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ABSTRACT: Here, we report the synthesis of BCN-93, a meltable, functionalized, and permanently porous metal−organic
polyhedron (MOP) and its subsequent transformation into amorphous or crystalline, shaped, self-standing, transparent porous films
via melting and subsequent cooling. The synthesis entails the outer functionalization of a MOP with meltable polymer chains: in our
model case, we functionalized a Rh(II)-based cuboctahedral MOP with poly(ethylene glycol). Finally, we demonstrate that once
melted, BCN-93 can serve as a porous matrix into which other materials or molecules can be dispersed to form mixed-matrix
composites. To illustrate this, we combined BCN-93 with one of various additives (either two MOF crystals, a porous cage, or a
linear polymer) to generate a series of mixed-matrix films, each of which exhibited greater CO2 uptake relative to the parent film.

Melting has long been a widely employed method for
transforming raw materials into shaped objects across

various industries.1−4 Recently, the application of melting as a
processing technique for porous materials such as metal−
organic frameworks (MOFs) has presented a unique
opportunity to mold these materials into novel forms,
including neat porous liquids and glasses.5−10 Unfortunately,
the current range of meltable MOFs is limited, as most MOFs
decompose before they could even melt.11−15 Additionally, the
melting of MOFs involves the rupture of coordination bonds
that define the MOF structure, leading to uncertainty
regarding the final structure, porosity and�by extension�
function of the melted product.16−18

Herein we present a novel approach to transform metal−
organic polyhedra (MOPs) into metal−organic films with a
persistent and designed porosity. Our approach begins with
densely grafting polymer chains onto the surface of a robust
MOP. In the resultant functionalized MOP, the parent MOP
behaves as the persistent pore unit, whereas the polymeric shell
imparts meltability. Thus, since the intrusion of surface
polymer chains into the MOP cavity is inhibited, these
functionalized MOPs can be transformed into porous films
through melt-quenching (Figure 1). Importantly, the resultant
films are free from grain boundaries, amorphous or semi-
crystalline, shaped, and self-standing. Additionally, once
melted, the same functionalized MOP can be used as a
solvent or matrix into which other species can be dissolved or
dispersed to generate porous, mixed-matrix composites with
unique structures and functions.

We began by choosing Rh(II)-based cuboctahedral MOPs
(Rh-MOP) as our pore unit, due to its high structural and
chemical stability as well as its rich surface chemistry,19,20 and
an amine-terminated poly(ethylene glycol) (PEG) chain (ca.
2000 g mol−1) as the meltable polymer.21−29 The PEG chain
was covalently grafted onto the surface of a carboxylic acid-
functionalized Rh-MOP (COOH-RhMOP)30 via formation of

an amide bond (Figure 1a). The preservation of the Rh(II)
paddlewheel throughout the reaction was confirmed by UV/vis
(Figure S1). The resulting PEG-functionalized MOP (here-
after named BCN-93, Figure 1a) was first characterized
through 1H NMR spectroscopy in methanol-d4, which revealed
the expected peaks: the aromatic signals of the MOP core and
the aliphatic signals of the PEG chains (Figures S2 and S3).
The two sets of peaks exhibited the same diffusion coefficient
(7.6 × 10−11 m2 s−1) in the Diffusion Ordered Spectroscopy
(DOSY) 1H NMR spectrum (Figure S2b), which confirmed
the linkage between the MOP and the PEG chains, and the
absence of free PEG in the sample. The hydrodynamic radius
was calculated to be 5.25 nm. Conversion of the negatively
charged surface carboxylic acid groups (at pH 7) into neutral
amide groups was further confirmed by Z-potential measure-
ments: the Z-potential value evolved from −45 mV in the
parent MOP to −9 mV after PEGylation (Figure S4). The
degree of conversion of the surface carboxylic acid groups was
found to be 100%, as determined by 1H NMR analysis of the
acid-digested sample (Figure S5). This allowed us to propose
the following molecular formula for BCN-93: [Rh24(PEG2000-
BDC)24] (where PEG2000-BDC is the PEGylated benzenedi-
carboxylic acid ligand). This formula was further confirmed
through matrix-assisted laser desorption/ionization-time-of-
flight (MALDI-TOF) spectrometry, which revealed a peak at
m/z 53272 (Figure S6) for BCN-93 (expected: 55513 ±
4800). The obtained BCN-93 exhibited a broad solubility
profile in organic and aqueous solvents, as confirmed by UV/
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vis spectroscopy (Figures S7). Thermogravimetric analysis
(TGA) of BCN-93 indicated that it is stable up to 400 °C
(Figure S8). Finally, X-ray powder diffraction (XRPD) analysis
of the as-made BCN-93 revealed that it is a crystalline
compound with two sharp diffraction peaks, at 2θ = 19.3° and
23.5°, which we ascribed to the semicrystalline nature of the
surface PEG chains (Figure S9).31

We then sought to further explore the thermal behavior of
BCN-93. Remarkably, upon heating at 47 °C, it undergoes
concomitant melting and amorphization (Figure 1b: compare
top-left to bottom-left), as demonstrated by Differential

Scanning Calorimetry (DSC), variable temperature (VT)-
PXRD, and (VT)-Field Emission Scanning Electron Micros-
copy (FE-SEM) (Figure 2). The change in the physical state of
BCN-93 upon heating occurs in its neat state and does not
entail weight loss, as confirmed by TGA (Figure S8). Upon
cooling below 1 °C, BCN-93 recovers its crystalline character.
The radial organization of PEG chains on the surface of BCN-
93 hinders their crystallization: consequently, both the
crystallinity and the crystallization temperature of BCN-93
are lower than those of free amino-PEG2000 chains (Figure
S10). Thus, BCN-93 presents a large thermal hysteresis

Figure 1. (a) Schematic of the synthesis of meltable, porous MOP BCN-93 via formation of an amide bond between the surface carboxylic acid
groups of the parent Rh(II)-MOP and the terminal amino groups of NH2−PEG2000 chains. (b) Schematic of the melting-cooling of BCN-93 to
produce amorphous or crystalline-shaped porous films.

Figure 2. Temperature-dependent responses of BCN-93, as illustrated in a DSC curve (a) and in the corresponding VT-PXRD curve (b). (c)
Representative load-displacement nanoindentation curve of the amorphous film (supercooled liquid) at room temperature. (inset) Micrograph
revealing the indents. (d) VT-SEM images of as-synthesized BCN-93 (left), melted BCN-93 (middle), and the amorphous phase that results when
melted BCN-93 is cooled down to 29 °C (right).

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://doi.org/10.1021/jacs.4c00407
J. Am. Chem. Soc. 2024, 146, 7159−7164

7160

https://pubs.acs.org/doi/suppl/10.1021/jacs.4c00407/suppl_file/ja4c00407_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c00407/suppl_file/ja4c00407_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c00407/suppl_file/ja4c00407_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c00407/suppl_file/ja4c00407_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c00407/suppl_file/ja4c00407_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c00407/suppl_file/ja4c00407_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.4c00407?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c00407?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c00407?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c00407?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c00407?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c00407?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c00407?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c00407?fig=fig2&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.4c00407?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


between its amorphous and crystalline states, which enables its
processing into two different physical states at room temper-
ature: a semicrystalline material, when it is synthesized or
when, after melting, it is cooled below 1 °C and then heated to
room temperature; and an amorphous material, when, after
melting, it is cooled to room temperature (Figures S11 and
S12). Indeed, thermal quenching of the melted BCN-93
produces an amorphous kinetically trapped metastable phase
that can be considered as a supercooled liquid.32 The integrity
of BCN-93 upon melting and cooling was confirmed by 1H
NMR, DOSY NMR, FT-IR, and CO2 adsorption (Figures
S13−S17).

Once we had melted BCN-93 at 85 °C, we exploited its
resulting liquid state to shape it into various forms and
subsequently transformed the resultant samples into trans-
parent amorphous films (Figure S18) by cooling them down to
25 °C (Figure 1b, bottom-right). The mechanical properties of
thin amorphous films of at least 200 μm thickness (Figure S19)
were assessed by nanoindentation measurements. These
experiments revealed a reduced Young’s modulus (E*) of 2.3
GPa and a hardness (H) of 78 MPa (Figure 2c), which are
above current MOP-based star polymers.23 Finally, the
crystallinity of BCN-93 could be recovered by cooling it
below 1 °C, without any loss in film shape or porosity (Figure
1, top-right; Figure S11). Moreover, upon grinding, the
resultant crystalline films could be reconverted back into the
initial powder phase (Figure 1b, top-left). The integrity of this
ground powder was confirmed by 1H NMR, DOSY NMR, FT-
IR, and CO2 adsorption (Figures S13, S14, and S16).

The impact of the melting-based shaping of BCN-93 on its
porous properties was assessed through CO2 adsorption/
desorption experiments run at 298 K. The corresponding
isotherms revealed that the CO2 uptake of the as-made
crystalline powder of BCN-93, of 0.2 mmol g−1 (11.3 mol of
CO2/mol of MOP), was fully maintained after the melting-
cooling process (Figure 3).

Reflecting on the high uptake of CO2 by BCN-93, we
reasoned that the cavity inside BCN-93 is empty and remains
accessible in both of the MOP’s physical forms, despite the
presence of surface-bound PEG chains. However, previous
reports have shown that free PEG chains have a high tendency
to penetrate the cavities of porous materials (including
cuboctahedral MOPs) and, consequently, block access to the
MOP pores.33−35 In fact, our own data reveal this
phenomenon: the CO2 uptake of BCN-93 (0.2 mmol of
CO2 g−1) was indeed much higher than that of the physical
mixture of free PEG and COOH-RhMOP (0.018 mmol of
CO2 g−1, Figure S20). Thus, we reasoned that the surface-
bound PEG chains in BCN-93 are much less likely to block
pores in the MOP than are the free PEG chains, probably due
to the mutual steric hindrance imparted by the high surface
density of PEG chains in the former. Our hypothesis was
supported by Molecular Dynamics simulations performed with
NAMD36 and analyzed with VMD37 (see Supporting
Information for details), which revealed that the PEG chains
do not significantly penetrate the windows of the MOP at 25
°C, thereby leaving the cavity free from PEG chains both in
solution and in dry conditions (Figure 3c,d and Figure S21).
Furthermore, the empty cavity is accessible when exposed to
guests such as CO2 (Figure S22). Conversely, when the
unfunctionalized MOP core was simulated in the presence of
free PEG chains, we observed a significant intrusion of PEG
chains into the cavity of the MOP (Figure S23), consistent

with our data and with the current literature. Thus, surface
PEG functionalization of cuboctahedral MOPs enables
coupling of the thermal behavior of the polymer to the
persistent porosity of the MOP, without compromising the
accessibility to the MOP cavity.

Finally, we aimed to use melted BCN-93 as a solvent in
which to solubilize/disperse molecules and materials to yield
mixed-matrix composite38 films prepared through the melting/
cooling technique (Figure 4). Thus, we combined BCN-93
with one of four different additives at concentrations of 10%
(w/w) or 20% (w/w): the MOF ZIF-839 (Figure S24); the
MOF UiO-6640 (Figure S24); the molecular cage OH-
RhMOP;41 and the linear polymer poly(ethylene imine)
(PEI). In each case, we followed the same synthetic strategy,
which entailed combining the BCN-93 and the desired additive
in methanol to yield a homogeneous solution/dispersion,
which was subsequently lyophilized to afford a semicrystalline
powder in which the two components were homogeneously
distributed (Figures S25 and S26). Each mixture was melted at
85 °C (Figures S27 and S28), shaped, and finally cooled down
to room temperature to produce self-standing, transparent,
mixed-matrix composite films (Figures 4 and S29). Cross-
sectional FE-SEM images and EDX mapping of the resulting
films revealed a homogeneous distribution of particles of either
MOF within the corresponding BCN-93 matrix (Figure 4 and
Figures S30−S39), whereas XRPD showed that the crystalline
structure of ZIF-8 and UiO-66 was maintained upon the
melting/cooling cycle (Figure S26). As for the additives OH-
RhMOP and PEI, FE-SEM images of the respective products
revealed the formation of a homogeneous composite polymer
film without any signs of segregation between BCN-93 and
either additive (Figure 4, Figures S34−S37).

Figure 3. (a) CO2-sorption isotherms at 298 K of as-made BCN-93
(black) and pure PEG (blue). (b) CO2-sorption isotherms at 298 K of
BCN-93 in its amorphous supercooled state (black) and pure PEG
(blue). Error bars indicate standard deviation. (c) Snapshot of the
equilibrium configuration of BCN-93 obtained by MD simulations at
298K. Color code: rhodium (green); carbon (black); hydrogen
(white); oxygen (red). PEG atoms inside or at the windows of the
MOP are highlighted in blue. (d) Radial density profiles of rhodium
and carbon and terminal oxygen atoms of PEG chains obtained from
MD simulations at 298K.
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Interestingly, in all cases, the mixed-matrix composites
exhibited greater CO2 uptake than did the parent (BCN-93)
film (Figure 4). For the composites made from BCN-93 and
either ZIF-8, UiO-66, or OH-RhMOP as an additive, the
increase in CO2 uptake agreed with expected values,
considering the individual contributions of each component
(Figure S40). These results imply that the PEG chains of
BCN-93 do not block the pores of MOFs or MOPs dispersed
within the BCN-93 matrix, due to the bulky, ball-shaped
conformation of the PEG chains on the surface of BCN-93.
Conversely, when the same experiment was conducted using
pure PEG as the solvent, the CO2 sorption was drastically
lower, suggesting blockage of the inner cavity as well as
penetration of the PEG chains into the pores of the MOFs and
the MOP (Figure S41). Interestingly, the film made from
BCN-93 and PEI exhibited markedly higher CO2 uptake (1.1
mmol g−1 at 20% PEI [w/w]) than did the parent film (0.2
mmol g−1), which is well-beyond the expected value,
considering the individual contribution of each component.
We theorized that this finding could be explained by a
synergistic effect generated by the empty cavities within the
polymer mixture. Specifically, we envisioned that the empty

spaces would offer both higher solubility and greater diffusion
pathways for CO2, thereby conferring superior accessibility of
CO2 to the PEI-amino groups relative to those in a neat PEI
film.

In summary, we described a new type of porous materials
and related mixed-matrix composites that retained designed
porosity upon melting-cooling cycles (Tables S1 and S2). We
are confident that our results will inform the future synthesis of
permanently porous materials that can be shaped into films,
liquids, or glasses.
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