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as fossils. What plant remnants have withstood taphonomic filtering, fragmentation, and
alteration in their journey to become part of the fossil record provide unique information on how
plants functioned in paleo-ecosystems through their traits. Plant traits are measurable
morphological, anatomical, physiological, biochemical, or phenological characteristics that
potentially affect their environment and fitness. Here, we review the rich literature of
paleobotany, through the lens of contemporary trait-based ecology, to evaluate which well-
established extant plant traits hold the greatest promise for application to fossils. In particular, we
focus on fossil plant functional traits, those measurable properties of leaf, stem, reproductive, or
whole plant fossils that offer insights into the functioning of the plant when alive. The limitations
of atrait-based approach in paleobotany are considerable. However, in our critical assessment of
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over 30 extant traits we present an initial, semi-quantitative ranking of 26 paleo-functional traits
based on taphonomic and methodological criteria on the potential of those traits to impact Earth
system processes, and for that impact to be quantifiable. We demonstrate how valuable
inferences on paleo-ecosystem processes (pollination biology, herbivory), past nutrient cycles,
paleobiogeography, paleo-demography (life history), and Earth system history can be derived
through the application of paleo-functional traits to fossil plants.

I. Introduction

To date, the predominant focus of enquiry in paleobotany has been
to document plant diversity and evolution (taxonomy and
systematics), and through the development of climatic and
atmospheric proxies (paleoclimatology), to examine how long-
term environmental change has influenced plant form and diversity
across time and space (paleoecology, evolutionary biology). Fewer
studies have focused on the capacity of vegetation to ‘force’ the
Earth system through its heterogeneous alteration of the hydro-
logical cycle, weathering rates, and elemental fluxes between land
and ocean. It is hypothesized that the magnitude of plant-driven
forcing of the Earth system is influenced by the evolution of new
plant groups that possess novel traits and trait combinations
(Bonan, 1995; Boyce et al., 2010; Boyce & Lee, 2010; Franks ez 4L,
2017; White ezal., 2020), yet to date, we lack a robust foundation of
functional data on extinct plants to test these hypotheses in
sufficient detail.

In this paper, we review a rich resource of paleobotanical and
plant trait literature and outline a methodology for bringing fossil
and extinct plants ‘to life’ using a functional trait-based approach
pioneered by contemporary plant trait ecologists. We present a
critical assessment of fossil plant functional traits that influence
Earth system processes in particular. Such traits are referred to as
‘effect traits’ (Lavorel & Garnier, 2002; Chapin 3rd, 2003; Violle
et al., 2007) and are well-established in contemporary ecology.
These traits have an ‘effect” on ecosystem-scale processes such as
carbon sequestration, chemical weathering, and decomposition. In
addition to modulating local processes differently across the globe,
variation in these traits is a key determinant of global biogeography.
Our overarching aim is thus to identify and semi-quantitatively
rank a set of fossil plant functional traits that are robust to
taphonomic constraints, are relatively easy to measure across
various fossil plant preservation modes and which have played a role
in shaping Earth’s environment, climate, and atmosphere through
time via their effect on the carbon, oxygen, nutrient, and
hydrological cycles (Fig. 1). We do not focus on ‘response traits’,
such asleaf area, leaf physiognomy and wood growth rings (Lavorel
& Garnier, 2002; Chapin 3rd, 2003; Violle ez al., 2007; Wright
et al., 2017), which are plant traits predominantly shaped by local
environmental factors, because they have been extensively used as
the fundamental underpinning of fossil plant paleo-climate proxies
and reviewed in depth elsewhere (Peppe et al,, 2011, 2014; Yang
etal., 2011, 2014; Allen ez al., 2020; Spicer et al., 2021).

For each paleo-functional trait, we: (1) provide some brief
examples of how fossil plant functional traits can elucidate
population and ecosystem processes, plant—climate, and plant—
atmosphere interactions in Earth’s deep past. (2) We highlight
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relationships between traits and trade-offs that have been robustly
established within contemporary global datasets and that could be
applied to fossil plants to obtain additional, indirect paleo-
functional trait data. In cases where no suitable direct methods or
trait—trait relationships have been established, (3) we present
opportunities for future research to address these paleo-ecological
gaps. Finally, (4) we assess how modes of fossil plant preservation
and relevant taphonomic factors may potentially influence paleo-
functional trait fidelity to the original trait value and its variability.
Using these criteria, the author team has semi-quantitatively scored
26 fossil plant functional traits out of 30 initially assessed (Fig. 1)
as a starting point for broader community engagement and to
illustrate the relative ranking of paleo-functional traits based on
our review.

We have organized the review using the contemporary trait
selection in the ‘New handbook for standardized measurement of
plant functional traits worldwide’ (Pérez-Harguindeguy ez al.,
2013) with a focus first on regenerative traits that can be obtained
from fossil palynomorphs and seeds followed by an appraisal of
paleo-functional traits of fossil leaves and stems. In the last sections
of the paper, we evaluate whole plant traits and trait syndromes that
provide critical insights into extant plant ecological strategy and
assess which can robustly be applied to plant fossils given their
often fragmentary nature. Traits presented by Pérez-Harguindeguy
etal. (2013) without potential application as paleo-functional traits
(4 out of 30 traits) are included along with our assessment and
reasoning in Supporting Information Notes S1-S7.

Il. Toward the development of fossil plant functional
traits

Current Earth system models (ESMs) incorporate vegetation, and
biosphere feedbacks and drivers, but generally have not considered
how plant-driven feedbacks and forcing over time may have
changed with the emergence of new plant evolutionary groups and
their associated functional traits (Matthaeus er 2/, 2023). On
geological timescales, the primary drivers of plant trait selection and
filtering such as Earth’s global mean annual temperature and
precipitation, atmospheric composition, wildfire ecology, biota of
herbivores, pathogens, symbionts, mutualists, dispersers, pollina-
tors have all changed dramatically. Marked filtering and selection of
‘response traits’ in an evolving Earth may in turn have changed the
forcing strength or capacity of plant traits to have an ‘effect’ on
processes within their ecosystems. For instance, increasing atmo-
spheric CO; in the earliest Jurassic selected for plants with lower
stomatal conductance (gn.). Changes in gy, trait values halved
evapotranspiration rates of early Jurassic forests impacting run-off
in the hydrological cycle, a key Earth system process
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Fig. 1 Methodological framework used to critically evaluate 30 contemporary plant traits (from Pérez-Harguindeguy et al., 2013) for their potential application
to the plant fossil record as paleo-functional traits. Four traits (leaf water potential, leaf dry matter content, leaf and litter PH, and seedling functional
morphology, see Supporting Information Notes S1-S7) were deemed to have low potential applicability to fossil plants and were not evaluated beyond the
initial assessment step. The 26 remaining traits were reviewed (Sections V-VII) and semi-quantitatively evaluated by the authors to produce an initial list of
paleo-functional traits (Table S1), which we then ranked according to taphonomic bias (i, ii), ease and robustness of trait measurement in fossil plants iii, iv),
strength of the trait'simpact on the Earth system (v) and capacity to quantify the impact of the trait on an Earth system process within paleo-ecosystem models

(vi; Figs 3, 4).

(Steinthorsdottir ez al., 2012). We propose, therefore, that a paleo-
functional trait approach in paleobotany will provide an improve-
ment to the representation of vegetation—ESM interactions that is
evidence-based, provides testable hypotheses, and is scalable. For
example, a linear multiplier has historically been used to account
for enhanced plant-driven chemical weathering over geological
time (reviewed in Goddéris ez al., 2023). This assumption could be
tested using fossil functional traits that likely influence weathering
rates such as photosynthetic rate, litter decomposability, and xylem
conductivity and by tracking changes in their trait values over time.
Terrestrial productivity exerts critical influence on the carbon and
nutrient cycles (N, P; Lenton et al, 2018), in large part via
weathering rates, and is hypothesized to have undergone step-
change increases over geological time with more recently derived
plant groups (angiosperms) generally being more productive than
their ancestors (gymnosperms; Boyce & Zwieniecki, 2012; Boyce
et al., 2023). These ideas, however, are challenged by the
observation that long-extinct plants (Carboniferous) had similar
rates of photosynthesis and transpiration as modern angiosperms
(Wilson ez al., 2017, 2020; Yiotis & McElwain, 2019) and are ripe
for further testing using multiple paleo-functional traits — but
which ones should we focus on? The uncertain trajectory of plant
functional trait evolution over geological time thereby introduces
uncertainty to key Earth system processes (e.g. hydrological cycle
and weathering) that exert substantial control on the long-term
carbon and oxygen cycles, global temperature, and the habitability
of the planet.

© 2024 The Authors
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A wealth of contemporary ecological studies demonstrates that
the functional diversity of plant traits does not map simply to plant
evolutionary groups (Diaz er al., 2016; Bruelheide ez al., 2018).
Global trait-based ecology has emerged in the field of con-
temporary ecology as a powerful tool to categorize how plants
influence their abiotic and biotic environment based on their
morphological, anatomical, chemical, physiological, demo-
graphic, and/or reproductive traits rather than their species
identity or evolutionary relationships (Wright ez al, 2004;
Cornwell er al., 2008; Diaz er al, 2016; but see van der Plas
et al., 2020). A trait-based ecology approach in paleobotany, where
species identities are often uncertain compared with contemporary
taxonomy, would thus allow the functional characterization of
plants, whether long extinct or living, by their functional traits
preserved in fossils. In order to critically evaluate the potential of
different plant functional traits to inform Earth system science, we
have semi-quantitatively evaluated every trait we review in the
ensuing sections on the strength of its impact on the Earth system
(Earth system effect (ESE) score, Fig. 1) and on the current
capacity to quantify this impact using paleo-ecosystem models
(Earth System implementation (ESI) score; Fig. 1).

lll. Taphonomic constraints for a paleo-functional
trait approach

A tree fell in a forest 200 million years ago; no one was there to
observe it. Depending on plant type and circumstances, we might
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still infer how it functioned based on its traits. The plant fossil
record is mostly composed of fragmented plant parts (e.g. spores,
seeds, leaves, and shoots) that are preserved separately. Broadly,
tissue type, preservation mode, and taphonomy (reviewed in
Collinson, 1983; Greenwood & Donovan, 1991; Gastaldo, 2001;
Ferguson, 2005; Sims & Cassara, 2009) determine the availability
of different plant parts on which functional trait measurements can
be obtained. Furthermore, each combination of dssue type,
preservation mode, and trait requires a unique set of considerations
regarding the bias of the resulting trait values (Fig. 1). All fossil
preservation types depend on the presence of water, introducing a
taphonomic mega-bias favoring plants that grew in or near wet
locations or that can survive transport by water to a depositional
environment (Ferguson, 2005). Furthermore, because fossil
preservation is a rare outcome, robust estimates of the distribution
of trait values, and extreme values (i.e. maxima) are likely
unavailable most of the time, and require exceptionally preserved
floras where thousands of fossil plant parts, including the most
delicate (e.g. fossil flowers, pollen tubes, and fern fiddleheads), are
available for study. In combination with fragmentation, taphon-
omy also makes disentangling trait variation from development
difficult but not impossible. Part of the solution to the filtering of
original trait values by the fossil record is integrating an
understanding of the taphonomic factors that transform a living
community of plants at some past instance in geological time to a
dead assemblage of fossil plant parts, each with their measurable
trait values. Taphonomic processes are very well understood for
fossil plants and what is required now is that this field is extended to
explicitly consider functional traits.

Most often, plant parts are preserved when they are buried
quickly, enter anaerobic conditions that hinder decomposition,
and are then further altered where the sediment around them
becomes rock. This produces compression fossils when original
organic material remains, and still-valuable impression fossils when
the original matter is lost. Compression/impression fossils allow for
the measurement of gross morphological trait values, but
deformation due to compression may alter individual traits.
Chemical traits may be measured from compressions, though they
may be altered in diagenesis (Box 1; Ferguson, 2005) and biased by
fossilization potential (Spicer, 1989; Tegelaar et al., 1991; Bacon
et al., 2016) likely imposing artifacts in trait values at the plant
community/ fossil assemblage scale. This mode of preservation is
more likely to preserve tissues that are resistant to fragmentation,
deformation, and decomposition, suggesting that functional traits
measured from compression/impression fossils will more likely be
biased toward trait values of more robust plants and plant parts with
dense and/or tough lignin-rich, suberin-rich, or polymer-rich
tissues.

In afew special circumstances, anatomy can be preserved in plant
fossils. Plant tissues that are flooded with mineral-saturated water
or inundated 77 sizu by volcanic ash falls (e.g. Wuda Tuff flora), or
partially burned in forest fires produce permineralization (see
Box 1) and charcoalified fossils, respectively (Schopf, 1975; Wang
et al, 2012). These allow measurement of cellular-scale and
morphological traits that can be obtained with minimal alteration
due to deformation but in most cases, little unaltered organic
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Box 1 Definition of terms.

Demographic traits: vital rates for the processes of growth, survival, and
reproduction thatare calculated ata population level. Demographers use
life-history traits measured at population levels to model complex
attributes of vital rates such as lifespan and maximum age at
reproductive maturity.

Diagenesis: the physical and chemical alterations to plants and plant
parts and their surrounding sediments that occur during the process of
fossilization (before deep metamorphic processes under high tempera-
tures and pressures) and ultimately determine whether the plant/ plant
part and its trait values are preserved or destroyed.

Fossil plant (paleo-) functional traits: a measurable property of a plant
fossil that is inferred to have influenced the function of the plant while it
was alive, and which likely affected its environment or its fitness. These
inferences are usually made through relationships between structure or
chemistry, and plant function that have been established, and continue
to be developed in modern plants.

Fossil plant preservation modes: types of plant fossil preservation are
determined by the matrix type (and grain size) the fossil is embedded in
aswell asthe specimens’ paleoenvironmental setting. There are six broad
preservation categories. Those of two-dimensional preservation are
compressions and impressions (Schopf, 1975); the latter lacking any
remaining organic material. Three-dimensional preservations are
permineralization, casts/molds, and compactions, with permineraliza-
tions lacking organic material (except cell walls) as the plant tissue is
infiltrated by mineral deposits during formation. These modes have been
abundantly described in the literature by case-to-case scenarios and
much descriptive work was initially addressed by Schopf (1975). Lastly
and of more recent application, molecular preservation retains organic
compounds though lack structural remains.

Life-history traits: metrics or quantities that are integrated overa plant's
life cycle and usually calculated at population levels (e.g. maximum age
at reproductive maturity). Some life-history traits can also be considered
as plant functional traits when measured at the level of individual rather
than population. Our focus here is on those which can be measured on
individuals.

Plant functional traits: broadly defined as any measurable morpholo-
gical, anatomical, physiological, biochemical, or phenological trait of an
individual plant that potentially affectsits environment or its fitness (from
Pérez-Harguindeguy et al., 2013). For the purpose of this review, we
focus more on plant functional traits which affect their local, regional
and/or global environment (Chapin 3rd's (2003) ‘effect’ traits) as these
are important for Earth system modelling (sensu Lavorel et al., 2007) in
the present and past (Matthaeus et al., 2023).

Taphonomy: the fossil record of plants presents a biased representation
of living vegetation that once existed. Taphonomy is defined as the
processes and factors involved in the transformation of these once-living
plant communities to an assemblage of fossil plants preserved within the
rock record. According to Greenwood & Donovan (1991), ‘plant
taphonomy incorporates the processes of the initial abscission of plant
parts, their transport (by air and/or water) to a place of eventual
deposition, entrapment and eventual burial, and subsequent lithifica-
tion'.

Trait syndrome: suite of consistently coordinated/correlated traits that
occur across multiple scales of biological organization and environmental
gradients that result from evolutionary processes (e.g. plant flamm-
ability, litter decomposability, and photosynthetic pathway).

material remains, precluding ready access to functional traits based
on plant chemistry or stoichiometry. Permineralization of fossils
allows preservation with less fragmentation, and occasionally of
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herbaceous plants and delicate structures, depending on the process
of initial burial. In some exceptional cases, for example, the Rhynie
Chert (Trewin, 1994) and Chemnitz Fossil Forest (RoBler ez al,
2012) communities are preserved in growth position, allowing
measurement of multiple functional traits from the same fossil
plant, and whole plant traits in an ecosystem context. In sections V—
VIIL, we evaluate the research potential of reproductive, leaf, stem,
and whole fossil plant functional traits in the context of some of the
biases and limitations imposed by preservation mode and
taphonomy (i and ii in Fig. 1).

IV. Methodological constraints for a paleo-functional
trait approach

The form, development, and taxonomy of plants are increasingly
uncertain for extinct plants in deep time. Whereas modern plant
ecologists generally begin their investigations with whole plants of
known species, plant paleobiologists must start from plant parts.
Understanding plant form from a mostly fragmented fossil record
requires conceptual reconstruction of plants from fossils containing
attachments of one organ to a different kind of organ (e.g. a shoot
with an attached seed). Whole plant reconstructions represent a
best-case scenario, requiring a comprehensive collection of
attachments, often from different fossiliferous beds (e.g. Matsu-
naga & Tomescu, 2017). The core experimental grouping of the
plant paleobiologist, therefore, is not an individual plant, but the
plant part available to measure. Furthermore, the co-variation of
traits in whole plants is generally unavailable on an individual fossil
specimen due to fragmentation and separation of stems, leaves and
fruits due to taphonomic processes (Box 1). However, information
on the co-variation of traits is often available within a fossil
assemblage at the bed level where tens to thousands of different
plant organs that originally occurred as litter within the living
community are preserved in the same relative abundance ranking as
was present in the living vegetation (Burnham ez al., 1992). Fossil
plant assemblages of this nature enable deep investigation into trait
variance within- and between species, assessments of appropriate
sample sizes needed to achieve stable trait means, and ultimately the
calculation of community-weighted mean trait values.

The limitations of using a paleo-functional trait approach are
considerable and multifaceted. Nonetheless, plant fossils represent
the one ground-truth record of the foundation of terrestrial
ecosystems across deep time. Inferences of trait values from fossil
plants may be made more robust by combining estimates from
multiple plant parts and using direct measurement alongside
biophysical and biochemical relationships between sub-tissue
properties and function (e.g. C3/C4 photosynthetic pathways
may be distinguished directly using anatomy when it is preserved,
and indirectly using C isotopic signatures). Furthermore, the
integration of contemporary plant ecology regarding trait trade-
offs and economics with the plant fossil record allows for the
inference of additional trait values by analogy or through observed
trait—trait correlations. For example, six leaf traits (photosynthetic
capacity (Apas), dark respiration rate (Ry,), leaf mass per area
(LMA), leaf lifespan (LL), leaf nitrogen (Ny,), and phosphorous

content (Pp,.s)) co-vary strongly in contemporary global datasets
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across thousands of species and climate zones; they collectively
describe the ‘leaf economic spectrum’ — the economics of
constructing and maintaining a leaf and the trade-offs involved
(Wright er al, 2004). Because correlations between some
functional traits are so well constrained for extant plants, this
opens a window of possibility in paleobotany to infer traits that
cannot be measured in fossils, such as P, from those that can
using multiple methods (e.g. LMA; see leaf economic traits).
Variation in trait inferences may then be studied across scales
(i.e. within and among fossiliferous bed, horizon, region, biome,
and age) to form a picture of vegetation—climate interactions across
deep time. We take these methodological considerations (iii and iv
in Fig. 1) into account in a semi-quantitative evaluation of every
trait in the following sections to ultimately calculate a ‘-
Paleo-functional trait score’ for each trait we review. A ranked list
of paleo-functional traits is finally produced in the conclusion
section by weighting Paleo-functional trait scores for each trait by
its ESE and Implementation Scores (see Fig. 1).

V. Functional traits of fossil spores, pollen, and seeds

1. Spores and pollen

The study of functional traits of fossil pollen and spores provides
key insights into persistence and resilience of plants, fungi, and
ecosystems under environmental change, in particular drought
(Abrego er al, 2017; Brussel ez al, 2018; Sande er al, 2019;
Table 1) as well as inferences on dispersal syndrome and pollination
success. Thicker spore walls in forest edge fungi are likely linked to
UV-light tolerance, and/or harsher environmental conditions
(Norros eral., 2015; Abrego ez al., 2017) and habitat characteristics
(e.g. moisture) have likely played a substantial role in the evolution
of pollen morphology (Ackerman, 2000; Franchi ez 4l., 2011). The
presence of pollen wall apertures is related to environments
characterized by dry seasons or occasional droughts (Franchi
et al., 2011). Although much pollen trait-based research to date
tends to be reliant on recently collected data (c. 20 yr; Franchi
et al., 2011; Nogué ez al., 2022), several studies have shown the
importance of the incorporation of paleo-ecological and paleonto-
logical data into trait frameworks to understand plant performance,
fitness, and/or functioning (Reitalu ez 4/, 2015; Brussel ezal., 2018;
van der Sande ez al, 2023). The microscopic size of pollen and
spores and their low taxonomic resolution create a challenge to their
incorporation as functional traits into global trait analysis.
However, potential methodologies have been proposed (reviewed
in Reitalu & Nogué, 2023; Table 1). Taphonomic biases in the
pollen and spore record are very well constrained compared with
other fossilized plant parts, and there is a high likelihood of their
fossilization. For these reasons, together with a high potential for
direct measurement of trait values from pollen and spores, we
attributed a relatively high overall Paleo-functional trait score to
spores and pollen (10) (Fig. 3; Table S1). However, lower ESE (3)
and ESI (0.3) scores were however assigned (Fig. 1), because
although dispersal is a key determinant of biogeographic units,
which in turn influence climate and biogeochemical cycles, realized
dispersal also relies on vegetative traits. Furthermore, dispersal is
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Table 1 Functional traits of fossil pollen.
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Trait

Life history/ dispersal syndrome*/climate preference
Trait description in relation to drought tolerance and dispersal

Pollen size

Small (S), 10-25 um
Medium (M), 26-50 pm
Large (L), 51-100 pm

Shape oblate, prolate, spheroidal

Aperture types and number
Innaparture (0)

Colpate (1, 2,3, >3)
Porate (1,2, 3, > 3)
Colporate (1, 2, 3, > 3)

Presence of sculptures (exine)

Psilate, Perforate (micro- and macro-);
Reticulate; Rugulate; Striate; Gemmate;
Verrucate; Echinate

Dispersal unit (e.g. monad, tetrad)

Wall thickness (exine)
<2pm
>2pm

Tolerance to drought: Larger pollen grains should have an advantage over smaller ones when desiccation
intensity increases: to minimize the rate of water loss due to desiccation, a plant produces larger grains that also
have a lower surface-to-volume ratio (Ejsmond et al., 2011)

Dispersal: We expect small and medium pollen grains (e.g. 20-40 um) to disperse better than those with larger
pollen grain (> 40 um; Vonhof & Harder, 1995). We also expect that small and medium pollen grains to be
wind-pollinated and that larger pollen grains to be mostly animal-pollinated. But this is controversial. Smaller
sizes are suggested to reduce the settling velocity and, thus, increase the dispersal distance of the pollen
(Niklas, 1992). However, various mechanisms exist to increase dispersal distances by reducing pollen mass,
such as the presence of air sacs of many conifers (Ackerman, 2000; Schwendemann et al., 2007)

Pollen size has been found to be affected by chromosome ploidy level, environmental factors, and flower
characters, among others (Muller, 1979; Stroo, 2000) and may determine reproductive and seed-siring success
as large pollen grains have higher chances of successful fertilization because their size determines the growth
rate of pollen tubes (Cruzan, 1990; Ejsmond et al., 2011)

Dispersal: There is evidence that suggests that spherical pollen grains are more present in wind-pollinated plants
(Niklas, 1985b; Vaknin et al., 2008). In addition, spherical pollen grains dispersed further (Niklas, 1985b;
Jackson & Myford, 1999; Ackerman, 2000). The relationship between oblate and prolate pollen grain shapes
and dispersal type is not clear. Pollen shape does not seem to play a major role in preferences of forage sources
(e.g. honeybees on Gossypium Hirsutum; Vaissiere & Vinson, 1994)

Tolerance to drought: Pollen tolerance to drought may be indicated by the presence of apertures (furrows, pores;
Fig. 2; Moore et al., 2008, Franchi et al., 2011). Apertures are structural elements that allow variation in the
pollen volume with changing moisture conditions (Franchi et al., 2011)

Pollen grains with low desiccation tolerance (‘recalcitrant’) and furrows are usually absent and there may be an
absence of pores (Franchi et al., 2011). Recalcitrant plant species are more likely to occur in moist habitats.
Pollen grains with high desiccation tolerance (‘orthodox’), furrows are usually present

Dispersal: Pollen wall sculptures (e.g. perforate, reticulate, and rugulate) may be affected by pollination
syndrome (reviewed in Hesse et al., 2000; Konzmann et al., 2019). Rich ornamentation is associated with
entomophily (Vaknin et al., 2000; Hu et al., 2008). Sculpturing plays an important role in attachment to insect
pollinators and to the stigma of the flower

Wind-pollinated species often lack elaborate sculptures and appear smooth (i.e. psilate). But, this is controversial
as the presence of sculptures on the pollen wall is suggested to be a specific feature for each plant taxon (Pacini
& Hesse, 2012)

Dispersal: Pollen grains are generally dispersed as monads (single grains) and tetrads (four grains derived from
the same meiocyte; Pacini & Franchi, 1999). In addition, some pollen grains present a fluid called pollenkitt. This
fluid glues the pollen grains together and forms clumps of both monads and tetrads (e.g. Ericaceae)

Monad pollen is a common characteristic for both entomophilous and anemophilous taxa (Chaloner, 1986).
However, pollenkitt is typically present in almost all zoophilous plants (Pacini & Hesse, 2005)

Tolerance to drought: The function of the wall is considered to be mainly protection against adverse
environmental conditions such as desiccation and UV radiation (found in fungal spores also). Reduced wall
thickness has been considered to be an advantage for taxa living in humid, moist, or even wet environments.
The advantage consists of a rapid germination due to the short rehydration time (Pacini & Hesse, 2012)

Terminology used for the six pollen traits (pollen size, shape, apertures, sculptures, dispersal unit, and wall thickness) follows the Palynological Database-PalDat
(https://paldat.org) and Halbritter et al. (2018).
*We use the concept pollen dispersal to refer to how far for example airborne pollen grains may travel before being deposited (Yao et al., 2022).

not currently parameterized within paleo-ecosystem models.
Furthermore, many of the key functional traits conferring resilience
to drought highlighted below (Table 1) are stronger ‘response’ traits

than ‘effect’ traits.

2. Seed size and shape

Here, we consider the traits of seeds as they enter the soil or a
suitable depositional environment and do not include the fruit or
dispersal structures (Fig. 2) associated with the seed as these are
much less likely to be preserved in the fossil record. There is an
enormous (11 orders of magnitude) variation in seed size among
extant plants (Moles ez al., 2005a). Still, biases imposed by the
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fossilization process and factors that influence the movement of
seeds into suitable depositional environments are all likely to filter
the full range of paleo-seed diversity (Sims & Cassara, 2009).
Despite the fact that the fossil record is imperfect, the function of
seeds to protect and transport the embryo means that of all plant
parts, seeds are very well represented as fossils. Seed size is one of six
plant traits selected for its global significance in defining the
functional bauplan of extant plants (Diaz ez 4l., 2016); it defines a
trade-off between the seedling survival and colonization potential
and is strongly correlated with plant height (Diaz ez 4/, 2016).
Seeds are usually discrete units but there are exceptions. Seed size,
shape, and structure, especially, have been shown to be good
indicators of seed persistence in the soil in some biomes

© 2024 The Authors
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(Thompson ez al, 1993; Diaz & Cabido, 1997; Leishman &
Westoby, 1998; Peco ez al., 2003), which in turn plays a major role
in the survival of species in time and space (Christoffoleti &
Caetano, 1998). For example, rounder seeds with lower shape
values (closer to 0 than to 1) tend to be buried deeper into the soil
and seed bank and persist longer (Pérez-Harguindeguy
etal., 2013). Interestingly, small seed size is likely underrepresented
in the fossil record (Sims & Cassara, 2009), and fossil seed
assemblages often contain seeds from species that have travelled
long distances and are not therefore representative of the local flora
(Collinson, 1983; Burnham, 1990), suggesting considerable
taphonomic filtering at play.

In extant plants, seed size (sometimes referred to as mass) is
measured by oven-dry mass (Moles er al, 2005a; Dérez-
Harguindeguy eral., 2013) and seed shape is defined by its variance
in three dimensions (x, y, z — thickness, width, length; Pérez-
Harguindeguy et 4/, 2013). In fossil plants, seed shape can still be
defined by its variance in two to three dimensions using a range of
microscopy and micro-CT methods (DeVore ¢t al., 2006). Once
characterized, seed size and shape can be used beyond taxonomic
characterization (DeVore ez al., 2006; Matsunaga ez al., 2019) and
open a window on the functional ecology of the whole plant in the
absence of other articulated fossil plant parts. However, tapho-
nomic biases should be considered (Sims & Cassara, 2009). For
example, seed mass is strongly correlated with genome size
(Beaulieu ez al, 2007), growth form (Moles er al, 2005a,b;
Beaulieu ez al., 2007), dispersal syndrome (Moles ez al., 2005a,b),
plantlifespan (Moles ez al., 2005b), and weakly correlated with net
primary production (Moles ez al., 2005a). Seed size and shape trait
yielded a relatively high paleo-functional trait score in our semi-
qualitative analyses (10) but low ESE and ESI scores due to the fact
that correlations between this trait and Earth system processes such
as photosynthesis are weak and because the functional attributes
that correlate strongly with seed size such as dispersal and plant
lifespan are not currently parameterized within paleo-ecosystem

models (Fig. 3; Table S1).

3. Dispersal syndrome

Dispersal syndromes (Pérez-Harguindeguy ez al., 2013) are seed,
fruit, or spore morphologies (referred to collectively as dissemi-
nules) and the associated modifications that enhance the
probability of being dispersed away from the parent plant and
characterize a distinct mode of dispersal (Hughes ez al., 1994). Such
syndromes are known to facilitate dispersal via flotation in water, by
animal consumption, or by wind, among other modes. Dispersal
by gravity will be excluded from this review as no specialized
adaptations are required for this mode (Castro er al, 2010;
McLoughlin & Pott, 2019). Where dispersal syndrome can be
distinguished based on fossil disseminule morphology, it poten-
tially provides useful insights into fossil species biogeographic
limits and biotic interactions within paleo-ecosystems even in the
absence of body fossils of the disperser (Robledo-Arnuncio
et al., 2014; Aslan et al., 2019; Wojewddzka er al., 2019; Rojas
etal, 2022).

© 2024 The Authors
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Dispersal syndrome can be directly inferred from morphological
observations of fossils and comparisons with relevant extant
examples. Reproductive architectures like the rain-splash cups that
accommodate water dispersal seen in liverworts are also found in
Cooksonia, one of the earliest land plants, although the dispersal
syndromes of the spores themselves remain unspecified (Briggs &
Crowther, 2008; Murray, 2012; Medina & Estebanez, 2014).
Hypothesized plant-insect mutualism is proposed for Permian
lycopsid megaspores based on the presences of external starch
structures (elaiosomes; Liu ez @/, 2018). Dispersal syndrome at the
ecosystem scale can be indirectly inferred from dental adaptations
(Norconk ez al, 1998; Guimardes er al, 2008), and coprolites
(Habgood ez al, 2003). Spore phytophagy in insects is hypothesized
for some Carboniferous lycopsids (Chaloner, 1984), providing early
evidence for the potential evolution of a dispersal syndrome based on
plant—animal interaction. Combinations of direct and indirect
evidence, seed morphology, and availability, inferred from the
coprolite record, have helped identify deep-time frugivore diets
(Dutta & Ambwani, 2007) and contextualize ecological shifts in
more recent ecosystems (Boast ez al., 2018; Heinen ez al., 2023).

Spatial resolution poses a problem for inference of dispersal
syndrome. Any disseminule can be transported accidentally via a
prevalent dispersal type regardless of the disseminule’s adaptive
morphology (Pérez-Harguindeguy ez a/., 2013), and this limitation
is magnified for fossils. For example, nonfrugivorous animals
consume a wide array of plants and unintentionally disperse fleshy
seeds, carrying them long distances regardless of whether the
dispersal syndrome is adapted for long or short distances, biasing
inferences from the fossil record (Green et al, 2021). Other
taphonomic processes such as preburial filtering, reworking, and
transport (allochthonous assemblages) can also make the time
and place of origin of fossil disseminules unclear. Fossil
disseminules may be disintegrated or ruptured, requiring recon-
struction, and interfering with syndrome inferences. Nonetheless,
evidence of ornamentation or detachment scars from detached
fossil appendages (e.g. wings; Fig. 2) can aid in classification
(McLoughlin & Pott, 2019). However, even direct morphological
inferences of paleo-ecological function may be prone to error
(Green et al, 2021). For example, dissimilar fern spore
morphologies are anemochorous (Gémez-Noguez ez al., 2017),
are unexpectedly endozoochorous in certain ecosystems (Lovas-
Kiss et al., 2018), and may function in other components of life
history (see Table 1). Some important features of dispersal
syndromes may be irrecoverable from fossils (i.e. smell, color,
sticky textures/substances; Tiffney, 2004). However, successful
development of fossil color biomarkers in dinosaur feathers
(McNamara et al., 2021) and the observation that nano-surface
structures on extant flowers influence petal color (Moyroud
et al., 2017) suggest that future advances may allow inference on
some of these usually hidden features. In the absence of direct
observation of dispersal per se, inference of the function of
particular structures and dispersal syndromes in the fossil record
may therefore be unclear in many cases. This complexity is reflected
by the fact that multiple dispersal syndromes have been proposed
for some plant groups including Permian Glossopteris (Klavins
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et al, 2001; McLoughlin & Prevec, 2021), fossil Cycas
(Murray, 2012; Liu et al., 2021), and fleshy seeds in general (e.g.
Ginkgo; van der Pijl, 1969; Tiffney, 1984; Mack, 2000; Bolmgren
& Eriksson, 2005; Del Tredici, 2007; Valenta & Nevo, 2020,
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2022). Based on these considerations, we assigned modest paleo-
functional trait (7.5) and ESE (5.6) scores for the trait ‘dispersal
syndrome’ and low scores for ESI (0.56), because although
undoubtedly the evolution of new dispersal traits through

© 2024 The Authors
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Fig. 2 Examples of fossil plant functional traits. (a) Vein density trait illustrated for Permian Glossopteris from Esperanca Janior et al. (2023, reused with
permission) Bar, 5 mm. (b) Leaf gmax trait (a function of stomatal density and pore geometry) illustrated on Cretaceous aged Podocarpaceae compression fossils
(Pole & Philippe, 2010, reused with permission) Bar, 50 pm. (c) Spinescence trait (SI) illustrated for Eocene fossil twigs from Tibet (Zhang et al., 2022, reused
under the terms of a CC-BY 4.0 license) Bar, 10 mm. (d) Leaf mass per area (LMA) trait illustrated on cross-section of Jurassic fossil Ginkgo leaf estimated from
measurements of cuticle thickness (Soh et al., 2017, reused with permission) Bar, 10 pm. (e) Salinity trait illustrated by the ghost presence of CaOx globules
(interpreted as druses) on late Oligocene aged Quercus neriifolia impression fossils (Malekhosseini et al., 2022, reused under the terms of a CC-BY 4.0 license)
Bar, 200 um, inset = 40 pm. (f) Plant height trait can be estimated from fossil trunk diameter on in situ fossil tree stumps such as illustrated from the Triassic of
Antarctica (Clneo et al., 2003, reused with permission) pen Bar, 14 cm. (g) Bark thickness trait illustrated on Early Carboniferous fossil tree from Australia
(Decombeix, 2013, reused with permission) showing successive zones of periderm layers, Bar, 2 mm. (h) Palatability trait measured from the ratio of presence of
feeding damage as illustrated by large circular hole feeding on fossil dicot leaf species (Currano et al., 2008, reused with permission, copyright (2008) National
Academy of Sciences) Bar, 11 mm. (i) Xylem conductivity trait measured from xylem pit membrane (arrow), pit orientation, and abundance shown here on
longitudinal sections of polished pyritized Eocene fossil twigs of Pityoxylon (Grimes et al., 2002, reused with permission). (j) Cuticle trait llustrated using auto-
fluorescent properties of Cretaceous aged Angiosperm cuticles (LK-B-55) from West Greenland highlighting secretory trichomes (pellucid dots; C Fay, JC
McElwain, &S Robinson, unpublished) Bar, 100 pm. (k) Pollen trait indicating resistance to drought by the presence of furrowsillustrated here for recent Citrus
lanatus (Franchiet al., 2011, reused with permission) Bar, 10 pm . (I) Dispersal syndrome illustrated in winged fossil fruits of Eocene aged Bridgesia bovayensis
(Manchester & O'Leary, 2010, reused with permission) scale bar in mm. (m) LMA trait based on petiole thickness illustrated for Eocene Alnus parvifolia from
Royeretal. (2007), reused with permission) Bar, 1 cm. (n) Life history and maximum plant lifespan can be indirectly inferred from fossil ring width measurements
illustrated here in Jurassic permineralized fossil wood Protophyllocladoxylon from Vajda et al. (2016, reused under the terms of a CC-BY 3.0 license) Bar,
100 pm; (o) Photosynthetic pathway is a syndrome of traits, one of which, cuticle pegs (spandrels) are observed here on the inner surface of the adaxial leaf
epidermis of Cretaceous Frenelopsis teixeirae compression fossils (Mendes et al., 2010; reused with permission) Bar, 200 um. (p) Mesophyll conductance (g,
trait can be inferred from mesophyll cell wall thickness within anatomically preserved fossil leaves as illustrated here in a permineralized conifer scale leaf of
Cunninghamia lanceolata from Brink et al. (2009), reused with permission) Bar, 0.5 mm.

(a) (b) (c)
Paleo-functional trait (PT) score Earth system effect (ESE) score Earth system implementation (ESI)
score
Spinescence Spinescence Spinescence
Salinity tolerance Salinity tolerance Salinity tolerance
Plant flammability Plant flammability Plant flammability
Litter decomposability Litter decomposability Litter decomposability
Maximum plant lifespan Maximum plant lifespan Maximum plant lifespan
Shoot branching architecture Shoot branching architecture Shoot branching architecture
Plant height Plant height Plant height
Bark thickness Bark thickness Bark thickness
Xylem vulnerability | — Xylem vulnerability - p—m Xylem vulnerability |m—
Stem-specific density (SSD) | E—— Stem-specific density (SSD) - —_—m Stem-specific density (SSD) J1
Xylem conductivity (Kxylem) | —— Xylem conductivity (Kxylem) - |—— Xylem conductivity (Kxylem) m—
Areaofaleaf |EE— ——— Areaof a leaf jmm Area of a leaf
Photosynthetic pathway I — — Photosynthetic pathw‘av [r— Photosynthetic pathway  —
Leaf palatability | ———— teaf palatability  jmmm—m Leaf palatability
Mesophyll conductance (gm)  —— Mesophyl w,"dwa,nce em) Mesophyll conductance (gm)
Vein density (LVD) | — Vein density (LVD) j—
Vein density (LVD) || Leaf cuticle .
Leaf cuticle  ————————— . Leaf cuticle B
Photosynthetic rate (Amax) | m—i—_— PhD(DSV"tHEﬁC rate (Amax) | — Photosynthetic rate (Amax) | —————————
. Water use efficiency (WUE)  m—— Water use efficiency (WUE) mm—
Water use efficiency ‘WUE) [F——— Maximum theoretical...  EE——— Maximum theoretical stomatal... EE— ———
Maximum theoretical... EE——————— Leaf nitrogen concentration... | EE— Leaf nitrogen concentration... ———
Leaf nitrogen concentration... Leaf lifespan & duration of...  EE———— Leaf lifespan & duration of ... ————
Leaf lifespan & duration of... | —————— Leaf mass per area (LMA) e — Leaf mass per area (LMA) | —
Leaf mass per area (LMA) | ——— Dispersal syndrome i —— Dispersal syndrome jm
Dispersal syndrome Seed size and shape Seed size and shape
Seed size and shape | Spores and pollen  j——m Spores and pollen 1
Spores and pollen
| | | | | | Trait | | | | | | Trait
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12

Fig. 3 Comparison of paleo-functional trait scores according to different weighting criteria. (a) Paleo-functional trait (PT in Fig. 1; Supporting Information
Table S1) score plots the consensus results of the author team's semi-quantitative evaluation (Fig. 1; Table S1) of how taphonomic bias and methodology of trait
measurementinfluence trait values in fossil plants. Higher PT scores indicate less taphonomic bias and more robust methods of trait estimation. (b) Earth System
effect (ESEin Fig. 1; Table S1; ESE = PT x v) score plots the results of the PT score weighted by the author team's semi-quantitative evaluation of the strength of
effect of the paleo-trait on the Earth system, with higher scoresindicating greaterimpact. (c) Earth system implementation (Earth systemimplementation (ESI) in
Fig. 1; Table S1; ESI = ESE X vi) score adjusts the results of the ESE score according to the current capacity to parameterize the paleo-trait and its impact on the
Earth system within paleo-ecosystem models. Higher ESI scores indicate greater potential application of the paleo-trait to address questionsin relation to Earth
system processes.
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geological time (e.g. the first seed plants in the Devonian and ~ processes cannot explicitly be quantified within paleo-ecosystem
angiosperms in the Cretaceous) influenced biotic interactions models (Fig. 3; Table S1). This is an interesting research gap that
and dispersal potential, the ‘effect’ of such traits on Earth system  warrants further study.
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VI. Fossil leaf functional traits

1. Leaf mass per area

Leaf mass per area (in g m™?), also referred to as specific leaf
area (SLA = 1/LMA), is calculated for extant plants by dividing the
dry mass by the area of one side of a fresh leaf (Pérez-Harguindeguy
etal.,2013). LMA is a leaf economic trait, which, together with LL,
leaf nitrogen concentration (LNC), photosynthetic rate (Anas)s
and respiration rate collectively, reflect the spectrum of ways in
which a leaf can be constructed, maintained, and operated as
primary photosynthetic structure  (Wright e al, 2004;
Reich, 2014). LMA is one of the most readily measured and useful
plant functional traits within the leaf economic spectrum. Broadly
speaking, low LMA leaves such as those of extant deciduous trees
(median=75¢ m ) tend to grow faster, have higher A, and
stomatal conductance (g;), have less carbon investmentin structural
tissues, shorter LL, and higher LNC; the corollary is observed for
leaves with high LMA such as evergreen gymnosperms
(median =227 g m™?), which invest heavily in structural tissues,
have long LLs but the trade-off is lower LNC and A, per mass
(Wright er al., 2004; Poorter et al, 2009). Collectively, leaf
economic spectrum traits, including LMA, are important
predictors of ecosystem-scale processes such as productivity
(Chapin 3rd, 2003; Poorter & Bongers, 2006), decomposition
and nutrient cycling (see Decomposition; Cornwell ez al., 2008),
herbivory (see Leaf Palatability; Currano ezal., 2008), and water use
efficiency (WUE; Soh ez al., 2019). They have already been utilized
in fossil plants to infer paleo-life history (e.g. pace of life; Blonder
et al., 2014) and whole plant ecological strategy (e.g. stress
tolerator, Soh ez al., 2019), but such inferences are complex (Kelly
et al., 2021; see Section VII).

Fresh leaf area and dry mass cannot be directly measured in fossils
due to dehydration, shrinkage, compression, and selective loss of
internal leaf tissues that occur during fossilization. Furthermore,
taphonomic factors likely strongly bias the fossil record against the
preservation of low LMA taxa due to the low abundance of carbon-
rich structural compounds resulting in greater mechanical damage
during transport to a depositional environment (Bacon ez 4/, 2016).
Despite these challenges, numerous independent proxy methods have
been developed to quantify paleo-LMA from adaxial epidermal
density (Haworth & Raschi, 2014), leaf petiole width (Royer
etal.,2007,2010; Peppe ez al., 2014; Fig. 2), and leaf cuticle thickness
(Soh et al., 2017; Fig. 2), all of which scale positively with LMA.
Multiple trait models that include leaf >C, petiole width, and
epidermal cell area have also been developed to predict paleo-LMA
and paleo-canopy position (Cheesman er 4/, 2020). High LMA
leaves have a greater investment in structural tissues, higher densities
of smaller cells, larger petioles to mechanically support leaves that
have thicker tissue layers (including cuticle), and/or more dense
tissue. Application of paleo-LMA methods to fossil plants has enabled
functional classification of extinct genera (Soh ez 4/, 2017; Wilson
etal., 2017), assessment of extinction selectivity associated with mass
extinction events (Blonder ez al, 2014; Soh et al, 2017; Butrim
et al., 2022), and appraisal of herbivore-plant interactions (Currano
et al., 2008) among many others. Not surprisingly, therefore, LMA
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scored highly as a paleo-functional trait (8) and ESE Trait (6.4) and
yielded high ESI scores in our evaluation as it is among a few
functional traits currently parameterized in paleo-ecosystem models

(Fig. 3; Table S1).

2. Leaf lifespan and duration of green foliage

Leaf lifespan, or the period of time for which a leaf is alive and
physiologically active, as well as duration of green foliage, is useful in
understanding a plant’s nutrient use strategy, life history, leaf
decomposability, palatability, and canopy position (Aerts, 1995;
Wright ez al.,, 2004). Leaf lifespan covaries with LMA, A, and g
(Wright et al., 2004; Poorter et al., 2009). The duration of green
foliage is important in the hydrological cycle, for productivity and
Earth albedo effects, and should be included where possible within
paleo-ecosystem models (Matthaeus ez al., 2023). Shorter-lived leaves
tend to show resource allocation toward high photosynthetic ratesand
have lower investment in C-rich lignified tissues, whereas longer-lived
leaves are often lignin-rich and tend to allocate resources toward leaf
protection (Reich ez al., 1991). Longer-lived leaves decompose more
slowly due to a higher proportion of structurally complex tissue, but
they tend to sink in water faster than leaves with lower LMA
(Greenwood & Donovan, 1991; Gastaldo, 2001). This may provide
a taphonomic bias toward leaves with a long lifespan in fossil litter
deposits preserved iz situ (Bacon et al., 2016; e.g. volcanic ash
deposits) but toward leaves with a much shorter lifespan in fossil
assemblages filtered by transport via water (e.g. lake deposits).

Leaf physiognomy (size and shape) and abscission scars (Thomas
& Cleal, 1999) have traditionally been used to characterize whether
a fossil leaf is deciduous or evergreen; however, these parameters
provide mixed signals in relation to LL. Thick leaves, small leaf
surface area, and thick cuticles in combination are typically
associated with an evergreen habit (Thomas & Cleal, 1999; Falcon-
Lang & Cantrill, 2001), but there are many exceptions and leaf
thickness cannot be measured easily in fossils. Entire margins, drip
tips, and leaf size are associated with tropical rainforests, which have
an evergreen canopy but with varied LL (Burnham & John-
son, 2004). Fossil growth ring anatomy may be a better way to
assess LL in fossils; leaf traces within the rings of juvenile stems or
branches differ between deciduous and evergreen conifers (Falcon-
Lang & Cantrill, 2001). In some cases, anatomically preserved leaf
traces can show a number of growth ring increments indicating the
longevity of a particular leaf (Falcon-Lang & Cantrill, 2001).
However, this method is not widely applicable due to difficulties
associated with preservation and sample preparation (Falcon-Lang
& Cantrill, 2001). Furthermore, a precise age estimate is not
possible for LLs of < 1yr. The markedness of the growth ring
boundary in trunk woods may also be used to estimate LL in
anatomically preserved coniferopsids (Falcon-Lang, 2000a,b;
Falcon-Lang & Cantrill, 2001), but the method requires well-
preserved specimens, which lack growth abnormalities (Falcon-
Lang & Cantrill, 2001). Both methods using growth ring anatomy
also require the assumption that distinct growth rings represent
annual increments, which may not be the case.

The most fruitful route for obtaining LL estimates from fossils
comes from leaf trait relationships within the leaf economics
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spectrum; in particular with LMA (Wright ez al., 2004; Poorter
et al., 2009; see LMA section above). While the leaf LL-LMA
relationship is significant (positive), it is also noisy, showing a
shallower response along an environmental gradient (e.g. increas-
ing aridity, temperature, and irradiance; Wright ez al., 2004; Royer
et al., 2010). Therefore, it is more appropriate to infer LL from
LMA at an assemblage level to avoid over-interpreting LMA
estimates of individual taxa (Royer et al., 2010; Soh et al., 2017).
Chemical characterization of fossil leaf waxes may also prove useful
in the development of novel LL proxies in the future (Garcia-
Plazaola ez al., 2015; Leide er al, 2020). Large differences are
observed between n-alkane abundance in angiosperms and
gymnosperms, and within these groups, a higher abundance of n-
alkanes is associated with longer-lived leaves (Diefendorf
eral.,2011). However, when considered in a broader phylogenetic
context, these differences appeared to be less pronounced
(Diefendorf et al, 2015). Further work incorporating more
detailed descriptors of LL (as opposed to just ‘evergreen’ or
‘deciduous’; Diefendorf et al, 2015), as well as a more
comprehensive leaf chemical characterization (Leide et /., 2020)
are thus needed. High scores were assigned to LL across all the
categories in our semi-quantitative analyses as although tapho-
nomic biases toward certain LL trait values are highly probable,
because these biases are well known for different depositional
environments, associated errors can be constrained (Fig. 3;
Table S1). Overall, the potential of using LL as a paleo-
functional trait (score =5.2) ranked slightly lower than LMA
because the methods of estimating LL trait values from fossils are
not as well developed as those for LMA despite both traits having
equal strength of impact on the Earth system (Figs 3, 4; Table S1).

3. Leaf nitrogen concentration

Leaf nitrogen concentration (LNC) refers to the total amount of N
per unit dry leaf mass expressed in mg g~ ' (or sometimes as % dry
leaf mass; Pérez-Harguindeguy er al, 2013). N is essential for
protein (such as photosynthetic enzymes) and nucleotide synthesis
(Moreau etal.,2019). Despite its abundance in the environment, N
is one of the most limiting plant nutrients, often existing as forms
inaccessible to plants such as Ny, NO;~, and NH4" (Aerts &
Chapin, 1999; Jia & von Wiren, 2020). As such, LNC
measurements can provide valuable insights into plant ecology
and physiology (Chapin, 1980) and it is considered an important
plant functional trait. Leaf N concentration correlates negatively
with LL (Reich ez al, 1992; Wright ez al., 2004), positively with
Amass (Field & Mooney, 1986; Wright ez al., 2004), and negatively
with LMA (Wright ez al., 2004). These relationships within the leaf
economic spectrum represent the trade-off between investment in
structural tissue and allocation of N to RuBisCO, though long-
lived leaves tend to have lower LNC and vice versa (Wright
et al., 2004; Luo et al., 2021).

LNC can be measured directly from extant and compression
fossil plant material using elemental analysis (White ez 4/, 2020).
Currently, however, the fate of LNC during diagenesis and
fossilization is not well known. Loss of internal leaf structures and
leaching of solutes during the fossilization process (Haworth &

© 2024 The Authors
New Phytologist © 2024 New Phytologist Foundation

Tansley review Revie

Raschi, 2014) could severely alter the original trait values. Pyrolysis
experiments have been used to simulate the chemical changes that
take place within leaves due to diagenesis (Mosle ez al., 1997) and
would be equally valuable to assess the fate of LNC during
fossilization. Pilot LNC measurements on compression fragments
of Late Pennsylvanian fossil taxa have yielded promising results that
plot within the trait values of modern LNC (Matthaeus ez al., 2023)
and are in line with expectations based on their other paleo-leaf
economic spectrum traits but further systematic investigation is
required. A likely future challenge in establishing direct protocols
for measuring fossil LNC will be to collect adequate amounts of
compression fossil material (a2 minimum of 1 mg of ground-up
sample material is required; Aslam et a/., 2012). Fossil LNC could
also be estimated indirectly using trait relationships with LMA.
However, paleo-LMA is also subject to diagenetic effects and
reliance on indirect inference could mask the detection of unusual
trait combinations that may have arisen during plant evolution but
are no longer present in extant plants Based on these considerations,
the authors attributed paleo-functional trait, ESE, and ESI scores of
6.5, 5.2, and 5.2, respectively (Figs 3, 4; Table S1).

4. Maximum theoretical stomatal conductance

Maximum theoretical stomatal conductance (g, sometimes
referred t0 as Gy OF gmao is @ measure of the total diffusive
stomatal area available for the exchange of CO, and water vapor into
and out of the leaf respectively and assumes that all stomatal pores on
the leaf (or photosynthetic stem) are open to their maximum
geometry (circle or ellipse). gna, can be calculated from extant and
fossil plants by combining measurements of stomatal density,
stomatal pore length (to calculate maximum pore area), and guard
cell width into the equation of Parlange & Waggoner (1970)
modified by Franks & Beerling (2009; Fig. 2). Maximum geometry
of the stomatal pore is estimated by fitting an ellipse (Lawson
et al., 1998) or circle, using stomatal pore length (m) as the long
axis (diameter) and m/2 as the short axis. Because all stomata on
a leaf surface are never fully open to a maximum circular or elliptic
geometry in field conditions, gy, is considered a theoretical
maximum rate (Dow et al,, 2014; McElwain et al,, 2016). Stomatal
opening behavior is dynamic (Lawson & Vialet-Chabrand, 2019)
and patchy (Weyers & Lawson, 1997) across the leaf surface and the
degree of dynamism, coordination, and patchiness varies across
evolutionary groups (Brodribb & McAdam, 2011), meaning that no
living plant operates at its theoretical maximum. Extensive field
surveys of woody angiosperm trees and laboratory-based measure-
ments of a broad range of evolutionary groups demonstrate that
living plants operate (g,,, and referred to as g) at around from 25%
(Franks) to 26% (Murray ez al, 2020) of their g,y value. It is
therefore possible to estimate the operational stomatal conductance
(gop) of extinct fossil plants to both CO; (gco,) and water vapor
(g1205 1.6 times goop) using the gq, trait (McElwain e al., 2016).
As functional plant traits, gn.x and g, provide vital insights into a
fossil plant’s likely ecological strategy within a paleo-community as
Zop correlates strongly with photosynthetic rate (reviewed in Berry
et al., 2010; Medlyn et al, 2011) and other key traits in the leaf
economic spectrum (Krdber ez 4, 2015) including LMA (Soh
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Fig. 4 Aranked list of paleo-functional traits that can be applied to fossil plants. (a) Ranked list of paleo-functional traits based on Earth system implementation
(ESI) scores illustrating the rank order of traits with the highest (photosynthetic rate) to lowest (salinity tolerance) potential application to the plant fossil record
as evaluated by the author team. (b) Bi-plotillustrating the breakdown of components within the final trait ranking shown in panel a, where the horizontal axis
shows the Earth system effect (ESE) score (in Fig. 1; Supporting Information Table S1; ESE = PT x v) and the vertical axis is the implementation multiplier (viin

Fig. 1; Table S1).

et al., 2019; Wu et al., 2020), LNC (Schulze et 2L, 1994; Juhrbandt
et al., 2004), and LL (Poorter & Bongers, 2006), and also whole
plant WUE (Soh ez al, 2019). Based on the relative ease with which
Zmax can be measured across various modes of plant fossil preservation
(McElwain & Steinthorsdottir, 2017) and the fact that it constrains
understanding of paleo-productivity (Franks & Beerling, 2009;
Wilson et al., 2015; McElwain ez al., 2016), the hydrological cycle at
local to global levels (Steinthorsdottir ez alk, 2012; Jasechko
et al., 2013; White et al., 2020), and fossil plant WUE (Reichgelt
et al., 2020), we evaluate it here as a paleo-plant functional trait with
strong potential application to a range of research questions relating
to plant—climate and plant—atmosphere evolution and Earth system
processes in general (Matthaeus ez al, 2023). Paleo-functional trait,
ESE, and ESI scores of 9, 8.1, and 8.1 were, respectively assigned
(Fig. 3; Table S1).

New Phytologist (2024)
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5. Water use efficiency

Water use efficiency is a measure of how water saving a plant is in
relation to photosynthesis. Low values in the 20 to 40 pmol mol ™'
range are typically observed in modern angiosperm trees of tropical
everwet forest biomes while higher values (60 to 80 pmol mol ")
are recorded from desert plants and those from seasonally dry
biomes (Soh ez al., 2019).Water use efficiency is an informative
functional trait in relation to the hydrological cycle and
hydroclimate generally in the deep past (White er 4/, 2020)
and allows broad characterization of paleo-biomes from fossil
iWUE estimates of dominant taxa within paleo-ecosystems
(Matthaeus et al., 2023). Intrinsic water use efficiency (iWUE) is
expressed as the ratio of photosynthesis (4) and leaf conductance to
water vapor transfer (g) of which g is the dominant component. It
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can be calculated using stable carbon isotope ratios of modern and
fossil plants according to the equation of Farquhar et 2/ (1982)
below. However, in the case of fossils both the concentration and
8"°C,;; of CO, cannot be measured directly and need to be inferred
from proxies. Furthermore, differential preservation of fossil plant
tissue can bias &' Cplane samples toward lighter or heavier values
and must also be taken into account along with other sources of
variability (Sheldon ez al, 2020). 8'°C,;, in the geological past is
estimated from temperature-sensitive equations (Romanek
et al., 1992) applied to measurements of 8"3C e Of marine
brachiopods and their estimated paleo-temperature at the time of
growth. Paleo-CO, concentration can be obtained from stomatal-
based proxies applied to the same leaf or fossils within the same
assemblage (McElwain & Steinthorsdottir, 2017) or other proxy
CO, methods (CenCO,PIP Consortium, 2023).

An isotope ratio mass spectrometer is used to determine the ratio
of C*?: C2%ina living and fossil plant sample (613CP13,“) (Farquhar
et al., 1982).

iWUE = A/g = ca(1-¢i/c.) /1.6
= c.(1-(Aptanc—a) /(6-a)) /1.6

where Apjane = (813C,,-813C1and/ 1 + (813C1anc/ 1000); 6/, is
calculated according to  Apjn=a+ (6-2) (c/c), where a
is fractionation due to diffusion in air (=4.4%0) and 4 is net
fractionation caused by carboxylation (=27%o); 8'°C,;, = the
stable isotope ratio of CO, in the air at the time the leaf developed;
¢, =CO,; concentration of the atmosphere at the time of leaf
development.

An alternative method of estimating iWUE of fossil taxa is from
model estimates of photosynthesis (A4) and stomatal conductance
(g) (Alg;=WUE) that can be derived from biochemical proxy
CO; models (Franks et al, 2014) using a methodology fully
described in Reichgelt ez /. (2020) or inferred from multiple traits
that are directly measurable on fossilized stems (stem hydraulic
conductance; Wilson ez al., 2015) and leaves (vein density (VD) to
infer Aand G,,,; McElwain ezal.,2016; Murray ez al., 2019, 2020)
and integrated to geta picture of the whole plant WUE (see detailed
discussion in Wilson ezal., 2015). Our semi-quantitative analysis of
iWUE yielded high paleo-functional trait scores (9) as this trait can
be measured using multiple independent methods but lower ESE
scores (6.75) because the traitis a ratio, and it is difficult to quantify
its impact on the Earth system as this requires disentangling the
combined impacts of photosynthesis and transpiration. A lower
ESI score (3.37) reflects the fact that the trait is an output of paleo-
ecosystem models rather than an input.

6. Photosynthetic rate

The light-saturated CO, assimilation rate (An,,) represents the
theoretical potential of a leaf’s photosynthetic capacity. Canopy-
scale assimilation, which influences the organic C cycle, is
proportional to A,.. (Wilson ez al, 2017). Well-established
correlations with other parameters of the world-wide leaf
economics spectrum (Wright ez al., 2004), such as LMA (see leaf
mass per area) and N, (see leaf nitrogen concentration) allow
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indirect estimation of A, from plant fossils. The mechanistic
model proposed by Franks ez /. (2014) may also be used to estimate
Amax from plant fossils based on the photosynthetic activity of a
modern ecophysiological analog (4p) under ambient conditions
(C), diffusive estimates of g, (see Section V), and ¢/c, as
estimated from fossil carbon isotopes. Methods of estimating
paleo-functional trait values which do not rely on the use of, or
comparison with, modern ecophysiological analogs are preferable,
however, especially for extinct species with unusual trait combina-
tions that have no appropriate modern equivalents. Alternatively,
Ay can be indirectly estimated from fossils by measuring leaf
venation properties (D,, Dy,; McElwain ez al., 2016) and g,,.,. The
Franks model relies on a linear correlation between photosynthetic
carbon gain and C,, which may not be physiologically accurate in
some cases (McElwain, 2018). This trait was identified as the trait
with the highest potential as a paleo-functional trait (score = 9) asit
can be estimated from multiple methods and is currently
parameterized in paleo-ecosystem models, yielding a high ESI

score (9) (Figs 3, 4; Table S1).

7. Leaf cuticle traits

The leaf cuticle membrane is denser than wood (Onoda
et al., 2012) and because of its unique acid and enzymatic-
resistant qualities is exceptionally well preserved in the plant fossil
record (McElwain & Chaloner, 1996). The cuticle of all plants
functions to protect the plant against water loss via transpiration
(Zeisler & Schreiber, 2016). Although cuticular conductance
(gmin) is low relative to stomatal conductance (g,,), it varies widely
among extant plants (Duursma ez al., 2019; Slot ez al., 2021) and is
critical to whole plant function and survival during heatwaves and
drought when stomataare closed but low quantities of transpiration
water loss still occur. Ultimately, the permeability of cuticle to
water molecules and resistance of cuticles to water loss is dependent
on both physical and chemical (e.g. waxes) attributes, which can be
readily determined in fossils. The chemical composition of waxes
and their distribution are considered the most important
determinants of cuticular water loss, with long-chain n-alkanes
playing a particularly important role (Leide ez 2/, 2007), and both
can be measured in compression fossils. Additional cuticular traits
can be determined for fossil cuticle samples using their auto-
fluorescent properties (Fig. 2j); these analyses yield chemo-
ecological data in relation to plant—insect interactions via chemical
signaling to pollinators, seed dispersers, and prey and on secondary
metabolites defense against UV-B radiation (reviewed in Garcia-
Plazaola et al., 2015; Leide ez al, 2020). For example, strong
autofluorescence in the blue (emission at 475 nm) under excitation
with UV light (360 nm) can signal the presence of UV-protecting
compounds such as coumarin (Garcia-Plazaola ez al., 2015; Jardine
etal., 2019).

Physical cuticle traits including thickness, density, and mechan-
ical properties (tensile strength and modulus of elasticity) vary
substantially across evolutionary groups (Onoda ez 4/, 2012) and
show strong correlations with whole-leaf functional traits such as
LMA and LL. Interesting trait trade-offs have been observed for

cuticle alone. For example, cuticle thickness is not correlated with
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cuticular conductance, suggesting that thickness does not play a
role in reducing water loss; however, thick cuticles have higher
tensile strength (Onoda ez 4/, 2012) and are positively correlated
with LL. This suggests that thick cuticles contribute to the overall
mechanical strength of long-lived leaves (Onoda ef 4/, 2012) and
could therefore be a route to estimating LL of fossils from cuticle
fragments. Despite the fact that the cuticle membrane of leaves is
thin compared with the total leaf thickness, because it is dense, it
contributes substantially to overall LMA (Onoda ez 4l., 2012). It is
unsurprising, therefore, that cuticle thickness has been developed as
a paleo-LMA proxy (Soh ez al, 2017; Fig. 2d). Techniques for
extracting and observing fossil cuticle are reviewed in Kerp &
Bomfleur (2011). The abundance of cuticle in the fossil record and
the range of significant functional characteristics that can be
inferred for the whole plant from fossil cuticle fragments resulted in
a high paleo-functional trait score (9.5) but low ESE score (2.85)
because its influence on reflectivity and water relations cannot be
easily quantified currently, nor are these attributes parametrized
within paleo-ecosystem models (Fig. 3; Table S1).

8. Vein density

Venation architecture shows diverse patterns across different
phylogenetic groups and across evolutionary time, applying func-
tional constraints on hydraulic conductance and indirectly on
photosynthetic rate, as well as providing mechanical stability (Roth-
Nebelsick ez al, 2001; Boyce et al, 2009; Pérez-Harguindeguy
et al., 2013; Sack ez al., 2013). Leaf VD (the length of veins per unit
leaf area) is therefore a functional, measurable leaf trait in megaphyll
leaves playing an important role in ecosystem processes such as
transpiration and productivity. On a global scale, VD influences the
carbon and hydrological cycle (Boyce er al, 2009). Vein density
shows a high degree of phenotypic plasticity, showing adaptations to
resource gradients (e.g. light, nutrient, and soil water availability) and
environmental conditions (e.g. humidity and wind speed; Roth-
Nebelsick ez al., 2001; Sack & Scoffoni, 2013), and emerging work
has demonstrated that vein conductivity can compensate for lower
VD (Rockwell & Holbrook, 2017). Given these caveats, taphonomic
biases should be taken into consideration when measuring VD traits
in the geological past. The paleobotanical record is biased toward
the preservation of certain leaf types (e.g. sun leaves) and toward the
preservation of plants growing near lacustrine or fluvial environments
(Van der Burgh, 1994; Ferguson, 2005). As VD is affected by both
light and soil water availability, these taphonomic factors may lead to
an overrepresentation of certain vein network traits in the fossil
record. These can be controlled for, in part, by using proxies for leaf
canopy placement such as epidermal undulaton index
(Kiirschner, 1997), leaf '*C (Carvalho et al, 2021), and number of
vein endings per leaf perimeter (Boyce, 2009).

Vein density is measurable on compression/impression leaf fossils
and has been used extensively in taxonomic work and to infer paleo-
ecophysiology (Uhl & Mosbrugger, 1999; Boyce ez al., 2009; Boyce
et al., 2010; Esperanca Janior et al., 2023; Fig. 2a). VD can also be
estimated on cross-sections of anatomically preserved leaf specimens
from trait correlations with interveinal distance (Uhl & Mosbrug-
ger, 1999). However, this is a less reliable parameter than leaf vein
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length per area (Uhl & Mosbrugger, 1999). Relatively unaltered fossil
leaf remains can be prepared for VD measurements by clearing,
following similar methods for modern material (Dilcher, 1974;
Evans-FitzGerald ez 4/, 2016). For compression/impression fossils,
various photography and lighting techniques can be employed (Kerp
& Bomfleur, 2011) as well as latex or silicone molds (Barbosa &
Muchagata, 2021) and transfers (Dilcher, 1974; Kouwenberg
et al., 2007). Vein density can be measured from photographed
fossil specimens using digital tracing in image processing software
provided there is sufficient contrast between the leaves’ nonvenal
tissue and vein network (Sack ez 2/, 2014). Additional difficulties can
be caused by the surrounding matrix not being sufficiently fine to
preserve small morphological features.

A denser vein network provides greater mechanical stability
(Roth-Nebelsick ez al., 2001). Therefore, VD may be useful to
consider in the context of leaf strength and palatability traits
(Vincent, 1990; Sack & Scoffoni, 2013). VD measurements are
also used to model assimilation rates of fossil plants (Boyce &
Zwieniecki, 2012; Blonder et al., 2014; McElwain ez al, 2016;
Wilson et al., 2017), to reconstruct paleo hydroclimate, to infer
canopy position (Carvalho ez al., 2021), and to estimate leaf size
from fossil fragments (Sack ez al., 2012). Vein density may also have
some application as a paleo-functional trait in distinguishing
different photosynthetic pathways as it is generally higher for C4
than C3 and crassulacean acid metabolism (CAM) plants (Sack &
Scoffoni, 2013). Vein networks can however be highly three-
dimensional in the succulent leaves of CAM plants suggesting that
VD would likely underestimate their conductive capacity (Ogburn
& Edwards, 2013). Overall, VD isa thoroughly useful traitand our
semi-quantitative assessment yielded high paleo-functional trait
(10.5) and ESE scores (7.8) but lower ESI scores (3.9) (Fig. 1)
because although this trait is important for the hydrological
cycle/productivity, it is not currently directly parameterized within
paleo-ecosystem models (Fig. 3; Table S1).

9. Mesophyll conductance

Mesophyll conductance (gy,; mol CO, m™*s™") is the measure of
CO, diffusion from the substomatal cavity through the mesophyll
tissue to the site of carboxylation. Low mesophyll conductance can
limit photosynthesis, and its relative importance varies significantly
between different phylogenetic lineages and under different
atmospheric compositions (Gago ez al., 2019; Yiotis & McElwain,
2019). In bryophytes, lycophytes, and in some CAM plants, g, is
the predominant limiting factor in photosynthetic capacity,
whereas more evolutionarily recent lineages show a co-limitation
between g,, and g,, (Males & Grithiths, 2017; Gago ez al., 2019;
Yiotis & McElwain, 2019). As a functional trait, therefore, g, hasa
bearing on the productivity of past ecosystems that depends on
prevailing climatic and atmospheric conditions and dominant
plant evolutionary group.

It should be measured using multiple different approaches in
modern-day plants to obtain robust trait values (Flexas ezal., 2013).
The principal methods to estimate g, in living plants include
chlorophyll fluorescence and gas exchange (Harley ez al., 1992),
carbon isotope analysis (Evans et a/., 1986), and A/Ci curve fitting
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(Ethier & Livingston, 2004), none of which can be applied to
fossils. However, anatomical features, such as leaf mesophyll cell
wall thickness and exposure of chloroplasts to cell perimeter (S./S),
play an important role in constraining g, and have been used as a
basis to develop g, proxies for permineralized and charcoalified
fossil plants (Tomas et al., 2013; Veromann-Jurgenson et al., 2017
Carriqui et al., 2019; Fig. 2p).

Anatomical data such as porosity, mesophyll cell width, cell
wall thickness, and thickness of mesophyll tissue have also been
used to model mesophyll conductance for well-preserved fossils
(Roth-Nebelsick & Konrad, 2003; White ez /., 2020). However,
this type of preservation is exceptionally rare, and anatomically
preserved specimens may also have undergone postburial deforma-
tion. Furthermore, while there is a good correlation between
anatomy-based models and chlorophyll fluorescence/gas exchange
approaches for extant plants, there are some discrepancies.
Anatomical modelling tends to overestimate g, in species with
high LMA and underestimate it in species with low LMA (Tomas
etal.,2013). In addition, uncertainties with anatomical approaches
are increased when applied to fossils, as fewer parameters can be
directly measured, and must be inferred from extant plants (e.g.
using a scaling relationship between S/ Sand mesophyll surface area
exposed to intercellular air spaces per unit of leaf area (S,/S) in
White et al. (2020)).

Other methods include the use of scaling relationships between
gn and photosynthetic rate (4,) to estimate g, from paleo-
assimilation rate (see A,; Niinemets et al., 2009; Franks ez al., 2014;
Veromann-Jurgenson et al., 2017; Gago et al., 2019), carbon
isotopic technique which require measurements of g;,,., and & BCof
a leaf fossil and 8'°C of the prevailing atmospheric CO, (Pons
et al., 2009), and neurofuzzy logic model approaches for defining
Zn from the inputs of leaf hydraulic conductance (K., and LMA
(Flexas er al., 2013). Isotopic approaches may be too difficult to
resolve in the fossil record given that discrimination by g, is so
small compared with other drivers of variability in leaf §'°C. In the
case of the latter method as more traits (Kj.,rand LMA and VD) are
required to model g,, and those traits are typically observed in
different fossil plant preservation modes, they may have weak
predictive power (Flexas ezal., 2013). Given some of the limitations
to inferring g, in fossils and its indirect impact on the Earth system
(via photosynthesis), our analysis yielded relatively low scores for
the g, trait across all of the indicators developed (Fig. 3; Table S1).

10. Leaf palatability

Leaf palatability is one of the most widely studied functional traits
in fossils (Royer ez al., 2007; Currano ez al., 2008). It is important
for understanding biotic interaction, ecosystem productivity, and
nutrient recycling in the deep past because palatable leaves are
usually more nitrogen-rich (Currano & Jacobs, 2021). In modern
plants, palatability is the measure of a model herbivore’s preference
for the leaves of certain plants, or the proportion of leaf area eaten
(Dostalek er al., 2020). This preference is affected by numerous
underlying leaf-quality traits (Pérez-Harguindeguy et al, 2003,
2013). The suite of leaf traits that influence palatability also affect
decomposability due to their similar constraints (low LNC, high
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concentration of lignin, and secondary metabolites); as a
result, they are positively correlated (Grime et al., 1996; Pérez-
Harguindeguy ez al., 2013). There is a correlation between LMA
and palatability: high LMA has been linked to lower nutrient
concentrations and tougher leaves, which makes them less palatable
to herbivores (Coley & Barone, 1996; Wright ez al., 2004; Royer
et al., 2007; Currano et al., 2008).

It is important that herbivory damage in fossils is first
distinguished from detritivory before palatability measurements
are undertaken (Labandeira & Allen, 2007), as palatability only
concerns the former. The four main criteria used to differentiate
between the two are reviewed in Labandeira (1998). Palatability is
quantified by the percentage or ratio of leaf area consumed vs total
leafarea and then compared between species (Pérez-Harguindeguy
et al., 2013; Dostalek ez al., 2020). Williams & Abbott (1991)
proposed using the total proportion damaged for a tree or stand
instead of the average proportion damaged:

TPD = Y D;/ Y. T;, D = Damaged area, 7 = Total area

=1 i=1

Alternatively, for fossil leaves, Currano et a/. (2008) calculated
the ratio of leaves with/without feeding damage instead of
measuring the consumed leaf area ratio. This metric can be
compared among fossil species for assemblages with diverse and
well-preserved fossil floras, and between assemblages from the same
depositional environments and likely similar taphonomic filtering
of palatable/unpalatable leaf categories. The Currano ez a/. (2008)
method is better suited to paleobotanical studies due to the general
incompleteness of the fossil record and because true preference tests
on leaf palatability cannot be undertaken for extinct herbivores.

On average, gap demanders are more palatable than shade-
tolerant plants, due to lower concentrations of tannins, lower
tensile strength, and lower fiber content (Coley, 1987), whereas
taxa with high LMA and LL are more well-defended (Wright
et al., 2004). Ultraviolet-B absorbing compounds can also make
plants unpalatable (Liu ¢t 4/, 2023) and because UV-B dosage has
changed dramatically in the geological past, especially at mass
extinction boundaries and before the establishment of an ozone
layer, it is important to couple palatability traits with those that
allow inferences on canopy position (e.g. Carvalho ez4l., 2021) and
UV-B dose (Jardine ez al., 2019). Leaf palatability scored relatively
highly in our analysis as a paleo-functional trait (7) because the
taphonomic processes which can under- or overrepresent certain
leaf categories in the fossil record are well studied. A lower ESE
score was assigned because its impact on Earth system processes is
difficult to quantify and implement within paleo-ecosystem models

(Figs 3, 4; Table S1).

11. Photosynthetic pathway

There are three well-recognized photosynthetic pathways in
terrestrial plants, C3, C4, and CAM, each of which is characterized
by a broadly distinctive suite of associated biochemical, physiolo-
gical, anatomical, and carbon isotopic traits that are collectively
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referred to as trait syndromes (reviewed in Sage, 2017;
Edwards, 2019, Box 1). CAM and C4 are carbon-concentrating
photosynthetic pathways that originated and diversified in the
Cenozoic according to molecular clock estimates (Sage, 2017;
Edwards, 2019) but may have had multiple pre-Cenozoic origins in
extinct lineages (Raven & Spicer, 1996; Green, 2010; Looy
etal.,2021). Identifying the likely photosynthetic pathway of fossil
plants relies mainly on anatomical (C4, C3, and CAM) and carbon
isotopic (C4 and C3) traits; however, these can only rarely be
measured from the same fossil sample and distinguishing CAM
from C4 in fossils remains a challenge. Determining photosyn-
thetic pathway is important from a functional traits perspective,
because as a trait syndrome, it has consequences for overall
productivity within the paleo-ecosystem, the timing and magni-
tude of water flux to the atmosphere (at night for CAM and in the
day for C4 and C3), and for both the timing (in the day for C3 and
C4 and night for CAM) and optimal conditions for photosynthesis
(Sage, 2017; Edwards, 2019). C4 photosynthesis is found in hot,
high-light, and dry environments, where photorespiration is
increased due to high temperatures, while CAM photosynthesis
is found in arid environments where mesophyll CO, concentra-
tions are low due to stomatal closure and tissue succulence. In
general, C4 plants have higher photosynthetic rates and produc-
tivity than C3 plants, while the opposite trend is found in CAM
plants (Sage, 2017).

C4 photosynthesis takes place in modified, thickened bundle
sheath cells that surround veins, which are rarely observable in
fossils. High leaf bundle sheath : mesophyll ratio in C4 plants
(Christin ez al., 2013; Edwards, 2019) could be indirectly inferred
from high vein densites (see section V). C4 plants can also be
distinguished from C3 plants based on their distinctive carbon
isotopic signatures which range from — 10%o to —14%o under
modern atmospheric 8'°C values of ¢. —8%o compared with the C3
plants range of —21%o to —35%o (Pérez-Harguindeguy et al,
2013).

Detecting CAM plants in the fossil record is more complex
because their C isotopic values overlap with the ranges of both C3
and C4 depending on whether they are obligate (—10%o to
—15%o0) or facultative CAM (—10%o0 to —30%o; Winter
et al., 2015; Edwards, 2019). Extant CAM plants typically have
very high LMA values, which overlap with those of evergreen
gymnosperms (Poorter er al, 2009). Despite this apparent
complexity in definitively detecting CAM in the fossil record,
there is a suite of leaf traits associated with obligate and ‘strong’
CAM plants (i.e. those with C3 + CAM that predominantly use
CAM), which are potentially highly recognizable in a myriad of
fossilization modes that warrant future coordinated research. These
traits are functionally associated with either reducing water loss in
arid environments (high iWUE) or facilitating water transport
from water storage tissue and veins in succulent leaves and stems
that have low leaf and/or stem g, (Edwards, 2019). They include
leaf succulence, long LL, large mesophyll cell size, low stomatal
density, low intercellular air space and low g,, thick cuticles with
high hydrophobicity, thick inter-epidermal cuticular pegs (span-
drels; Fig. 20) and intra-cuticular wax and often with Calcium
oxalate crystals (druses), 3D leaf venation, leaves that are terete or

New Phytologist (2024)
www.newphytologist.com

New
Phytologist

oblong in cross-section, extra-xylary vascular bundles (xylem and
phloem tissue that are grouped into units of vascular tissue
occurring in the pith outside of the main grouping of vascular
bundles that occur in the stele) and photosynthetic phylloclades
(modified flattened, usually photosynthetic, stem that is often
subtended by a scale-like leaf; Bernardino-Nicanor et al., 2012;
Ogburn & Edwards, 2013; Males & Griffichs, 2017;
Edwards, 2019; Niechayev er al, 2019; Fig. 2). The extinct
Cheirolepidiaceae conifers that were widespread in saline, arid, and
humid environments in the Jurassic and Cretaceous (Gomez
et al., 2002; Mendes ez al., 2023) possess a number of potential
CAM functional traits and may be a good target for further
research. This syndrome of traits scored highly as paleo-functional
traits and moderately as ESE traits in our semi-quantitative analysis

(Fig. 3; Table S1).

VII. Fossil stem functional traits

1. Xylem conductivity

Xylem conductivity (K) is a measure of the capacity of xylem tissue
to transport and supply water from roots to leaves. It is considered a
master regulator of photosynthesis and plant productivity (Sperry
et al., 2008; Brodribb, 2009) and damage to stem water-transport
capacity plays an outsized role in plant mortality. Many plants can
survive the temporary loss of conductivity in leaf and branch xylem,
whereas stem damage can be fatal (Choat er 4/, 2012). The
movement of water through xylem is a function of the anatomy of
the xylem conduits and how resistant they are to flow (measured as
plant, stem, or leaf conductance) and the negative water potential
gradient between soil and leaves (Sperry ez al., 2008). As water
potential cannot be measured or inferred from fossil plants and
multiple studies on extant plants have demonstrated the impor-
tance of xylem anatomy for whole plant water movement (Hacke
et al., 2004; Pittermann et al., 2005, 2011; Feild ez 2/, 2009, 2011;
Schulte & Hacke, 2021), it follows that xylem conductivity (K) has
emerged as a key functional trait in paleobotany (Cichan, 1986;
Wilson & Knoll, 2010). Fossilized xylem conduits provide a
timeline on both the evolution of xylem conductivity and on the
appearance of novel safety-giving anatomies, which evolved to
maintain water flow under changing environmental stressors
(Niklas, 1985a; Kenrick & Crane, 1991, 1997; Friedman &
Cook, 2000; Edwards er al, 2006; Wilson & Fischer, 2011;
Strullu-Derrien eral., 2013; Wilson, 2016; Decombeix ez al., 2019;
Olson et al, 2021). Fossilized xylem anatomy has also been
measured to infer potential vulnerability in water-conducting
tissues to drought, aridity, and freezing (Wilson & Knoll, 2010;
Matthaeus et al., 2022).

Xylem conductivity (K) describes water flow through the
vascular system, and it can be expressed on several anatomical or
spatial scales. For example, K can be expressed as either K5 (stem-
specific conductivity) or K7 (conductivity including selected leaf
area measured K/= Ki/leaf area : sapwood cross-sectional area) per
unit of pressure gradient (kg m s ! MPa!)in living plants.
Detailed guidance on how to perform measurements of K in living
plants can be found in Jarvis & Whitehead (1981), Gleason
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et al. (2012) and Pérez-Harguindeguy er a/. (2013). Although K
cannot be directly measured in fossil plants, xylem cells are well
preserved and common in the fossil record dating back to the early
Devonian (Kenrick & Crane, 1997; Kenrick et 4l., 2012). More-
over, mature xylem conduits are dead cells in living plants;
therefore, estimating K for fossil specimens is facilitated with less
taphonomic filtering than for live tissues. Estimating K in
paleobotany is broadly achieved by measurements of xylem
conduit area, diameter, and length, paired with cell wall
morphology/dimensions, while considering decay, and diagenesis
(Cichan, 1986; Kenrick & Crane, 1991; Wilson ez al., 2008;
Strullu-Derrien et al., 2013). Estimations of K in all plants are
grounded in adaptations of the Hagen—Poiseuille equation
(Cichan, 1986; Wilson et al., 2008) and Ohm’s Law (van den
Honert, 1948), applied at the cellular level rather than per whole
plant. This is also ideal for paleobotanical research given the
frequent disarticulation of plant specimens (Wilson ez al., 2008;
Wilson & Knoll, 2010; Wilson & Fischer, 2011; Wilson, 2013,
2016). In these, xylem flow is estimated as conductance on a single-
cell scale, where Kie (cross-section conductivity) and Ksp (conduit-
specific conductivity) represent K, normalized by transverse lumen
and tracheid wall areas rather than by rate of flow, allowing for
quantitative functional comparison of plants across genera
independent of individual pressure gradients and environmental
conditions.

Ultimately, the objective of representing conductance in extinct
plants requires models and theory capable of piecing together the
missing and perhaps unknown anatomical features of the whole
plant. Therefore, a prominent focus in deep-time xylem con-
ductivity studies over the past decade has been the role of pits, their
membranes, and how their resistance and safety ultimately impact
K and xylem transport. Pit membranes and pit apertures are
preserved in the fossil record (Fig. 2i), and can be of use in
estimating extinct plant hydraulics (Jones & Chaloner, 1991;
Duerden, 1993; Wilson ez al, 2008; Pittermann, 2010; Wil-
son, 2013; Matthaeus et al., 2022; Wilson et al., 2023); xylem
conductivity scored highly in our semi-quantitative assessment as a
paleo-functional trait (9) and as an ESE trait (7.2) but achieved
lower scores for ESI because it cannot currently be parameterized in
a paleo-ecosystem model (Table S1; Figs 3, 4).

2. Stem-specific density

Stem-specific density (SSD) is the dry mass of a stem segment
divided by the fresh volume of the same segment (Pérez-
Harguindeguy er al., 2013) and is of primary importance in the
herbaceous-woody plant divide in global plant trait variation (Diaz
et al., 2016). Most of the carbon in the extant biosphere is
incorporated into the stems of woody plants (Zanne ez al., 2010),
and although the carbon concentration of stems is generally ¢. 50%
across species and climates, the total carbon stocks stored in an
individual tree is largely a function of the diameter of the tree at
chest height and SSD (Chave er af, 2005, 2009). Large-scale
changes in SSD over geological time and space therefore influence
the long-term carbon cycle. Burial of woody biomass with different
SSD values would in turn influence the long-term oxygen cycle by
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preventing decomposition and oxidation processes. Increased SSD
is associated with stem resistance to biomechanical and hydraulic
failure (King et al., 2006; Diaz et al., 2016; Meinzer ez al., 2016; Fu
et al., 2019), at the cost of decreased growth rate due to increased
stem carbon requirements. Plants with higher SSD tend to be more
resilient to environmental stressors, have lower mortality rates,
wider ecological niches, and achieve greater heights. In paleobo-
tany, manoxylic (low SSD), and pycnoxylic (high SSD) wood types
correspond to the two end members of the SSD continuum (Galtier
& Meyer-Berthaud, 2006), and opportunities remain to tease out
finer paleo-ecological strategies of fossil taxa using quantitative
proxies for SSD (proposed below). Applying standard techniques
for direct measurement of modern SSD (sensu stricto) to stem
fossils is not possible due to the inaccessibility of fresh volume.
Morphological distortions during fossilization (e.g. compression)
further complicate the direct measurement of SSD. However, SSD
and related quantities like wood density might be reconstructed
based on stem biochemistry, anatomy (xylem lumen diameter), and
compared with SSD in modern plant taxa to develop paleoproxies
for this trait.

Stem-specific density can be decomposed into wood and bark
density. These tissues serve different functions and are expected to
have different chemical compositions, physical structures, and
densities (Pérez-Harguindeguy ez al., 2013). In woody plants,
structural support s provided by the secondary xylem, necessitating
enrichment with biomolecules like lignin, while phloem and stem
parenchyma perform biochemical functions, bark protects the tree
from water loss, herbivory, and fire (Rosell, 2019). Because wood
density is a commercially important property, a considerable body
of literature exists on the patterns and causes of wood density
variation in commercial forestry species. This literature might be
leveraged to establish relationships between areal fractions of wood
tissues and density, which could then be applied to the fossil record.
In tropical angiosperm trees, for example, wood density is positively
correlated to vessel wall fraction, and negatively correlated to fiber
lumen fraction, vessel area, and pith area (Ziemifska ez a/., 2013;
Zieminska ez al., 2015).

SSD may be inaccessible for fossil tissues where there is a high
degree of density variation, or for which function is expected to be
different between extinct and modern plants. For example,
lycopsids were likely structurally supported by bark rather than
secondary xylem (DiMichele ez al., 2013), and medullosan stelar
and parenchyma arrangements are unlike any modern tree (Wilson
et al., 2017). In such cases, biochemical analyses combined with
inferences about potential tissue function may be applied as an
additional lens for estimating SSD. For example, modern-stem
bulk C: N is associated with the proportion of the tissue in various
structural and functional tissue types that have well-characterized
densities. A database of these associations would allow bulk stem
compression C: N ratios to serve as a proxy for SSD that is more
broadly applicable to the fossil record. Taphonomy experiments
would however be required to test the robustness of the original
stem C:N signal through temperature and pressure changes
associated with fossilization (sensu McNamara et al., 2021). In
summary, therefore, although SSD is undoubtedly important for
Earth system processes and woody fossils are well preserved in the
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fossil record, given the highly preliminary nature of methodology
to estimate this trait from fossils, SSD achieved relatively low paleo-
functional (5.5), ESE (3.85), and ESI scores (0.38) (Table S1;
Figs 3, 4).

3. Xylem vulnerability

Xylem of vascular plants facilitates the transport of water to plant
tissues from the soil and the maintenance of plant function (Zanne
et al., 2014). Water is drawn from soil through tracheary conduits
in xylem by negative water potential (V) induced by transpiration
from leaves. During dry periods, water potential may exceed the
physiological limits of xylem, causing water-transport failure, also
known as hydraulic failure. The primary mode of failure is thought
to be embolism via air-seeding (Venturas er al, 2017): Under
extreme negative potential air is pulled into water-filled conduits
from adjacent tissues resulting in conduit blockage and reduction of
total xylem water-transport capacity (Mayr ez al., 2014). Ecosystem
functions like transpiration and photosynthesis depend on xylem
water transport, and the physiological limitations of xylem are
associated with tree mortality and vegetation distribution in
modern ecosystems (Sperry, 2000; Sperry ez al., 2002; McDowell
et al., 2008; Choat et al, 2012; Adams et al, 2017). Therefore,
xylem vulnerability to failure has likely had an impact on
ecosystems and Earth surface processes since the initial diversifica-
tion of vascular plants in the Devonian (Banks, 1975; Chaloner &
Sheerin, 1979; Niklas, 1980, 1983, 1985a; Bouda ez 4/, 2022).
Xylem physiology has been inferred from morphological and
anatomical measurements of deep-time fossils (e.g. Niklas, 1985a;
Wilson et al., 2008; Wilson & Knoll, 2010; Wilson, 2013), and has
largely focused on the conductivity allowed by conduits and pit
apertures. Pits are openings in the xylem secondary cell wall that
leave only the middle lamella between adjacent conduits (i.e. the pit
membrane; Choat ez /., 2008). Pit characteristics are a good target
for estimating xylem hydraulic vulnerability from fossil conduit
anatomy. Recent work has shown that the pit-membrane area-to-
thickness ratio is a strong predictor of the hydraulic limitations of
xylem (Kaack er al, 2021). Unfortunately, pit membranes are
challenging to measure, and measurements at the nanometer scale
(i.e. of pit-membrane thickness) would be subject to considerable
preservation biases. Though this has not yet been tested, fossil pit-
membrane thickness may not be representative of in wvivo-pit
thickness. Another anatomical character, pit-area per conduit, also
informative on xylem vulnerability to embolism (Pittermann
et al., 2006; Hacke ez al., 2007; Brodersen et al., 2014), has been
applied to late Pennsylvanian-aged fossil plants (Matthaeus
et al., 2022; Wilson er al, 2023). Inferring absolute water-
transport properties and ecosystem impacts based on conduit
anatomy, however, requires assumptions about tissue-scale proper-
ties — of xylem as a whole (e.g. size distribution of conduits and
sapwood area), which is accessible from stem permineralizations
based on network connectivity (Bouda ez al., 2022) —along with the
whole plantarchitecture and the whole plant coordination of traits.
We evaluated xylem vulnerability as having lower potential as a
paleo-functional trait because of the reliance on fossilized pit-
membrane anatomy, the difficulty of obtaining trait values from
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fossilized pit membranes and due to the complexity of incorporat-
ing the trait within paleo-ecosystem models (Figs 3, 4; Table S1).

4. Bark thickness

Bark is a complex tissue with diverse physiological and ecological
functions (Rosell, 2019). In extant plants, bark thickness is simply
measured with calipers. There is a robust relationship between bark
thickness and stem diameter in many tree taxa (Borger, 1973;
Williams ez al., 2007; Rosell ez al., 2017), suggesting that it might
be used as a proxy for stem diameter in fossil plants where whole
stems are not preserved. However, the relationship between bark
thickness and stem diameter varies among taxa, bark types, and
between main stem and twigs — as bark thickness is also associated
with a number of different environmental factors and physiological
functions (Rosell ez al., 2017; Rosell, 2019; see lammability). In
the most extreme cases — for species with decorticating bark (Gill &
Ashton, 1968; Borger, 1973) or bark shed in strips (Williams
et al., 2007) — there may be little or no allometric relationship
between bark thickness and stem diameter. Attempts to account for
the factors influencing bark thickness in contemporary ecology
have considered different parts of bark (e.g. inner and outer) and
varied environments (e.g. tropical rainforest, temperate forest, or
savannah), and they have made progress in disentangling
interactions (Paine et al, 2010; Hempson ez al., 2014; Rosell
etal.,2015,2017). These studies have also laid the foundations for
using fossil bark thickness as a paleo-functional trait to infer wildfire
frequency and intensity (Uhl & Kauffman, 1990; Hoffmann
etal.,2003; Lawes et al., 2013; Pausas, 2015). Stem photosynthesis
and herbivory defense may be inferred from the proportion of inner
and outer bark, and the presence or absence of rhytidome
(outermost bark which is characterized by muldple layers of
periderm tissue interspersed by phloem-rich layers; Rosell
et al., 2015; Rosell, 2019). Bark (wound periderm) has also been
observed in extant CAM plants as a defense against high UV-B flux
(dos Santos Nascimento et al., 2015).

The fossil record contains bark components (i.e. periderm;
Fig. 2¢g; vascular cambium) as early as the Lower Devonian, and
may coincide with the earliest appearance of secondary growth
(Banks, 1981; Hoffman & Tomescu, 2013). Functional inferences
based on bark thickness traits and constituent structures require the
preservation of complete sections of bark which can be achieved
when the bark type (i.e. its physiology) is known, and the delimiting
structures are identifiable (e.g. vascular cambium and periderm).
Even in these cases, the actual thickness of the outermost structures
will likely be thinner than in vivo due to alteration during burial.
These processes may be indistinguishable from normal, iz vive
shedding from periderm. Furthermore, the considerable differ-
ences in the physiological function of bark in some extinct taxa that
completely lack any living structural analogs (e.g. all extant
lycopsids are herbaceous but many ancestral taxa were arborescent
with extensive bark) may make high-confidence inferences difficult
for those taxa. Chemical components of fossil bark (dos Santos
Nascimento ez al., 2015; Angyalossy et al., 2016) may, however,
provide broadly useful information on the paleo-function of the
individual even in the absence of phylogenetically related modern
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analogs. Considering all of the factors reviewed above, we assessed
bark thickness as having lower potential as a paleo-functional and
ESE trait relative to many of the other traits reviewed here with

scores of 6.5 and 1.95 respectively (Figs 3, 4; Table S1).

5. Plant height

Plant height is the shortest distance between the upper boundary of
the main photosynthetic tissues and the ground level, expressed in
meters (Pérez-Harguindeguy er al., 2013). Direct measurement of
height is not usually possible within the fossil record due to
fragmentation (Niklas, 1994). Rare fossilization events can lead
to whole tree stumps being preserved iz situ (Caneo et al., 2003;
Wang et al., 2012) and whole-body fossils being preserved intact
(Sun ez al., 1998; Fig. 2f). In such cases, fossil plant height can be
measured directly. For the most part, fossil plant stems and trunks
are not intact. However, their height can be estimated indirectly.
Niklas has developed formulae for estimating fossil plant height
based on the allometric scaling relationships of diameter at chest
height across phylogenetic and ontogenetic differences (Nik-
las, 1994; Enquist & Niklas, 2001). Height has also been estimated
based on the shape of permineralized logs by projecting to
vanishing point (Falcon-Lang & Scott, 2000). However, this
methodology may underestimate tree height where the base width
of trunks is unknown (Falcon-Lang & Scott, 2000).

Height is a key trait in the global spectrum of plant form and
function (Diaz ez al., 2016). It represents the economic trade-off
between investment in structural tissues, stem maintenance, and
access to light (Falster & Westoby, 2003). Taller plants are linked to
increased biomass, acting as carbon sinks (Moles ez 4., 2009), and
woody debris of taller plants such as trees slows decomposition
(Gora ez al., 2019 and references therein). Taller canopies provide
niche partitioning by opening up understory and aerial habitats.
Increased plant height is therefore associated with greater plantand
animal diversity in contemporary ecosystems (August, 1983; Moles
et al., 2009). Maximum plant height is also associated with an
ability to disperse reproductive propagules and can thus provide
useful insights on reproductive success (Beckman et al., 2018).
Therefore, particularly since the acquisition of arborescence in the
late Devonian (Stein ¢t al., 2007), plant height can tell us a great
deal about total ecosystem function (Moles ez al., 2009), and has
been used extensively to provide key ecological contexts for swamp
dwelling plants of the Carboniferous (Philips & DiMichele, 1992;
DiMichele ezal., 2013). However, the light-competitive advantage
of height depends on the relative height of other species within the
paleo- or modern plant community rather than the absolute height
of aspecies (Falster & Westoby, 2003), complicating inferences for
fossil communities. Although plant height scored modestly as a
potential paleo-functional trait (6) in our semi-quantitative
evaluation, because of its importance in affecting ecosystem-scale
and Earth system processes outlined above it ranked relatively
highly as an ESE trait (score = 5.4; Figs 3, 4; Table S1). We suggest
this paleo-functional trait has good potential for further develop-
ment of methods to quantify trait values from fossils and to
parameterize within paleo-ecosystem models.
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VIIl. Whole plant functional traits applied to fossils

1. Life history and maximum plant lifespan

Life-history strategies are described by the timing and intensity of
the demographic processes of growth, survival, and reproduction
(Stearns, 1992). Life-history strategies are indicators of ecological
strategy and give insights into how populations respond to abiotic
and biotic drivers, including climate (Csergo ez al, 2017) and
variation in these traits is strongly associated with environmental
stress (Pérez-Harguindeguy e# al, 2013). As an example, extant
gymnosperm and angiosperm trees with high longevity (high
maximum lifespan) are slow-growing and usually occupy sites that
are harsh (cold, nutrient-poor, frequently flooded etc.) but are
subject to little storm disturbance (reviewed in Di Filippo
et al., 2015). Quantification of life-history strategies thus informs
potential responses of populations to environmental change
(Buckley ezal., 2019). Contemporary life-history metrics, however,
cannot usually be calculated directly for extinct populations, as
demography is usually unavailable. Nonetheless, life history has
been considered for even the oldest, most basal plants using whole
plant concepts (Matsunaga & Tomescu, 2017).

Direct morphological and anatomical evidence of life-history
strategies for fossils are generally lacking. For instance, counting
permineralized annual growth rings of woody stems and roots
merely elucidates a plant’s age at the time of death (Creber &
Chaloner, 1984; Weaver et al., 1997; Luthardt ez al., 2017) not the
tree or species potential longevity. Long sequences of fossil growth
rings are also rare (Chapman, 1994; Luthardt e 4f, 2017).
Growth rate estimates based on mean annual ring widths from the
same fossil trunks/roots (Fig. 2n) could however, be used to infer
longevity using scaling relationships between mean ring width and
longevity that have been developed for living taxa (Di Filippo
et al., 2015), although they are biome specific. Population-level
surveys of mean ring width from 77 situ preserved fossil forests
provide some of the best data sources to model the longevity of fossil
taxa (e.g. Cianeo ez al., 2003) but it is acknowledged that these are
exceptionally rare. For taxa thatlack annual growth rings (e.g. most
wet tropical taxa), plant lifespan is more difficult to interpret
(Chaloner & McElwain, 1997; Boyce & DiMichele, 2016).

Counting the mean size of the annual increments on the stolon
or rhizome may be the only way to indirectly assess maximum
lifespan via growth rate in nonwoody fossil plants (Hotton
et al., 2001; Gensel & Berry, 2016). In cases without clear annual
increments, detailed analysis of morphology, including the
presence of perennating roots and shoots, counting the number
of annual stem growth increments in woody shoots, presence of leaf
scars on shoots and shoot scars on roots, will at least determine
whether the fossil is an annual or perennial. Alternatively, if LL and
plant height can be estimated for the fossil taxon, and leaves with
axial attachment are available, a rough estimate of axial growth rate
can be compared with overall tree height to estimate age at death
(Boyce & DiMichele, 2016).

Most current inferences of paleo-life-history rest on plant form
(e.g. woodiness and seed size), leaf economics, and trait—climate
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associations (e.g. leaf shape). However, interpretation of lifespan
for taxa that lack living relatives or equivalents (NLEs) or those that
have extinct combinations of physiological traits can result in vastly
different estimates for the plant’s lifespan (Philips & DiMi-
chele, 1992; Cleal & Thomas, 2005; Boyce & DiMichele, 2016;
Thomas & Cleal, 2018). For example, lifespan estimates for the
iconic late Pennsylvanian Lepidodendron, which reached an
estimated height of 45m, range from decades (Thomas &
Cleal, 2018) to centuries (Boyce & DiMichele, 2016). For fossil
taxa with no obvious NLEs, studies have relied on observations that
extant plant life histories are structured by two major axes — a ‘pace
of life’ axis and a reproductive axis (Salguero-Gomez ez al., 2016).
Furthermore, maximum plant lifespan is strongly aligned with the
pace of life dimension of life-history strategies (Salguero-Gomez
et al., 2016). These principles have been applied to early
angiosperms, where a fast-paced ‘weedy’ life strategy has been
inferred from single paleo-functional traits such as seed size (Wing
& Boucher, 1998) and LMA (Royer et al., 2010). Recent studies,
however, demonstrate the complexity of inferring demography
from individual functional traits; seed size and plant height are
positively correlated with maximum lifespan in extant plants but
only in hot relatively invariable climates (Kelly er a/, 2021).
Furthermore, very different life forms, such as herbs and trees, can
give rise to similar life histories (Salguero-Gomez ez al., 2016), and
divergent life forms can converge on similar trait and life-history
profiles depending on environment and phylogeny (Kelly
et al., 2021). Thus, combinations of paleo-functional traits, with
information from multiple plant organs as well as the sedimentary
and paleo-climatic environment context of the fossils may improve
our understanding of the life-history strategy of fossil plants in the
future. Based on these myriad considerations and obvious
complexity, we assessed this syndrome of traits with a relatively
high Paleo-functional trait value (6) but low ESE (2.4) and even
lower ESI scores (0.24) due to the difficulty of integrating
ecosystem models and demography models for current living
vegetation let alone developing a paleo-demography model for

fossils (Figs 3, 4; Table S1).

2. Litter decomposability

Decomposition of plant litter is important for nutrient recycling,
soil fertility, and productivity. It regulates terrestrial biogeo-
chemical cycles at both a global and local ecosystem scale (Zhang
et al., 2021) by restoring nutrients from dead plant parts into
the soil and CO, to the atmosphere, while slow decomposition
provides fuel for wildfires (Cornwell ez /., 2008). Decomposition
involves the breakdown of plant litter, both physically and
chemically, into its elements through progressively simpler
compounds (Aerts, 2006). In contemporary ecosystems, the
majority of aboveground litter is leaf litter, and broadly, chemical
trait-decomposability relationships are preserved both across
organs (leaves, roots, and stems) of different species and within
organs in the same species (Freschet ez al., 2012).

Experimentally, the rate of decomposition is the percentage of
mass loss over time with k (decomposition constant) defining a
mass loss curve (Pérez-Harguindeguy er al, 2013). Litter
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decomposition is the result of interactions between climate and
the community of decomposers (Berg & McClaugherty, 2008).
Global litter decomposition is primarily driven by environmental
conditions such as temperature and precipitation (Aerts, 1997),
which are relevant to environmental change in geological time.
Plant traits affect decomposition rate, primarily via their influence
on usefulness as a resource for decomposer organisms (i.e. chemical
composition and morphology), referred to as litter quality. Litter
quality varies significantly among living plant lineages, so patterns
of plant effects on nutrient cycling probably varied through deep
time (Liu ez al., 2014). For instance, the leaves of gymnosperms
generally decompose 44% slower than eudicots, and ferns and
bryophytes decompose more slowly again (Liu ez al., 2014).

The most important traits contributing to litter quality are
chemical traits that can be assessed in fossils. These are N content,
lignin content, toughness (can be inferred from VD and cuticle
thickness), and LMA (see section V; Cornwell ez 2/., 2008; Freschet
etal.,2012). Other leaf traits that go beyond the scope of fossil taxa
such as N form (Rosenfield ez al, 2020) and phenolics also
influence the decomposition rate. Morphological traits further
impact decomposability. At the very least size/volume (S/V), ratios
affect the area exposed to decomposers in the early stages of
decomposition. Consequently, overall prediction of decomposi-
tion relies on a relatively full picture of taxon traits. Litter quality is,
therefore, a trait syndrome that is relevant for past environmental
change but accessible from fossils only via correlations with
chemical traits (available from compression fossils and coal balls)
and morphological and anatomical traits (available from most fossil
preservation modes). Detailed taphonomic studies suggest that
most compression leaf fossils and leaves preserved in carbonaceous
coal balls were likely preserved rapidly by covering recent falls of
undecomposed leaf litter (Greenwood & Donovan, 1991; Gas-
taldo, 2001), making them the best targets for relatively unbiased
assessment of paleo-litter decomposability in future studies.

For litter decomposition and biomass turnover, it is important to
note that plants are made up of multiple organs that may have
different geochemical effects; for instance, stem and root litter
typically decompose slower and contain more lignin, so they have a
disproportionate role in humus formation (Swift, 1977). Particular
traits may also vary in their contribution to litter quality per organ;
for instance, lignin content is important for wood decomposition.
The effect of chemical traits may also change due to differing access
to decomposers; for instance, N is found in enzymes in leaves and
roots for CO, assimilation/absorptive capacity, while it is primarily
found in storage and defense compounds in stems (Freschet
et al., 2012). Lignin is in itself notable because it is a complex
polymer fundamental to the lignin—cellulose structural matrix of
wood and relevant to co-evolution of enzymatic mechanisms in
decomposers. It is hypothesized that the evolution of wood-
degrading enzymes was a key event ending coal formation at the end
of the Carboniferous (Floudas ez a/., 2012) although this is disputed
based on evidence of from the fossil record of fungi and plants
(Nelsen ez al., 2016). Chemical derivatives of lignin are readily
preserved and extractable from fossils (Niklas, 1981; Logan &
Thomas, 1987) throughout the geological record although to our
knowledge no paleo-decomposability metric for fossil lignin
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content has been developed. Overall, interactions with both
decomposers and other species in litter mixtures (Porre ez al., 2020)
are a key modulator of the effects of traits on decomposition and
may act differently on different traits. Hence, litter decomposa-
bility should be cautiously inferred from the fossil record and we
have attributed relatively low paleo-functional trait scores accord-
ingly (6), although the Earth system score (5.4) and ESI (4.05)
scores are high because of the quantifiable impacts on biogeo-
chemical cycling (Figs 3, 4; Table S1). Our assessment is that this
paleo-functional trait syndrome is a good target for further study
because of its high potential value to address interesting questions
on plant evolution—Earth system interaction.

3. Plant flammability

Wildfire has occurred for > 400 million years (Ma; Edwards &
Axe, 2004; Glasspool er al., 2004; Belcher, 2016) and has likely
been relevant to Earth system processes for at least 350 Ma (Scott
& Glasspool, 2006). Plants host many traits that either influence
fire or respond to fire, many of which can be, or have the potential
to be, observed in the fossil record. These can be linked to
variations in environmental conditions such as weather, season-
ality, climate, and the abundance of oxygen in the atmosphere and
therefore, have the potential to clarify a broad range of Earth
system processes across deep time (Archibald ez 4/, 2018). Of
critical importance and often overlooked in deep-time research is
the influence of plant traits on flammability (the propensity of
plant material to ignite, given an ignition source, and then
propagate a fire) and the nature of the subsequent fire behavior
(rate of spread and intensity), which interacts with ecosystem
processes to determine the effects that a fire may have. While other
proxies such as charcoal abundance may serve as indicators of fire
frequency, we can utilize fire-linked plant traits to make the best-
informed interpretations of fire effects (sensu the ‘effect’ trait
concept) in the ancient past (Belcher, 2016).

Plant traits influence flammability and fire behavior at the leaf
level, the whole plant level, and the physiological/phenological
level (Archibald ez 4/, 2018) and act together to determine
whether fires may burn in the canopy of forests, in the surface
fuels (the understory) in litter or in ground fuels (such as organic
soils and peat). There is a considerable literature describing the
variety of plant traits that impact fire regimes (Kane ez 4/, 2008;
Schwilk & Caprio, 2011; Cornwell ez al, 2015; Grootemaat
et al., 2015), many of which are observable in the fossil record.
Perhaps the most obvious are the leaf morphological traits of leaf
length and leaf area (Notes S1), which are particularly important
in determining the nature of fires in leaf litter because they
influence the bulk density of the litter. The bulk density of leaf
litter decreases with leaf area and length such that litters that have
leaves with larger areas or longer needles will carry more rapidly
spreading fires (de Magalhdes & Schwilk, 2012). Such measure-
ments have been linked to the energy production from paleo-
litter fires where leaves that pack tightly in high bulk density litter
beds will burn more slowly but with an overall high total energy
release that can damage soils and seed banks, while those of larger
leaves or longer needles that pack less densely will run rapidly
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through licter beds but impart littdle heat downward
(Belcher, 2016).

The opposite tends to be true for tree or shrub canopies, where
small leaves increase the ease of heat transfer and tend to form dense
canopies (Schwilk & Ackerly, 2001; Archibald ez 4/, 2018). LMA
likely also influences flammability, where higher LMA leaves ought
to contain overall more energy to give to a fire (both crown, surface,
and litter fires) but will also affect litter fires via their influence on
rates of decomposition (Cornwell er 4/, 2008). Other traits that
enhance canopy flammability include dead branch retention (Bond
& Midgley, 1995; Schwilk & Ackerly, 2001) and the retention of
dead leaves (He er al., 2011). Low canopy base heights and dead
branch retention influence the ability of surface fires to climb into
the canopy. Hence, whole plant reconstructions are of importance
to understanding the likely potential fire behavior that might exist
in an ancient ecosystem. Other observations — such as branch or
shoot shedding, a trait observed in many extant Pinaceae — tend to
be associated with surface fire regimes. This trait has been noted
using careful observations of Permian age conifer fossils
(Looy, 2013). Similarly, thick bark tends to be associated with
survival in surface fire regimes, where thick bark protects the trees’
cambium from the heat of surface fires, while thinner bark is
associated with traits such as canopy seed storage (serotiny) and
tends to be linked to crown fire regimes (Pausas, 2014). The
evolution of thick bark and serotiny in Pinusappears to date back to
the Cretaceous, a time of enhanced flammability (He ez 4/, 2012).
It has also been suggested that a woody rachis that supports a
compact cone with bracts/scales covering winged seeds are traits
that might be considered as characteristic of serotinous cones (He
et al., 2016). Such observations demonstrate the potential of using
paleo-functional traits to indicate the likely fire regime operating in
ancient ecosystems. Similarly, variations in leaf biochemical traits
(such as terpene content) have been linked to flammability and
being capable of driving different fire regimes. For example,
conifers in surface fire regimes appear to have higher needle terpene
contents, which appears to enhance litter flammability, encoura-
ging frequent surface fires (Dewhirst ez al., 2020).

Ancient ecosystems have been reconstructed using plant traits
and included in models that make fire behavior predictions for time
periods such as the Permian (He ez al., 2016), the Triassic—Jurassic
(Belcher et al, 2010; Belcher, 2016; Baker ez al, 2022), the
Cretaceous (Belcher & Hudspith, 2017), and the Miocene
(Boulton & Belcher, 2019). More recently, global dynamic
vegetation models have been used to answer deep-time questions
regarding atmospheric oxygen that rely on consideration of plant
functional types (Vitali e al., 2022). Therefore, the study of fossil
plant traits has a significant potential to inform novel under-
standing of paleo wildfires and their effects, and we have scored this
trait highly as a paleo-functional trait (7) accordingly (Table S1).
Flammability has significant but complex impacts on the carbon
and oxygen cycles, resulting in an ESE score of 5.6 (Figs 3, 4).
Furthermore, although paleofire can be modelled currently within
paleo-ecosystem models, lammability is a trait syndrome made up
of many individual traits and it is not a simple task to parameterize
at individual trait level, thus resulting in a lower ESI score (2.8)

(Figs 3, 4; Table S1).
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4. Salinity tolerance

Salinity tolerance isa complex trait consisting of the ability of plants
to grow in saline environments. Saline-tolerant plants (halophytes)
appear to be present as early as the Devonian (Channing &
Edwards, 2009); however, the fossil record of halophytes is often
based on the sedimentary context indicating a marine influence
(Vakrahmeev, 1991; Gomez et al., 2002; Mendes et al, 2023)
rather than more direct evidence based on fossil plant functional
traits. Stable carbon isotopic analysis of leaf compression fossils has
been used to indicate likely salinity gradients among fossil plant
taxa from the same depositional setting (Nguyen Tu ¢t al., 1999)
with greater discrimination against C" (less negative 13C values)
used to indicate higher salinity sub-environments. Variability in
stable carbon isotopes can also be influenced by photosynthetic
syndrome (see section V), light intensity, aridity, and many other
factors, so it is not a straightforward salinity indicator (Arens
et al., 2000; Diefendorf et al, 2011; Cernusak ez al, 2013).
Nowadays, only a small fraction of terrestrial plants exhibit salinity
tolerance. Plants use three main mechanisms by which they deal
with excess environmental NaCl: (1) salt exclusion, (2) salt
excretion, and (3) salt compartmentalization.

Roots of many salt-tolerant plants maintain K* uptake,
discriminating against Nat, resulting in an increased K*/Na*
ratio compared with the growing medium. K : Naselectivity (S) can
be calculated as: S= ([K+]/[Na+])Plam/([K+]/[Na+])soi| (Pérez-
Harguindeguy eral., 2013). Ion concentrations in living plants and
modern soils can be measured by atomic emission spectrometry
(AES) and atomic absorption spectrometry (AAS) but are not
currently available in fossils due to unknown effects of diagenesis on
the original K/Na ratios. Other salt-tolerant plants excrete salt
through special salt glands. These glands, found mostly on leaves
and sometimes on stems, show different structural and functional
diversity (Dassanayake & Larkin, 2017; Grigore & Toma, 2020).
Microscopic observation of fossil plant cuticle with epifluorescence
(see Cuticle Traits) may reveal their presence as many have auto-
fluorescent properties and are superficially similar in size and
structure to ordinary trichome bases which are readily observed on
fossil leaves. Some salt-tolerant species compartmentalize Na™ in
vacuoles and these are often succulent. Although direct observation
of this type of compartmentalization is currently not possible to
study in fossils, which typically lack cellular level preservation,
LMA (reviewed in detail in section V) is a good general predictor of
succulence (Poorter et 2l., 2009). However, LMA cannot be used in
isolation as values for evergreen gymnosperms and succulent
overlap (Poorter ez al., 2009). Traits associated with salt excretion
which are observable in fossils include the presence of regularly
spaced crystals (salt recreation) and their anatomical excretory
structures (sclereids, tracheo-ideoblasts; Grigore & Toma, 2020).
For example, salt tolerance is often associated with the presence of
calcium oxalate (CaOx) crystals in idioblasts of leaves and roots
(Santos et al, 2016; Karabourniotis et al, 2020). SEM EDX
analysis of Oligocene fossil leaves has confirmed the presence of
ghost accumulations of CaOx crystals (druses; Malekhosseini
etal.,2022), suggesting that additional underutilized traits are now
available to study paleo salinity tolerance in fossil plants (Fig. 2e).
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Overall, however, salinity tolerance achieved low scores across all
categories (Table S1; Figs 3, 4), suggesting that it ranks low in terms
of future development potential as a paleo-functional trait
compared with others reviewed here.

IX. Concluding remarks

Measurement of fossils forms the primary record of vegetation—
climate interactions across deep time. Traditionally, fossil plants
have been used to document paleodiversity and plant evolution and
as proxies of past environmental change. Less often have individual
fossils been used to measure trait values as a means to evaluate their
functioning within paleo-ecosystems. Incorporation of trait values
within paleo-ecosystem models provides a powerful tool with
which to evaluate the impact of newly evolved traits and suites of
traits on the Earth system. Our critical review and semi-quantitative
assessment of plant traits have resulted in a ranked list of paleo-
functional traits (Fig. 4) that we identify as having the greatest
potential to use in further studies investigating how plant evolution
has shaped their environment, Earth surface, and Earth system
processes through deep time. We have focused on and attempted to
rank ‘effect’ traits; however, we view our ranked list as a working
hypothesis and preliminary rather than a final and definitive
outcome. Our methodological framework outlined in Fig. 1
provides a means for others to re-assess our scores and re-evaluate
our ranking or to develop new paleo-functional trait evaluations
that align better with the specific questions being asked. For
example, we expect that an entirely different paleo-functional trait
ranking will emerge if the traits are evaluated for their ‘response’ to
rather than ‘effect’ on their paleo-environment. Response traits that
have been strongly filtered by paleo-environment are the founda-
tion stone of paleo-climate and paleo-atmospheric proxies. Pollen,
spore, and leaf area traits would rank highly under a ‘response to
environment’ evaluation.

Where relevantin the review, we highlighted particular traits that
are ripe for further development but have scored relatively low
under our ranking criteria because they require systematic
approaches to quantify their trait values from fossils and further
control for bias and error (e.g. plant height, CAM photosynthesis,
LNC, SSD). Our critical assessment of paleo-functional traits has
also revealed a constellation of traits (lammability, iWUE, xylem
conductivity, VD, plant height, and dispersal syndrome) that are
measurable in the fossil record and critically important for Earth
system processes but are not yet parameterized within paleo-
ecosystem models (Fig. 4). We highlight these, in particular, as
excellent targets for future data-model integration. Perhaps
somewhat unsurprisingly, leaf traits in the leaf economic spectrum
rank among the highest paleo-functional traits (Figs 3, 4), which is
encouraging as their application to fossil plant assemblages
is growing and methodologies for their estimation are improving,.

While individual paleo-functional traits provide interesting
quantitative insight into the function of individual plant parts, a
paleo-ecosystem-scale network of traits using multiple traits from
different organs and community-weighted plant trait values
(calculated as the product of relative taxon abundance and average
trait values; e.g. Soh ez al., 2017) should be our ultimate goal. Trait-
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based whole-plant understanding of plant function should
incorporate existing knowledge about architecture, growth form,
life history, and phenology from the rich literature of paleo-
ecological inference as a framework for checking the robustness of
individual trait values. Synthesizing all available paleo-functional
traits in this way also provides a framework for integration with
processes, global constraints, and trade-offs observed in modern
plant ecology to allow the understanding of global vegetation
effects across deep time and plant evolution.

Inference of vegetation function across deep time is a major
outcome of interest for paleo-functional trait analysis. A parallel
goal is obtaining a deeper understanding of the tempo of plant
trait evolution and an overview of the functional traits that confer
ecological resilience in a changing global climate (e.g. through
xylem vulnerability, spore, and pollen traits). The impact of
improving the resolution of trait spaces within phylogenetic and
ecological groupings, as well as clarification of plant and
ecosystem processes by modern plant scientists will expand
understanding of deep-time vegetation processes. Coordination
between paleo- and contemporary plant scientists is warranted, for
example, to promote the measurement of traits that have a high
degree of ecological impact and are measurable from both living
and fossil plants (Fig. 4). We hope that our review and semi-
quantitative assessment of fossil plant functional traits will
provide ideas and ‘fossil for thought' toward this endeavor.
Equally, we hope that our proposed methodological framework to
evaluate paleo-functional traits will provide a useful basis for the
development of new paleo-functional trait metrics and trait
rankings in the future that are aligned with the specific questions

being asked.
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