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The two-dimensional (2D) materials are highly susceptible to the influence of their neighbors,
thereby enabling the design by proximity phenomena. We reveal a remarkable terahertz (THz) spin-
light interaction in 2D Dirac materials that arises from magnetic and spin-orbital proximity effects.
The dynamical realization of the spin-charge conversion, the electric dipole spin resonance (EDSR),
of Dirac electrons displays distinctive THz features, upon emerging spin-pseudospin proximity terms
in the Hamiltonian. To capture the effect of fast pseudospin dynamics on the electron spin, we
develop a mean-field theory and complement it with a quantum-mechanical treatment. As a specific
example, we investigate the THz response of a single graphene layer proximitized by a magnetic
substrate. Our analysis demonstrates a strong enhancement and anomalous polarization structure
of the THz-light absorption which can enable THz detection and efficient generation and control
of spins in spin-based quantum devices. The identified coupled spin-pseudospin dynamics is not
limited to EDSR and may influence a broad range of optical, transport, and ultrafast phenomena.

Heterostructures combining two-dimensional (2D) van
der Waals (vdW) materials offer innovative approaches
for tailoring material properties [1, 2]. The atomically-
thin 2D layers imply that many phenomena can be dom-
inated by proximity effects [3, 4]. This scenario is ex-
emplified in spin-dependent properties of graphene-vdW
heterostructures [3-7]. Transition metal dichalcogenides
imprint spin-pseudospin-valley splitting and spin-orbit
coupling (SOC) onto graphene [4, 8-11], leading to spin
filtering [12-14] as well as enhanced spin-to-charge inter-
conversion [15-19]. An exchange field and ensuing carrier
spin splitting can be further induced in graphene through
magnetic proximity [20-25].

These added functionalities can pave the way to novel
topological phases and devices that merge spin injection,
detection, and manipulation into a single graphene plat-
form [4, 7, 26]. Graphene and other Dirac materials have
a great potential for THz (opto)electronics. Fast, room-
temperature THz detectors made of graphene exhibit ex-
cellent sensitivity, high dynamic range, and broadband
operation [27]. Massless Dirac fermions in graphene and
topological insulators have large nonlinear optical coeffi-
cients and harmonic conversion efficiencies, suitable for
THz high-power harmonic generation [28-30].

In this work, we investigate the spin-charge THz dy-
namics in proximitized 2D Dirac material with spin split-
tings, as shown in Fig. 1, and describe the resulting spin-
light interaction including SOC. Our results demonstrate
an unexplored realization of the spin-charge conversion
from the electric dipole spin resonance (EDSR) [31, 32],
the excitation of electron spin precession by an ac electric
field, which is a versatile tool from probing SOC, inho-
mogeneous magnetism, and topological states to realizing
spin injection and controlling qubits [33-43]. In the pres-
ence of SOC, the EDSR is driven by a unique mechanism
due to coupled spin-pseudospin dynamics [44, 45]. Pre-

FIG. 1. Electric field of THz radiation causes intersubband
spin-flip transitions in a graphene on a substrate with a mag-
netization, M. The Dirac spectrum with a proximity-induced
spin splitting, A, wave vector, k, and the Fermi energy, pu.

viously overlooked, this phenomenon becomes crucial at
frequencies w in the THz range, where wr, > 1, with 7,
the momentum relaxation time. We calculate the absorp-
tion in proximitized graphene, using realistic SOC and
magnetic exchange parameters, and demonstrate that the
predicted EDSR leads to a remarkable increase of both
the spin susceptibility and THz absorption. We reveal an
anomalous polarization structure of EDSR, controlled by
the coupled spin-pseudospin dynamics and transformed
for massive Dirac electrons upon lowering the Fermi en-
ergy, p. Our findings provide: (i) striking differences
from prior mechanisms [37, 38, 46, 47] and (ii) highlight
their relevance for THz detection and spin manipulation.

The electron spin resonance (ESR) [36, 48] is a well-
established technique for studying spin phenomena in
solids. It requires a static magnetic field that defines
the direction of an equilibrium spin polarization, ac-
magnetic field, that induces spin-flip transitions, which
are detected by the absorption close to the Larmor fre-
quency. The EDSR is essentially identical, but with the



spin-flip transitions induced by ac-electric field, allowed
in the presence of SOC [31, 32, 49]. In nanostructures
the SOC symmetry and magnitude can be designed to in-
crease the efficiency of spin-flip absorption for a stronger
spin-light interaction in the EDSR than in ESR. This is
very desirable for semiconductor qubits [39, 42, 43] and
to resonantly enhance the spin-charge conversion.

We analyze the EDSR for the low-energy Hamiltonian
of Dirac electrons in a hexagonal system near the K and
K’ valleys, including magnetic-exchange and SOC

H == HO + Hex + HSOa (1)

where Ho = A€ - T defines the Dirac spectrum, A is
the Planck constant, with 7 the lattice pseudospin op-
erator [50], Q = 2vp(ky, ky, U/2hvr) the Larmor fre-
quency, k an electron wave vector, vp the Fermi velocity,
and £ = %1 the valley index. In z component of Q, U
is the strength of the staggered potential, due to the on-
site asymmetry between two inequivalent sublattices in
2D hexagonal lattices due to different atoms in unit cell,
or from the effect of a substrate. Hex = A - s describes
the magnetic exchange, where s is the spin operator, and
A the spin splitting in the meV (THz) range [4], whereas
Hso = I (T) - s characterizes the SOC, where we as-
sume a k-independent €,(7). For a graphene/TMD,
Hex is the valley-dependent splitting EA - s.

A hallmark of Dirac materials is the spin-pseudospin
coupling and their entanglement [4, 10, 44, 45] arising
from Hg,. To model the spin-pseudospin dynamics driven
by an electromagnetic wave, we consider the interaction
V = hQin(t) - 7, where Qiny = —2(e/hc)vr(§As, Ay),
with A the vector potential. Assuming normal incidence,
we focus on the spin-light coupling emerging via an elec-
tric field component E,, = (iw/c)A,,.

The coupled spin-pseudospin dynamics can be de-
scribed by the mean-field equations of motion for the
classical vectors 7, s [51]

7= [ + Qo (s) X 7] + [ Qe () x 7], (2)
§ = [(Qex + Qyo(7)) x 8], (3)

where €2, (s) is obtained from Hg, with 7Q. (s) =
80 (1) and AQeyx = A. For Qg < Qex, this model cap-
tures the spin resonance at iw ~ A, where E, induces
the dynamics of 7, which triggers the s precession due to
spin-pseudospin coupling [44], as depicted in Fig. 2. For
QexTp > 1, the intersubband spin-light coupling results
in a resonant absorption peak, as discussed below.

We provide our framework for n-doped graphene with
U = 0; the case of U # 0 is given in [51] (see also
Ref. [52, 53] therein). The dynamics of two-level systems,
including the lattice pseudospin, can be modeled using
the classical precession equation for the quantum aver-
age of the operator, including the corresponding Pauli
matrices [54, 55]. Ignoring SOC, Eq. (2) describes the
free pseudospin oscillations with €2 and, when subjected

FIG. 2. EDSR of a Dirac electron driven by coupled spin-
pseudospin dynamics. An incident THz radiation (yellow)
with electric field E,, is absorbed creating a pseudospin com-
ponent, é7,, which precesses in the pseudospin field, 2, ex-
erting a torque on a spin due to SOC (depicted by the orange
arrow). Therefore, a spin component, ds., precesses L to the
spin splitting A, which is along the equilibrium spin s°.

to an external oscillating field Qim,we_m, captures the
resonance at w &~ (), related to quantum pseudospin-flip
transitions. An electron from K-valley with k has a static
pseudospin 70 = k/2, parallel to Q, = 2vpk. Applying
Qine(t) generates the torque, Qine(t) x 70 o< k x A(t)
which, following Egs. (2), triggers the pseudospin rota-
tion around Q). With A(t) = 2Re[A,e~ "], the linear
response 07, = 07,2 + 67, is perpendicular to €2
@ v
072 (W) = QIQ:’_“DZQ, T = eh—i[Aw x k., (4)
where o, , = (—iw, Q). Poles in 07, ,(w) at w = Q,
give the pseudospin resonance i.e. for the interband tran-
sitions leading to the universal absorption ag = me?/hc.
To obtain the interband absorption a = (ag/2)(0(hw —
2u+A)+O(hw — 2 — A)), © is the Heaviside function,
one further needs to calculate the real part of the conduc-
tivity by summing 2vpd7,(w + i0), over all quantum
numbers with the equilibrium distribution function [51].
To illustrate the spin-pseudospin dynamics, we con-
sider surface inversion asymmetry and the relevant

Bychkov-Rashba SOC [56, 57|
Hso = 20 (gTzsy - Tysm) ) (5)

where the SOC strength Ao < A [3, 4, 22]. For the
spin dynamics, in the lowest order of As,/p, We account
for Hyo only in Eq. (3). The oscillating pseudospin,
57 (t) = 2Re[e~™“!§1,], induced by E,, then contributes
to Ao (t) = 2Xs0[2 X 07(t)] and exerts a torque on s
(Fig. 2). For the out-of-plane geometry, s || A | 2,
the resonant spin component in Eq. 3 and linear in A,
88, = spk + ds,¢p, is given by

20 Ao 0T
oro@) = Beo e oy O
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FIG. 3. Ratio of the EDSR absorption for two circular
polarizations of E, as a function of the Fermi energy. The
parameters are A = 5 meV, Ao = 1.2 meV, and U = 3.5 meV.

where Sy, = (Qex, —iw) and s® = +£1/2 is the initial spin
state. A pole at iw = A corresponds to intersubband
spin-flip transitions. This resonance contributes to the
absorption, which can be calculated from Eq. (6) in the
rotating frame [48] by collecting the spin response from
all electrons with different quantum numbers [51].

We can complement this analysis by evaluating, quan-
tum mechanically, the EDSR-induced absorption. The
matrix element M, of the direct intersubband spin-flip
transition from (+ ) to (4 1) states (see Fig. 1) is found
from the second-order perturbation theory

Vat—nH 4y | HEn-pVs+p
Ezi_EIZT €z¢+hw—5;¢

My = (M)

where 5k = dvphk + sA and V = Wit - 7. The
spln—generatlon rate is given by the Fermi’s Golden rule

W, = 2 L),  ®

T 22 -

where fg’i is the Fermi-Dirac function of (1, |)-electrons
in the conduction band, the factor 2 accounts for
(K, K') valleys, and the frequency broadening £(hw) =
(v/7)/[(hw — A)? + ~?] is given by the Lorentzian with
the spin-flip dephasing rate, y. We express Wy =
agt(w)(I/hiw) in terms of the the radiation intensity, I,
and the absorption coefficient, ay¢(w), which at zero tem-
perature is o = Tyaf*L(Iw) with

max )‘2 /J“+A A3/2:u’
o6t = 0obiam [m (u - A) - AQ)} » ©

where b ~ 1 is a prefactor determined by the directions of
A E,. The same expression for ag(w) can be obtained
using the Kubo formula for the optical conductivity by
including SOC in the velocity matrix elements [51].
o from Eq. (9) has an anomalous and counter-
intuitive polarization structure encoded in b, reflecting

the role of both the pseudospin dynamics and SOC field
symmetry for EDSR. Instead of directly interacting with
E,, a K-valley electron spin interacts with a SOC field,
B (t) = —2Xs007,(t)k linearly polarized, irrespective
of E,. For a gapless spectrum, this results in the sup-
pressed EDSR sensitivity to the E, polarization: for
A || 2, as is the same for both circular polarizations
with b = 1, while, in case of the in-plane A orientation,
b=3/4andb=1/4,for E || A and E L A, respectively.

However, for massive Dirac electrons with pu < 2U the
EDSR at A || 2 and A > 0 is induced preferably for

* polarization, as shown in Fig. 3 from as_f/a;f. In
contrast to Eq. (4), at pvp < U the vector 70 | 2,
and 7, lies within the electron motion plane, implying
Qo (t) X Aso[2 X Py ()] follows p,(t), the unit vector ro-
tating counter- or clockwise depending on o. Hence, the
spin resonance for Js, obeys the ordinary polarization
rules, i.e. at Qe || 2, the EDSR absorption is active
only for o* in both valleys. As u departs from the con-
duction band bottom, Q; and 7° gradually tilt onto the
plane, which suppresses the polarization sensitivity of the
EDSR approaching the result b = 1 for the linear spec-
trum at p > U, see Fig. 4. This behavior also contrasts
the valley-dependent circular dichroism for the interband
spin-conserving absorption [58-60], i.e. the fundamental
absorption in K(K’) valley occurs for o7 (s7). A more
accurate analysis [51] shows that at p < U the EDSR
does inherit a finite valley dependence with slightly dif-
ferent absorptions of o7 light in K and K’ valleys.

At smaller frequencies ~GHz, wr, < 1, there is
a change in the mechanism for the EDSR resonance
from Egs. (2) and (3) to the current-induced spin res-
onance [37, 47]. Here, a spin torque acting on a 2DEG
equilibrium spin density §° = A/2rv%h? stems from an
effective Larmor frequency QL (t) = (A\so/Ivr)[2 x v(1)],
determined by the Drude velocity v(t) = 2Re[v,e "]
with v, = eE,7(vp/pr)/(1 — iwT). One can qualita-
tively analyze the emerging nonequilibrium spin density,
S, based on the Bloch spin-resonance equation

—inw + TQ_lsw = [Qex X Sw} + SO] (10)

[ s0,w
S1nce QL . x [2x E,], the resonant absorption for
A || 2 will be active only for one circular polariza-
tion. For the in-plane geometry, the absorption only
takes place when E || A, since the torque is absent as
Qb || 8° for E L A. In the intermediate regime,
wT, ~ 1, both resonance mechanisms (intraband and in-
tersubband) should be considered on equal footing.

It is instructive to compare af** with ag ~ 2. 5% for
graphene. For p 2 2A (or p Z 2U for massive Dirac
electrons with U > A) ag(w) ~ agh(\2,/2u)L(hw), with
the peak value determined by o = agbAZ /(2muy).
For ;1 = 16 meV, Ao = 0.7 meV, and Ty = h/y = 70 ps,
we obtain o™ ~ 0.55a¢ = 1. 25% We also compare the
EDSR—mduced M; from Eq. (7) with the matrix element
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FIG. 4. The evolution of the spin-pseudospin coupling-
induced EDSR absorption with the Fermi energy and SOC.
(a): Linear spectrum (inset), the parameters are A = 5 meV,
h/y = 70ps, with v the spin-flip dephasing rate, and Aso =
0.8,1.4, and 2.0 meV. (b): Massive Dirac electrons (inset) for
two circular polarizations, U = 3.5 meV, Aso = 1.2 meV.

of spin-flip transitions due to magneto-dipole interac-
tion, Mg = ppgeB/2, where g, is the electron g-factor
and B is magnetic field. With g, =~ 1.99 in graphene,
Mpma/Mzp ~ 1074, giving a strong SOC enhancement of
the spin susceptibility compared to the ESR.

Our results for the linear spectrum and oF*(p) from
Eq. (9) in Fig. 4(a) reveal an enhanced absorption when
spin and pseudospin resonances approach each other at
1w — A. To analyze ag(w) at pu = A, one needs to treat
SOC non-perturbatively and account for spin-pseudospin
correlations responsible for interband spin-flip transi-
tions [61, 62] at combined frequencies (2, = Qex). We fur-
ther identify an enhanced spin-light coupling with SOC,
as o oc A2 /v from Eq. (9). For Ay, = 2 meV and
R/ =70 ps, af®* > 20%, an order of magnitude larger
than ag. o oc A2, /7 is sensitive to the spin relaxation
rate [37, 63], which might be suppressed by A [64] (im-
plying an enhanced EDSR efficiency), while also having
an inherent anisotropy in graphene-based heterostruc-
tures [65, 66]. For massive Dirac electrons and differ-
ent E,, polarizations, a**(u) is shown in Fig. 4(b) [51].
a3 maximum at g ~ U/2 has the magnitude still larger
than ESR. For both cases, af;** decreases at yu > A due

to dynamic suppression of spin-pseudospin coupling, see
the denominator of 07,,,ds, in Egs. (4) and (6).

As an alternative to spectroscopic studies, we propose
the electrical detection of resonant spin generation by
THz radiation [51]. This is based on interfacial spin-to-
charge conversion at the graphene-ferromagnet (F) con-
tact. With the proximity-induced A in graphene and
the spin-dependent interfacial properties, together with
the common g and charge transfer, the THz absorp-
tion in graphene leads to a nonequilibrium spin polar-
ization and the generation of an interfacial electromo-
tive force (EMF). This scheme is an extension of the
Johnson-Silsbee spin-charge coupling or spin-voltaic ef-
fect [36, 67—70] applied to Dirac materials, where EMF
can be detected electrically. To preserve graphene’s Dirac
spectrum, in addition to an insulating or metallic F' with
h-BN spacer [21, 71], even a direct contact with a metal-
lic F can be suitable [22]. The enhanced spin-to-charge
interconversion at the graphene-F interfaces enables THz
optospintronics and graphene THz detection.

We have revealed the role of coupled spin-pseudospin
dynamics for the understanding of THz spin susceptibil-
ity in proximitized Dirac materials. The discovered fea-
tures are universal for a wide range of vdW heterostruc-
tures: (i) graphene with proximity-induced Zeeman spin
splitting by various magnetic substrates [22-25, 72-80],
(ii) vdW hexagonal crystals with gapped spectrum, such
as silicene [81], Bi(111) [82], or puckered 2D lattice with
Dirac points [83], (iii) nonmagnetic bilayers, such as
graphene/TMD [8, 10, 11], with valley-dependent Zee-
man spin splitting due to the hybridization of graphene
p-states with TMD bands [4, 8, 10]. In the latter case,
we predict that for 4 < 2U and B = 0, the EDSR will be
induced selectively for K or K’, depending on the circu-
lar polarization. Furthermore, EDSR in graphene/TMD
can imprint many-body effects from collective modes of
spin-orbital Fermi-liquids [62, 84].

With challenges and experimental surprises in the un-
derstanding of Zeeman splitting [85, 86], a key parame-
ter in proximitized vdW heterostructures, EDSR studies
offer a versatile probe to address this situation and to
quantify other proximity-induced spin splittings. For in-
stance, our predicted polarization structure of ag¢, with
its small-p enhancement, has a clear difference as com-
pared to k-linear SOC. In that case, for the spin-light
coupling, k — k — (e/c) A in the k-linear Rashba Hamil-
tonian, Hg = Ar(k X 2)s, leads to the interaction po-
tential, V' = eAr (£ X A,) s/c, that couples A, directly
with the electron spin, rather than with pseudospin. For
the usual SOC strength, Ar, the corresponding torque
leads to spin-flip transitions in A with an ordinary po-
larization structure. As a fingerprint for different con-
tributions to spin-light coupling in proximitized Dirac
materials, it is natural to analyze the polarization de-
pendence of EDSR for different mutual orientations of
A, E,, and its u dependence.



The phenomenon of a coupled spin-pseudospin dynam-
ics has a broad range of implications beyond the EDSR,
as it is inherent to many other manifestations of the
spin-charge conversion, such as the spin-voltaic or spin-
galvanic effects [69, 87], which can be strongly modified
in Dirac systems and whose dynamical properties remain
to be understood. Another striking example is the study
of the spin-orbit torque (SOT), expected to enable the
next generation of embedded memories using 2D mate-
rials or to integrate photonics, electronics, and spintron-
ics [88-90]. However, the spin-pseudospin dynamics in
SOT has not been explored. With the push towards ul-
trafast SOT [91], our analysis of the THz spin-charge
conversion, a key SOT ingredient, provides a further mo-
tivation to consider proximitized vdW-heterostuctures,
both for the resonant SOT generation and for the THz-
spintronics beyond magnetic multilayers.

Our picture could be used to analyze nonlinear op-
tical response of Dirac systems and the nonlinear Hall
effect [92] for different topological regimes [93]. The in-
verse effect of spin precession on orbital dynamics can be
derived from the coupled spin-pseudospin dynamics, pro-
viding an alternative treatment of the topology-sensitive
Kerr effect [94, 95]. The discussed picture could be also
used to analyze spin-flip transitions in Dirac system with
a stronger SOC, such as graphene-TMD heterostruc-
tures [4], and be implemented in graphene quantum dots
and nanoflakes, to realize qubits for THz quantum com-
puting. While SOC has been employed to realize fast
qubit rotations and control with electric fields [39, 42, 43],
EDSR has not been exploited in graphene or bilayer
graphene due to their low intrinsic SOC [96].
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