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Abstract

TiO2 nanoparticles (NPs) and Au-TiO2 core-shell NPs (C-S NPs) were synthesized for xylene gas
detection. Morphological, phase, and chemical studies demonstrated the successful generation of
Au-TiO, C-S NPs with a cauliflower-like morphology and desired composition. Also, the surface
area of TiO2 NPs was 8.46, which increased to 23.88 m?/g for Au-TiO2 C-S NPs, due to the creation
of a porous TiO2 shell around the Au core. The response of the TiO2 NPs to 50 ppm xylene was
14.19 at 500°C, while it increased to 165.77 at a lower temperature (450°C). Furthermore, while
the TiO2 NPs gas sensor has no selectivity to xylene gas, the TiO2 C-S NP gas sensor exhibited
excellent selectivity. Overall, incorporation of Au in TiOz in the form of a C-S structure improved
the performance of the sensor to sense xylene. Improved xylene sensing for the TiO2 C-S NPs
stemmed from the high surface area and porous nature, oxygen defects, and formation of Au-TiO-
Schottky barriers. This research demonstrates the development of high-output xylene sensors by

means of Au-TiO, with a C-S structure.
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1. Introduction

Volatile organic compounds (VOCs) are highly volatile in nature at room temperature (20°C)
and 1 atm [1]. Benzene (CsHs), toluene (C7Hg), and xylene (CgH1o), collectively known as BTX,
are among the most common VOCs and are generally found in petroleum products [2,3]. Among
the three isomers of xylene (meta(m), ortho (0), and para (p)) [4], p-xylene, which is a flammable
and colorless liquid, comprises ~86 vol% of the overall consumption of xylene. p-xylene is utilized
in a cleaning agent, solvent, and starting material for synthesis of terephthalic acid used in the

synthesis of polyester fibers and resins [5,6].

However, xylene is considered a pollutant and toxic VOC [7]. Inhaling xylene vapors causes
irritation of the throat and nose as well as difficulty in breathing. Neural toxicity includes slight
inebriation, headaches, dizziness, irritability, vertigo, staggering, and unconsciousness.
Furthermore, it can negatively affect the kidneys, liver, and central nervous system. Renal toxicity
effects include nausea, abdominal pain, and vomiting [8]. Furthermore, xylene is a biomarker for
fast detection of prostate cancer [9]. Therefore, detection of xylene is of importance in multiple

aspects.

Even though traditional approaches like gas chromatography and ion/mass spectrometry
techniques may be used for detection of VOCs, in general, they need complicated and tedious pre-
treatment procedures. Furthermore, they are not portable and consume high power [10]. Therefore,
gas sensors with online response, portability, and high performance can be used for detection of
VOCs including xylene. Among sensors, the resistive type is popular due to its quick response
time (tres) and recovery time (trec), high response, good stability, simplicity in manufacturing, and

affordable price [11]. Generally, semiconducting metal oxides are employed for realization of



resistive sensors owing to simple synthesis, stable nature, low cost , and high mobility of charge

carriers [12].

N-type TiO: is a wide band gap semiconductor that crystalizes in three phases: rutile, brookite,
and anatase. Among them, rutile is the most stable [13]. With its transparency to visible light,
strong oxidizing ability for decomposition of organic substances, good superhydrophilicity, high
stability, nontoxicity, and low cost [14], TiOis not only widely used in photocatalyst applications
[15,16], but is also a promising sensing material [17]. However, in their pristine form, TiO2 gas
sensors have high sensing temperatures, low response, and poor selectivity [18]. Hence, various
approaches such as p-n heterojunction [19,20], doping [21,22], decoration [23,24], and use of
special morphologies like core-shell (C-S) structures [25,26] have suggested to boost the sensing
characteristics of TiO2 sensors including a decrease of sensing temperature, boosting of response,

and selectivity enhancement.

In C-S structures, a thin layer of shell material is present around a core, and the interface area
between the two materials is maximized [27]. For gas sensing applications, the two most widely
used C-S structures are metal oxide-metal oxide [28,29] as well as noble metal-metal oxide [30]
[31]. In particular, the use of the latter C-S structure is highly promising since it prevents direct
contact of noble metals with one another due to the presence of an overlying thin shell. In fact,
when noble metals are dispersed on metal oxides, they can be easily poisoned by sulfur-containing
gases; in cases of poor dispersion or high concentration, these metals can provide conducting paths

on the sensor surface and degrade the electrical properties [32].

Previously, Zhu et al. [33] reported Au-TiO2 C-S for successful detection of ozone at room
temperature (RT). Kim et al. [34] used Au-TiO2 C-S for CO sensing at 600°C. Also, Park et al.

[35] used Au-TiO2 C-S for CO detection. Ag-TiO2 C-S nanowires were used for detection of NH3
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gas [36]. Zhu et al. [37] used Au-TiO2 C-S for RT sensing of ethanol gas. Liu et al. reported a

lotus-like Au-TiO2 sensor for enhanced CO gas sensing [38].

In general, noble metals in combination with metal oxides are used for detection of gases, mainly
thanks to their high catalytic activity [39]. Even though Au has higher price relative to other noble
metals, its catalytic activity towards p-xylene is already demonstrated in some previous literature

[40-42]. However, no studies have been devoted to xylene sensing using an Au-TiOz C-S structure.

Motivated by the above, this study produced TiO2 nanoparticles (NPs) and Au-TiO2 C-S NPs
hydrothermally. The highest response of the TiO2 NPs sensor to 50 ppm xylene was 14.19 at
500°C, while that for the Au-TiO2 C-S NPs sensor was higher at 165.77 at a lower temperature
(450°C). Besides, the Au-TiO2 C-S NP gas sensor exhibited excellent selectivity to xylene, while
the TiO2 NP gas sensor did not. The boosted xylene detection capability of the Au-TiO2 C-S NP
sensor was ascribed to its high surface area and porous nature, oxygen defects, and formation of

Au-TiO; Schottky barriers.

2. Experimental Section

2.1. Chemicals

Gold (1) chloride trinydrate (HAuCIl4, 99.9% purity), titanium (IV) fluoride (TiFs4), and L-
ascorbic acid (CeHsOs, 98% purity) were purchased from Sigma-Aldrich. Trisodium citrate

dehydrate (NasCeHs07-2H20, 99.0% purity) was purchased from Alfa Aesar Co.

2.2. Synthesis of Au-TiO2 C-S NPs



Fig. 1 schematically depicts the production of Au-TiO2 C-S NPs. Initially, a HAuCls solution
(250 mL, 1 mM) was heated while stirring. Later on, the above solution was subjected to stirring
again at 100°C for 5 min after the addition of a trisodium citrate solution (4.5 mL, 10 mM).
Subsequently, the gradual introduction of substance ascorbic acid (0.01 M, 4 mL) into the solution
above resulted in a transformation of color to purple. Then, TiF4 (0.04 M, 6 mL) was added to the
solution, and DI water was added to dilute the mixture to 80 mL. An autoclave was filled with this
solution and processed at 180°C for 48 h. Then, the cooled solution was washed with DI water
using centrifugation at 8,000 rpm for 15 min and was dried in an oven. For production of pristine

TiO2 NPs, the same procedure was employed without HAuUCla.

2.3. Characterizations

Scanning electron microscopy (SEM; Hitachi S-4200,) and transmission electron
microscopy (TEM; JEM-2100 F, JEOL) were used for morphological examination. The chemical
composition exploration was carried out using Energy-dispersive X-ray spectroscopy (EDS) in
TEM. To ascertain the powder phases, X-ray diffraction (XRD) was performed with CuKg:
radiation (A = 0.15406 nm) using a Bruker D8 Advance instrument. The Brunauer-Emmett-Teller
(BET) surface area was obtained by N2 adsorption-desorption analysis (Star 11 3020, Micromeritics
Instrument Corporation). To obtain information on the elemental chemical states, X-ray
photoelectron spectroscopy (XPS; Thermo Fisher Scientific) was conducted. Ultraviolet
photoelectron spectroscopy (UPS, Thermo Fisher Scientific) analysis in ultrahigh vacuum using

Hel (hv=21.2 eV) radiation was employed to calculate the work functions.



2.4. Gas sensing tests

A bi-layer (Au-Ti) electrode was sputter-deposited onto an Al>O3 substrate as a gas sensor (Fig.
1). To evaluate the electrical and gas sensing behavior of the sensors, they were positioned within
a gas chamber in a tubular quartz furnace having good temperature control. The gases (xylene,
NO2, CO, C2H4, N20, CO2, H2S, Hz, CH3COCHj3, toluene, and benzene) in their standard cylinders
had an initial concentration of 100 ppm, while the background consisted of dry air with no relative
humidity (0% RH). Also, NHz used N> as a background gas. Synthetic dry air was used as a balance
gas to make desired concentrations of gases. For all the gases, except NHs, a mixture of pure air
and target gas from cylinders balanced with dry air were inserted into the chamber via mass flow
controllers (MFCs), while keeping a constant flow rate of 100 sccm into gas chamber. The xylene
sensing behaviors were also examined in humid air (RH up to 80%) at 450°C. The genuine
temperature and specific RH values were gauged employing the commercial RH probe. To attain
100% relative humidity (RH) in the air, dry air was introduced into a sealed glass vessel containing
water. Thereby, bubbles in the air were formed and directed toward the outlet line. By blending
dry air (0% RH) with humid air (100% RH) at suitable levels using MFCs, the RH level was
controlled (e. g., 3:2 ratio for 40% RH and 1:4 ratio for 80% RH). The resistance of the gas sensors
was dynamically measured in the air (Ra) and target gas (Rg). The response was computed as
R=Ra/Rq for reducing gases and as R=Rg/R, for oxidizing gases. The tres and trec Were obtained

using the procedure in [43].

3. Results and discussion

3.1. Structural, morphological, and compositional studies



Figs. 2(a)-(c) give TEM micrographs of the Au-TiO2 C-S NPs. A C-S structure was obtained
with a core size of ~ 50 nm and overall C-S NP size 300 nm. The shell was not smooth but
contained voids and pores, which are advantageous for gas diffusion. Also, Figs. S1(a)-(d) display
additional TEM images of multiple Au-TiO2 C-S, revealing the spherical morphology of the Au
core in the synthesized Au-TiO C-S with an average Au size of approximately 50 nm. Fig. 2(d)
indicates the selected area electron diffraction (SAED) pattern of the Au-TiO> C-S NPs. Rings
related to the (111), (200), and (222) crystalline planes of Au [44] and to the (116), (105), and
(101) crystalline planes of TiO2 [45] were seen, confirming the co-existence of Au and TiO>. To
determine the chemical composition of NPs, TEM-EDS color mapping analysis was performed.
Figs. 2(e)-(h) show the combined mapping, mapping of Ti, mapping of O, and mapping of Au
elements, respectively. The core part was comprised of Au, while the shell part was TiO>. Also,
the EDS spectrum in Fig. 2(i) presents the expected signals related to Ti, O, and Au, at weight
percentages of 62.28, 29.57, and 8.15%, respectively. Fig. 3(a) shows XRD pattern of Au-TiO; C-
S NPs, exhibiting the peaks related to Au core, which match with JCPDS File No. 04-0784 (Fig.
3(d)), along with the peaks related to TiO> (anatase) (JCPDS File 21-1272 (Fig. 3(c)). Also, in Fig.
3(b), XRD pattern of bare TiO> is presented, well matching with the anatase phase of TiO. Figs.
3(e) and (f) display SEM images of TiO2 NPs at two magnifications, demonstrating a rectangular-
like morphology with sizes of 100-500 nm. Figs. 3(g) and (h) present SEM micrographs of Au-
TiO2 C-S NPs at two magnifications. Similar to a recent study [46], the NPs had a cauliflower-like
morphology comprised of individual Au cores with sizes of 50 nm and an overall C-S size of ~300

nm.

Figs. 4(a) and (b) reveal the BET graphs of TiO2 NPs and Au-TiO2 C-S NPs, respectively, with

BET surface areas of 8.46 and 23.88 m?/g. This confirms that the surface area of Au-TiO, C-S NPs



was almost three times that of the TiO> NPs, demonstrating the porous nature of the TiO> shell
around individual Au NPs, as observed in the TEM analysis. Therefore, increase of surface area
after formation of C-S structure can be related to formation of porous TiO shell. Also, Figs. 4(c)
and (d) reveal the BJH curves of TiO2 NPs and Au-TiO2 C-S NPs, respectively. Based on the BJH
plots, the average sizes of pores in TiO2 NPs and Au-TiO2 C-S NPs were 41.68 and 559.22 nm,
respectively. The larger pores in Au-TiO2 C-S NPs provide a higher surface area for channels of

gas diffusion [47].

Fig. 5(a) shows the XPS survey of Au-TiO2 C-S NPs, comprising signals related to C (from the
environment), Ti, O, and Au. Lack of impurity signals in the XPS survey, demonstrating high
purity of starting precursors and successful synthesis. Fig. 5(b) reveals the Au 4f core-level region
peaks of Au 4f 72 and Au 4f 5,2 at 83.2 and 86.9 eV, respectively, which can be ascribed to metallic
Au [48]. Also, Fig. 5(c) reveals the Ti 2p core region, with two peaks at 459.4 and 465.3 eV,
related to Ti 2p 32 and Ti 2p 12, respectively [49]. Fig. 5(d) displays deconvoluted O 1s, where
three peaks corresponding to lattice oxygen (O) at 530.0 eV, oxygen vacancies (Oy) at 531.2 eV,
and adsorbed oxygen at 532.1 eV [50] are accurately fitted. The areas of these peaks were 66.5,
7.2, and 26.3%, respectively, showing that considerable oxygen was adsorbed on the Au-TiO, C-

S NPs, which is an advantage for reaction with xylene gas [51].

To calculate the work function (®) of the synthesized materials, UPS spectra were obtained for
Au and TiO2 NPs, as presented in Fig. 6(a). Based on the energy cut-off values of Au and TiO>
NPs presented in Figs. 6(b) and (c), respectively, ® values were calculated using the procedure

explained in a recent paper and were 5.2 and 5.0 eV for Au and TiO2 NPs [52].



3.2. Gas sensing part

Fig. 7(a) offers the responses of TiO2 and Au-TiO2 C-S NPs sensors to xylene (50 ppm)
according to temperature. At lower temperatures, the resistance of the gas sensors was very high
due to wide band gap of TiO2 and low mobility of charge carriers. Also, at lower temperatures, the
responses of both gas sensors were very low due to the insufficient energy of xylene to overcome
the adsorption potential barrier. At 300°C, the responses of TiO, and Au-TiO2 C-S NPs sensors
were 1.00 and 2.88, respectively. For TiO2 NPs, the response gradually increased with temperature,
reaching the highest response of 14.19 at 500°C. For the Au-TiO2 C-S NP gas sensor, the
maximum response was observed at 450°C, and a further increase of temperature to 500°C
decreased the response as the desorption rate became dominant over the adsorption rate. Also,
Figs. 7(b) and (c) present the changes in the base resistance of TiO, and Au-TiO2 C-S sensors
with temperature, respectively. In both instances, the resistance decreases as the temperature rises,
indicating a semiconducting nature. An increased number of electrons transition from the valence
band of TiO; to the conduction band, causing a reduction in the base resistance. Also, under the
identical temperatures, the base resistance of Au@TiO2 C-S nanocomposite surpasses that of pure
TiO2. This is because electrons shift from TiO. to Au owing to the variance in the work function

of two materials.

Figs. 8(a) and (b) reveal the transient resistance plots of TiO, and Au-TiO2 C-S NPs,
respectively, to 10, 30, and 50 ppm Xxylene at their optimal sensing temperatures. In both cases, the
resistance dropped in the presence of reducing xylene gas, revealing the n-type nature originating
from TiO.. The base resistance of TiO> NPs was lower than that of Au-TiO2 C-S NPs, reflecting
the flow of electrons from TiO> to Au. To obtain better insight, the transient response graphs of

the two sensors to various amounts of xylene gas are compared in Fig. 8(c). The responses of the

10



Ti02 NP gas sensor to 10, 30, and 50 ppm xylene were 3.78, 5.82, and 7.27, respectively, and those
of the Au-TiO2 C-S NP gas sensor were 63.38, 97.91, and 165.77 (Fig. 8(d)). This shows that
incorporation of Au into TiO2 in the form of a C-S structure remarkably increased the response of
the sensor to xylene gas, implying a promising role of Au NPs toward xylene gas sensing due to
their catalytic effects and electronic features. Besides, the tres and trec of the Au-TiO2 C-S NP sensor

to 50 ppm xylene were 458 and 345 s, respectively (Figs. S2(a) and (b)).

To assess the output of the Au-TiO2 C-S NP sensor to low amounts of xylene gas, it was exposed
to 1, 3, 5, 7, and 9 ppm xylene at 450°C (Fig. 9(a)). The relevant calibration graph is shown in
Fig. 9(b). The responses to the mentioned concentrations were 2.0, 5.6, 15.4, 31.3, and 57.2,
respectively, demonstrating successful xylene detection. The sensors were exposed to NO», CO,
C2Ha, NHs, N20O, CO», H2S, H, CH3COCHs3, toluene, benzene, and xylene gases (50 ppm) at
450°C for selectivity studies (Fig. 9(c)). The responses of TiO> NPs to the mentioned gases were
1.47,2.77,2.30,2.52,2.74,2.47,5.39, 2.51, 2.57, 1.43, 1.48, and 7.27, respectively. The responses
of the Au-TiO2 C-S NP sensor to the mentioned gases were 1.00, 1.53, 1.79, 1.88, 1.93, 2.21, 5.11,
5.59, 19.17, 1.41, 2.24, and 165.77, respectively. These results show that the TiO> NP sensor had
no selectivity for xylene, while the Au-TiO2 C-S NP gas sensor showed high selectivity to xylene
gas, which is important from a practical viewpoint. Fig. 9(d) shows the response of the Au-TiO-
C-S NP toward 50 ppm xylene at 450°C in the humid air. The responses in 40 and 80% RH were
decreased to 81.2 and 52.0% of the response in dry air, respectively. In humid air, H2O molecules
adhere to the sensor and occupied potential adsorption sites, decreasing the number of sites for
xylene adsorption [53]. In order to avoid the decrease of the response in humid environments, we
may add moisture-proof barriers for hygroscopic materials [54]. For example, some MOFs with

good hydrophobicity can increase moisture-proof nature of gas sensors [55].
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Fig. 9(e) illustrates the repeatability of Au-TiO> C-S NPs gas sensor over five consecutive cycles
when subjected to 50 ppm xylene at 450°C. The responses calculated across sensing cycles are
presented in Fig. 9(f). Fig. 9(g) displays the reproducibility evaluation of these three fabricated
Au-TiO2 C-S NP gas sensors when exposed to 50 ppm xylene at 450°C. Fig. 9(h) illustrates the
sensing cycles for both the newly fabricated and stored (after six months) sensors to 50 ppm xylene
gas at 450°C. The response showed a slight decline from 165.77 in its initial state to 161.19 after

six-month period, indicating excellent stability.

There are three types of xylene isomers depending on the position of ~CHz group on the benzene
ring of xylene as shown in Fig. S3(a). Among them, p-xylene occupies about 86% of consumption
in volume [5]. Therefore, we also exposed the sensor to 0-and m-xylene gases at 450°C (Fig. S3(b)).
The response to 50 ppm o- and m-xylene gases was 4.04 and 5.74 respectively, which were

insignificant comparted to the response to p-xylene (165.77).

In real applications, microheaters are installed on the sensor devices, elevating the sensing
temperature to desired temperatures (>300°C). Since the heating part is relatively small in
comparison to sensing systems, it will not significantly warm the surroundings: In canned sensors,
the sensing part with the micro-heater pattern is located inside the metallic can, which is situated
> 5 mm above the circuit board. In MEMS or NEMS sensors, the sensing part itself is extremely
small [56]. By the way, the relatively high sensing temperature may result is relatively high power
consumption. Sensing temperature can be reduced by operation of the sensor in self-heating mode

[11] or use of UV light irradiation [57], which will be studied in future works.

3.3 Proposed sensing mechanism
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The mechanism of adsorption of oxygen molecules onto TiO2 NPs in air is shown below [58].

02(gas) = O2(ads) )
Oz(ads) + €7 = 03 (ads) (2)
05 @5y e~ = 20~ 3
0~ +e~ - 02~ (4)

Since the sensing temperature for TiO2 NPs was 450°C, we can surmised that the dominant ions
on the sensing layer is O% ions [59]. An insufficiency of electrons on the external surfaces of the
TiO2 NPs led to the generation of an electron depletion layer on TiO> NPs. Accordingly, the
resistance increased for TiO- as an n-type gas sensor [60]. In Xylene gas atmosphere, the reaction

between adsorbed xylene and oxygen occurs as follows [61].

(CgH1p) qast20?% (ads) » (CgHg0) + H,0 + 4e™ (5)

(CgHg0) + 20? (ads) » CO, + H,0(g) + 4e~ (6)
Thus, the released electrons increase the conductivity of the sensor. Moreover, at contact points
between individual TiO2 NPs, homojunctions were formed in air; subsequent exposure to xylene
gas decreased the height of the homojunctions, leading to a sensing signal [62]. Anyway, the
pristine sensor offered a weak response to xylene due to its small surface area and lack of

heterojunctions.

In contrast, the Au-TiO2, C-S NP gas sensor showed a significantly stronger response to xylene
gas. This sensor had a higher surface area (almost three times higher) than that of TiO2 NPs, with
a higher porous nature of the TiO> shell layer over the Au NPs. Therefore, the presence of more
adsorption sites along these pores led to higher adsorption and better gas diffusion into the deep

regions of the sensor (Fig. 10).
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Owing to the difference in @ values of Au (®=5.2 ¢V) and TiO2 (®=5 eV), which were
calculated based on UPS spectra, Schottky junctions were formed at contact areas between these
materials. The energy levels of Au and TiO, before contact are presented in Fig. 11(a). Upon
contact to rebalance the two Fermi levels, electrons flow from TiO. to Au, forming Schottky
junctions in air (Fig. 11(b)). Therefore, the base resistance of Au-TiO: is higher than that of TiO>
NPs due to the formation of EDL in contact areas with Au. In a xylene environment, the electrons
are return to the sensor surface, decreasing the heights of Schottky junctions and the resistance
modulation (Fig. 11(c)). A higher initial resistance, i.e., smaller electron conduction volume, will
contribute to the high sensing behaviors, in which a change of the same electron concentration by
introduction of xylene lead to a higher response. Due to numerous Au-TiO2 C-S NPs, this

mechanism is dominant in resistance modulation for this gas sensor.

Noble metals generally have good catalytic activity [63,64]. Also, Au has shown good catalytic
performance [65,66]. The dehydrogenation of oxidized —CHs groups of xylene is catalyzed by
adsorbed oxygen species. The catalytic activation of Au in Au NPs can decrease
the enthalpy of dehydrogenation of xylene, decreasing the activity while increasing the sensing
reaction to produce an improved output. Both plane structure and the n-conjugate of the benzene
ring lead easy reaction of xylene with oxygen species absorbed in the Au-TiO2 gas sensor rather
than other gases, which explains the selectivity of the sensor to xylene [67]. Furthermore, incoming
oxygen molecules can be adsorbed onto Au NPs to become dissociated on its surface and by a
spillover effect [68], move to nearby TiO», causing faster and higher adsorption of oxygen ions

onto TiO2 NPs.

Table 1 [61,67,69-77] shows a comparison of the xylene detection capability of the current

sensor with those previous research. Overall, the Au-TiO2 C-S NPs sensor has better performance
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than other reported sensors. The relatively high operating temperature may be reduced by
strategies such as self-heating operation [78] and UV illumination [79]. It should be noted that
recently flexible sensing devices have gained much more attention [80,81], therefore, in future
studies, development of flexible sensor based on Au-TiO2 C-S NPs may open a new opportunity

of emerging applications.

4. Conclusions

We demonstrated that incorporation of Au into TiO in the form of a C-S structure improved
the performance of a sensor to xylene gas. TiO2> NPs and Au-TiO, C-S NPs were hydrothermally
produced for xylene gas detection. TEM/SEM investigations confirmed the formation of Au-TiO>
C-S NPs with a cauliflower-like morphology and high surface area of 23.88 m?/g along with a
desired composition. Also, the surface area of TiO2> NPs was 8.46, and it increased for Au-TiO> C-
S NPs due to the creation of a porous TiO> shell around the Au core. The response of the TiO2 NP
sensor to 50 ppm xylene was 14.19 at 500°C, and that for the Au-TiO2 C-S NP sensor was higher
at 165.77 at 450°C. Furthermore, while the TiO2 NP gas sensor has no selectivity to xylene, the
Au-TiO2 C-S NP gas sensor demonstrated outstanding selectivity. The porous nature and high
surface area, oxygen defects, and formation of Au-TiO> Schottky barriers accounted for the

boosted xylene detection of the Au-TiO2 C-S NPs.
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Figure Captions
Fig. 1. Schematics of the synthesis of Au-TiO2 C-S NPs and the fabrication of the sensing device.

Fig. 2. (a)-(c) TEM images of Au-TiO2 C-S NPs at different magnifications, (d) SAED pattern, (e-

(h) TEM-EDS color mapping analysis, and (i) EDS spectrum of Au-TiO2 C-S NPs.

Fig. 3. XRD patterns of the (a) Au-TiO2 C-S NPs and (b) TiO2 NPs. The standard JCPDS patterns
of (c) TiO2 and (d) Au. SEM images of (e,f) TiO2, NPs and (g,h) Au-TiO2 C-S NPs at different

magnifications.

Fig. 4. N2 adsorption-desorption curves of (a) TiO2 NPs and (b) Au-TiO2 C-S NPs and BJH plot

of (c) TiO2 NPs and (d) Au-TiO2 C-S NPs.

Fig. 5. XPS survey of Au-TiO2 C-S NPs. XPS core levels of (b) Au 4f, (c) Ti 2p, and (d) O1s.

Fig. 6. (a) Normalized UPS spectra of Au and TiO2 NPs. Energy cut-off values of (b) Au and (c)

TiO2 NPs.

Fig. 7. (a) Responses of TiO2 and Au-TiO2 C-S NPs gas sensors to 50 ppm xylene gas versus
temperature. Variations of the resistance of (b) pristine TiO2 and (c) Au-TiO2 C-S nanocomposite
gas sensors with varying the temperature.

Fig. 8. Dynamic resistance curves of (a) TiO2 and (b) Au-TiO2 C-S NP gas sensors to 10, 30, and
50 ppm xylene gas at 450°C. Comparison of gas performance of TiO2 and Au-TiO2 C-S NP gas
sensors to 10, 30, and 50 ppm xylene gas at 450°C. (c) Dynamic response curves and (d) sensor

response.

Fig. 9. Dynamic resistance curves of Au-TiO> C-S NPs to 1, 3, 5, 7, and 9 ppm xylene gas at

450°C. (b) Corresponding calibration curve, (c) selectivity histogram of TiO2 and Au-TiO2 C-S
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NP gas sensors to 50 ppm gases at 450°C, and (d) dynamic relative responses of Au-TiO2 C-S NP
gas sensors to 50 ppm gases at 450°C in the presence of 0, 40, and 80% RH. RH was set and
measured at 25°C. (e) Repeatability test showing five sequential cycles of Au-TiO2 C-S NPs gas
sensor exposed to 50 ppm xylene gas at 450°C, and (f) corresponding response values plotted
against the sensing cycles. (g) Reproducibility test for three similarly prepared Au-TiO2 C-S NPs
gas sensors exposed to 50 ppm xylene gas at 450°C, (h) dynamic response curves comparing fresh

and six-month-preserved Au-TiO, C-S NPs gas sensors exposed to 50 ppm xylene gas at 450°C.
Fig. 10. Schematic of the xylene sensing mechanism of the Au-TiO2 C-S NP gas sensor.

Fig. 11. Energy bands of TiO. and Au (a) before contact and after contact in (b) air and (c)

xylene gas.
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Table 1. The xylene sensing properties of Au-TiO2 C-S NPs and those reported in the literature.

Response (Ra/
Sensing material Conc. (ppm) | T(°C) Ref.
Rg) or (R¢/Ra)
Au-SnO2 nanocomposite 100 350 27.9 [67]
NiC0204/WO3 nanocomposite 100 300 15.7 [61]
Cr-doped WOs3 nanofiber 100 225 35 [69]
0.4 wt% Co-doped ZnO nanofiber 100 320 14.8 [70]
10 wt% a-Fe203/BiWOg nanoplate 100 260 135 [71]
W-doped NiO nanotube 200 375 8.74 [72]
a-MoO3z nanoplates 100 370 19.2 [73]
Zn0/ZnCo,04 hollow C-S nanocage 100 320 34.26 [74]
Au-loaded MoOs hollow sphere 100 250 22.1 [75]
Sn-doped NiO microsphere 10 250 3 [76]
a-MoOz/a-Fe>O3 heterojunction 100 206 6.8 [77]
Au-TiOz C-S NPs 50 450 165.77 Present
work
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