30  
31

32 Several seminal studies have underscored the profound impact of aspect ratio on the  
33 photocatalytic performance of TiO<sub>2</sub> NRs synthesized through colloidal approaches.<sup>32,33</sup> Cozzoli et  
34 al. demonstrated precise control over the growth of high aspect ratio anatase TiO<sub>2</sub> NRs via the  
35 hydrolysis of titanium tetraisopropoxide (TTIP) in oleic acid (OAc) surfactant, even at a low  
36 temperature of 80 °C.<sup>34</sup> Yun et al. elucidated how the aspect ratio of TiO<sub>2</sub> NRs directly influences  
37 their photocatalytic decomposition efficiency.<sup>35</sup> An et al. employed hydrothermal synthesis to  
38

1  
2  
3 manipulate the aspect ratio of  $\text{TiO}_2$  NRs by adjusting the quantity of titanium precursor in the  
4 growth solution.<sup>36</sup> Ohno et al. elucidated the significant influence of polyvinyl alcohol and  
5 polyvinyl pyrrolidone additives on the aspect ratios of  $\text{TiO}_2$  NRs.<sup>37</sup> Fu et al. achieved size-tunable  
6 and well-crystallized rutile  $\text{TiO}_2$  NRs through meticulous control of HCl concentration during  
7 synthesis.<sup>38</sup> Furthermore, Cagnello et al. demonstrated that the aspect ratio of  $\text{TiO}_2$  NRs could be  
8 finely tuned by varying the concentration of  $\text{TiCl}_4$ , resulting in enhanced electron-hole separation  
9 following light excitation.<sup>39</sup>  
10  
11

12 Expanding upon the advancements in colloidal synthesis techniques for  $\text{TiO}_2$ , our research  
13 delved into a mechanistic exploration of brookite-phase  $\text{TiO}_2$  NRs synthesis, aiming to achieve  
14 precise control over length and narrow size distributions. Leveraging methylamine hydrochloride  
15 (MAC) and 1,2-hexanediol (HDDOL) as shape-directing agents, we successfully attained a wide  
16 range of size tunability. Employing these tailored  $\text{TiO}_2$  NRs, we systematically investigated the  
17 influence of NR aspect ratio and reaction temperature on photocatalytic hydrogen production from  
18 a bioethanol solution. In a bid to further enhance photocatalytic activity, we introduced platinum  
19 (Pt) nanoparticles as a cocatalyst, strategically loaded onto the surface of the  $\text{TiO}_2$  NRs. Our study  
20 underscores the critical importance of optimizing NR length and reaction temperature to achieve  
21 maximal efficiency in hydrogen production within  $\text{TiO}_2$  NR-based photocatalytic systems.  
22  
23


## 33 2. RESULTS AND DISCUSSION

### 34 35 2.1. Colloidal Synthesis of $\text{TiO}_2$ Nanorods

36  $\text{TiO}_2$  NRs were synthesized using an organic solution colloidal hydrolysis method, as detailed  
37 in the experimental section. Briefly, titania nuclei formation occurred in the presence of oleylamine  
38 (OAm), 1-octadecanol (ODO), OAc, and subsequently, either 1,2-HDDOL or MAC, by heating a  
39 titanium (IV) chloride ( $\text{TiCl}_4$ ) precursor stock solution to 290 °C (refer to Figure S1). At this  
40 moderate temperature, OAm and OAc slowly react, generating small amounts of water, thereby  
41 facilitating the gradual hydrolysis and condensation of  $\text{TiCl}_4$  alongside the release of HCl.<sup>40</sup>  
42 Following nucleation,  $\text{TiO}_2$  NRs were further elongated by the gradual addition of additional  $\text{TiCl}_4$   
43 stock solution into the initial nuclei solution maintained at 290 °C. This two-step synthesis method  
44 effectively prevents the formation of additional NRs during the growth of pre-existing ones. OAm  
45 and OAc serve a dual role as coordinating/stabilizing solvents and sources of water, while chloride  
46

1  
2  
3 ions play a crucial role in directing the asymmetric growth of TiO<sub>2</sub> and determining its aspect ratio  
4 (Figure 1a).  
5  
6

7 The resulting materials exhibited elongated structures with a width of approximately 2.5 ±  
8 0.7 nm and variable lengths, dependent on the specific synthesis conditions employed. We  
9 investigated the influence of MAC and 1,2-HDDOL on the surface properties of the nanoparticles  
10 to modulate the amount of chlorine binding at the surface. Transmission electron microscopy  
11 (TEM) images depicted in Figures 1b-d confirmed the effect of MAC and 1,2-HDDOL on the  
12 length of the TiO<sub>2</sub> NRs. Our hypothesis suggests that the addition of MAC increases the chlorine  
13 concentration at the nanoparticle surface, impeding TiO<sub>2</sub> nucleation and resulting in the formation  
14 of longer NRs. Conversely, 1,2-HDDOL competes with chloride ions for binding sites on the TiO<sub>2</sub>  
15 NR surface, leading to a decrease in surface chlorine concentration and promoting the formation  
16 of TiO<sub>2</sub> nuclei, resulting in shorter NRs. Further investigations focused on three types of TiO<sub>2</sub> NRs  
17 designated as short (S-TiO<sub>2</sub>), medium (M-TiO<sub>2</sub>) and long-length (L-TiO<sub>2</sub>) NRs with average  
18 lengths of 18, 28, and 45 nm, respectively (see Figure S2 and Table S1). Despite the random  
19 orientation of TiO<sub>2</sub> NRs relative to the electron beam, they exhibit high crystal quality, as depicted  
20 in Figure 1e. In the color frequency filtered map, the highly crystalline TiO<sub>2</sub> NRs are observable,  
21 with each orientation represented by a distinct color. The orthorhombic brookite TiO<sub>2</sub> phase was  
22 confirmed by X-ray diffraction (XRD) patterns of the TiO<sub>2</sub> NRs with varying lengths, as depicted  
23 in Figure 1g. Additionally, electron energy loss spectroscopy (EELS) spectra, presented in  
24 Figures 1f and S3,4, verified the presence of the brookite TiO<sub>2</sub> phase across all TiO<sub>2</sub> NRs with  
25 different lengths.  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

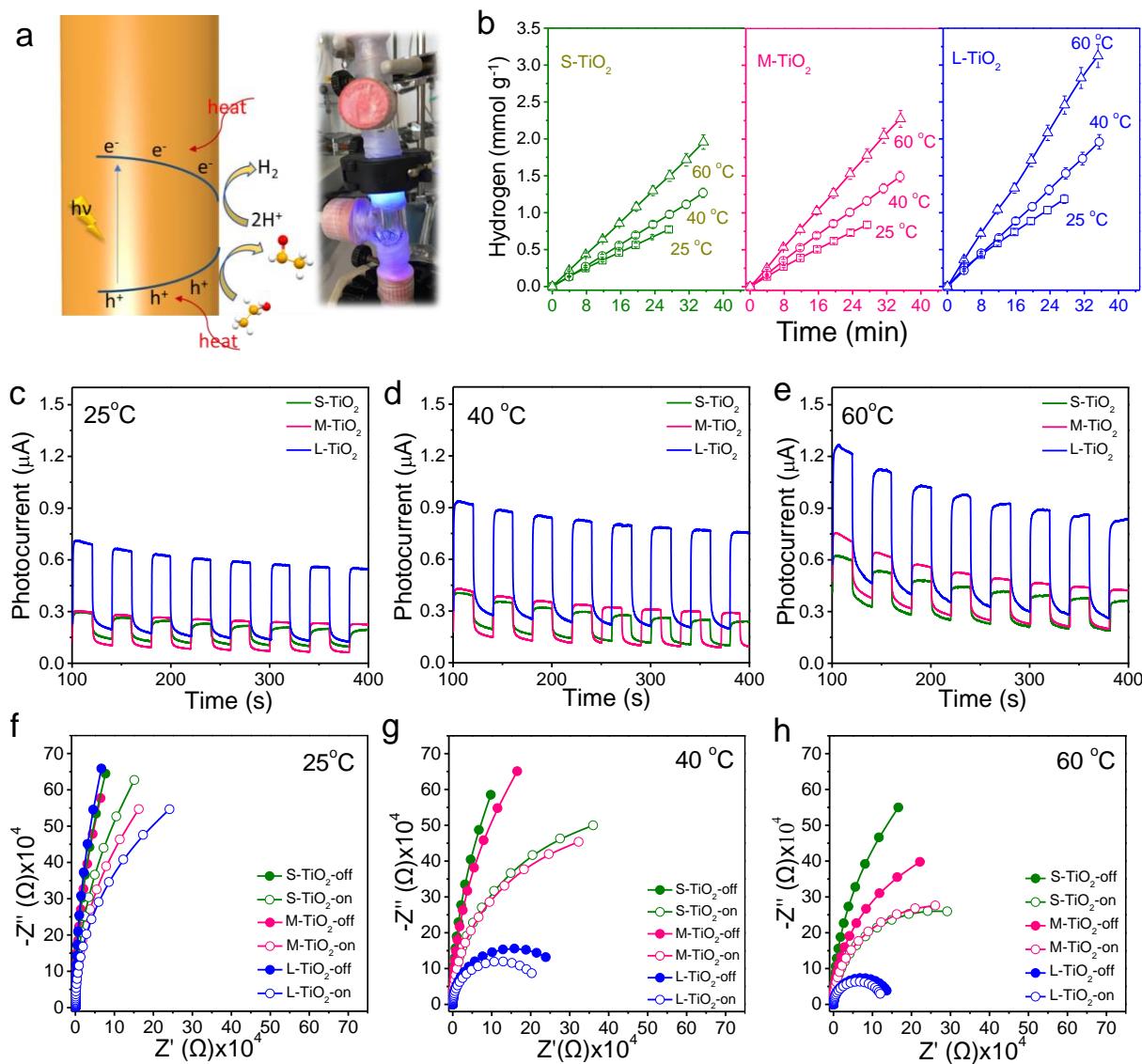


**Figure 1.** (a) Schematic illustration of the influence of HDDOL and MAC on the size and aspect ratio of the TiO<sub>2</sub> NRs. Representative TEM micrographs (scale bar 100nm) of (b) S-TiO<sub>2</sub>, (c) M-TiO<sub>2</sub>, and (d) L-TiO<sub>2</sub>. HRTEM micrographs of TiO<sub>2</sub> NRs showing the Brookite orthorhombic crystal phase: (e) L-TiO<sub>2</sub> NRs oriented along the [120] zone axis, and TiO<sub>2</sub> NRs where each orientation appears with different color (green and red). (f) EELS chemical composition maps of

1  
2  
3 L-TiO<sub>2</sub> NRs: Ti L edge at 456 eV (green) and O K edge at 532 eV (red). (g) powder XRD pattern  
4 of S, M, L-TiO<sub>2</sub> NRs, including reference pattern for TiO<sub>2</sub> (PDF# 29-1360). TiO<sub>2</sub> nanostructures  
5 with rod regular shape show TiO<sub>2</sub> Brookite Orthorombic crystal phase. (h) EPR spectra of S, M,  
6 L-TiO<sub>2</sub> NRs after ligand exchange. (i) UV-vis spectra of S, M, L-TiO<sub>2</sub> NRs, including the band  
7 gap inside.  
8  
9

10  
11  
12 Electron paramagnetic resonance (EPR) spectroscopy was utilized to probe the presence of  
13 unpaired electron spins within TiO<sub>2</sub> NRs of varying lengths. In **Figure 1h**, EPR resonance signals  
14 were recorded at T = 77 K for S, M, and L- TiO<sub>2</sub> NRs. While previous studies have attributed EPR  
15 signals at a g-value of 2.11 to electrons trapped at oxygen vacancies on the surface,<sup>41,42</sup> indicating  
16 the presence of Ti<sup>3+</sup> species within our TiO<sub>2</sub> NR samples.<sup>43,44</sup> Remarkably, the L-TiO<sub>2</sub> NRs  
17 exhibited a notably stronger EPR signal, suggesting a substantially elevated concentration of Ti<sup>3+</sup>  
18 species attributed to their increased length. Consequently, it can be inferred that defects within the  
19 L-TiO<sub>2</sub> NRs primarily manifest as Ti<sup>3+</sup> rather than oxygen vacancies.  
20  
21

22  
23 X-ray photoelectron spectroscopy (XPS) analyses were conducted to investigate the chemical  
24 composition and oxidation states of titanium atoms on the surface of TiO<sub>2</sub> NRs. The binding  
25 energies were calibrated using the C 1s peak at 284.8 eV as the reference. The XPS survey and  
26 high-resolution spectra of Ti 2p and O 1s from TiO<sub>2</sub> NRs are shown in Figure S5a-c. The  
27 comprehensive XPS survey confirms that the TiO<sub>2</sub> NRs predominantly consist of titanium and  
28 oxygen. Notably, the ratios of Ti<sup>3+</sup> 2p3/2 to Ti<sup>4+</sup> 2p3/2 for L-TiO<sub>2</sub>, M-TiO<sub>2</sub>, and S-TiO<sub>2</sub> are 0.113,  
29 0.105, and 0.077, respectively. A higher Ti<sup>3+</sup> 2p3/2 to Ti<sup>4+</sup> 2p3/2 ratio indicates increased defect  
30 density.<sup>45</sup> Additionally, a positive shift of 0.3 eV in the O 1s spectrum was observed for L-TiO<sub>2</sub>  
31 compared to S-TiO<sub>2</sub> and M-TiO<sub>2</sub> NRs. The positive shifts in both Ti 2p and O 1s spectra suggest  
32 the existence of abundant defects, which are capable of raising the Fermi level.<sup>46</sup> The incorporation  
33 of Ti<sup>3+</sup> into TiO<sub>2</sub> has been demonstrated as an effective strategy to enhance the visible light  
34 response and improve the photocatalytic properties of TiO<sub>2</sub>-based photocatalysts. This work,  
35 however, will elucidate that the incorporation of Ti<sup>3+</sup> into TiO<sub>2</sub> also serves as an innovative  
36 approach to enhance the photocatalytic properties of TiO<sub>2</sub>-based photocatalysts under UV light  
37 irradiation.  
38  
39


40 To eliminate loosely bonded ligands from the surface of TiO<sub>2</sub> NRs, we employed a hexane  
41 NH<sub>4</sub>SCN solution to suspend the NRs. Subsequently, ethanol was introduced to create a two-phase  
42  
43

1  
2  
3 mixture, as outlined in the experimental section. Upon agitation, the TiO<sub>2</sub> NRs migrated from the  
4 weakly polar hexane phase to the polar ethanol phase, effectively shedding the surfactant  
5 molecules. This phenomenon was corroborated by infrared (IR) spectroscopy, as depicted in  
6 Figure S6. The peaks observed in the IR spectra before ligand removal, such as those at 1066 cm<sup>-1</sup>  
7 (C-O), 1150 cm<sup>-1</sup> (C-N), 1458 cm<sup>-1</sup> (CH<sub>2</sub>), 1582 cm<sup>-1</sup> (C=C), 2850 cm<sup>-1</sup> and 2930 cm<sup>-1</sup> (C-H),  
8 corresponded to functional groups associated with the ligands bound to the TiO<sub>2</sub> NRs. Following  
9 ligand removal, these functional groups disappeared from the TiO<sub>2</sub> NR surfaces. Additionally, the  
10 IR spectra revealed the presence of abundant hydroxyl groups (-OH) on the TiO<sub>2</sub> NR surfaces  
11 post-removal, contributing to increased hydrophilicity and water absorptivity.<sup>47</sup>  
12  
13

14 Ultraviolet-visible (UV-Vis) spectra revealed that the absorption of light due to band-to-band  
15 electronic transitions remained unaffected by the aspect ratio of the TiO<sub>2</sub> NRs, indicative of an  
16 optical band gap energy (Eg) of approximately 3.4 eV. This value aligns with previous studies,<sup>39</sup>  
17 which have demonstrated that Eg values are strongly influenced by sample crystallinity, synthesis  
18 method, and product morphology (**Figure 1i**).<sup>48,49</sup>  
19

## 20 2.2. Photocatalytic activity

21 While photocatalytic water splitting is strongly limited by the sluggish reaction kinetics of  
22 the oxygen evolution reaction, the direct use of solar light to extract hydrogen from organic waste  
23 or biomass-derived products such as bioethanol is an excellent alternative. The use of organic  
24 molecules as a hydrogen source offers a less energy-demanding oxidation reaction. For instance,  
25 the Gibbs free energy for the dehydrogenation of ethanol to acetaldehyde (C<sub>2</sub>H<sub>5</sub>OH (g) →  
26 CH<sub>3</sub>CHO (g) + H<sub>2</sub>; 41.5 kJ mol<sup>-1</sup>)<sup>50</sup> is significantly lower than that of H<sub>2</sub> evolution from water  
27 (H<sub>2</sub>O (g) → H<sub>2</sub> + ½O<sub>2</sub>; 237 kJ mol<sup>-1</sup>).<sup>51,52</sup> Besides, the easier oxidation of ethanol strongly reduces  
28 the recombination of electron-hole pairs, thus increasing the quantum efficiency. An additional  
29 advantage of the production of hydrogen from the reforming of organic waste or biomass-derived  
30 organics is the potential co-generation of valuable organic chemicals.  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60



**Figure 2.** (a) Schematic illustration of the TiO<sub>2</sub> according to photothermal according to photo catalytic mechanism and photocatalytic reactor. (b) Photocatalytic H<sub>2</sub> production of S, M, L-TiO<sub>2</sub> NRs under UV light irradiation (365  $\pm$  5 nm, 79.1  $\pm$  0.5 mW·cm<sup>-2</sup>) at different temperature. The transient photocurrent responses of (c) S-TiO<sub>2</sub>, (d) M-TiO<sub>2</sub>, and (e) S-TiO<sub>2</sub> NRs at 0.6 V vs. RHE. EIS fit curve at 0.05 V vs. RHE of (f) S-TiO<sub>2</sub>, (g) M-TiO<sub>2</sub>, and (h) S-TiO<sub>2</sub> NRs in 0.5 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution with and without visible light (AM 1.5G light source radiation intensity: 100 mW·cm<sup>-2</sup>).

**Figure 2b** illustrates the photocatalytic activity of TiO<sub>2</sub>NRs in hydrogen (H<sub>2</sub>) production from a water-ethanol mixture (9:1, molar) under Hg lamp irradiation ( $\lambda$  = 365 nm, **Figure 2a**).

1  
2  
3 impact of temperature was examined by evaluating the photocatalytic activity at 25 °C, 40 °C, and  
4 60 °C. In all cases, the photoreaction yielded hydrogen and acetaldehyde exclusively in equimolar  
5 amounts, indicating that ethanol dehydrogenation was the sole source of hydrogen. At ambient  
6 temperature (25 °C), the L-TiO<sub>2</sub> NRs exhibited the highest H<sub>2</sub> production rate and apparent  
7 quantum efficiency (AQY) at 2.6 mmol·g<sup>-1</sup>h<sup>-1</sup> and 0.7%, respectively. These values surpassed  
8 those obtained for M-TiO<sub>2</sub> and S-TiO<sub>2</sub> NRs, which achieved 1.8 mmol·g<sup>-1</sup>h<sup>-1</sup> and 0.49%, and 1.6  
9 mmol·g<sup>-1</sup>h<sup>-1</sup> and 0.43%, respectively. The photocatalytic activity substantially increased with  
10 temperature for all materials. Upon raising the temperature, both the H<sub>2</sub> production rate of long  
11 TiO<sub>2</sub> NRs increased to 3.3 mmol·g<sup>-1</sup>h<sup>-1</sup> at 40 °C, and further to 5.3 mmol·h<sup>-1</sup>g<sup>-1</sup> at 60 °C. In  
12 comparison, the H<sub>2</sub> production rate of M-TiO<sub>2</sub> and S-TiO<sub>2</sub> NRs were 2.5 and 2.2 mmol·g<sup>-1</sup>h<sup>-1</sup> at  
13 40 °C, 3.8 and 3.3 mmol·g<sup>-1</sup>h<sup>-1</sup> at 60 °C, respectively (see Figure S7). Consequently, as the  
14 temperature increased from 25 °C to 60 °C, the H<sub>2</sub> production rate of S-TiO<sub>2</sub>, M-TiO<sub>2</sub>, and L-TiO<sub>2</sub>  
15 was enhanced by 106%, 111%, and 104%, respectively. This significant temperature effect may  
16 be attributed to the promotion of acetaldehyde desorption from the TiO<sub>2</sub> surface, thereby  
17 unblocking surface active sites.<sup>53</sup>  
18  
19

### 29 30 2.3. Photocatalytic Mechanism

31 To gain additional insight into the photocatalytic process, we measured the transient  
32 photocurrent (TPC) response of the TiO<sub>2</sub> NRs with different lengths. As displayed in **Figures 2c-e**, we  
33 observed an increase in the steady-state photocurrent with the length of the TiO<sub>2</sub> NRs. Upon  
34 illumination at room temperature (25 °C), the current densities for S, M, and L-TiO<sub>2</sub> NRs increased  
35 by approximately 100%, 243%, and 300%, respectively, compared to the dark conditions. We  
36 hypothesize that this experimental result can be attributed to a more effective suppression of  
37 surface charge recombination when increasing the NR length, which is associated with the  
38 delocalization of the charge carriers and/or an improvement of the charge transport properties with  
39 the increase of the NR size. We observed that while the current density increased with temperature  
40 due to an increase in the charge carrier concentration within the TiO<sub>2</sub> semiconductor, the relative  
41 photocurrent, i.e., the current density increases upon illumination, decreased. This result can be  
42 explained by the lower relative weight of the generated photocarriers.  
43  
44

45 The Nyquist plots and fitting parameters of the EIS spectra obtained from the different  
46 materials in dark and under irradiation are displayed in **Figures 2f-h** and Table S2-S4, respectively.  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

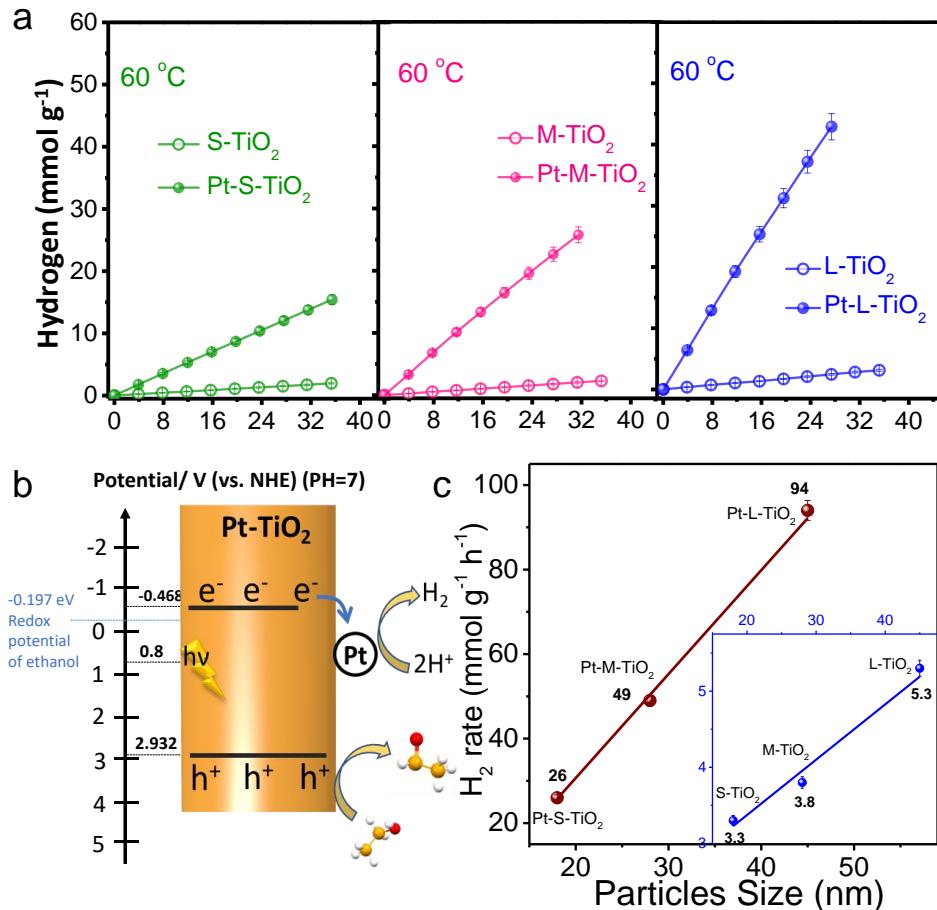
1  
2  
3 As expected, the L-TiO<sub>2</sub> NRs are characterized by the smallest impedances. Besides, impedances  
4 strongly decreased when increasing temperature, as it corresponds to a non-degenerated  
5 semiconductor associated with an increase of the free carrier density.  
6  
7

8 M-S plots were collected to determine the sign of the majority carriers and the flat band  
9 positions ( $E_{fb}$ ) of TiO<sub>2</sub> NRs (Figures S8-S11). All M-S plots showed positive slopes, confirming  
10 the n-type conductivity of the TiO<sub>2</sub> NRs.  $E_{fb}$  values negatively shifted upon light irradiation,  
11 implying a stronger band bending, pointing at the accumulation of photogenerated electrons at the  
12 surface of TiO<sub>2</sub> NRs. That is, an n<sup>+</sup>/n TiO<sub>2</sub> homojunction is generated increasing the free carrier  
13 concentration at the TiO<sub>2</sub> surface available for photocatalytic H<sub>2</sub> generation.<sup>54-56</sup> At ambient  
14 temperature, larger  $E_{fb}$  differences upon light irradiation were obtained when increasing the NRs  
15 length, being the L-TiO<sub>2</sub> NRs, the ones showing the largest  $E_{fb}$  change thus the more efficient  
16 separation of photogenerated charge carriers. When increasing temperature, the  $E_{fb}$  differences  
17 become less obvious. Although the surface area decreased with the elongation of the nanorods,  
18 from 129.52 m<sup>2</sup>/g for S-TiO<sub>2</sub> to 60.16 m<sup>2</sup>/g for L-TiO<sub>2</sub> (Figure S12), the markedly higher  
19 photocatalytic performance observed in L-TiO<sub>2</sub> indicates that the formation of Ti<sup>3+</sup> defects play a  
20 crucial role that significantly enhance the charge carrier concentration and promote improved  
21 charge separation, thereby boosting the photocatalytic efficiency.  
22  
23

#### 33 2.4. Photocatalytic Performance of Pt-TiO<sub>2</sub>

34 To enhance the photocatalytic efficiency of TiO<sub>2</sub> NRs for hydrogen photoproduction, Pt was  
35 incorporated on the surface of TiO<sub>2</sub> NRs via photoreduction of H<sub>2</sub>PtCl<sub>6</sub>, as described in the  
36 Experimental section. The presence of Pt nanoparticles on the TiO<sub>2</sub> NR surface was confirmed by  
37 XRD, TEM imaging and energy dispersive spectroscopy (EDS) analysis, which showed the  
38 dispersed black spots corresponding to about 5 nm Pt nanoparticles and the amount of Pt loaded  
39 to be about 1 wt%, respectively (Figures S13a-c, and Table S5). The incorporation of Pt  
40 significantly increased the H<sub>2</sub> photoproduction rate by up to a factor of 20 at 60 °C, as shown in  
41 **Figures 3a, c.** However, the highest H<sub>2</sub> production rate and AQY were obtained with the longest  
42 TiO<sub>2</sub> NRs, at 81 mmol·g<sup>-1</sup>·h<sup>-1</sup> and 22%, respectively (Figures S14 and S15). The incorporation of  
43 Pt could be correlated with a more effective delocalization of electrons along the NR, leading to a  
44 more efficient electron-hole separation and carrier extraction at Pt sites.  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 The high photocatalytic activity of Pt-loaded  $\text{TiO}_2$  NRs was demonstrated by comparison  
4 with literature benchmark materials in Table S5. As the temperature increased, the  $\text{H}_2$  production  
5 rate of Pt- $\text{TiO}_2$  NRs also increased, but more moderately than in the case of bare  $\text{TiO}_2$  NRs. As the  
6 temperature increased from 25 to 60 °C, the  $\text{H}_2$  production rate of Pt-S- $\text{TiO}_2$ , Pt-M- $\text{TiO}_2$ , and Pt-  
7 L- $\text{TiO}_2$  changed by -0.3%, 32%, and 16%, respectively (Figure S15).  
8  
9


10 According to the results of linear sweep voltammetry (LSV) (Figure S16a), the Pt- $\text{TiO}_2$   
11 heterojunction exhibits an obvious photocurrent enhancement with increasing bias potential as  
12 compared with the pure  $\text{TiO}_2$ , which demonstrates that the photoinduced electron–hole  
13 recombination is hindered to accelerate electron transfer. As a result, the introduction of Pt  
14 significantly increased the current densities measured, also increased the photocurrent response,  
15 as shown in Figure S16b.  
16  
17

18 The Arrhenius plot in Figure S17 shows that the hydrogen production rate over S, M, L- $\text{TiO}_2$   
19 and Pt- $\text{TiO}_2$  NRs exhibited similar apparent activation energies ( $E_a$ ) of about 15  $\text{kJ}\cdot\text{mol}^{-1}$  in the  
20 temperature range tested.<sup>57</sup> However, the Pt- $\text{TiO}_2$  NRs exhibited even lower  $E_a$  compared to  $\text{TiO}_2$   
21 NRs.  
22  
23

24 The conduction band edge of  $\text{TiO}_2$  typically resides at approximately -0.468 eV vs. NHE,  
25 while the valence band edge is situated around +2.932 eV vs. NHE (further elaborated in the  
26 Supporting Information).<sup>52</sup> The Fermi level of Pt is approximately +0.8 eV vs. NHE, and the redox  
27 potential of ethanol ( $\text{C}_2\text{H}_5\text{OH}/\text{CH}_3\text{CHO}$ ) is approximately -0.197 eV vs. NHE.<sup>58</sup> By clearly  
28 delineating these energy levels, we gain a better understanding of the alignment and dynamics of  
29 electron and hole transfer, thereby validating the proposed mechanism for photocatalytic hydrogen  
30 production.  
31  
32

33 The photocatalytic  $\text{H}_2$  production on Pt- $\text{TiO}_2$  catalyst involves four key steps, including  
34 photon irradiation, photocarrier generation, carrier separation, reduction and oxidation. (Figure  
35 3b) Initially,  $\text{TiO}_2$  absorbs photons with energy equal to or greater than its bandgap, prompting the  
36 excitation of electrons from the valence band (VB) to the conduction band (CB), thereby  
37 generating electron–hole pairs. Owing to the presence of abundant electron and hole traps ( $\text{Ti}^{3+}$   
38 defects) at the surface of  $\text{TiO}_2$ , which favored the electron transfer to adsorbates during the  
39 catalytic process. Subsequently, the photogenerated electrons in the CB of  $\text{TiO}_2$ , situated at -0.468  
40 eV vs. NHE, are transferred to Pt nanoparticles, serving as co-catalysts. This separation of carriers  
41  
42

has greatly suppressed recombination of the photogenerated electron-hole pairs, which in turn increased the lifetime of the charge carries of L-TiO<sub>2</sub> compared to that of S-TiO<sub>2</sub> thus promising an efficient catalyst for subsequent H<sub>2</sub> reduction. The electrons on Pt then participate in the reduction of protons to hydrogen gas, a process bolstered by Pt's high work function and conductivity. Concurrently, the holes in the VB of TiO<sub>2</sub>, positioned at +2.932 eV vs. NHE, oxidize C<sub>2</sub>H<sub>5</sub>OH to acetaldehyde CH<sub>3</sub>CHO with a redox potential of -0.197 eV vs. NHE, thereby providing the protons requisite for hydrogen evolution. The efficient separation and utilization of photogenerated charge carriers-electrons for hydrogen evolution and holes for ethanol oxidation-ensures a continuous and effective photocatalytic process.



**Figure 3.** (a) Photocatalytic H<sub>2</sub> production of S, M, L-TiO<sub>2</sub> NRs and Pt-S, M, L-TiO<sub>2</sub> NRs under UV light irradiation ( $365 \pm 5$  nm,  $79.1 \pm 0.5$  mW·cm<sup>-2</sup>) at 60 °C. (b) Schematics of the electronic

1  
2  
3 band structures of Pt-L-TiO<sub>2</sub>. (c) Highest H<sub>2</sub> production rate obtained from (a) with different length  
4 of NRs.  
5  
6

### 7 3. CONCLUSION 8

9 In summary, we synthesized colloidal brookite-phase TiO<sub>2</sub> NRs with tunable defects and  
10 investigated their photocatalytic properties for H<sub>2</sub> production. The NR defects was controlled by  
11 adjusting the nucleation events using MAC or 1,2-HDDOL. We established the correlation  
12 between the photocatalytic H<sub>2</sub> evolution rate with the NR length, which shows that the longest  
13 NRs exhibited the highest activities with the H<sub>2</sub> production rate and AQY at 2.6 mmol·g<sup>-1</sup>h<sup>-1</sup> and  
14 0.7%, respectively, under ambient conditions. Increasing the temperature resulted in a more than  
15 two-fold increase in the H<sub>2</sub> production rate of the longest NRs, up to 5.3 mmol·h<sup>-1</sup>g<sup>-1</sup> at 60 °C.  
16 Photoelectrochemical characterization revealed a three-fold increase in current densities upon  
17 illumination for the longest NRs, indicating effective suppression of surface charge recombination.  
18 The delocalization of charge carriers and/or an improvement in charge transport properties may  
19 explain this effect. Increasing the temperature increased the current density due to an increase in  
20 charge carrier concentration within the TiO<sub>2</sub> semiconductor but decreased the relative photocurrent  
21 due to the lower relative weight of the generated photocarriers. Mott-Schottky measurements  
22 showed an accumulation of electrons at the TiO<sub>2</sub> surface upon light irradiation, which increased  
23 with the NR length and decreased with temperature. The incorporation of Pt as a cocatalyst  
24 significantly improved the H<sub>2</sub> photoproduction rate by more than an order of magnitude. The  
25 highest H<sub>2</sub> production rate and AQY were obtained with the longest NRs in the presence of Pt, at  
26 81 mmol·g<sup>-1</sup>h<sup>-1</sup> and 22%, respectively. In conclusion, our study demonstrates the tunability of NR  
27 defects and the significance of temperature in enhancing the photocatalytic H<sub>2</sub> production rate of  
28 TiO<sub>2</sub> and Pt-TiO<sub>2</sub> NRs.  
29  
30

### 40 4. EXPERIMENTAL SECTION 41

42 **Preparation of Stock Solutions.** Stock solutions were prepared in a glovebox under a nitrogen  
43 atmosphere. The TiCl<sub>4</sub> stock solution consisted of 0.12 g TiCl<sub>4</sub> in 1.5 mL OAc and 3.4 mL ODO.  
44 The TiCl<sub>4</sub> stock solution was stirred on a hot plate at the temperature of 80 °C to promote the  
45 dissolution of TiCl<sub>4</sub>. Once dissolved, the TiCl<sub>4</sub> stock solution turned brown.  
46  
47

48 **Synthesis of TiO<sub>2</sub> NRs.** For M-TiO<sub>2</sub> NRs, 15 mL OAm, 5.2 mL ODO, 0.25 mL OAc were  
49 degassed in a 100 mL flask at 120 °C for 1 h. After that, the system temperature was allowed to  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 cool down to 60 °C to add 0.25 mL stock solution. Then, the solution was quickly heated to 290 °C  
4 within 15 min and held for 10 min for the formation of seed crystals. Subsequently, an additional  
5 4 mL stock solution was slowly injected with the speed of 0.2 mL·min<sup>-1</sup> into the flask kept using  
6 a New Era Pump Systems NE-1000 syringe pump. The mixture was allowed to react at 290 °C for  
7 5 min before naturally cooling to room temperature. S-TiO<sub>2</sub> and L-TiO<sub>2</sub> NRs were synthesized  
8 using the same procedure except for adding 10 mmol of HDDOL or MAC in the initial solution.  
9 The obtained TiO<sub>2</sub> NRs were finally collected by precipitation, adding 15 mL hexane, and  
10 centrifuging at 5500 rpm for 5 min. The supernatant was discarded and the precipitate was  
11 dispersed in 5 mL hexane for further use.  
12  
13

14 **Ligand Removal.** The native organic ligands were displaced from the NRs surface using a  
15 NH<sub>4</sub>SCN solution. Briefly, 1 mL hexane solution containing NRs (5 mg·mL<sup>-1</sup>) was mixed with 1  
16 mL 0.15 M NH<sub>4</sub>SCN solution (in ethanol). The mixture was then shacked for several minutes with  
17 a vortex and finally centrifuged at 4000 rpm for 3 min. The resulting product was further washed  
18 with 2 mL ethanol twice to remove the residual NH<sub>4</sub>SCN.  
19

20 **Photochemical Deposition of Platinum on TiO<sub>2</sub> NRs.** Pt was photochemically deposited onto  
21 TiO<sub>2</sub> NRs by irradiating a suspension, which consisted of 5 mg TiO<sub>2</sub> NRs and 10 mL ethanol  
22 solution (10.0 vol%) containing 1 wt% H<sub>2</sub>PtCl<sub>6</sub>, using an AM 1.5G solar power system for 4 h.  
23  
24

25 **Materials Characterization.** The samples' crystal structures were determined using XRD with a  
26 Bruker AXS D8 Advance X-ray diffractometer. SEM (Zeiss Auriga) captured surface morphology,  
27 while Oxford EDX combined with the Zeiss Auriga SEM analyzed elemental composition. TiO<sub>2</sub>  
28 lattice structure was visualized via high-resolution TEM (FEI Tecnai F20) at 300 keV with 0.18  
29 nm point and 0.11 nm lattice resolution. UV-Vis spectra, obtained with a Shimazu UV-Vis  
30 spectrometer, used BaSO<sub>4</sub> as background for light absorption analysis. EPR measurements were  
31 conducted at 9.39 GHz using a Bruker EMXmicro6/1 spectrometer, over the range of 400-6000.  
32  
33

34 **Photocatalytic Hydrogen Evolution.** A cellulose paper loaded with 2.0 mg of photocatalyst was  
35 placed within a reactor equipped with UV LEDs (365 ± 5 nm) from SACOPA S.A.U. UV light  
36 intensity was 79.1 ± 0.5 mW·cm<sup>-2</sup> at the sample, while a saturated Ar stream (20 mL·min<sup>-1</sup>) with  
37 a water:ethanol ratio of 9:1 was used. Online monitoring via Agilent 3000A MicroGC with MS 5  
38 Å, Plot U, and Stabilwax columns occurred every 4 minutes. Before experimentation, the  
39 photoreactor was purged with the gaseous reactant mixture for 30 minutes. The UV-visible light  
40  
41

1  
2  
3 source comprised  $372 \pm 5$  nm UV LEDs and visible light LEDs (CCT 6099 K, CRI 74), with light  
4 irradiation at  $11.2 \pm 0.5 \text{ mW} \cdot \text{cm}^{-2}$  for UV light at the sample.  
5  
6

7 **Photoelectrochemical Measurements.** A CHI760e instrument was used in a three-electrode cell  
8 configuration. The counter electrode was a platinum mesh, and an Ag/AgCl electrode served as  
9 the reference electrode. A 0.5 M Na<sub>2</sub>SO<sub>4</sub> electrolyte solution was employed. The working  
10 electrode was prepared by depositing a photocatalyst onto an ITO glass electrode (1 cm × 1 cm)  
11 and heating it at 200 °C for 1 hour. Potentials were referenced to Ag/AgCl and converted to  
12 potentials vs. the RHE using the Nernst equation ( $E_{\text{RHE}} = E_{\text{Ag/AgCl}} + 0.059 \text{ pH} + 0.196$ ). TPC and  
13 EIS measurements were performed in the dark and under simulated AM1.5G solar irradiation (100  
14 mW·cm<sup>-2</sup>) at ambient temperature. EIS measurements involved applying a sinusoidal AC  
15 perturbation of 5 mV over a frequency range of 0.01-100,000 Hz. M-S spectra were obtained by  
16 scanning the bias potential from -1.2 to 0.2 V vs. Ag/AgCl at a scan rate of 0.01 V·s<sup>-1</sup>.  
17  
18

19 **ASSOCIATED CONTENT**  
20  
21

22 **Supporting Information.** Details of the materials, materials characterization, photocatalytic and  
23 photoelectrochemical measurements, additional TEM micrographs, EELS chemical compositional  
24 maps, size distribution histograms, hydrogen evolution graphs, EDS spectra, M-S graphs, and  
25 comparison tables. This material is available via the Internet.  
26  
27

28 **Corresponding Author**  
29  
30

31 \* E-mails: CCX: antheaxingcc@gmail.com; YZ: yvz5897@psu.edu; MF-G: mfg@icp.csic.es; JL:  
32 jordi.llorca@upc.edu; AC: acabot@irec.cat.  
33  
34

35 **Author Contributions**  
36  
37

38 The manuscript was written through the contributions of all authors. All authors have approved  
39 the final version of the manuscript.  
40  
41

42 **Declaration of Competing Interest.** There are no conflicts to declare.  
43  
44

45 **ACKNOWLEDGMENT**  
46  
47

48 This work was supported by the European Regional Development Funds and by the Spanish  
49 Ministerio de Economía y Competitividad through projects PID2021-124572OB-C31 and  
50  
51

52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 COMBENERGY (PID2019-105490RB-C32). ICN2 acknowledges funding from Generalitat de  
4 Catalunya 2021SGR00457. This study was supported by MCIN with funding from European  
5 Union NextGenerationEU (PRTR-C17.I1) and Generalitat de Catalunya. This research is part of  
6 the CSIC program for the Spanish Recovery, Transformation and Resilience Plan funded by the  
7 Recovery and Resilience Facility of the European Union, established by the Regulation (EU)  
8 2020/2094. The authors thank support from the project NANOGEN (PID2020-116093RB-C43),  
9 funded by MCIN/AI/10 .13039/501100011033/ and by “ERDF A way of making Europe”, by the  
10 “European Union”. ICN2 is supported by the Severo Ochoa program from Spanish MCIN/AE  
11 (Grant No.: CEX2021-001214-S) and is funded by the CERCA Programme/Generalitat de  
12 Catalunya. P. G. acknowledges financial support from the Spanish government (MICIU) through  
13 the Ramon y Cajal research program (RyC2019-028414-I). L.L.Y. thank the China Scholarship  
14 Council for scholarship support. This project was also supported by the special innovation project  
15 fund from the Institute of Wenzhou, Zhejiang University (No. XMGL-KJZX-202204).  
16  
17

## 26 REFERENCES

27

28  
29 (1) Acar, C.; Dincer, I.; Naterer, G. F. Review of Photocatalytic Water-splitting Methods for  
30 Sustainable Hydrogen Production. *Int. J. Energy Res.* **2016**, *40* (11), 1449–1473.  
31  
32 (2) Chen, J.; Qiu, F.; Xu, W.; Cao, S.; Zhu, H. Recent Progress in Enhancing Photocatalytic  
33 Efficiency of TiO<sub>2</sub>-Based Materials. *Appl. Catal. A: Gen.* **2015**, *495*, 131–140.  
34  
35 (3) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode.  
36 *Nature* **1972**, *238* (5358), 37–38.  
37  
38 (4) Jiang, Y.; Ning, H.; Tian, C.; Jiang, B.; Li, Q.; Yan, H.; Zhang, X.; Wang, J.; Jing, L.; Fu, H.  
39 Single-Crystal TiO<sub>2</sub> Nanorods Assembly for Efficient and Stable Cocatalyst-Free  
40 Photocatalytic Hydrogen Evolution. *Appl. Catal. B: Environ.* **2018**, *229*, 1–7.  
41  
42 (5) O’regan, B.; Grätzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized  
43 Colloidal TiO<sub>2</sub> Films. *Nature* **1991**, *353* (6346), 737–740.  
44  
45 (6) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte,  
46 P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V. Engineering of Efficient Panchromatic  
47 Sensitizers for Nanocrystalline TiO<sub>2</sub>-Based Solar Cells. *J. Am. Chem. Soc.* **2001**, *123* (8),  
48 1613–1624.  
49  
50 (7) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of  
51 Semiconductor Photocatalysis. *Chem. Rev.* **1995**, *95* (1), 69–96.  
52  
53 (8) Zhang, S.; Cao, S.; Zhang, T.; Lee, J. Y. Plasmonic Oxygen-deficient TiO<sub>2-x</sub> Nanocrystals for  
54 Dual-band Electrochromic Smart Windows with Efficient Energy Recycling. *Adv. Mater.* **2020**, *32* (43), 2004686.  
55  
56 (9) Fox, M. A.; Dulay, M. T. Heterogeneous Photocatalysis. *Chem. Rev.* **1993**, *93* (1), 341–357.  
57  
58  
59  
60

(10) Hernández-Alonso, M. D.; García-Rodríguez, S.; Suárez, S.; Portela, R.; Sánchez, B.; Coronado, J. M. Highly Selective One-Dimensional  $\text{TiO}_2$ -Based Nanostructures for Air Treatment Applications. *Appl. Catal. B: Environ.* **2011**, *110*, 251–259.

(11) Yu, X.; Hua, T.; Liu, X.; Yan, Z.; Xu, P.; Du, P. Nickel-Based Thin Film on Multiwalled Carbon Nanotubes as an Efficient Bifunctional Electrocatalyst for Water Splitting. *ACS Appl. Mater. Interfaces* **2014**, *6* (17), 15395–15402.

(12) Tsai, C.-C.; Teng, H. Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment. *Chem. Mater.* **2004**, *16* (22), 4352–4358.

(13) Wang, M.; Zhang, F.; Zhu, X.; Qi, Z.; Hong, B.; Ding, J.; Bao, J.; Sun, S.; Gao, C. DRIFTS Evidence for Facet-Dependent Adsorption of Gaseous Toluene on  $\text{TiO}_2$  with Relative Photocatalytic Properties. *Langmuir* **2015**, *31* (5), 1730–1736.

(14) Menzel, R.; Duerrbeck, A.; Liberti, E.; Yau, H. C.; McComb, D.; Shaffer, M. S. P. Determining the Morphology and Photocatalytic Activity of Two-Dimensional Anatase Nanoplatelets Using Reagent Stoichiometry. *Chem. Mater.* **2013**, *25* (10), 2137–2145.

(15) Liang, L.; Li, K.; Lv, K.; Ho, W.; Duan, Y. Highly Photoreactive  $\text{TiO}_2$  Hollow Microspheres with Super Thermal Stability for Acetone Oxidation. *Chinese J. Catal.* **2017**, *38* (12), 2085–2093.

(16) Yu, J. G.; Su, Y. R.; Cheng, B. Template-free Fabrication and Enhanced Photocatalytic Activity of Hierarchical Macro-/Mesoporous Titania. *Adv. Funct. Mater.* **2007**, *17* (12), 1984–1990.

(17) Yu, J.; Su, Y.; Cheng, B.; Zhou, M. Effects of PH on the Microstructures and Photocatalytic Activity of Mesoporous Nanocrystalline Titania Powders Prepared via Hydrothermal Method. *J. Mol. Catal. A Chem.* **2006**, *258* (1–2), 104–112.

(18) Tian, J.; Zhao, Z.; Kumar, A.; Boughton, R. I.; Liu, H. Recent Progress in Design, Synthesis, and Applications of One-Dimensional  $\text{TiO}_2$  Nanostructured Surface Heterostructures: A Review. *Chem. Soc. Rev.* **2014**, *43* (20), 6920–6937.

(19) Pepin, P. A.; Lee, J. D.; Murray, C. B.; Vohs, J. M. Thermal and Photocatalytic Reactions of Methanol and Acetaldehyde on Pt-Modified Brookite  $\text{TiO}_2$  Nanorods. *ACS Catal.* **2018**, *8* (12), 11834–11846.

(20) Pradhan, S. K.; Reucroft, P. J.; Yang, F.; Dozier, A. Growth of  $\text{TiO}_2$  Nanorods by Metalorganic Chemical Vapor Deposition. *J. Cryst. Growth* **2003**, *256* (1–2), 83–88.

(21) Yang, H. G.; Zeng, H. C. Preparation of Hollow Anatase  $\text{TiO}_2$  Nanospheres via Ostwald Ripening. *J. Phys. Chem.* **2004**, *108* (11), 3492–3495.

(22) Alotaibi, A. M.; Sathasivam, S.; Williamson, B. A. D.; Kafizas, A.; Sotelo-Vazquez, C.; Taylor, A.; Scanlon, D. O.; Parkin, I. P. Chemical Vapor Deposition of Photocatalytically Active Pure Brookite  $\text{TiO}_2$  Thin Films. *Chem. Mater.* **2018**, *30* (4), 1353–1361.

(23) Nian, J.-N.; Teng, H. Hydrothermal Synthesis of Single-Crystalline Anatase  $\text{TiO}_2$  Nanorods with Nanotubes as the Precursor. *J. Phys. Chem. B* **2006**, *110* (9), 4193–4198.

(24) Liu, B.; Aydil, E. S. Growth of Oriented Single-Crystalline Rutile  $\text{TiO}_2$  Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. *J. Am. Chem. Soc.* **2009**, *131* (11), 3985–3990.

(25) Yu, Y.; Xu, D. Single-Crystalline  $\text{TiO}_2$  Nanorods: Highly Active and Easily Recycled Photocatalysts. *Appl. Catal. B: Environ.* **2007**, *73* (1–2), 166–171.

(26) Yang, Z.; Wang, B.; Cui, H.; An, H.; Pan, Y.; Zhai, J. Synthesis of Crystal-Controlled  $\text{TiO}_2$  Nanorods by a Hydrothermal Method: Rutile and Brookite as Highly Active Photocatalysts. *J. Phys. Chem. C* **2015**, *119* (29), 16905–16912.

(27) Naicker, P. K.; Cummings, P. T.; Zhang, H.; Banfield, J. F. Characterization of Titanium Dioxide Nanoparticles Using Molecular Dynamics Simulations. *J. Phys. Chem. B* **2005**, *109* (32), 15243–15249.

(28) Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous Synthesis of  $\text{TiO}_2$  Nanocrystals Using  $\text{TiF}_4$  to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity. *J. Am. Chem. Soc.* **2012**, *134* (15), 6751–6761.

(29) Zhang, Z.; Zhong, X.; Liu, S.; Li, D.; Han, M. Aminolysis Route to Monodisperse Titania Nanorods with Tunable Aspect Ratio. *Angew. Chem. Int. Ed.* **2005**, *44* (22), 3466–3470.

(30) Biswas, A.; Chakraborty, A.; Jana, N. R. Nitrogen and Fluorine Codoped, Colloidal  $\text{TiO}_2$  Nanoparticle: Tunable Doping, Large Red-Shifted Band Edge, Visible Light Induced Photocatalysis, and Cell Death. *ACS Appl. Mater. Interfaces* **2017**, *10* (2), 1976–1986.

(31) Zhang, Z.; Wu, Q.; Johnson, G.; Ye, Y.; Li, X.; Li, N.; Cui, M.; Lee, J. D.; Liu, C.; Zhao, S. Generalized Synthetic Strategy for Transition-Metal-Doped Brookite-Phase  $\text{TiO}_2$  Nanorods. *J. Am. Chem. Soc.* **2019**, *141* (42), 16548–16552.

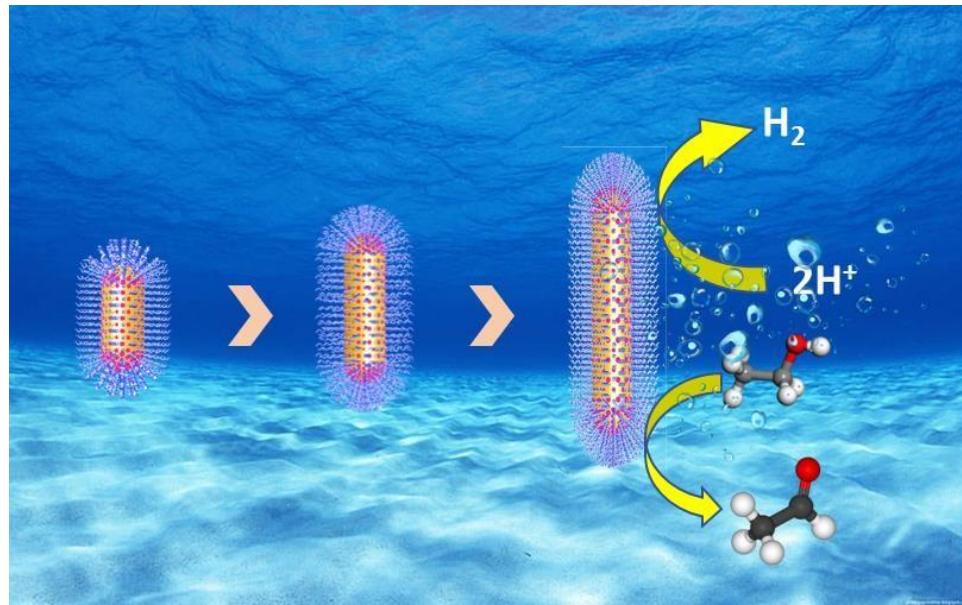
(32) Xiong, C.; Deng, X.; Li, J. Preparation and Photodegradation Activity of High Aspect Ratio Rutile  $\text{TiO}_2$  Single Crystal Nanorods. *Appl. Catal. B: Environ.* **2010**, *94* (3–4), 234–240.

(33) Murakami, N.; Katayama, S.; Nakamura, M.; Tsubota, T.; Ohno, T. Dependence of Photocatalytic Activity on Aspect Ratio of Shape-Controlled Rutile Titanium (IV) Oxide Nanorods. *J. Phys. Chem. C* **2011**, *115* (2), 419–424.

(34) Cozzoli, P. D.; Kornowski, A.; Weller, H. Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase  $\text{TiO}_2$  Nanorods. *J. Am. Chem. Soc.* **2003**, *125* (47), 14539–14548.

(35) Yun, H. J.; Lee, H.; Joo, J. B.; Kim, W.; Yi, J. Influence of Aspect Ratio of  $\text{TiO}_2$  Nanorods on the Photocatalytic Decomposition of Formic Acid. *J. Phys. Chem. C* **2009**, *113* (8), 3050–3055.

(36) An, G. W.; Mahadik, M. A.; Chae, W.-S.; Kim, H. G.; Cho, M.; Jang, J. S. Enhanced Solar Photoelectrochemical Conversion Efficiency of the Hydrothermally-Deposited  $\text{TiO}_2$  Nanorod Arrays: Effects of the Light Trapping and Optimum Charge Transfer. *Appl. Surf. Sci.* **2018**, *440*, 688–699.


(37) Ohno, T.; Higo, T.; Saito, H.; Yuajn, S.; Jin, Z.; Yang, Y.; Tsubota, T. Dependence of Photocatalytic Activity on Aspect Ratio of a Brookite  $\text{TiO}_2$  Nanorod and Drastic Improvement

1  
2  
3 in Visible Light Responsibility of a Brookite  $\text{TiO}_2$  Nanorod by Site-Selective Modification of  
4  $\text{Fe}^{3+}$  on Exposed Faces. *J. Mol. Catal. A Chem.* **2015**, *396*, 261–267.  
5  
6 (38) Fu, B.; Wu, Z.; Cao, S.; Guo, K.; Piao, L. Effect of Aspect Ratios of Rutile  $\text{TiO}_2$  Nanorods on  
7 Overall Photocatalytic Water Splitting Performance. *Nanoscale* **2020**, *12* (8), 4895–4902.  
8  
9 (39) Cargnello, M.; Montini, T.; Smolin, S. Y.; Priebe, J. B.; Delgado Jaén, J. J.; Doan-Nguyen, V.  
10 V. T.; McKay, I. S.; Schwalbe, J. A.; Pohl, M.-M.; Gordon, T. R. Engineering Titania  
11 Nanostructure to Tune and Improve Its Photocatalytic Activity. *Proc. Natl. Acad. Sci. U. S. A.*  
12 **2016**, *113* (15), 3966–3971.  
13  
14 (40) Amano, F.; Prieto-Mahaney, O.-O.; Terada, Y.; Yasumoto, T.; Shibayama, T.; Ohtani, B.  
15 Decahedral Single-Crystalline Particles of Anatase Titanium (IV) Oxide with High  
16 Photocatalytic Activity. *Chem. Mater.* **2009**, *21* (13), 2601–2603.  
17  
18 (41) Randorn, C.; Irvine, J. T. S. Synthesis and Visible Light Photoactivity of a High Temperature  
19 Stable Yellow  $\text{TiO}_2$  Photocatalyst. *J. Mater. Chem.* **2010**, *20* (39), 8700–8704.  
20  
21 (42) Naldoni, A.; D'Arienzo, M.; Altomare, M.; Marelli, M.; Scotti, R.; Morazzoni, F.; Sellì, E.;  
22 Dal Santo, V. Pt and Au/ $\text{TiO}_2$  Photocatalysts for Methanol Reforming: Role of Metal  
23 Nanoparticles in Tuning Charge Trapping Properties and Photoefficiency. *Appl. Catal. B: Environ.* **2013**, *130*, 239–248.  
24  
25 (43) Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Enhancing Visible Light  
26 Photo-Oxidation of Water with  $\text{TiO}_2$  Nanowire Arrays via Cotreatment with  $\text{H}_2$  and  $\text{NH}_3$ :  
27 Synergistic Effects between  $\text{Ti}^{3+}$  and N. *J. Am. Chem. Soc.* **2012**, *134* (8), 3659–3662.  
28  
29 (44) Grabstanowicz, L. R.; Gao, S.; Li, T.; Rickard, R. M.; Rajh, T.; Liu, D.-J.; Xu, T. Facile  
30 Oxidative Conversion of  $\text{TiH}_2$  to High-Concentration  $\text{Ti}^{3+}$ -Self-Doped Rutile  $\text{TiO}_2$  with  
31 Visible-Light Photoactivity. *Inorg. Chem.* **2013**, *52* (7), 3884–3890.  
32  
33 (45) Guillemot, F.; Porté, M. C.; Labrugère, C.; Baquey, C.  $\text{Ti}^{4+}$  to  $\text{Ti}^{3+}$  Conversion of  $\text{TiO}_2$   
34 Uppermost Layer by Low-Temperature Vacuum Annealing: Interest for Titanium Biomedical  
35 Applications. *J. Colloid. Interface Sci.* **2002**, *255* (1), 75–78.  
36  
37 (46) Lu, C.; Ma, Y.; Cao, Y.; Huang, Q.; Wang, J. Fluorine Doping-Induced Oxygen Vacancy-Rich  
38  $\text{TiO}_2$  via Contact Activation for Signal Boosting in Electrochemical Sensing. *Chem. Eng. J.* **2023**, *468*, 143598.  
39  
40 (47) Yu, J. C.; Zhang, L.; Yu, J. Direct Sonochemical Preparation and Characterization of Highly  
41 Active Mesoporous  $\text{TiO}_2$  with a Bicrystalline Framework. *Chem. Mater.* **2002**, *14* (11), 4647–  
42 4653.  
43  
44 (48) Zhang, J.; Lei, Y.; Cao, S.; Hu, W.; Piao, L.; Chen, X. Photocatalytic Hydrogen Production  
45 from Seawater under Full Solar Spectrum without Sacrificial Reagents Using  $\text{TiO}_2$   
46 Nanoparticles. *Nano Res.* **2022**, *15* (3), 2013–2022.  
47  
48 (49) Cao, S.; Sui, N.; Zhang, P.; Zhou, T.; Tu, J.; Zhang, T.  $\text{TiO}_2$  Nanostructures with Different  
49 Crystal Phases for Sensitive Acetone Gas Sensors. *J. Colloid. Interface Sci.* **2022**, *607*, 357–  
50 366.  
51  
52 (50) Puga, A. V. Photocatalytic Production of Hydrogen from Biomass-Derived Feedstocks. *Coord.*  
53 *Chem. Rev.* **2016**, *315*, 1–66.  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 (51) Xing, C.; Zhang, Y.; Liu, Y.; Wang, X.; Li, J.; Martínez-Alanis, P. R.; Spadaro, M. C.; Guardia,  
4 P.; Arbiol, J.; Llorca, J. Photodehydrogenation of Ethanol over Cu<sub>2</sub>O/TiO<sub>2</sub> Heterostructures.  
5 *Nanomaterials* **2021**, *11* (6), 1399.  
6  
7 (52) Kitano, M.; Hara, M. Heterogeneous Photocatalytic Cleavage of Water. *J. Mater. Chem. C* **2010**,  
8 *20* (4), 627–641.  
9  
10 (53) Castedo, A.; Casanovas, A.; Angurell, I.; Soler, L.; Llorca, J. Effect of Temperature on the  
11 Gas-Phase Photocatalytic H<sub>2</sub> Generation Using Microreactors under UVA and Sunlight  
12 Irradiation. *Fuel* **2018**, *222*, 327–333.  
13  
14 (54) Zhang, J.; Ma, X.; Zhang, L.; Lu, Z.; Zhang, E.; Wang, H.; Kong, Z.; Xi, J.; Ji, Z. Constructing  
15 a Novel n–p–n Dual Heterojunction between Anatase TiO<sub>2</sub> Nanosheets with Co-exposed  
16 {101},{001} Facets and Porous ZnS for Enhancing Photocatalytic Activity. *J. Phys. Chem. C*  
17 **2017**, *121* (11), 6133–6140.  
18  
19 (55) Liu, S.; Wu, J.; Liu, X.; Jiang, R. TiO<sub>2</sub>/V–TiO<sub>2</sub> Composite Photocatalysts with an n–n  
20 Heterojunction Semiconductor Structure. *J. Mol. Catal. A Chem.* **2010**, *332* (1–2), 84–92.  
21  
22 (56) Wang, X.; Xia, R.; Muhire, E.; Jiang, S.; Huo, X.; Gao, M. Highly Enhanced Photocatalytic  
23 Performance of TiO<sub>2</sub> Nanosheets through Constructing TiO<sub>2</sub>/TiO<sub>2</sub> Quantum Dots  
24 Homojunction. *Appl. Surf. Sci.* **2018**, *459*, 9–15.  
25  
26 (57) Laidler, K. J. The Development of the Arrhenius Equation. *J. Chem. Educ.* **1984**, *61* (6), 494.  
27  
28 (58) Wardman, P. Reduction Potentials of One-electron Couples Involving Free Radicals in  
29 Aqueous Solution. *J. Phys. Chem. Ref. Data* **1989**, *18* (4), 1637–1755.  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

## Graphic for manuscript

